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ABSTRACT

Presently there is growing interest in DSGE models that have more parameters, endogenous
variables, exogenous shocks, and observables than the Smets and Wouters (2007) model, and
substantial additional complexities from non-Gaussian distributions and the incorporation of
time-varying volatility. The popular DYNARE software package, which has proved useful for
small- and medium-scale models is, however, not capable of handling such models, thus in-
hibiting the formulation and estimation of more realistic DSGE models. A primary goal of this
paper is to introduce a user-friendly MATLAB software program designed to reliably estimate
high-dimensional DSGE models. It simulates the posterior distribution by the tailored random
block Metropolis-Hastings (TaRB-MH) algorithm of Chib and Ramamurthy (2010), calculates
the marginal likelihood by the method of Chib (1995) and Chib and Jeliazkov (2001), and
includes various post-estimation tools that are important for policy analysis, for example, func-
tions for conducting impulse response and variance decomposition analyses, and point and
density forecasts. Another goal is to provide pointers on the fitting of these DSGE models.
An extended version of the new Keynesian model of Leeper, Traum and Walker (2017) that
has 51 parameters, 21 endogenous variables, 8 exogenous shocks, 8 observables, and 1,494 non-
Gaussian and nonlinear latent variables is considered in detail.
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1 Introduction

Over the past 20 years or so, dynamic stochastic general equilibrium (DSGE) models have become the main-
stay of macroeconomic policy analysis and forecasting. Presently there is growing interest in DSGE models
that have more parameters, endogenous variables, exogenous shocks, and observables than the Smets and
Wouters (2007) model and substantial additional complexities from non-Gaussian distributions, as in Chib
and Ramamurthy (2014) and Curdia, Del Negro and Greenwald (2014), and the incorporation of time-
varying volatility, as in Justiniano and Primiceri (2008).! This is because these higher-dimensional DSGE
models are more realistic and have the potential to provide better statistical fit to the data. Despite wide
spread use of Bayesian estimation techniques, based on Markov chain Monte Carlo (MCMC) simulation
methods [see Chib and Greenberg (1995) and Herbst and Schorfheide (2016) for further details about these
methods|, the estimation of high-dimensional DSGE models is challenging. The popular DYNARE software
package, which has proved useful for small- and medium-scale models is, however, currently not capable of
handling the preceding DSGE models, thus inhibiting the formulation, estimation and comparison of such
models for policy analysis and prediction.

A primary goal of this paper is to introduce a user-friendly MATLAB software program for estimating
high-dimensional DSGE models that contain Student-¢ shocks and stochastic volatility. Estimation of such
models is recognized to be challenging because of the complex mapping from the structural parameters
to those of the state space model that emerges from the rational expectations solution of the equilibrium
conditions. Our package relies on the tailored random block Metropolis-Hastings (TaRB-MH) algorithm
of Chib and Ramamurthy (2010) to deal with these challenging models. Recent applications of this
algorithm to DSGE models include, e.g., Born and Pfeifer (2014), Rathke, Straumann and Woitek (2017),
Kulish, Morley and Robinson (2017) and Kapetanios et al. (2019), while applications to other problems in
economics include Kim and Kang (2019) and Mele (2020), amongst many others. Two defining features
of this algorithm are worth mentioning. One is the random clustering of the structural parameters 6°
at every iteration into an arbitrary number of blocks. Each block is then sequentially updated through
an M-H step. Another is the adaptation of the proposal density to the location and curvature of the
posterior distribution for a given block using a mix of simulated annealing and a deterministic optimizer.
The TaRB-MH algorithm may appear to require work, but random blocking and tailoring are central to

generating efficient exploration of the posterior distribution. The TaRB-MH algorithm is also available in

1See also, e.g., Dave and Malik (2017), Chiu, Mumtaz and Pinter (2017), Franta (2017), and Liu (2019) for macroeconomic
implications of fat-tailed shocks and stochastic volatility.



DYNARE, but only for models without Student-t shocks and stochastic volatility. Even there, however,
we have found in experiments that its implementation is not as efficient as the one in our package.

The marginal likelihood (the integral of the sampling density over the prior of the parameters) plays a
central role in Bayesian model comparisons. In our package we calculate this quantity by the method of
Chib (1995) and Chib and Jeliazkov (2001). The marginal likelihood is also available in DYNARE, but it
is obtained by a modified version of the Gelfand and Dey (1994) method (also see, for example, Justiniano
and Primiceri (2008) and Cirdia, Del Negro and Greenwald (2014), for use of this method in DSGE models
with Student-t shocks and stochastic volatility). The latter method, however, is not as reliable as the Chib
and Jeliazkov (2001) method. It is subject to upward finite-sample bias in models with latent variables
and runs the risk of misleading model comparisons [see Sims, Waggoner and Zha (2008) and Chan and
Grant (2015) for such examples|. As this point is not well recognized in the DSGE model literature, we
document its performance in simulated examples. It is shown to mistakenly favor models with fatter tails
and incorrect time-varying variance dynamics. Finally, our package includes various post-estimation tools
that are important for policy analysis, for example, functions for conducting impulse response and variance
decomposition analyses, and point and density forecasts.

