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Abstract

Factor models are generally subject to a rotational indeterminacy, meaning that individual

factors are only identified up to a rotation. In the presence of local factors, which only affect

a subset of the outcomes, we show that the implied sparsity of the loading matrix can be used

to solve this rotational indeterminacy. We further prove that a rotation criterion based on the

`1-norm of the loading matrix can be used to achieve identification even under approximate

sparsity in the loading matrix. This enables us to consistently estimate individual factors, and

to interpret them as structural objects. Monte Carlo simulations suggest that our criterion

performs better than widely used heuristics, and we find strong evidence for the presence of

local factors in financial and macroeconomic datasets.
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1 Introduction

Factor models are subject to a rotational indeterminacy, meaning that the individual factors are only
identified up to a rotation. Although this rotational indeterminacy prohibits any economic inter-
pretation of the estimated factors, even seminal papers in economics (e.g., Stock and Watson 2002,
Ludvigson and Ng 20091) often include a discussion on the economic interpretations of individual
factors, usually preceded by the caveat that such an interpretation is theoretically unjustified.

For example, Stock and Watson (2002) remark,

“Because the factors are identified only up to a k×k matrix, detailed discussion of the
individual factors is unwarranted. Nevertheless, [...] Figure 1 therefore displays the
R2 of the regression of the 215 individual time series against each of the six empirical
factors [...] Broadly speaking, the first factor loads primarily on output and employ-
ment; the second on interest rate spreads, unemployment rates and capacity utilization
rates [...].”

Similarly, Ludvigson and Ng (2009) state,

“Because the factors are identifiable only up to an r × r matrix, a detailed interpreta-
tion of the individual factors would be inappropriate. Moreover, we caution that any
labeling of the factors is imperfect, because each is influenced to some degree by all
the variables in our large dataset and the orthogonalization means that no one of them
will correspond exactly to a precise economic concept like output or unemployment,
which are naturally correlated. Nonetheless, it is useful to show that the factors cap-
ture relevant macroeconomic information. We do so here by briefly characterizing the
factors as they relate to the underlying variables in our panel dataset. Figure 1 shows
that the first factor loads heavily on measures of employment and production [...].”

I demonstrate in this paper that a framework with local factors can solve this indeterminacy,
allowing a researcher to recover individual factors, instead of only the factor space. Local factors
are factors that only affect a subset of the observables (Ando and Bai 2017, Freyaldenhoven 2019).
Economic examples are industry-specific shocks in a firm-level dataset. To achieve identification,
we introduce a criterion based on the `1-norm of the loading matrix, which is minimized when local
factors are individually identified. This criterion allows us to consistently estimate the individual
factors, enabling their economic interpretation as structural objects. The key insight is that, if the
true loading matrix Λ is sparse, any other rotation Λ̃ = ΛR will be less sparse.

1The two papers have a combined citation count of more than 3000 as of May 2019.
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In some instances, it is sufficient to identify the factor space, and the rotational indeterminacy
of the estimated factors is inconsequential, though even in those cases identifying the individual
factors can facilitate a better understanding of the data. In other cases, there are important empirical
implications of this rotational indeterminacy. For example, extracted factors are often used as
right-hand side variables, among others in factor-augmented VARs (Ludvigson and Ng 2007). The
rotational indeterminacy of the estimated factors is only inconsequential if the entire factor space is
used in the conditioning set of a linear model. If only a subset of the extracted factors, or non-linear
transformations of the extracted factors are used, this result clearly no longer holds.

There are both appealing economic reasons and statistical evidence for the presence of local
factors and thus the presence of zeros in the loading matrix (see, for example, Freyaldenhoven
(2019), De Mol et al. (2008); we expand on this discussion in Section 6).

Despite the large literature on both factor models and sparsity, little work has been done on
the intersection of the two. Arguably one reason is that most sparsity patterns in the loading
matrix are not invariant to rotations. Kristensen (2017) considers adding an `1-penalty to the
estimation of the loading matrix via principal components to produce “sparse” loadings. However,
even if the true loadings are sparse, the chosen rotation (normalization) inherent to the principal
component estimator means that the estimated loadings will generally no longer be sparse even in
population. It is therefore crucial to first identify the “correct” rotation of the loading matrix before
any regularized estimation of the loadings is conducted.

Other previous works aimed at incorporating variable selection into factor models include Bai
(2008), Hirose and Konishi (2012), Caner and Han (2014), and Cheng et al. (2016). The method
proposed by Bai (2008) involves two separate estimation steps, one to identify the relevant ob-
servables, and one to estimate the factor structure. Therefore, once the relevant observables are
selected, all of those variables will be affected by all factors. In Hirose and Konishi (2012), Caner
and Han (2014), and Cheng et al. (2016), the sparsity assumptions take a form closely related to the
Group Lasso (Yuan and Lin 2006) by setting entire columns of the loading matrix to zero. These
methods effectively reduce the number of estimated factors. In contrast, in our model, each factor
may affect a (potentially different) subset of the observables.

Work on the estimation of sparse principal components in the statistics literature is naturally
related to the estimation of sparse factors. Early work in this direction can be found in Jolliffe
et al. (2003) and Zou et al. (2006). However, since Principal Component Analysis does not depend
on any probability model, it is quite distinct from factor analysis. For a Bayesian perspective,
see Ročková and George (2016) and Kaufmann and Schumacher (2019), who use sparse priors to
encourage sparsity in the loading matrix.

Finally, a number of papers have assumed a known group structure (e.g., Boivin and Ng 2006,
Wang 2008, Dias et al. 2013, Moench et al. 2013, Choi et al. 2018). Unlike those papers, we do
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not require the group structure and factors’ strengths to be known a priori. Ando and Bai (2017)
and Freyaldenhoven (2019) also do not require knowledge of the group structure a priori, but the
focus of the first paper is on estimation of the factor space, and the focus of the second paper is on
estimating the number of factors. Neither addresses identification of individual factors.

Bai and Ng (2013) provides an overview of the different normalizations commonly used in
economics. Of course, a choice of normalization is equivalent to a choice of rotation for the
estimated factors. In practice, the choice of rotation often appears somewhat arbitrary. We suspect
that this is at least partially due to the limited availability of formal results. We are unaware
of attempts to use the sparsity pattern (or the `1-norm) of the loading matrix to either choose a
normalization or to identify individual factors in the econometrics literature. However, there is
a large strand of literature in psychology that considers rotation criteria aimed to simplify the
loading matrix, going back to at least Carroll (1953) and Kaiser (1958) (also see Katz and Rohlf
1974, Rozeboom 1991, Jennrich 2006). The focus of this literature is usually on the algorithmic
implementation of the optimization, and consistency results are only derived for special cases.
Section 3 provides a more detailed comparison of our approach to these methods.

Throughout, we will consider rotations in which we keep the `2-norm of Λ constant. Thus, our
work is also related to recent work in statistics that considers the difference between the `1 and `2

norm as a penalty term in regularized estimation (Yin et al. 2014, Yin et al. 2015).
The paper proceeds as follows. After setting up our model and fixing notation in Section 2,

we first provide an intuitive illustration of our proposed criterion in Section 3. We then show in
Section 4 that the true loading matrix Λ∗ is the unique minimum of the `0-norm across rotations
of the loading matrix under a sparsity assumption. However, minimizing the `0-norm directly
will generally be infeasible in practice for two reasons. First, this requires exact (rather than
approximate) sparsity in the loadings. In fact, even under exact sparsity, any estimation error will
generally mean that there are no exact zeros in the estimated loading matrix. Second, minimizing
the `0-norm directly will generally be computationally prohibitive. One can compare this to high-
dimensional sparse linear regression models, where optimal subset selection is similarly infeasible.
On the other hand, a vast body of literature exists documenting both the theoretical and practical
appeal of using the `1-norm instead as a regularization in linear regression models (Tibshirani
1996, Bühlmann and Van De Geer 2011, Belloni and Chernozhukov 2011). We similarly propose
to minimize the `1-norm of Λ to make our approach feasible and establish the consistency of this
approach. Despite the resemblance to regularized estimation methods, we emphasize that there
is no “shrinkage” involved in our estimator. Instead, we use the `1-norm as a criterion to select
the most sparse loading matrix Λ from among a set of rotations. Section 5 provides Monte Carlo
evidence that supports our asymptotic results in finite sample. Finally, we apply our identification
strategy to a panel of US macroeconomic indicators as well as a panel of individual stock returns
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in Section 6, and identify and interpret the resulting local factors.

2 Preliminaries

We use standard notations in the literature on factor models and assume X follows a factor struc-
ture:

Xt
(n×1)

= Λ∗

(n×r)
Ft

(r×1)
+ et

(n×1)
∀t, or more compactly, X

(T×n)
= F

(T×r)
Λ∗
′

(r×n)
+ e

(T×n)
, (1)

where Λ∗ = [λ∗1•;λ
∗
2•; ...;λ

∗
n•]
′ = [λ∗•1λ

∗
•2...λ

∗
•r] denotes the matrix of true factor loadings. We use

the running indices s, t for the T observations, i, j for the n variables, and k, l for the r factors
throughout. To rule out pathological cases, we will assume throughout that rank(Λ∗) = r.

Let tr(A) denote the trace of a matrix A. We use the Frobenius norm for matrices, such that
‖A‖2 = tr(A′A) =

∑
i,j a

2
ij . Similarly, unless otherwise noted, ‖A‖1 and ‖A‖0 will be entrywise

(pseudo-)norms, such that, for instance, ‖A‖0 will count the non-zero entries of a matrix A. We
use the term generalized permutation matrix for a matrix P ∗ that can be expressed as the product
of an invertible diagonal matrix D and a permutation matrix P , with its dimension usually obvious
from context. A set in a superscript of a vector x, always denoted by a script letter (e.g., G), defines
a vector xG such that xGi = xi whenever i ∈ G and xGi = 0 otherwise.

