Supersedes Working Paper 19-23 – A Generalized Factor Model with Local Factors 

This implies a continuum of eigenvalues of the covariance matrix, as is commonly observed in applications. We derive which factors are pervasive enough to be economically important and which factors are pervasive enough to be estimable using the common principal component estimator. We then introduce a new class of estimators to determine the number of those relevant factors. Unlike existing estimators, our estimators use not only the eigenvalues of the covariance matrix, but also its eigenvectors. We find that incorporating partial sums of the eigenvectors into our estimators leads to significant gains in performance in simulations.

Appendix

View the Full Working Paper