Another goal is to provide pointers on dealing with high-dimensional DSGE models that promote more
reliable estimation and that are incorporated by default in our package. Due to the complex mapping from
the structural parameters to those of the state space form, standard prior assumptions about structural
parameters may still imply a distribution of the data that is strongly at odds with actual observations. To
see if this is the case, we sample the prior many times, solve for the equilibrium solution, and then sample
the endogenous variables. Second, we suggest the use of a training sample to fix the hyperparameters.
Although training sample priors are common in the vector autoregression (VAR) literature, they are not
typically used in the DSGE setting. We also suggest the use of the Student-t family of distributions
as the prior family for the location parameters. This tends to further mitigate the possibility of prior-
sample conflicts and leads to more robust results. Finally, we invest in the most efficient way of sampling
the different blocks, for example, sampling the non-structural parameters and the latent variables by the
integration sampler of Kim, Shephard and Chib (1998).

The rest of the paper is organized as follows. The next section specifies a prototypical high-dimensional
DSGE model for the subsequent analysis. Section 3 provides pointers on prior formulation, posterior
sampling, and model comparison accompanied by both empirical results and simulation evidence. Section
4 conducts an out-of-sample forecast analysis. Section 5 concludes. The appendix contains a detailed

summary of the implied equilibrium and steady state relations (Appendix A), a practical user guide on



how to run our MATLAB package called ‘TaRB-t-SV’ (Appendix B), and a description of the small-scale
DSGE model used in Section 4 (Appendix C).?

2 High-Dimensional DSGE Model

As a template, consider the new Keynesian model of Leeper, Traum and Walker (2017) that fills fiscal
details into an otherwise standard medium-scale DSGE model presented in Christiano, Eichenbaum and
Evans (2005) and Smets and Wouters (2007). To make this model more realistic, we introduce fat-tailed
shocks and time-varying volatility. The resulting model is high-dimensional, consisting of 51 parameters,
21 endogenous variables, 8 exogenous shocks, 8 observables, and 1,494 non-Gaussian and nonlinear latent
variables. This section outlines the model structure briefly to conserve space. Unless otherwise noted,
we let Z; = Inz; — Inz denote the log-deviation of a generic variable x; from its steady state x. We also
divide a non-stationary variable X; by the level of technology A; and express the detrended variable as

Tt = Xt/At'

2.1 Firms

The production sector consists of firms that produce intermediate and final goods. A perfectly com-
petitive final goods producer uses intermediate goods supplied by a continuum of intermediate goods
producers indexed by ¢ on the interval [0,1] to produce the final goods. The production technology
Y: < (SéYt(i)l/ (1+’7f)di) e is constant-return-to-scale, where 7} is an exogenous price markup shock, Y; is
the aggregate demand of final goods, and Y;(i) is the intermediate goods produced by firm 3.

Each intermediate goods producer follows a production technology Y;(i) = K;(i)“ (Ath(i))l_a — A0,
where K;(i) and L4(i) are the capital and the amount of ‘packed’ labor input rented by firm 4 at time ¢,
and 0 < o < 1 is the income share of capital. A; is the labor-augmenting neutral technology shock and
its growth rate uf = In(A;/A:—1) equals v > 0 when A; evolves along the balanced growth path. The
parameter {2 > 0 represents the fixed cost of production.

Intermediate goods producers maximize their profits in two stages. First, they take the input prices,
i.e., nominal wage W; and nominal rental rate of capital RF, as given and rent L¢(i) and K,(i) in perfectly
competitive factor markets. Second, they choose the prices that maximize their discounted real profits.
Here we introduce the Calvo-pricing mechanism for nominal price rigidities. Specifically, a fraction 0 <

wp < 1 of firms cannot change their prices each period. All other firms can only partially index their prices

2The toolbox is publicly available at https://sites.google.com/a/slu.edu/tanf.
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by the rule P,(i) = P, 1(7) (Wi(fl’ﬂl_xp), where P, (i) is indexed by the geometrically weighted average
of past inflation 7, ; and steady state inflation 7. The weight 0 < x,, < 1 controls the degree of partial
indexation.

The production sector can be summarized by four log-linearized equilibrium equations in terms of six

parameters (o, €, 8,wp, X,,7"), seven endogenous variables (g, ki, Ly, 7F by, ey, ), and one exogenous

shock 4f:
+Q7r - .

Production function:  g; = 4 [Ozk’t + (1 — a)Lt] (2.1)
Capital-labor ratio: ff by = Ly — k (2.2)
Marginal cost:  me¢, = aff + (1 — a)iy (2.3)

. . . B . Xp . g .
Phill tion: =—F + —=—7 1+ + Uy 2.4
illips equation =7 AN (et + 7 AN, Te—1 + Kpmcy + Uy (2.4)

where k, = [(1— Bw,)(1 = w)]/[wp(L + Bx,), 7 = In(1+ 1) = In(L + 1), 77 is normalized to i = i,

and [E; represents mathematical expectation given information available at time t.