We normalize the length of the true loading vectors throughout, and impose that
∑n

i=1 λ
∗2
il = n

for l = 1, . . . , r. Clearly, such a rescaling of a loading vector λ∗•k and its corresponding factor Fk
is immaterial.

Equation (1) is observationally equivalent for different rotations of the loadings and factors.
To see this, let H denote an arbitrary nonsingular matrix. Then we can redefine Λ0 = Λ∗(H ′)−1

and F 0 = FH . This rotation may well be oblique since we do not restrict H to be unitary, and
we make no assumption that either the factors or the loading vectors are orthogonal. In our view,
there is no reason a priori to believe that the underlying factors or loading vectors are necessarily
orthogonal.

Among others, Bai and Ng (2002) showed in their seminal paper that in factor models of large
dimensions, we can consistently estimate the number of factors under some regularity conditions.
We will therefore assume the true number of factors r to be known in the remainder of this paper.2

Throughout the paper, we assume the data has been centered, such that E(Xi = 0). Auxiliary
lemmata are relegated to the Appendix.

2See also Ahn and Horenstein (2013) and Onatski (2010) for alternative ways to determine the number of factors.
Freyaldenhoven (2019) addresses the issue of estimating the number of factors under the presence of local factors,
affecting only a subset of the observables.
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3 Intuition and Connection to Existing Rotation Criteria

We start with a geometric illustration for the trivial case of only two outcomes (and two factors).
This makes it easy to depict rotations graphically, and the intuition carries through to the results in
the remainder of the paper.

To this end, consider rotating the unit vector i1 = (1, 0) in the x,y-plane, analogous to rotating
a loading vector for n = 2 (one can think of i1 as a hypothetical λ∗•1). Keeping its Euclidean length
equal to one, this rotation produces a circle, depicted by the small grey dots in Figure 1, where the
distance from the origin represents the `2-norm of each rotation (which is of course constant and
equal to one).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1: Different norms as a function of varying rotations of the unit vector. The size of each norm
is illustrated by their distance from the origin. Depicted are `0-norm (large, red circles), `1-norm (blue
crosses), `2-norm (small, grey circles), and `4-norm (green squares).

For each of these rotations, we next consider the corresponding `0-(pseudo)norm. As we rotate
the unit vector, we scale up each rotation such that its Euclidean distance from the origin equals
the value of its `0-(pseudo)norm. This corresponds to the outermost series, depicted by large
red circles in Figure 1. We see that almost all rotations have two non-zero elements, such that
‖·‖0 = 2, with the exceptions of the four vectors that align with either of the coordinate axes, where
‖ · ‖0 = 1. Figure 1 also illustrates why minimizing the `0-(pseudo)norm directly is infeasible.
The objective function is flat across almost all rotations with discontinuities at the minima. Thus
we would have to resort to grid search, and a fine grid is needed to obtain even approximate
sparsity. While possible in an application with just two factors, such a grid search quickly becomes
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computationally infeasible when searching over the surface of an r-dimensional sphere.
We therefore argue for the use of the `1-norm instead. In Figure 1, the value of this norm

across rotations is depicted by blue crosses. The `1-norm falls in between the `0- and `2-norms,
with its size again represented by the distance of each cross from the origin. Two things are worth
noting. First, we note the kink points that occur whenever one of the entries is equal to exactly
zero, which is reminiscent of the Lasso in high-dimensional linear regressions. We exploit the
presence of these kink points in Section 4 to establish that the `1-norm is indeed minimized at
sparse rotations. Second, the `1-norm is continuous and decreases toward a local minimum in its
neighborhood, which makes it computationally appealing (we discuss the implementation in more
detail in Online Appendix C).

Finally, the innermost green squares in Figure 1 represent ‖ · ‖4
4, which, in slight abuse of lan-

guage, we refer to as the `4-norm. We added the `4-norm to illustrate the connection of our method
to the existing literature that considers rotation criteria aimed to simplify the loading matrix. Most
of the existing rotation criteria in this literature are quartic functions of the loadings and maximize
a variant of the following criterion function Q(·) over rotations of some initial estimate Λ0:

Q(Λ0R) = Q(Λ) =
r∑

k=1

k−1∑
l=1

(
n∑
i=1

λ2
ikλ

2
il −

θ

n

n∑
i=1

λ2
ik

n∑
j=1

λ2
jl). (2)

If we only consider orthogonal rotations for now (which is equivalent to restricting R to be or-
thonormal), (2) simplifies to

Q(Λ0R) = Q(Λ) =
r∑

k=1

 n∑
i=1

λ4
ik −

θ

n

 n∑
i=1

λ2
ik

2
 . (3)

Setting θ to 0, 1, and r/2 respectively, results in the Quartimax (Carroll 1953), Varimax (Kaiser
1958), and Equamax (Saunders 1962) rotation criteria. Considering one loading vector at a time,
it becomes clear that these are closely related to maximizing ‖λ•k‖4

4 =
∑n

i=1 λ
4
ik, subject to a

constant `2-norm.
We see in Figure 1 that maximizing the `4-norm across rotations will also produce four max-

ima, and with n = 2, these coincide with the minima for the `0- and `1-norms. In order to gain an
intuition for the difference between the two approaches (maximizing `4, minimizing `1), it is in-
structive to also consider maximizing the `∞-norm. Using the `∞-norm would identify the rotation
with the largest entry. In contrast, minimizing the `0-norm essentially identifies the rotation with
the smallest entries. While minimizing the `1-norm is a relaxation of the `0-norm, maximizing the
`4-norm can be thought of as a relaxation of the `∞-norm. Given the “resource-constraint” of a
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constant `2-norm, the solutions to the two optimization problems (maximizing `4, minimizing `1)
will often look similar. However, our formal sparsity assumptions have direct implications for the
behavior of the `0- and `1-norms, but not the `4- or `∞-norms. We postulate that this is the rea-
son why, under sparsity assumptions, formal results have been difficult to achieve using rotation
criteria that are quartic functions of the loadings.

We discuss the connection between our proposed method and a variety of quartic criteria, in-
cluding criteria that result in oblique factor rotations (e.g., Hendrickson and White (1964)), in more
detail in Online Appendix B.

3.1 A Stylized Example

Before we present our theoretical results in Section 4, the following simple two-factor model allows
us to demonstrate our proposed method in a concrete example. More comprehensive simulation
results for a variety of data-generating processes can be found in Section 5.

We set T = 224 and n = 207 and consider the following baseline DGP3:

X
(224×207)

= F
(224×2)

Λ∗′

(2×207)

+ e
(224×207)

, (4)

where we model the errors as

eti = ρet−1,i + (1− ρ2)1/2vit,

vti = βvt,i−1 + (1− β2)1/2uit, uit
i.i.d.∼ N(0, 1).

Onatski (2010) argues that parameter values of (ρ, β) = (0.3, 0.1) are good approximations to
many financial datasets. The factors Fk, k = 1, 2 are generated jointly normal with a correlation of
0.3, unit variances, and are i.i.d. over time. The structure of the loading matrix Λ∗ is

Λ∗ =

λ∗1:m1,1
0

0 λ∗(n+1)−m2:n,2

 , (5)

with the non-zero entries λ∗ik
i.i.d.∼ U(0.1, 2.9). Fixingm1 = m2 = 120, the resulting loading matrix

Λ∗ is depicted in Figure 2. Note that, with m1 = m2 = 120, some outcomes are affected by both
factors. Our goal is to recover Λ∗.

By construction, the Principal Component estimator Λ0 will estimate a rotation of the true load-
ings and factors that satisfies λ0′

•1λ
0
•2 = 0 and F 0′

•1F
0
•2 = 0. Figure 3 depicts this estimate.4 Two

3This mirrors the dimension of our macroeconomic dataset in Section 6.
4To compute the Principal Component estimator, we take the singular value decomposition X = UDV ′. The
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Figure 2: Illustration of true loading matrix Λ∗ for baseline DGP. Top panel depicts λ∗•1, bottom panel λ∗•2.
For each factor, the loadings associated with all 207 outcomes are depicted.

things are worth noting. First, the rotation chosen by the normalization inherent to the Principal
Component estimator results in an estimate of the loading matrix that has large loadings every-
where. Second, comparing Figures 2 and 3, we conclude that neither of the estimated loading
vectors closely resembles λ∗•1 or λ∗•2.
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0

2

0 20 40 60 80 100 120 140 160 180 200
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Figure 3: Illustration of Principal Component estimate Λ0 for baseline DGP. Top panel depicts λ0
•1, bottom

panel λ0
•2. For each factor, the loadings associated with all 207 outcomes are depicted.

Our proposed estimator takes Λ0 as a starting point and is equal to the rotation of Λ0 that
minimizes the `1-norm of the loading vectors.

Figure 4 depicts the value of ‖λ•k‖1 across rotations in the space spanned by the Principal
Component estimator Λ0. Specifically, it depicts how ‖λ•k‖1 = ‖w1λ

0
•l1 + w2λ

0
•l2‖1 changes as

we vary the weights w1, w2, under the restriction that w2
1 + w2

2 = 1. A convenient way to enforce
this restriction and to depict the result graphically is to let [w1, w2] = [sin(θ), cos(θ)], and depict
‖λ•k‖1 as a function of the angle θ. This is depicted in Figure 4. It also allows a straightforward
comparison to Figure 1, since now Figure 4 is essentially a flattened version of the `1-norm in
Figure 1.