2.2 Households

The economy is populated by a continuum of households indexed by j on the interval [0, 1]. Each opti-
mizing household j derives utility from composite consumption C/(j), relative to a habit stock defined in
terms of lagged aggregate composite consumption hC} ; where 0 < h < 1. The composite consumption
consists of private C;(j) and public Gy consumption goods, i.e., C}(j)=Ci(j) + acG:, where ag governs
the degree of substitutability of the consumption goods. Each household j also supplies a continuum of
differentiated labor services L;(j,!) where [ € [0,1]. Households maximize their expected lifetime utility
Egiﬁtuf [In(Cy(j) — hCy 1) — Li(5)'+/(1 + €)], where 0 < 8 < 11is the discount rate, £ > 0 is the inverse
of 1tP:‘rOisch labor supply elasticity, and u? is an exogenous preference shock.

Households have access to one-period nominal private bonds B, that pay one unit of currency at time
t 4+ 1, sell at price R;* at time ¢, and are in zero net supply. They also have access to a portfolio of long-
term nominal government bonds By, which sell at the price PP at time ¢. Maturity of these zero-coupon
bonds decays at the constant rte 0 < p < 1 to yield the average duration (1 — p3)~!. Households receive

bond earnings, labor and capital rental income, lump-sum transfers from the government Z;, and profits

from firms II;. They spend income on consumption, investment I;, and bonds. The nominal flow budget



constraint for household j is given by

(L +7)VPC() + PL(j) + PPBu(j) + R, ' Beu(j) = (L + pPP)Bia () + Boea (4)

(1 - TL)L Wi (D) Le(5, D)dl + (1 — 75) R, (/) K1 (§) — W (0) K1 (§) + BiZi(j) + TL(5)

where Wy(1) is the nominal wage charged by the household for type [ labor service. Consumption and labor

income are, in nominal terms, subject to a sales tax 7¢ > 0 and a labor income tax 7% > 0, respectively.

K

Effective capital K(j), which is subject to a rental income tax 7" > 0, is related to physical capital

K(j) via K(j) = v(j)K;—1(j), where v,(j) is the utilization rate of capital chosen by households and
incurs a nominal cost of ¥(v;) per unit of physical capital.® Physical capital is accumulated by households
according to K;(j) = (1 — 8K, 1(j) +ul (1 -5 (i%))) I;(j), where 0 < § < 1 is the depreciation rate,

S(-)I; is an investment adjustment cost and u! is an exogenous investment-specific efficiency shock.*

There are perfectly competitive labor packers that hire a continuum of differentiated labor inputs L; (1),
pack them to produce an aggregate labor service and then sell it to intermediate goods producers. The
labor packer uses the Dixit-Stiglitz aggregator for labor aggregation L{ = (SéLt(l)l/ (”’ﬁu)dl) HW, where
L¢ is the aggregate labor service demanded by intermediate goods producers, L(l) is the Ith type labor
service supplied by all the households and demanded by the labor packer, and 1}’ is an exogenous wage
markup shock.

For the optimal wage setting problem, we adopt the Calvo-pricing mechanism for nominal wage rigidi-
ties. Specifically, of all the types of labor services within each household, a fraction 0 < w,, < 1 of wages
cannot be changed each period. The wages for all other types of labor services follow a partial indexation
rule W;(1) = Wi (1) (mp_qeti-)* ()X where W;_1 (1) is indexed by the geometrically weighted av-
erage of the growth rates of nominal wage in the past period and in the steady state, respectively. The
weight 0 < x,, < 1 controls the degree of partial indexation.

The household sector can be summarized by ten log-linearized equilibrium equations in terms of seven-

C K _L

teen parameters (h, vy, ag, p, 7, 7, 70, 8,7, 8,0, &, Wws Xuws Par M), fifteen endogenous variables (5\,5, ¢y, G,

Gi, Ry, 70, PBPF O, Gy, i, ki, ke, 0y, Ly), and four exogenous shocks (a¢, 40, 4t 4):

Opti 1 H 5\ ~b h ~q e’ Ly h A TC ~C (2 5)
imal consumption: = U, — Uy — & C; 41— ——=T .
P P P e -kt er—ht e —h Tt 1440
. . R c . « .
Composite consumption: ¢ = ——¢ + _ 69 Gt (2.6)
c+ agg c+ agg
3Define the parameter 0 < ¢ < 1 such that \1\;’/’((11)) = %

45(-) satisfies S’(¢?) = 0 and S”(e?) = s > 0.



Consumption Euler: j\t = Rt + Etj\tJrl — EtﬁtJrl — Etﬁfﬂ (27)
B

. 5 p pP A J
Bond pricing: R, + PP = mEtPfrl = EEtPtJiI (2.8)
Optimal capital utilization: 7 — ———#K — ¥ 2.9
ptimal capital utilization: 7y — %7 = 5 _¢Ut (2.9)

Optimal physical capital: G = Eyhy1 — A — Eiaf,, + Be (1 — T8V R,

—Be_VTKTkEt%fil + Be77(1 — 0)EGiy1 (2.10)
. . A ~a 1 A ~q B 0
Optimal investment: Iy = — e ﬁut + 1+ B)se qr + Uy + mﬂitzt“
B I
+—Eaf  + ——i— 2.11
1+ 3 tUt 11 1+52t1 ( )
Effective capital: k, = o + ]ift_l —uy (2.12)
Capital law of motion: ky = [1—(1—=08)e (1 + B)se®dl +14y)
+(1 = &) (kpey — 0% (2.13)
L
. . 1
Wage equation: UAJt = —Ruw UA)t — £Lt - ftg + /\1L - 1i—7-L7A-f:| + m’d]t,1
p . Xw - 1+ BXw - B
+——E + =Ty — L+ E
1+ 3 tWt41 1+B7Tt1 1+ 3 Tt 1+ 5 tTTE+1
Xw ~a 1+BXw_pa/8 ~a A~
+7 n 5%71 — 145 uy + iy (2.14)

where ky, = [(1—fwy)(1—wy)]/[we(1+8)(1+(1/n"+1)E)], 0 = In(1+n") —In(1+n"), ;" is normalized

to Y = kyh, Ui is normalized to i, and ) is the Lagrange multiplier associated with the

_ 1
= ({1+B)se2v
household’s budget constraint. We set the capital, labor, and consumption tax rates to their constant

steady states so that 71* = 77 = 77 = 0.

2.3 Monetary and Fiscal Policy

The central bank implements monetary policy according to a Taylor-type interest rate rule. The govern-
ment collects revenues from capital, labor, and consumption taxes, and sells nominal bond portfolios to
finance its interest payments and expenditures. The fiscal choices must satisfy the government budget
constraint PtBBt + TKRf(Kt + "W, L, + ¢ P,C, = (1+ thB)Bt,l + PGy + P, Z;, where we have assumed
the lump sum transfers are equal across households, i.e., Sé Z1(j)dj = Zy, and fiscal instruments follow the
simple rules specified below.

The government sector can be summarized by seven log-linearized equilibrium equations in terms of thir-
7C 1K

teen parameters ( TE B, ps P Pgs P Py Py Vg 7,), sixteen endogenous variables (l;t, R, l;:t, Wy, I:t,



e, Tt I%B,f]t, AT A R, 8%, 8;), and four exogenous shocks (a¢, 4™, 4f, 47):
. b LA o L., . -
Government budget constraint: b+ 1" — [Tt + 7+ kt] + T w— [Tt + Wy + Lt}
Yy Yy Yy
cCic | 4 1by, A B q
+77 (77 + &) = =— [bt_l—m—Pt_l—u ]
y ! By !

b A . 2,
+§%Pt3 + ggt + &Zt (215)

Do
—_
(=]

c [ k
Aggregate resource constraint: ¢ = —¢& + —1; + ggt +'(1) =1y
Y Y

DO
—_
~

Monetary policy rule: R, = pT]:?t,l +(1—p,) (gb,,frt + gbyzjt) + Uy

Fiscal policy rule: g, = p,gi—1 — (1 — pg)wgéi’,l + uf

'[\Dl\D
—_ =
NoTEENG o]
— N N~

—~ o~ o~~~

~ ~ ~b ~
Bt = PLRt-1 — (1 - pz)f)/zstfl + Uf

k A L .
Real primary surplus: § = 7HpFZ (%tK + ff + k?t) + thw= (f'tL + wy + Lt)
S

s
cCi.c | 4 g, Z,
+7 (T +C) — =g — —Z 2.20
S( t ) I T (2.20)
Debt-to-output ratio: &7 = b, — ¢ (2.21)
B
where s8¢ | = ];:115:11 denotes the market value of the debt-to-GDP ratio, s = 75r*k + 7wl +7% — g — 2,

0 < p,, py, p. < 1 measure policy smoothness, ¢, ¢, > 0 and ~,, v, are policy parameters, and (4;", @7, 47)
are exogenous policy shocks.

Following Leeper, Traum and Walker (2017), we consider two distinct regions of the policy parameter
space (gzﬁ,r,fyg,’yz) that deliver unique bounded rational expectations equilibria. The conventional active
monetary /passive fiscal policy regime, or regime-M, has the monetary authority to raise the nominal
rate aggressively in response to inflation and the fiscal authority to adjust expenditures and tax rates to
stabilize debt. The alternative passive monetary/active fiscal policy regime, or regime-F, has monetary

policy respond weakly to inflation while fiscal instruments adjust weakly to debt.