The first minimum occurs at θ̃1. This minimum corresponds to weights of [w1 w2] = [−0.76 −
0.65], and consequently an estimated loading vector of λ̃•1 = −0.76λ0

•1 − 0.65λ0
•2. The second

minimum occurs at θ̃2. This minimum corresponds to weights of [w1, w2] = [−0.78, 0.62], and
consequently a second estimated loading vector of λ̃•2 = −0.78λ0

•1 + 0.62λ0
•2. There are two more

local minima in Figure 4 for positive values of θ. These correspond to the estimates −λ̃•1 and

leading r columns of V are used as λ0•1, . . . , λ
0
•r.
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Figure 4: Objective function across all rotations in the space spanned by the initial estimate Λ0. Depicted
is ‖λ•k‖1 = ‖sin(θ)λ0

•l1 + cos(θ)λ0
•l2‖1 as a function of θ.
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Figure 5: Illustration of Λ̃, the non-singular “rotated” matrix with the smallest `1-norm ‖Λ‖1 =
∑

i,k |λik|
for baseline DGP. Top panel depicts λ̃•1, bottom panel λ̃•2. For each factor, the loadings associated with all
207 outcomes are depicted.

−λ̃•2 and are a consequence of the sign indeterminacy in the loading vectors, which is why Figure
4 looks identical for negative and positive values of θ.

Combining [λ̃•1, λ̃•2] = Λ̃, we obtain our proposed estimator for Λ∗. Λ̃ is depicted in Figure 5.
Comparing Figures 2 and 5, we conclude that Λ̃ is close to Λ∗, and that we are able to identify Λ∗

using our proposed criterion.

Remark 1. Even though Λ̃ is close to Λ∗, we note that λ̃ik 6= 0 for all i, k. This is mainly due to
the estimation error inherent to the preliminary estimate Λ0. Having identified the correct rotation
of Λ∗, we conjecture that standard methods in regularized estimation, or even simple thresholding,
can be used to further improve the estimate Λ̃ in practice. We leave this as an interesting avenue
for future research.
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4 Identification

4.1 Under Exact Sparsity

We start by assuming an exact sparsity pattern in the loading matrix. We will relax this assumption
in Section 4.2.

Assumption 1. For each factor k, we can partition the set of indices i = 1, 2, . . . , n into a set of

indices Ak with cardinality |Ak| and its complement Ack, such that:

(a) λ∗ik 6= 0 and λ∗ik < C ∀i ∈ Ak and a constant C.

(b) λ∗ik = 0 ∀i 6∈ Ak.

(c) ∃c > 0, such that
∣∣λ∗ik∣∣ > c ∀i ∈ Ak.

Parts (a)-(b) define Ak as the support of λ∗•k, and we may think of Ak as the “active set” for
a given factor: it collects the indices of all outcomes affected by that factor. Some later results
additionally require Assumption 1(c), which allows us to distinguish active loadings from inactive
ones in terms of their `1-norms.

Assumption 2. Define Λ∗•,−m as the n by (r − 1) submatrix of Λ∗ obtained by deleting the mth

column in Λ∗, andAz,−m as the support of a linear combination Λ∗•,−mz for a given (r− 1) vector

of finite weights z and let bk(z) = max |B|, such that[
Λ∗Ak
•,−k

]B
z =

[
λ∗Ak
•,k

]B
. (6)

Then, there exists a set of factors F b, such that ∀Fk ∈ F b,
∣∣Ack ∩ Az,−k∣∣ > bk(z) for all z.

Different versions of the set F b, which approximately defines a group of factors whose asso-
ciated active sets are not supersets of another factor’s active set (see the discussion below), will
appear throughout the paper. We will generally be able to show identification for factors in F b.
For instance, in a two-factor model, with a global factor affecting all outcomes and a local factor
affecting only a subset of the outcomes, only the latter will be in F b. In such a model, the local
factor is identified, whereas the global one is not. However, these “local” factors, only affecting
a subset of the outcomes, are often precisely those that are economically interesting because we
may find them interpretable. To ease notation we note that Assumption 2 reduces to the following
simple condition if r = 2 before further discussion.

Assumption 2’. Let b = max |B|, such that B ⊆ (A1 ∩ A2), and for all i ∈ B

c∗λ∗i,1 = λ∗i,2 (7)
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for some constant c∗.

Then, there exists a set of factors F b, such that ∀Fk ∈ F b,
∣∣Ack ∩ Al∣∣ > b for l 6= k.

In order to gain intuition for Assumptions 2 and 2’, we first consider three special cases under
Assumption 2’ (and thus with r = 2).

1. Suppose A1 ∩ A2 = ∅ (The two factors affect different, non-overlapping groups of out-
comes). Then, b = 0, while

∣∣Ack ∩ Al∣∣ = |Al| > 0. Therefore, A1 ∩ A2 = ∅ implies that
F1, F2 ∈ F b.

2. Suppose A2 ⊆ A1 (The second factor F2 affects a subset of the outcomes affected by F1).
Then, Ac1 ∩ A2 = 0, and it immediately follows that F1 6∈ F b. Thus, whenever Ak is a
superset of another set, Fk cannot be a member of the set F b.

3. Suppose λi1
λi2
6= λj1

λj2
for all i, j ∈ A1 ∩ A2. Then b = 1. It follows that F1 ∈ F b if there are at

least two outcomes affected by F2, but not F1.

Intuitively, a larger value of b would mean that the two loading vectors are more similar on the
intersection of their supports. Specifically, with two factors, b is defined in Assumption 2’ as the
size of the largest set of non-zero entries in the loading vectors such that the two loading vectors
are multiples of each other on that set. Now suppose F1 ∈ F b. Then, the substantive part of
Assumption 2’, |Ac1 ∩ A2| > b, reduces to the statement that more than b outcomes are affected by
F2, but not F1. This is a more restrictive version of the assumption that A1 may not be a superset
of A2. How much more restrictive will depend on the similarity between the loading vectors,
embodied by b.

This intuition also holds for Assumption 2, where bk(z) is defined as the size of the largest set
B ⊆ Ak such that we can represent the loading vector λ∗•k as an exact linear combination with
weights z of the remaining loading vectors on this set. Thus, bk = maxzbk(z) is the size of the
largest set such that we can represent the loading vector λ∗•k as an exact linear combination of the
remaining loading vectors on this set. A small value for bk (e.g., bk = r − 1) means this set is
small, and intuitively implies that the different loading vectors are more different.

The restriction
∣∣Ack ∩ Az,−k∣∣ > bk(z) is slightly more restrictive than the assumption that the

active set for factor k is not a superset of any other factor, and becomes more restrictive for larger
values of bk(z).

Assumption 2 therefore implies a trade-off between the similarity in the supports of different
loading vectors, and the similarity in the loadings on their joint support. The closer to collinearity
the loading vectors are on their joint support (corresponding to a large value of bk), the more
distinct we require their active sets to achieve identification.
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Remark 2. It will generally also be possible to identify the subspace spanned by a given subset of
factors, even if their active sets are closely related, as long as they are sufficiently distinct from the
active sets of all other factors. In order not to further complicate our notation, we will ignore this
and simply consider such factors “unidentifiable” in the remainder of this paper.

Let R be any r × r matrix and consider the following minimization problem:

min
R
‖Λ‖0 = min

R
‖Λ∗R‖0, s.t. R is nonsingular. (8)

We start with the case in which all factors are identifiable to keep notation simple:

Corollary 1. Suppose Assumptions 1(a)-(b) and 2 hold, and Fk ∈ F b for k = 1, . . . , r. If Λ̃ is a

solution to (8), then Λ̃ = Λ∗P ∗ for some generalized permutation matrix P ∗.

Corollary 1 is a direct consequence of Theorem 1 below and its proof is therefore omitted. It
states that, in a model with only local factors, any rotation of the true loading matrix will be less
sparse than the truth. Thus the rotation with the highest degree of sparsity identifies the individual
loading vectors (and thereby factors), up to an arbitrary relabeling of the factors and arbitrary
scaling constants.

In most settings of economic interest, there will be at least some factor Fk, such that Fk 6∈ F b

(for instance, a global factor). In such a case, suppose Fk ∈ F b for k = 1, . . . , r∗ and Fk 6∈ F b for
k = r∗ + 1, . . . , r, and partition Λ∗ accordingly: Λ∗ = [Λ∗•,1:r∗Λ

∗
•,r∗+1:r]. The partitioning of the

factors as above is without loss of generality, since it can always be achieved by a simple relabeling
of the factors.

Theorem 1. Suppose Assumptions 1(a)-(b) and 2 hold. If Λ̃ is a solution to (8), then the corre-

sponding R is such that for every l = 1, . . . , r∗, there exists an index k (which depends on l), such

that Rl,k 6= 0 and Rl′,k = 0 ∀l′ 6= l.

Proof. Columns in Λ̃ are linear combinations of the columns in Λ∗ (λ̃•k = Λ∗R•k =
∑r

l=1 λ
∗
•lRlk).

Since R is full rank, at least one entry Rlk cannot be equal to zero for each k.
Suppose Theorem 1 did not hold, and for some l∗ ∈ 1, . . . , r∗, there exists an index k and a set

Lk 3 l∗, |Lk| > 1, such that not only Rl∗,k 6= 0, but also Rl′,k 6= 0 for all l′ ∈ Lk, l′ 6= l∗, and
consider

‖λ̃•k‖0 = ‖
∑
l∈Lk

λ∗•lRlk‖0.

12



Defining wk = R•k
−Rl∗,k

, and using the fact that Rl∗,k 6= 0,

‖
∑
l∈Lk

λ∗•lRlk‖0 = ‖
∑
l∈Lk

λ∗•l
Rlk

Rl∗,k
‖0 = |Awk,−l∗ ∪ Al∗| −|C|

= |Al∗|+ |Awk,−l∗ ∩ Acl∗| −|C| ,

where C is defined as the set of indices i, such that

∑
l 6=l∗,l∈Lk

− R•k
Rl∗,k

λ∗il = λ∗i,l∗ .

By Assumption 2, |Awk,−l∗ ∩ Acl∗| > |C|, and therefore

|Al∗|+ |Awk,−l∗ ∩ Acl∗| −|C| > |Al∗ |.