2.4 Exogenous Processes

All exogenous shocks follow autoregressive processes
U; = po U 4 + €, s € {a,b,i,p,w,m,g,z} (2.22)

where p,, € (0,1) and the innovations € are serially uncorrelated and independent of each other at all

leads and lags. We complete the model by assuming a multivariate Student-¢ distribution for the shock



innovations collected in an 8 x 1 vector ¢, i.e., € ~ ,(0,%;), where v denotes the degrees of freedom and
¥ is an 8 x 8 diagonal matrix with time-varying volatility 2, of €} on its main diagonal.” For estimation
convenience, it is useful to represent each element of ¢; as a mixture of normals by introducing a Gamma

distributed random variable \;,

e = N Pehi2es N\~ G (g g) . e ~N(0,1) (2.23)

where, following Kim, Shephard and Chib (1998), the logarithm of each volatility h{ = Ino?, collected in

an 8 x 1 vector h; evolves as a stationary (|¢,| < 1) process:
hi = (1= o )ms + ks +m5 1 ~N(O,w)). (2.24)

2.5 Taking Model to Data

Define the private sector’s one-step-ahead endogenous forecast errors as
ny =y — B, we{\miqr"w PP} (2.25)

The model consists of 36 log-linearized equilibrium equations and can be cast into the rational expectations

system

ree e Ted| | as ree 19 0o |25, 0 0

o0 I o ||zz|=]0 P ofl|az, |+ [I| & + [0 m (2.26)
(8x1) (7x1)
[0,I]] 0 © xd 0 0 I]|]|a¢, 0 I
~— T ~ W—_ — —/—_ - C_V_:J W—_ ~ W—_ —
S x S Ty
ES%(XQSG)) (36>€1) 216(336)) (3&&) (36:{8) (36x7)

where I denotes the identity matrix, P = diag (pea, Pebs Peis Peps Pews Pems Pegs pez)?

e ok A D LA T S D oA s D o aba N A s o~ sk o~ DB
xt = [ytvct7Ct7kt7kt7UtyLtamctabt7gt7zt7Rt7St7Sta)\taﬂ-hztaqtvrt)wtvpt ]
(21x1)
are the endogenous variables,
b ~i AD ~w ~m ~g Az]

z _ [ra »
Ty _[ut7ut7utvut7ut=ut7ut>ut
(8x1)

°It is straightforward to introduce an independent Student-¢ distribution with different degrees of freedom for each shock
innovation. For exhibition ease, we do not consider this generalization.



are the exogenous shocks,

d 1 ~ A S Ak A »B
Ty = [Et)\tJrlaEtﬂtJrlaEtZtJrl,EtQtJrlaEtTt—&-bEtwt+laEtPt+1]
(7Tx1)

are the conditional expectations of the last seven elements of xf, ,

_r.a b i p w m g _z|
€t _[€t7€t7€t7€t7€t7€t7€t7€t]
(8x1)

are the shock innovations, and

T 7 rk w B
ne = [t nf,mbndny e nt )
(7x1)

are the forecast errors.

Here the first row of (2.26) stacks the 21 structural equations (2.1)-(2.21), the second row stacks
the 8 shock processes (2.22), and the third row stacks the 7 definitional equations (2.25). The unknown
parameters 6 consist of the structural parameters

(2?51) = [1007a 57 h> ag, W S, Wps Wws Xpr Xw> ¢7r7 ¢y7 Fyga Yz Prs pga Pz3 Peas Pebs Peis Peps Pews Pem> peg? Pez: E? 7?]

and the volatility parameters

14 2 2 2 2 2 2 2,2
(Q?Lxl) = [lu“a? Hpy Hg :u’p7 Fos oy s ,ug7 Hozs ¢aa ¢ba qbia ¢p7 ¢w7 ¢m7 ¢ga ¢z7 Wy Whs Wi wpv Ways wmawgawz]-

Conditional on #° and independent of the volatility processes, the above structural system can be solved

by the procedure of Sims (2002) to deliver a linear solution of the form

zy = GOy + M(6%)e (2.27)
(36x36) (36x8)
which is then estimated over a vector y; of 8 observables stacked in y1.r = [y1,...,yr|, including log

differences (denoted dl) of consumption, investment, real wage, government spending, and government

debt; log (denoted 1) hours worked, inflation, and nominal interest rate.® The observables are linked to the

6See the Online Appendix of Leeper, Traum and Walker (2017) for details on data construction.

10



model variables z; via the following measurement equations:

_ dlCons, 1] 100~ [ € — Gy + Uy |
dlIny, 100y I — iy + 0
dlWage, 100~ Wy — Wy + U
dlGovSpend, 100 gt — G + U
_ T . (2.28)
dlGovDebt, 100~ by — by + Uy
1Hours; L ﬁt
1Infl; T e
IFedFunds; T+ 100(y/8 — 1) R,
Let A = [A1,...,Ar] contain all non-Gaussian latent states and hy.p = [h],...,h%}] contain all

nonlinear latent states. Further collect them in 217 = [A|.z, h].7]’; which in our empirical application

(T = 166) has a total of 1,494 elements. In conjunction with the shock volatility specifications (2.23) and
(2.24), equations (2.27) and (2.28) form a state space representation of the DSGE model whose conditional

likelihood function f(y1.7|0, z1.7) can be evaluated with the Kalman filter.