Now consider setting Rl′k, l′ ∈ Lk to zero, and denote the corresponding matrix by R∗, with
R∗l∗k being the remaining non-zero entry in the kth column. Note that this will always be possible
while preserving the non-singularity of R∗ until for every l = 1, . . . , r∗, there exists an index k,
such that Rl,k 6= 0 and Rl′,k = 0 ∀l′ 6= l. It immediately follows that

‖λ̃•k‖0 = ‖
∑
l∈Lk

λ•lRlk‖0 > |Al∗| = ‖λ•l∗R∗l∗,k‖0,

which contradicts that R is a solution to the minimization problem (8).
We conclude that for every l = 1, . . . , r∗, there exists an index k, such that Rl,k 6= 0 and

Rl′,k = 0 ∀l′ 6= l, and that the corresponding index l is distinct for each k. This completes the
proof.

Theorem 1 establishes the following: If the true DGP includes local factors (F b is non-empty),
such local factors can be identified by maximizing the degree of sparsity in the loading matrix
across feasible rotations. The intuition is that, of all possible rotations of local factors, none will
be as sparse as the truth, Λ∗. Note that Theorem 1 does not say anything about factors that are not
in F b. For instance, if there are global factors with a corresponding loading vector that is dense,
identification of such factors based on a sparsity criterion will clearly be impossible.

Remark 3. Theorem 1 still holds if we did not observe Λ∗ directly, but instead had access to a
rotation of Λ∗, Λ0 = Λ∗H , where H is a nonsingular matrix.

Proposition 1. Suppose|Ak| = n for k = 1, . . . , r, and define b∗ = maxk maxz bk(z), where bk(z)

is defined in Assumption 2. Then, for any nonsingular matrix R, |Ãk| ≥ n − b∗ for k = 1, . . . , r,

13



where Λ̃ = Λ∗R and |Ãk| = ‖λ̃•k‖0.

Proof. Suppose Proposition 1 does not hold, and there exists a linear combination R•k, ‖R•k‖0 >

0, such that ‖Λ∗R•k‖0 = ‖λ̃•k‖0 < n− b∗. Then, there must exist a set D, with |D| > b∗ such that∑
λ∗ilRlk = 0 ∀i ∈ D.

Since|Ak| = n for k = 1, . . . , r, this also implies that, for some l∗ ∈ {1, . . . , r},

−
∑
l 6=l∗

λ∗ilRlk = λ∗i,l∗ ∀i ∈ D.

But since, by definition of b∗, |D| ≤ b∗, this leads to the desired contradiction.

Proposition1 states that, if there are no local factors in the data and all factors affect all out-
comes, there does not exist a rotation of the true factor loadings with a significant sparsity pattern.
The implication is that, whenever a rotation is found with a high degree of sparsity, local factors
must be present in the data. In line with our discussion following Assumption 2, how much spar-
sity can be achieved across rotations will depend on two things: the degree of sparsity in the true
loading matrix, and how close to collinear the different loading vectors are.

Minimizing the `0-norm directly is infeasible in practice (we will return to this discussion in
Section 4.2). We therefore turn our attention to the `1-norm of the loading matrix next.

Assumption 3. Let Vk denote the set of all linear combination v•k of λ∗•l, l = 1, . . . , r, such that

‖v•k‖2
2 = n and λ∗•k ⊥ v•k and define

βk(v•k) =

∣∣∣∣∣∣
∑
i∈Ak

|vik|1{λ∗ikvik ≥ 0} −
∑
i∈Ak

|vik|1{λ∗ikvik < 0}

∣∣∣∣∣∣ . (9)

Then, there exists a set of factors F exact, such that, ∀Fk ∈ F exact,

‖vA
c
k
•k ‖1 > βk(v•k) ∀v•k ∈ Vk. (10)

Assumption 3 is similar to Assumption 2 in the previous section, with F exact approximately
defining a group of factors whose associated active sets are not supersets of another factor’s active
set.

To see this, consider the case r = 2 again, in which case v•1 = q1λ
∗
•1+q2λ

∗
•2 for some constants

q1, q2. Further, by definition of A1, ‖vA
c
1
•1 ‖1 = q2‖λ

∗Ac
1

•2 ‖1, a constant times the sum of the absolute
values of λ∗2i on Ac1. It follows that F1 ∈ F exact iff ‖λ∗A

c
1

•2 ‖1 >
1
q2
βk(v•k). Consider the following

three specific examples:
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1. SupposeA1∩A2 = ∅. Then, λ∗•1 ⊥ v•1 implies v•1 = λ∗•2, and thus β1(v•1) = β1(λ∗•2) = 0.
Further, note that ‖λ∗A

c
1

•2 ‖1 = ‖λ∗•2‖1. It follows from rank(Λ∗) = r that ‖λ•2‖1 > 0, and
thereforeA1∩A2 = ∅ implies that (10) holds and F1 ∈ F exact. Clearly, the same reasoning
can be applied to also show that F2 ∈ F exact if A1 ∩ A2 = ∅.

2. Suppose A2 ⊆ A1. Then, λ∗A
c
1

•2 = 0, and it immediately follows that F1 6∈ F exact. Thus,
whenever Ak is a superset of another set, Fk cannot be a member of the set F exact.
In general, Assumption 3 implies a lower bound on the degree of sparsity for each factor in
F exact and implies that F exact will never include “global” factors. 5

3. Suppose |Ak| � n for k = 1, 2 as n→∞, and

λ∗ik


i.i.d.∼ N(0, σ) if i ∈ Ak
= 0 else.

(11)

Then, it can be shown (see Online Appendix A) that βk(v•k) = Op(
√
n) and that F1 ∈ F exact

if
√
n = op(‖λ

∗Ac
1

•2 ‖1). Intuitively, this states that F1 ∈ F exact if more than
√
n outcomes are

affected by F2, but not F1.

We provide some further discussion of Assumption 3 and alternative assumptions sufficient for
our results in Online Appendix A.

In what follows, we will work with an initial rotation of Λ∗, rather than with Λ∗ directly. We
will denote this as Λ0 = Λ∗H , where H is nonsingular. Λ0 has the property that its columns have
equal length and are orthogonal, such that Λ0′Λ0

n
= I . While Λ0 is not unique, clearly such a

rotation always exists. Intuitively, one can think of Λ0 as the rotation of Λ∗ that is estimated by the
Principal Component estimator, at this point ignoring any estimation error.

Importantly, Λ0′Λ0

n
= I implies ‖λ•k‖2 = ‖Λ0Υ‖2 =

√
n for any (r × 1) vector Υ with

‖Υ‖2 = 1. When considering the l1-norm of λ•k for different linear combinations Υ, we therefore
hold the l2-norm of λ•k constant across those combinations. To this end, consider a (r× r) matrix
R, and let Λ = Λ0R. We first note that

min
R
‖Λ‖1 = min

R

r∑
k=1

‖λ•k‖1 = min
R

r∑
k=1

‖
r∑
l=1

λ0
•lRlk‖1 =

r∑
k=1

min
R•k
‖

r∑
l=1

λ0
•lRlk‖1, (12)

and consider a constrained version of the above:

min
R
‖Λ‖1 = min

R
‖Λ0R‖1 such that R′•kR•k = 1 ∀k. (13)

5In fact, the number of loadings that are equal to zero for each factor in Fexact must be at least proportional to
βk = maxv•k∈Vk

βk(v•k). To see this, note that λ∗il < C ∀i, l implies that ‖vAc
•k‖1 = o(βk) if

∣∣Ac
k

∣∣ = o(βk).
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Because (12) is separable in k and consists of k identical parts, we will consider one part at a time:

min
R•k
‖

r∑
l=1

λ0
•lRlk‖1 such that R′•kR•k = 1. (14)

Since R′•kR•k = 1 implies a constant l2-norm, one can also loosely think of (14) as minimizing the
difference between the l1- and l2-norms of λ•k = Λ∗R•k across different linear combinations R•k.
We obtain the following result.

Theorem 2. Suppose Assumptions 1 and 3 hold and we have access to a rotation of the true

loading matrix, Λ0 = Λ∗H , where H is nonsingular and Λ0′Λ0

n
= I . If Fk ∈ F exact, λ∗k is a local

minimum of (14).

Proof. Consider λ•k = w1λ
∗
•k + w2v•k, where v•k is an arbitrary linear combination of λ∗•l, l =

1, . . . , r, such that ‖v•k‖2
2 = n, λ∗•k ⊥ v•k and w2

1 +w2
2 = 1. This can be thought of as considering

all rotations of λ∗•k in the subspace spanned by Λ∗ without changing its length (in the standard
`2-sense). Next, note that v•k = vAk

•k + v
Ac

k
•k , and therefore

‖λ•k‖1 = ‖w1λ
∗
•k + w2v•k‖1 = ‖w1λ

∗Ak
•k + w2v

Ak
•k ‖1 +|w2| ‖v

Ac
k
•k ‖1

≥|w1| ‖λ∗Ak
•k ‖1 −|w2| βk(v•k) +|w2| ‖v

Ac
k
•k ‖1

= |w1| ‖λ∗•k‖1 +|w2|
(
‖vA

c
k
•k ‖1 − βk(v•k)

)
,

where the inequality above follows from Lemma 2 when we consider a small neighborhood around
λ∗•k. To make this explicit, set w1 =

√
1− w2

2 and |w2| = ε. We need to show that

√
1− ε2‖λ∗•k‖1 + ε

(
‖vA

c
k
•k ‖1 − βk(v•k)

)
> ‖λ∗•k‖1

⇔
(√

1− ε2 − 1
)
‖λ∗•k‖1 + ε

(
‖vA

c
k
•k ‖1 − βk(v•k)

)
> 0

⇔
√

1− ε2 − 1

ε
+
‖vA

c
k
•k ‖1 − βk(v•k)
‖λ∗•k‖1

> 0.

By Lemma 1, the first part can be made arbitrarily small for small enough values of ε. On the other
hand, the second part is larger than zero by Assumption 3 and does not depend on ε. We therefore
conclude that for a small enough neighborhood, ‖λ•k‖1 > ‖λ∗•k‖1 for all rotations of λ∗•k in the
subspace spanned by Λ∗ and hence ‖λ∗•k‖1 is a local minimum of (14).

It immediately follows that any set of local minima of (14) for k = 1, . . . , r is also a local
minimum of (13). By imposing the additional constraint that R is nonsingular, we rule out that
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multiple columns in R lead to the same λ∗•k and ensure that any solution Λ̃ = Λ0R̃ to (13) spans
the same space that is spanned by Λ0.

4.2 Under Approximate Sparsity

Theorems 1 and 2 require exact sparsity. However, such a pattern may only provide an approxi-
mation to the true loading matrix, and we may think of Λ∗ as approximately sparse instead. We
therefore next redefine the sets Ak to relax our sparsity assumption and to include models with
approximate sparsity in the loading matrix.

Assumption 4. For each factor Fk, we can partition the set of indices i = 1, 2, . . . , n into a set of

indices Ak with cardinality |Ak| and its complement, such that as n→∞,

(a)
∑

i 6∈Ak

∣∣λ∗ik∣∣ = O(
√
n).

(b)
∑

i∈Ak

∣∣λ∗ik∣∣ > c0n for some c0 > 0.

(c)
∣∣λ∗ik∣∣ > c ∀i ∈ Ak and

∣∣λ∗ik∣∣ < C ∀i for constants c, C.

Assumption 4(a) relaxes the definition of Ak to allow for approximate sparsity. We may still
think of Ak as the active (or important) set for a given factor Fk, but Fk may now also affect
other outcomes, with Assumption 4(a) restricting how much. Assumption 4(b) can be thought of
as a pervasiveness assumption. Together with Assumption 4(c), it states that each factor affects a
constant fraction of all outcomes, which is commonly maintained in the literature. For our main
result (Theorem 4), we require access to a

√
n consistent estimate of Λ∗. The ability to obtain such

a
√
n consistent estimate generally implies that factors must be pervasive (Freyaldenhoven 2019).

Assumption 5. Let Vk denote the set of all linear combinations v•k of λ∗•l, l = 1, . . . , r, such that

‖v•k‖2
2 = n and λ∗•k ⊥ v•k and define

βk(v•k) =

∣∣∣∣∣∣
∑
i∈Ak

|vik|1{λ∗ikvik ≥ 0} −
∑
i∈Ak

|vik|1{λ∗ikvik < 0}

∣∣∣∣∣∣ . (15)

Then, there exists a set of factors F , such that, for any Fk ∈ F , and some cmin > 0 and N < ∞,

whenever n > N :

‖vA
c
k
•k ‖1 − βk(v•k) > cminn

3
4 ∀v•k ∈ Vk.

Assumption 5 slightly strengthens Assumption 3 in order to accommodate non-zero entries of
λ∗•k on Ack, with a trade-off similar to the one we observed in Assumptions 2 and 3.
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Theorem 3. Suppose n → ∞, Assumptions 4 and 5 hold and we have access to a rotation of the

true loading matrix, Λ0 = Λ∗H , where H is nonsingular and Λ0′Λ0

n
= I . If Fk ∈ F , there exists a

local minimum λ̄•k of (14), such that

1

n
‖λ̄•k − λ∗•k‖2 = O(

1√
n

). (16)

Proof. Consider λ•k = w1λ
∗
•k + w2v•k, where v•k is an arbitrary linear combination of λ∗•l, l =

1, . . . , r, such that ‖v•k‖2
2 = n, λ∗•k ⊥ v•k, and w2

1 +w2
2 = 1. This can be thought of as considering

all rotations of λ∗•k in the subspace spanned by Λ∗ without changing its length (in the standard
`2-sense). Then,

‖λ•k‖1 = ‖w1λ
∗
•k + w2v•k‖1 = ‖w1λ

∗Ak
•k + w2v

Ak
•k ‖1 + ‖w1λ

∗Ac
k

•k + w2v
Ac

k
•k ‖1

≥ ‖w1λ
∗Ak
•k + w2v

Ak
•k ‖1 + ‖w2v

Ac
k
•k ‖1 −|w1| ‖λ

∗Ac
k

•k ‖1

≥|w1| ‖λ∗Ak
•k ‖1 −|w2| βk(v•k) + w2‖v

Ac
k
•k ‖1 −|w1| ‖λ

∗Ac
k

•k ‖1

= |w1| ‖λ∗Ak
•k ‖1 +|w2|

(
‖vA

c
k
•k ‖1 − βk(v•k)

)
−|w1| ‖λ

∗Ac
k

•k ‖1,

where the second inequality above follows from Lemma 2 when we consider a small neighborhood
around λ∗k. To make this explicit, set w1 =

√
1− w2

2 and |w2| = ε. We need to show that

√
1− ε2‖λ∗Ak

•k ‖1 + ε
(
‖vA

c
k
•k ‖1 − βk(v•k)

)
−
√

1− ε2‖λ∗A
c
k

•k ‖1 > ‖λ∗•k‖1

⇔
(√

1− ε2
)
‖λ∗Ak
•k ‖1 − ‖λ∗•k‖1 + ε

(
‖vA

c
k
•k ‖1 − βk(v•k)

)
−
√

1− ε2‖λ∗A
c
k

•k ‖1 > 0

⇔
(√

1− ε2 − 1
)
‖λ∗Ak
•k ‖1 +

(
‖λ∗Ak
•k ‖1 − ‖λ∗•k‖1

)
+ε
(
‖vA

c
k
•k ‖1 − βk(v•k)

)
−
√

1− ε2‖λ∗A
c
k

•k ‖1 > 0

⇔
(√

1− ε2 − 1
)
‖λ∗Ak
•k ‖1 + ε

(
‖vA

c
k
•k ‖1 − βk(v•k)

)
−
(√

1− ε2 + 1
)
‖λ∗A

c
k

•k ‖1 > 0.

Note that (√
1− ε2 − 1

)
‖λ∗Ak
•k ‖1 + ε

(
‖vA

c
k
•k ‖1 − βk(v•k)

)
−
(√

1− ε2 + 1
)
‖λ∗A

c
k

•k ‖1

> (
√

1− ε2 − 1)‖λ∗Ak
•k ‖1︸ ︷︷ ︸

≡ I

+ ε(‖vA
c
k
•k ‖1 − βk(v•k))︸ ︷︷ ︸

≡ II

− 2‖λ∗A
c
k

•k ‖1︸ ︷︷ ︸
≡ III
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and choose ε = C̄
cmin

n−
1
4 . Then, we have the following bounds on the three terms above:

I =
(√

1− ε2 − 1
)
‖λ∗Ak
•k ‖1 = O(

1√
n

)O(n) = O(
√
n),

II = ε(‖vA
c
k
•k ‖1 − βk(v•k)) > n−

1
4 C̄n

3
4 = C̄

√
n for any C̄ <∞,

III = 2‖λ∗A
c
k

•k ‖1 = O(
√
n),

where the rate in I follows from the fact that for 0 < ε < 1,
∣∣∣√1− ε2 − 1

∣∣∣ < ε2 = O( 1√
n
). The

inequality for II follows from Assumption 5, and the stated rate in III follows from Assumption
4 (a). Thus the second term dominates and is positive.

This guarantees that ‖λ•k‖1 > ‖λ∗•k‖1. Since Λ∗ is a feasible solution to (14), and by continuity
of the `1-norm, there must therefore exist a λ̄•k = w1λ

∗
•k+w2v•k, w2 = O(n−

1
4 ), withw2

1 +w2
2 = 1,

that is a local minimum of (14).
It further follows that

‖λ∗•k − λ̄•k‖ = ‖λ∗•k − (w1λ
∗
•k + w2v•k)‖ = ‖λ∗•k −

√
1− w2

2λ
∗
•k − w2v•k‖

= w2‖
1−

√
1− w2

2

w2

λ∗•k − v•k‖ < w2‖λ∗•k − v•k‖,

where the inequality follows from the fact that 1−
√

1−w2
2

w2
< 1 for 0 < w2 < 1. Finally, by

orthogonality of λ∗•k and v•k, and since ‖λ∗•k‖ = ‖v•k‖ =
√
n,

w2‖λ∗•k − v•k‖ = w2

√
2n.

We therefore conclude that, with w2 = O(n−
1
4 ),

‖λ∗k − λ̄•k‖ < w2‖λ∗•k − v•k‖ = O(n−
1
4 )
√

2n = O(n
1
4 ),

and the desired result follows.

Theorems 1-3 all assumed access to an initial rotation of Λ∗, Λ0 = Λ∗H . In practice, we will
only have access to an estimate of such a rotation. That is, we will have access to an initial Λ0,
such that ‖λ0

ik − λ∗i•H•k‖ = Op(
1√
n
). The main result of the paper follows and establishes that any

√
n consistent estimate of the space spanned by the loadings is sufficient to recover the individual

loading vectors corresponding to factors in F .

Remark 4. We remain agnostic about where such an initial estimate may come from. An obvious
candidate that fulfills the

√
n consistency requirement above under some regularity conditions
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would be the Principal Component estimator (Bai and Ng 2002, Bai 2003). We also use this
estimator in our simulations and applications.