3 Estimation

The general framework for estimating DSGE models, employing Bayesian tools, is by now quite well
established. The state space model (2.27)—(2.28) is supplemented by a prior distribution () summarizing
the researcher’s initial views of the model parameters. This prior information is updated with the sample

information via Bayes’ theorem,
7[_(97 Zl:T|yl:T) oc f(yl:T; Zl:T|6‘) : 7T(9) : ]1{9 € ®D}

where f(y1.r, z1.7|0) is the joint likelihood function and the joint posterior distribution 7(, z1.7|y1.7) char-
acterizing the researcher’s updated beliefs is calculated up to the normalization constant. Moreover,
1{6 € ©p} is an indicator function that equals one if # is in the determinacy region ©p and zero otherwise.
This posterior distribution is typically summarized by MCMC methods, but in the current high-dimensional
context, there is still little experience on how an MCMC sampling procedure should be implemented to

estimate the model.

11



I. Sample mean
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Figure 1: Distributions of simulated selected quantities obtained by sampling the prior, and then the outcomes
given drawings from the prior. Notes: Each panel compares the resulting densities under Gaussian shocks with
constant volatility (red dashed line) with that under Student-t shocks with stochastic volatility (shaded area).
Vertical lines denote the real data counterparts.
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3.1 Prior Distribution

" The priors

Table A.1 of Appendix A lists the marginal prior distributions for all model parameters.
on the structural parameters follow closely Leeper, Traum and Walker (2017), and those on the volatility
parameters imply a fairly persistent volatility process for each shock innovation. In the Bayesian estimation
of DSGE models, an informative prior distribution (such as those on the policy parameters ¢, v,, 7,)
can play an important role in shifting the posterior distribution toward regions of the parameter space
that are economically meaningful. It can also introduce curvature into the posterior surface that facilitates
numerical optimization and MCMC simulations (such as the tailoring of proposal densities in the TaRB-MH
algorithm).

When it comes to high dimensions, however, developing an appropriate prior becomes increasingly
difficult due to the complex mapping from the structural parameters to those of the state space form.
Consequently, a reasonable prior for the structural parameters may still imply a distribution of the data
that is strongly at odds with actual observations. For instance, Figure 1 shows the implied distributions
for selected sample moments under the original regime-M prior and model specification of Leeper, Traum
and Walker (2017) (red dashed lines). Most notably, this prior places little or no mass in the neighborhood
of the actual mean of government spending and the actual standard deviations of investment, government
spending, debt, and hours worked (vertical lines). After taking the model to data, we also find that the
posterior mass for several parameters (e.g., the habit parameter h, the nominal rigidity parameters w, and
wyw, and the government spending persistence p,) lies entirely in the far tail of the corresponding prior,
thereby introducing fragility to the inferences. To cope with these issues, we suggest a two-step approach

for constructing the prior that can avoid such prior-sample conflict.

3.1.1 Sampling the Prior

The first step follows the sampling the prior approach in, e.g., Geweke (2005) and Chib and Ergashev
(2009). In particular, start with a standard prior for the structural parameters. Here we take that to
be the prior in Leeper, Traum and Walker (2017). Alongside, specify an initial prior for the volatility
parameters #'. Then sample this joint prior a large number of times (say 1,000) and simulate a data set
y'9 for each parameter draw 9(9), g = 1,...,G, under which the model has a unique bounded solution.
Finally, compute the implied distributions for various functions of the data (such as the sample mean,

standard deviation, and autocorrelation) and check whether these are close to corresponding values in

"Because some parameters are held fixed under each regime, effectively, 6 has 49 elements and 0° has 25 elements.
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the actual data. If not, adjust some or all marginal components of the prior for # and repeat the above
process.®

It is clear from Figure 1 that under the adjusted prior, reported in Table A.1 of Appendix A, the
Leeper, Traum and Walker (2017) model extended with Student-¢ shocks and stochastic volatility implies
distributions of the data that capture the corresponding real data quantities in their relatively high density

regions (represented by the shaded areas).

3.1.2 Training Sample Prior

In the second step, given the adjusted prior from the first step, use the TaRB-MH algorithm to estimate
the DSGE model on the initial 50 observations running from 1955:Q1 to 2008:Q4. The posterior draws
from this run are used to form the prior. Specifically, keep the prior type of each parameter unchanged
but set its location (dispersion) to the corresponding mean (twice standard deviation). At this point, we
suggest that each location parameter u,, s € {a,b,i,p,w,m,g,z} of the volatility process be assigned a
Student-t distribution with 2.1 degrees of freedom. This two-step construction tends to avoid any stark

conflict between the prior and the likelihood.

3.2 Sampling Steps

We use two primary steps to sample the posterior distribution. These are executed in the program
tarb_full.m. The first step samples the 25 structural parameters in #° from the conditional poste-
rior 7r(95|y1;T, 0V \.r. hi.r) by the Chib and Ramamurthy (2010) TarB-MH algorithhm, and the second
step samples the remaining blocks, including the 24 volatility parameters in 0", the 166 non-Gaussian
latent variables in Ai.p7, and the 1,328 nonlinear latent variables in hj.p, from the conditional posterior
70V, A.r, h1:T|y1:T,95) by the Kim-Shephard and Chib (1998) method. Iterating the above cycle until
convergence produces a sample from the joint posterior 7(6, z1.7|y1.7). We provide a brief summary of

these steps and refer readers to the original papers for further details.