Theorem 4. Suppose n → ∞, Assumptions 4 and 5 hold, and Fk ∈ F . Further suppose we have

access to an initial estimate Λ0, such that ‖λ0
ik−λ∗i•H•k‖ = Op(

1√
n
), where H is nonsingular, and

Λ0′Λ0

n
= I . Then, there exists a local minimum λ̄•k of (14), such that

1

n
‖λ̄•k − λ∗•k‖2 = Op(

1√
n

). (17)

Proof. Since (λ0
ik −

∑r
l=1 λ

∗
ilHlk) = O( 1√

n
) and H is nonsingular, there exists a (r× 1) vector ψi,

such that

λ0
ik −

r∑
l=1

λ∗ilHlk =
r∑
l=1

ψilHlk,

where ψil = O( 1√
n
) for l = 1, . . . , r. Thus,

λ0
ik − (λ∗i• − ψi•)H•k = 0

⇔ λ0
ik − λ̇i•H•k = 0,

by defining λ̇i• ≡ (λ∗i•−ψi•). It follows that Λ0 is an exact rotation of Λ̇, where λ̇ik−λ∗ik = O( 1√
n
)

for all i, k.
Also note that, under Assumption 4(a),

∑
i 6∈Ak

∣∣∣λ̇ik∣∣∣ = O(
√
n) for allFk ∈ F , since

∑
i 6∈Ak

∣∣∣λ̇ik∣∣∣ =∑
i 6∈Ak

∣∣∣(λ∗ik + (λ̇ik − λ∗ik)
∣∣∣ ≤∑i 6∈Ak

∣∣λ∗ik∣∣+∑i 6∈Ak

∣∣∣λ̇ik − λ∗ik∣∣∣ = O(
√
n). Similarly, Assumptions

4(b)-4(c) hold for Λ̇ if they hold for Λ∗ and thus the conditions in Assumption 4 hold for Λ̇ if they
are satisfied for Λ∗.

We next show that the conditions in Assumption 5 also hold for Λ̇ if they are satisfied for Λ∗.
Suppose Fk ∈ F and let v̇•k be an arbitrary linear combination of λ̇•l, l = 1, . . . , r, such that
‖v̇•k‖2

2 = n and λ̇•k ⊥ v̇•k. Then, there exists a v•k ∈ Vk, such that

βk(v̇•k) =

∣∣∣∣∣ ∑
i∈Ak

|v̇ik|1{λ̇ikv̇ik ≥ 0} −
∑
i∈Ak

|v̇ik|1{λ̇ikv̇ik < 0}

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i∈Ak

|v̇ik|1{λ∗ikv̇ik ≥ 0} −
∑
i∈Ak

|v̇ik|1{λ∗ikv̇ik < 0}

∣∣∣∣∣
=

∣∣∣∣∣
∑
i∈Ak

|vik|1{λ∗ikv̇ik ≥ 0} −
∑
i∈Ak

|vik|1{λ∗ikv̇ik < 0}
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+

∑
i∈Ak

(|v̇ik| −|vik|)1{λ∗ikv̇ik ≥ 0} −
∑
i∈Ak

(|v̇ik| −|vik|)1{λ∗ikv̇ik < 0}

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i∈Ak

|vik|1{λ∗ikv̇ik ≥ 0} −
∑
i∈Ak

|vik|1{λ∗ikv̇ik < 0}+O(
√
n)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i∈Ak

|vik|1{λ∗ikvik ≥ 0} −
∑
i∈Ak

|vik|1{λ∗ikvik < 0}

∣∣∣∣∣+O(
√
n)

≤ βk(v•k) +O(
√
n),

where the first equality follows from the fact that the signs of λ̇ik and λ∗ik will be identical on Ak,
because of the lower bound on λ∗ik from Assumption 4(c). The third equality follows from Lemma
3 and the fourth equality from Lemma 4.

Thus, if Fk ∈ F , and for some cmin > 0 and N <∞, whenever n > N ,

‖vA
c
k
•k ‖1 − βk(v•k) > cminn

3
4 ∀v•k ∈ Vk,

the following must also be true:

‖v̇A
c
k
•k ‖1 − βk(v̇•k) > cminn

3
4 ∀v•k ∈ Vk.

Therefore, Assumption 5 is satisfied for Λ̇ if it is satisfied for Λ∗ and we can invoke Theorem 3
to yield:

1

n
‖λ̄•k − λ̇•k‖2 = O(

1√
n

).

Using the triangle inequality, it then immediately also follows that

1

n
‖λ̄•k − λ∗•k‖2 = O(

1√
n

).

The number of elements in Λ∗ increases with n. Thus Theorem 4 uses an averaged norm to
establish consistency of the estimated loadings, similar to Ando and Bai (2017).

Theorem 4 suggests the following simple two-step algorithm to consistently estimate any local
factors.6

1. Obtain a
√
n consistent estimate Λ0 that forms an orthonormal basis of factor space.

6We discuss our algorithmic implementation in more detail in Online Appendix C.
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2. Find the rotation R̃ that minimizes the l1-norm of the loadings:

min
R
‖

r∑
l=1

λ0
•lRlk‖1 such that R′•kR•k = 1, R nonsingular. (18)

By Theorem 4, if there are local factors present in the data, their true loading vectors will be (close
to) an argmin of (18).

5 Simulations

This section presents results from Monte Carlo simulations in order to evaluate the performance of
our proposed criterion in practice.

We start by revisiting the baseline DGP from our stylized example in Section 3.1 but move
beyond a single realization. In order to summarize the performance of an estimator numerically,
a simple measure is the cosine similarity between the columns in Λ∗ and Λ̂. Because the factors
can always be reordered, we take the maximum cosine similarity between any estimated vector
and each vector of the true loadings. Formally, define the maximum cosine similarity MCl(Λ̂)

between the true loading vector λ∗•l and an estimate Λ̂ as

MCl(Λ̂) = max
k

λ̂′•kλ
∗
•l

‖λ̂•k‖‖λ∗•l‖
for l = 1, . . . , r. (19)

One can think of MCl, l = 1, . . . , r as a measure of how well we estimate each of the r loading
vectors.

The maximum correlation corresponding to Figures 2-5 in Section 3.1 is depicted in Table 1,
averaged across 1000 realizations. While λ∗ik

i.i.d.∼ U(0.1, 2.9) for i ∈ Ak was chosen to satisfy the
upper and lower bounds assumed on Λ∗ in the previous section, we also consider λ∗ik = 1 + ηik,
ηik

i.i.d.∼ N(0, 1) for i ∈ Ak. Modeling the loadings as normally distributed is common in the
literature (Bai 2003, Freyaldenhoven 2019).

The DGP underlying the first two columns is identical to that underlying Figures 2-5 and has
uniformly distributed loadings on Ak. We simulate new loadings in Λ∗ for each realization. The
first column confirms that the Principal Component estimator does not successfully recover either
of the two loading vectors. On the other hand, the second column provides evidence that our
proposed estimator can identify the true loading matrix Λ∗. Because both factors affect the same
number of outcomes in our baseline DGP, the two rows look identical. Columns 3-4 demonstrate
that changing the distribution of the loadings λik on Ak has no effect on our results.
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λ∗ik ∼ U(0.1, 1.9) λ∗ik = 1 + ηik, ηik ∼ N(0, 1)

Estimator Λ̂ Λ0 Λ̃ Λ0 Λ̃

MC1 0.778 0.990 0.778 0.994

MC2 0.778 0.990 0.775 0.994

Table 1: Maximum cosine similarity MCl(Λ̂) across DGPs and estimators. Λ0 refers to the Principal Com-
ponent estimator, while Λ̃ represents our proposed rotation that minimizes the `1-norm across all rotations.
All numbers are based on 1000 realizations.

The previous results confirm that our proposed estimator can indeed recover the correct sparsity
pattern in the loading matrix, at least under the relatively simple DGP of this section. We next
consider a variety of data-generating processes to approximate a range of situations a practitioner
might encounter in practice.

5.1 Results for a Variety of Data-Generating Processes

We start by varying the degree of sparsity in the loading matrix. To this end, we vary the values
of m1 and m2 in the previous DGP and maintain that λ∗ik = 1 + ηik, ηik

i.i.d.∼ N(0, 1), for i ∈ Ak.
The corresponding result is depicted in Figure 6. Using the maximum cosine similarity introduced
above, Figure 6 depicts how well we are able to estimate the true factor loadings λ∗1 and λ∗2 as
a function of m1 and m2. Panels 6a and 6b depict the performance of the Principal Component
estimator. Unsurprisingly, the numbers reported in panels 6a and 6b are generally significantly
below one. The exception to this are cases in which one factor is extremely weak. Effectively,
the data follows a factor structure with a single factor in such cases, and consequently there is no
rotational indeterminacy and the sole factor is identified.

Panels 6c and 6d depict the maximum cosine similarity for our proposed estimate Λ̃. We
are able to separately identify the two factors throughout most of the parameter space using the
rotation that minimizes the `1-norm of the loadings. The exception occurs in the regions of weak
identification where a factor becomes either “global” or very weak. For example, along the right
edge of Figure 6c F1 affects all observables. Since only factors in F are identified, and clearly
F1 6∈ F in this region, this is not surprising. On the opposite side of Figure 6c only a handful
of outcomes are affected by F1. F1 is therefore only weakly identified, and our initial estimate of
the factor space is poor, resulting in a maximum cosine similarity less than one. Of course, the
Principal Component estimator fares no better in this region of the parameter space (cf. Figure
6a). The same reasoning applies to Figure 6d. We further conclude from panels 6c-6d that an
identification failure for one of the factors does not imply identification failure for the other.
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(a) PC Estimator: MC1(Λ0) (b) PC Estimator: MC2(Λ0)

(c) Rotated Estimator: MC1(Λ̃) (d) Rotated Estimator: MC2(Λ̃)

Figure 6: Maximum cosine similarity of estimators with each of the true loading vectors λ∗•k as a function
of the degree of sparsity in the loading matrix. mk refers to the number of non-zero entries in the kth column
of Λ∗. Depicted are averages over 100 realizations.