8In the Leeper, Traum and Walker (2017) setting with Gaussian shocks and constant volatility, this step suggests that the
original prior for the standard deviation parameters 1000, s € {a, b, i, p, w, m, g, z}, each of which follows an Inverse-Gamma
type-2 distribution with mean 0.1 and standard deviation 1, should be adjusted. Alternatively, one could also adjust some
or all marginal components of the prior for 6°.
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3.2.1 Sampling Structural Parameters

The first step entails sampling 6° from
7T((95|3J1:T> QV, zur) o f(y1:T|95, 21r) - 7T(QS) -1{0 € ©p} (3.1)

using the TaRB-MH algorithm. To fix ideas, consider the gth iteration where a random partition of B
blocks from a permuted sequence of 8° has been formed, i.e., §° = (Gf - ,9%). Specifically, we initialize
Gf with the first element of this shuffled sequence, and start a new block with every next element with
probability 1 — p. As a result, the average size of a block is given by (1 —p)~!. In our benchmark setting,
we set p = 0.7 so that each block contains three to four parameters on average. This effectively breaks a
25-dimensional sampling problem into about seven smaller ones. The random block feature is also useful as
the researcher typically does not have a priori knowledge about the correlation pattern of 8°. Now suppose
the blocks 6517 = (679 .. 679 have been updated in the current iteration, whereas the remaining

blocks 92’](39_1) = (Gf’(g_l), . ,Gg(g_l)) and 29~ take values in the previous iteration. In summary:

1. Use the simulated annealing (SA) optimization method (available as a MATLAB built-in function

simulannealbnd) to obtain an initial solution to

~S . S, S,(g—1 _
0, = argmin —In f (y.r|073%,. 05 0,857, 2070) - n(67).
01;

This SA version of the posterior mode is further used to initiate the BFGS quasi-Newton method

(available as a MATLAB function csminwel written by Chris Sims) that refines the initial solution.
~S A

csminwel also approximates the inverse of the Hessian matrix evaluated at 6, , denoted by V}, and

returns it as a byproduct.’

2. Generate a candidate draw from the tailored Student-¢ proposal density
S, 55 1
6, ~ t,(6,. Vi)

where the degrees of freedom parameter is set to v = 15. The local tailoring feature allows for sizable

moves from the neighborhood of the current parameter draw.

9The same optimization procedure, executed in the program chain_init.m, is repeated multiple times to obtain a starting
value 69 for the chain.
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3. Accept 95’(9 ) as the updated value of 9;? with probability

s, s, S,(g—1 _ s, (9=1)155

o = min {1 f(y1:T|91:£z)1,9b (9)’9“(53)72,(9 1)) -7 (0, (g)) . tV(ef(g 1)|0b ) %)}

- ’ S, S, (g—=1) 5S,(g—1 _ S, (g—1 ~S A :
P03, 0,970, 071450, 260-0) w0970y g, (0596, V)

We also introduce a new procedure, i.e., tailoring at random frequency, to accelerate the TaRB-MH
algorithm. The idea is similar in essence to grouping the structural parameters into random blocks. Because
the tailored proposal density in the current iteration may remain efficient for the next few iterations, there
is typically no need to re-tailor the proposal density in every iteration. Nevertheless, there is still a chance
that the re-tailored proposal density will be quite different from the recycled one. Therefore, randomizing
the number of iterations before new blocking and tailoring ensures that the proposal density remains well-
tuned on average. The reciprocal of this average number, which we call the tailoring frequency w, as well as
a number of optional user inputs (e.g., the blocking probability p), can be specified flexibly in the program
tarb_spec.m. In our benchmark setting, we set w = 0.5 so that each proposal density is tailored every
second iteration on average. In general, we suggest setting p € [0.6,0.9] and w € [0.2,1.0] to maintain a

good balance between runtime and simulation efficiency.

3.2.2 Sampling Latent Variables and Volatility Parameters

The second step involves augmenting the remaining blocks with 1,328 shock innovations e.p = [€], ..., €]’
and then sampling the joint posterior (6", €., M., hir|yrr, QS). To this end, Gibbs sampling is applied

to the following conditional densities
7T(€1:T|y1:T, 0, .1, hl:T)a 7T()\1:T|y1:T, 0, e, hl:T)a W(GV, hl:T|y1:T7 957 €1.7, )\1:T> (3.2)

using the steps below:

1. Sample €. from the first density in (3.2)

7T(61:T|y1:T7 67 )\I:Ta hl:T) = 7T(61:T|y1:T7 637 )‘1:T7 hl:T)

with the disturbance smoother of Durbin and Koopman (2002) applied to the state space form
(2.27)-(2.28), where each € ~ N(0,e"/)\,), s € {a,b,i,p,w,m,g,z}, due to the gamma-normal
representation (2.23).
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2. Sample Ap.r from the second density in (3.2)

T
7T(>\1:T|?/1:T, 0, e, hl:T) oc n f(6t|>\ta ht) '7T(>\t)
t=1
by independently sampling each \; from
vine v+eXite , I
)\tNG( 5 tQ , Etzdlag(e)

as in Chib and Ramamurthy (2014), where n. = 8 is the dimension of ¢;.