We next increase the size of the model and consider a DGP with (T, n) = (500, 300)7 and
r = 4, with a small amount of correlation between the factors. Specifically, let Ft ∼ N(0,ΣF ),
i.i.d over time, with

ΣF =


1.0 0.3 0.0 0.0

0.3 1.0 0.3 0.0

0.0 0.3 1.0 0.3

0.0 0.0 0.3 1.0

 .

We consider the first factor “global,” while the remaining three are local to varying degrees,
meaning they do not affect all outcomes. Specifically, the 500-by-4 loading matrix Λ∗ has entries

7(T, n) = (500, 300) falls roughly in the middle of the range of dimensions usually considered in the literature.
For example, Bai and Ng (2002) consider sample sizes in both dimensions between 40 and 8000.
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(a) MCk(Λ0) under exact sparsity
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(b) MCk(Λ0) under approximate sparsity
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(c) MCk(Λ̃) under exact sparsity
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(d) MCk(Λ̃) under approximate sparsity

Figure 7: Each panel depicts the maximum cosine similarity of an estimator with all four of the true loading
vectors λ∗•k. Λ0 denotes Principal Component estimator, while Λ̃ denotes estimate after proposed rotation.
The first factor is global, factors 2-4 are local. Boxplots based on 100 realizations.

λ∗ik = (1 + ηik) with ηik
i.i.d.∼ N(0, 1) if i ∈ Ak, and λ∗ik = 0 otherwise. The subsets Ak will

be of varying size and dictate which variables are affected by each factor k, with the sequence
of group sizes given by {|Ak|}4

k=1 = {500, 269, 144, 106} for the four factors8. The idiosyncratic
component eit is created the same way it was in our baseline DGP.

Finally, we consider a variant of this DGP in which there is no exact sparsity, but rather an
approximate version thereof. Here, λ∗ik

i.i.d.∼ N(0, σ2), and σ2 = 1
n

for all i ∈ Ack.
Figure 7 uses a boxplot to visualize the performance of Λ0 and Λ̃. It depicts the maximum

cosine similarity for each factor across 100 realizations of the DGP. The data underlying Figures
7a and 7c has an exact sparsity pattern. As expected, we do not consistently recover the true
loadings using the Principal Component estimator, as illustrated in Figure 7a.

On the other hand, Figure 7c depicts the similarity between the truth and the estimated factor
loadings that have been rotated to minimize the `1-norm of Λ. Since the first factor does not
exhibit any sparsity, there is no information in the `1-norm that could help identify this factor.
As a consequence, the similarity is below one, and identification fails for this “global” factor.

8This corresponds to group sizes {|Ak|}4k=1 = {n, n0.9, n0.8, n0.75}, rounded to the nearest integer.
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On the other hand, the three local factors exhibit maximum cosine similarities that are visually
indistinguishable from one in all realizations.

Underlying Figures 7b and 7d is the variant of our DGP with only an approximate sparsity
pattern in the loading matrix. Based on Figures 7b and 7d, the above conclusions are unchanged.
Our proposed estimator Λ̃ recovers the loading vectors associated with the three local factors in all
realizations.

In Online Appendix B, we compare the performance of our proposed estimator to a number of
existing heuristics that are currently widely used to simplify the loading matrix, including some of
the quartic criteria discussed in Section 3. We find that our criterion outperforms these alternative
methods.

6 Applications

We next apply our proposed method to two economic applications in which factor models have
been widely used, and that capture two important scenarios a practitioner might encounter. In the
first scenario, we expect the majority of the factors to be local, while in the second scenario, local
factors may or may not be present.

First, we consider a dataset of international stock returns. Because of the global nature of this
dataset, we expect the presence of region-specific factors in this dataset. We are therefore interested
whether our method can detect these local factors and uncover the geographic structure of the data.

Second, we consider a large panel of US macroeconomic indicators, where it is less clear a
priori whether local factors are present.

6.1 Identifying Common Shocks in International Asset Returns

The idea of common risk factors across assets, implied by a factor structure in their returns, under-
lies the Arbitrage Pricing Theory of Ross (1976), such that, for the excess return of asset i at time
t, xit, we obtain

xit = Rit − E(Rit) = λiFt + eit, (20)

in the notation of this paper. As common factors are not observed, we need to replace Ft and λi
by their estimates F̂t and λ̂i. In financial economics, these estimates are commonly obtained by
Principal Component Analysis (Connor and Korajczyk 1986, Ludvigson and Ng 2007).

We might be interested in Et xt+1, the conditional mean of xt+1, using the information up to
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time t, as in Ludvigson and Ng (2007), who suggest a model akin to

xit+1 = α′Ĝt + εit, (21)

where Ĝt is formed from a subset of F̂t and/or functions of its individual components F̂kt (e.g.,
F̂ 2

1t). However, since the Principal Component estimator will estimate a rotation of the true factors
and their loadings, selecting a subset and/or taking non-linear transformations of F̂t will not be
invariant to the chosen rotation. We propose to avoid this issue by using our proposed rotation
criterion to identify the individual factors and their loadings.

We consider daily returns for a large number of stocks from different parts of the world. In
particular, our data consists of individual stock returns for companies that were either part of the
DAX30 (Germany), the FTSE100 (UK), the S&P100 (US), the CAC40 (France), or the TA100

(Middle East) on April 23, 2015.9 In total, the data covers 272 stocks spanning 687 observations
from 01/01/2011 until 03/20/2015.

We determine the number of factors to be eight using Bai and Ng (2002)’s Information Crite-
rion, and will accordingly assume r = 8 in what follows. Figures 8 and 9 illustrate the loading
vectors in Λ0 and Λ̃. The thin dashed lines separate the geographical groups as described above, in
the order of Frankfurt, London, New York, Paris, and Tel Aviv.

We see in Figure 8 that, as expected, the normalization implied by the Principal Component
estimator results in a dense loading matrix, meaning each factor is associated with a large number
of significant loadings. While there are some discernible regional patterns (e.g., λ0

•2 has positive
entries for all stocks listed in the US, and negative entries for all others), it appears unlikely we can
think of these estimated loadings (and the implied factors) as structural objects.10

Figure 9 depicts our proposed estimator Λ̃. In contrast to Figure 8, we see that its loading
vectors are highly concentrated on a subset of outcomes.11 In particular, it reveals strong regional
dependencies in asset returns as illustrated in Table 2. For example, λ̃•1 is almost entirely con-
centrated on stocks in the Middle East, λ̃•3 and λ̃•7 are concentrated on stocks in the US, and λ̃•8
is concentrated on stocks in the UK. The exception is λ̃•2, whose large entries are dispersed geo-
graphically. However, of the 24 entries with a loading larger than 2, all 24 stocks belong to either

9We further restrict the stocks in the TA100 to those with a weight by market capitalization in the TA100 of at least
.5 %. This makes the remaining stocks comparable in size to the rest of the sample. For a more detailed discussion of
the data, see Online Appendix E.1.

10Instead, we conjecture that this pattern is largely an artificial result of the chosen normalization. For example,
suppose the first loading vector happens to capture a structural object, and suppose there is a second factor that
positively affects all US stocks. Intuitively, the negative loadings associated with all international stocks in λ0•2 will
then be necessary to guarantee orthogonality between λ0•2 and λ0•1.

11We again stress that there is no “shrinkage” involved in our estimator, and therefore none of the estimated loadings
in Λ̃ will be exactly equal to zero. A further regularization step is beyond the scope of this paper. See Pelger and Xiong
(2019) for a potential approach to such regularization.
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Figure 8: Illustration of PCA loadings λ0
•k for k = 1, . . . , 8 in panel of international asset returns. Bars

correspond to the loadings of the 272 individual stocks. Geographical groups are Germany, UK, US, France,
and Middle East, separated by dashed lines.
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Figure 9: Illustration of the rotated loading vectors λ̃•k for k = 1, . . . , 8 in panel of international asset
returns. Bars correspond to the loadings of the 272 individual stocks for the kth estimated loading vector.
Geographical groups are Germany, UK, US, France, and Middle East, separated by dashed lines.
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the Oil & Gas or the Mining sectors, enabling us to clearly label this a sectoral shock.

Factor Region Sector

1 Middle East
2 US
3 US
4 Global Natural Resources (Oil and Mining)
5 Germany, France
6 Germany, France, UK
7 Germany, France, UK
8 UK

Table 2: Interpretation of individual factors in panel of international asset returns, based on estimated
loading matrix Λ̃.

Figure 10 illustrates how, in this dataset, all columns of Λ̃ have significantly smaller `1-norms
than those in Λ0. We take this as a sign that all eight estimated factors are identified using our
proposed rotation criterion.
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Figure 10: For each k = 1, . . . , 8, the points above represent ‖λ•k‖1, the `1-norm of the corresponding
column in Λ for daily returns of an international sample of stock returns. Blue dots correspond to columns
in Λ̃, while red crosses correspond to Λ0. Smaller values tend to be associated with a greater degree of
sparsity in the loading vector.

Remark 5. Λ̃ is also appealing for the construction of factor-mimicking portfolios.12 Not only
do our results allow the construction of factor-mimicking portfolios for individual factors but, in
finance, trading costs are usually modeled as either a proportional transaction cost or as a fixed
brokerage fee per transaction (e.g., Liu 2004, Brodie et al. 2009). For the construction of factor-
mimicking portfolios, a proportional transaction cost implies that the cost is directly related to the
`1-norm of the loadings, and with a fixed fee per transaction, factor-mimicking portfolios with
fewer non-zero positions will imply lower transaction costs.