3. Following Kim, Shephard and Chib (1998), the nonlinear measurement equation (2.23) can be trans-
formed into a linear one by squaring and taking logarithm. In conjunction with the volatility state

equation (2.24), this leads to the state space model

h? = (1 - ¢s)ﬂs + ¢shf,1 + 77?

~5 s s
€ = hi+e€

for s € {a,b,i,p,w,m, g, 2z}, where & = In \;(€{)? and e = In(e})?. Practically, we set € = In[\(e})?+
c] with ¢ = 107° being an offset constant, and accurately approximate the distribution of € by the

10-component mixture normal density proposed by Omori et al. (2007),

10

p(e]) = . ak - pulesls; = k)

k=1

where s§ is an indicator variable and py(-|sf = k) denotes a normal density function with mean
myg, variance vy, and component probability qx. Now, to sample the last density in (3.2), we
further augment the remaining blocks with 1,328 indicator variables s1.p = [s),...,s}]|, where
sy = [s%,80, st s, 5@, 5™ 57 s7], and sample the joint posterior 7(sy.r, 0", hir|yrr, 07, €10, M) by

sampling the conditional densities

7T(S1:T|ylzT, 0, €er.r, AT, hl:T)

ﬂ-(eva hl:T|y1:T7 957 €1.7, )\1:T7 SI:T) = 7T-(QV|yI:T7 6S7 €1.7, )\I:Ta SI:T) . 7T(hl:T|y1:T7 97 €1.7, )\I:Ta Sl:T)

using these steps:
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(a) Sample each s® = [s3,...,s%|", s € {a,b,i,p,w,m, g, z}, independently from

T
w(s°ly.0,e, A, h) oo [ | F@EIRS,s;) - 7(s))
t=1

where f(:|hf,s; = k) is a normal density function with mean h§ + my and variance v}, and

w(si =k)=qr, k=1,...,10.

(b) Sample 8" marginalized over hy.p (the ‘integration sampler’ in Kim, Shephard and Chib (1998))
by sampling each triplet (ug, ¢,,w?), s € {a,b,i,p,w, m, g, z}, independently from

W(MS? S?w§|y7 957 67 A? S) o f(gs|u57 S7w§783) : T(ﬂs? 87(")?)

using a tailored proposal density, where ¢ = [€5,... €] and f(€°|u,, @,,w?, s°) is available from
the Kalman filter, followed by the sampling of each h® = [h,... h%]', s € {a,b,i,p,w,m,g, z},
using the ‘filter-forward-sample-backward’ method of Carter and Kohn (1994).

3.2.3 Results

We apply the above steps as coded in our MATLAB package to estimate our high-dimensional DSGE
model based on the post-training sample of 166 quarterly observations from 1967:Q3 to 2008:Q4. With
the ultimate goal of forecasting in mind, we present the estimation results for the model of best fit among
all competing specifications. This specification stands out from an extensive model search based on a
marginal likelihood comparison, as described in the next section. It has regime-M in place and features
heavy-tailed shocks with v = 5 degrees of freedom and persistent volatilities.

Because the TaRB-MH algorithm is simulation efficient, a large MCMC sample is typically not required.
We consider a simulation sample size of 11,000 draws, of which the first 1,000 draws are discarded as the
burn-in phase. Figure 2 provides a graphical comparison of the prior and posterior distributions of each
structural parameter. The Bayesian learning is clear from the graphs. In particular, the data imply
quite high habit formation and relatively high degrees of price and wage stickiness. See also Table A.2 of
Appendix A for a detailed summary of the posterior parameter estimates.

Figure 3 plots the estimated historical log-volatility series for 1967:Q3 to 2008:Q4 based on the h
draws. Overall, these estimates display clear countercyclical time variation, with pronounced increases in
volatility accompanying the recessions. For several shock innovations, volatility becomes lower by historical

standards since the 1980s so that the Great Moderation is also evident.
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Figure 2: Marginal prior and posterior distributions of each structural parameter. Notes: Each panel compares
the prior (red dashed line) with the posterior (shaded area). Vertical lines denote posterior means. The kernel
smoothed posterior densities are estimated using 10,000 TaRB-MH draws.

3.2.4 Simulation Evidence

We also estimate the same high-dimensional DSGE model based on a simulated data set that is generated

under fat-tailed shocks with v

15 degrees of freedom and persistent volatilities. We set the sample

size to 200, which is meant to be 50 years of quarterly observations, and use the initial 50 observations

to construct a training sample prior. Table A.1 of Appendix A lists the parameter values used for the
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CHIB, SHIN & TAN: HIGH-DIMENSIONAL DSGE MODELS

A. Neutral technology B. Preference
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