12See Huberman et al. (1987) and Green and Hollifield (1992) for more details.
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6.2 Identifying Shocks to the US Economy

We next apply our identification strategy to a large panel of US macroeconomic indicators. Ver-
sions of this dataset have been used extensively in the macroeconomic literature (Stock and Wat-
son 2005, De Mol et al. 2008, Stock and Watson 2016). In particular, we use the FRED-QD
data collected and maintained by Michael W. McCracken.13 Among others, it includes real activ-
ity variables, prices, productivity and earnings, interest rates and spreads, money and credit, asset
and wealth variables, oil market variables, and indicators representing international activities. We
use data from 1967Q1-2019Q1 and follow the initial transformations of the raw data as outlined
in McCracken and Ng (2016) to achieve approximate stationarity and remove a small number of
outliers.

The dataset consists of series at multiple levels of aggregation. We only use the disaggregated
time series in my estimation of the factor structure and disregard the aggregates (Boivin and Ng
2006, Stock and Watson 2016). We also drop a small number of series with missing observa-
tions, so that the final data contains 206 quarterly observations of 166 macroeconomic variables,
primarily for the US economy.

Using an earlier vintage of a closely related dataset, De Mol et al. (2008) focuses on macroe-
conomic forecasting, with the monthly industrial production index and the consumer price index
as their primary prediction targets. When comparing forecast models on this data, they make two
observations:

1. “The high correlation of the Lasso forecast with the PC forecast suggests that our data is
highly collinear: Under collinearity, when appropriately selected, a few variables should
capture the essence of the covariation of the data and, as principal components, span approx-
imately the space of the common factors.”

2. “The selection [of variables by the Lasso] is different at different points in the sample, al-
though selected variables generally belong to the same economic category.”

One explanation for these findings is that there are local factors present in the data, with each
factor only affecting a subset of the observed indicators (which will generally belong to the same
economic category). In such a setting, if the overlap between the active setsAk is small, the Lasso
will tend to select a single variable from each groupAk as a noisy proxy for Fk, and the selected set
of regressors will approximately span the space of the common factors. However, selection within
groups will be unstable and sensitive to minor perturbations of the data, which would explain the

13Data are available at https://research.stlouisfed.org/econ/mccracken/fred-databases.
For a full description of the data, as well as a more detailed description of the transformations of the raw data, we refer
the reader to McCracken (2019).
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Figure 11: Illustration of the rotated loading vectors λ̃•k for k = 1, . . . , 5. Bars correspond to the 166
individual indicators for the kth estimated loading vector.

varying choices of variables from the same groups across subsamples. Under such a DGP, our
proposed method will rotate the factors to uncover the underlying group structure in a data-driven
way.

For our exercise, we first determine the number of factors to be eight, using the Information
Criterion of Bai and Ng (2002), and accordingly assume r = 8 in what follows. Unsurprisingly,
we find that all Principal Components generally load on most of the 166 observed outcomes. The
estimated loadings using the Principal Component estimator Λ0 can be found in Online Appendix
Figure 5.

In contrast, Figure 11 depicts the five columns of our proposed estimator Λ̃ with the lowest
`1-norm. In order to gain an understanding of the factors, Table 3 reproduces the grouping of
variables as suggested in McCracken (2019), which is in turn based on Stock and Watson (2012).

The first factor is mainly associated with household balance sheets and stock markets (groups
10 and 13). This captures the intuitive notion that an increase in asset prices will be associated
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Group Category Associated variables

1 National Income and Product Accounts (NIPA) 1-14
2 Industrial Production 15-26
3 Employment and Unemployment 27-60
4 Housing 61-68
5 Inventories, Orders, and Sales 69-74
6 Prices 75-108
7 Earnings and Productivity 109-114
8 Interest Rates 115-127
9 Money and Credit 128-136
10 Household Balance Sheets 137-142
11 Exchange Rates 143-146
12 Other 147
13 Stock Markets 148-153
14 Non-Household Balance Sheets 154-166

Table 3: Grouping of variables in panel of US macroeconomic indicators.

with an improvement in household balance sheets. Accordingly, almost all of those indicators
are associated with positive loadings, with the exception of the dividend yield, which has a large
negative loading. The second rotated factor almost exclusively drives all price variables (group 6),
allowing an easy interpretation. The remaining loading vectors become harder to interpret as their
loadings are less concentrated. This is illustrated in Figure 12, which depicts the `1-norm of each
of the columns in Λ̃. Based on Figure 12, we conclude that two factors are identified. Lacking
a formal test for identification, we are unsure about factors 3-5, and provide a brief discussion of
them next.
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Figure 12: For each k = 1, . . . , 8, the points above represent ‖λ•k‖1, the `1-norm of the corresponding
column in Λ for a panel of US macroeconomic indicators. Blue dots correspond to columns in Λ̃, while
red crosses correspond to Λ0. Smaller values tend to be associated with a greater degree of sparsity in the
loading vector.

The third factor affects interest rates and employment indices the most. It is also associated
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with a decrease in federal debt and nonfinancial noncorporate business sector liabilities, as well as
an increase in capacity utilization (groups 22 and 23). The fourth factor captures the co-movement
of Earnings and Productivity indicators (group 7) with Non-Household Balance Sheet variables.
The fifth is concentrated on interest rate movements, but also has some effect on employment and
industrial production.

Based on the `1-norms of their respective loadings, as depicted in Figure 12, we caution against
the interpretation of the remaining three factors as structural objects. Their loadings are depicted
in Online Appendix Figure 6.

We conclude that we find at least two loading vectors with large enough degrees of sparsity to
consider them identified.

7 Conclusion

We establish conditions for identification of individual factors in factor models. Specifically, we
show that under (approximate) sparsity in the loading matrix a rotation criterion based on the `1-
norm of the loading matrix can be used to achieve such identification. We validate our proposed
criterion in simulations and find that it outperforms existing and widely used heuristics aimed at
simplifying the loading matrix.
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A Auxiliary Lemmata

Lemma 1.

lim
ε→0

1−
√

1− ε2
ε

= 0.

Proof. This immediately follows from L’Hospital’s rule:

lim
ε→0

1−
√

1− ε2
ε

= lim
ε→0

2ε

2
√

1− ε2
= 0.

Lemma 2. Under Assumptions 3 and 4, there exists a c0 <∞, such that for all ε ∈ (0, c0):

‖
√

1− ε2λ∗Ak
•k + εvAk

•k ‖1 ≥
√

1− ε2‖λ∗Ak
•k ‖1 − ε βk(v•k).

Proof. Since
∣∣λ∗ik∣∣ > c ∀i ∈ Ak, for small enough ε > 0:

‖
√

1− ε2λ∗Ak
•k + εvAk

•k ‖1

=
∑
i∈Ak

(√
1− ε2|λ∗ik|+ ε

∣∣∣vAk
ik

∣∣∣)1{λ∗ikv
Ak
ik ≥ 0}+

∑
i∈Ak

(√
1− ε2|λ∗ik| − ε

∣∣∣vAk
ik

∣∣∣)1{λ∗ikv
Ak
ik < 0}

=
√

1− ε2‖λ∗Ak
•k ‖1 + ε

∑
i∈Ak

∣∣∣vAk
ik

∣∣∣1{λ∗ikvAk
ik ≥ 0} −

∑
i∈Ak

∣∣∣vAk
ik

∣∣∣1{λ∗ikvAk
ik < 0}


=
√

1− ε2‖λ∗Ak
•k ‖1 + ε

∑
i∈Ak

|vik|1{λ∗ikvik ≥ 0} −
∑
i∈Ak

|vik|1{λ∗ikvik < 0}


≥
√

1− ε2‖λ∗Ak
•k ‖1 − ε βk(v•k).

Lemma 3. Suppose Assumption 4 holds and let λ̇•k be a vector with ‖λ̇ik − λ∗ik‖ = Op(
1√
n
) ∀i

as n → ∞ and let v̇•k be a linear combination of λ̇•l, l = 1, . . . , r, such that ‖v̇•k‖2
2 = n and

λ̇•k ⊥ v̇•k.

Then, there exists a vector v•k with

1. λ∗′•kv•k = 0,

2. (v̇ik − vik) = Op(
1√
n
) ∀i.
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Proof. Define Sk =
∑Ac

k
i

(
λ∗ik−λ̇ik

)
v̇ik and note that for some constant V <∞, Sk ≤ V

∑Ac
k

i

(
λ∗ik−

λ̇ik
)

= O(
√
n).

Let sik = − Sk

λ∗ik|Ak|
and

vik =

v̇ik −
v̇ik
λ∗ik

(λ∗ik − λ̇ik) + sik if i ∈ Ak
v̇ik otherwise.

(22)

Then,

n∑
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λ∗ikvik =
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)
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(
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k∑
i

λ∗ikv̇ik

=
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λ̇ikv̇ik −
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= −
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i

λ̇ikv̇ik +
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Ac
k∑
i

(
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)
v̇ik

= −
Ak∑
i

λ∗ik
Sk

λ∗ik|Ak|
+ Sk

= 0.

Further, since by Assumption 4, |Ak| > c0n for some c0 > 0, sik = Op(
1√
n
). Combined with

the fact that vik
λ̇ik

(λ̇ik − λ∗ik) = Op(
1√
n
), we therefore conclude that v̇ik − vik = Op(

1√
n
), which

completes the proof.

Intuitively, Lemma 3 states that, if two vectors are “close,” their orthogonal complements are
also close.
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Lemma 4. Suppose Assumptions 4-5 hold and Fk ∈ F . Assume λ̇ik − λ∗ik = O( 1√
n
) ∀i and let v̇•k

be a linear combination of λ̇•l, l = 1, . . . , r, such that ‖v̇•k‖2
2 = n and λ̇•k ⊥ v̇•k. Then,(∑

i∈Ak

|vik|1{λ∗ikv̇ik ≥ 0}−
∑
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)

=

(∑
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∑
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)

+O(
√
n).

Proof. Let S = {i : vik = Op(
1√
n
)}. Then,
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where we used Lemma 3 in the second and third equality above.
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