
 

WORKING PAPER NO. 16-11 
A NARRATIVE APPROACH TO A  

FISCAL DSGE MODEL 
 
 
 

Thorsten Drautzburg 
Research Department 

Federal Reserve Bank of Philadelphia 
 

 

 

 

April 2016 

 



A Narrative Approach to a Fiscal DSGE Model

This version: March 28, 2016

First version: February 2014

Thorsten Drautzburg∗

Abstract

Structural DSGE models are used both for analyzing policy and the sources of business cycles. Con-
clusions based on full structural models are, however, potentially affected by misspecification. A 
competing method is to use partially identified VARs based on narrative shocks. This paper asks 
whether both approaches agree. First, I show that, theoretically, the narrative VAR approach is 
valid in a class of DSGE models with Taylor-type policy rules. Second, I quantify whether the two 
approaches also agree empirically, that is, whether DSGE model restrictions on the VARs and the 
narrative variables are supported by the data. To that end, I first adapt the existing methods for 
shock identification with external instruments for Bayesian VARs in the SUR framework. I also ex-
tend the DSGE-VAR framework to incorporate these instruments. Based on a standard DSGE model 
with fiscal rules, my results indicate that the DSGE model identification is at odds with the narrative 
information as measured by the marginal likelihood. I trace this discrepancy to differences both in 
impulse responses and identified historical shocks.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are a widespread research and policy tool. But 
as structural models, DSGE models could be misspecified and their results therefore misleading. An 
alternative approach uses narrative methods to study some of the same shocks and their effects. 
Narrative methods rely on fewer structural assumptions and incorporate additional information relative 
to standard macroeconomic time series. I provide a framework for incorporating this information in 
DSGE model estimation and to quantify misspecification compared with narrative studies.

Despite the success of DSGE models such as, for example, Christiano et al. (2005) and Smets 
and Wouters (2007), concerns about misspecification remain: Faust (2009), for example, argues that 
microfoundations of DSGE models are weak and that their quantitative success could mask mis-

specification. Sims (2005) cautions that DSGE models should not displace alternative identification 
schemes. Del Negro et al. (2007) use the Del Negro and Schorfheide (2004) framework to quantify model 
misspecification relative to a reduced-form vector autoregression (VAR) and find a small degree of 
misspecification. But since their benchmark model is a reduced-form VAR, their metric for comparing 
models is unaffected by shock identification.1

In this paper, I quantify the misspecification of DSGE models with a focus on shock identification. I 
extend the Del Negro and Schorfheide (2004) framework for assessing misspecification in reduced-form 
VARs to structural VARs identified with external instruments: I model traditional macro variables 
jointly with narrative shocks such as the monetary policy shocks developed by Romer and Romer 
(2004). With the resulting narrative DSGE-VAR, I quantify the misspecification of the DSGE iden-
tification scheme by comparing marginal likelihoods. If a given DSGE model and the narrative VAR 
agree, including information from the model increases precision and hence the marginal likelihood.2, 3

Comparing DSGE models with narrative VARs is valid for a class of DSGE models: I provide

conditions under which the instrument-identified VAR in Mertens and Ravn (2013) correctly identifies

shocks and policy rule coefficients in models with standard Taylor-type policy rules, such as Leeper

et al. (2010) and Fernandez-Villaverde et al. (2015), without timing restrictions. This property of the

narrative VAR contrasts with traditional VARs that identify shocks through contemporaneous zero

restrictions. DSGE models that match the VAR then need to assume that economic agents only react

to policy shocks with a delay. The narrative VAR approach is valid if the data are generated from a

widely used class of DSGE models, without restricting the timing.

My application focuses on fiscal and monetary policy rules in a medium-scale DSGE model, with

narrative measures for government spending, tax rates, and monetary policy shocks. I find that the

DSGE model augmented with Taylor-type policy rules agrees with narrative VARs as measured by

marginal likelihoods: The marginal likelihood is initially increasing in the prior weight on the DSGE

1Canova et al. (2015) use the Del Negro and Schorfheide (2004) DSGE-VARmethod to assess whether the assumption
of time-invariant parameters matters.

2Formally, shocks in the standard DSGE-VAR framework are identified only up to multiplication by an orthonormal
matrix that does not affect the likelihood. Here, the extra data, and hence the likelihood, also speak to the identification.

3Waggoner and Zha (2012) confront model misspecification differently. Instead of estimating a constant mixture
between the DSGE model and the VAR, they allow for Markov switching between the models. Given the limited
numbers of narrative shock observations, such a Markov switching approach seems too demanding of the data in my
application.
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model. While the marginal likelihood peaks at an interior point in terms of the DSGE model weight, it

is decreasing in the weight put on the DSGE covariance matrix and, hence, the identification scheme.

In contrast, shrinkage toward the DSGE model dynamics improves the model fit initially. I interpret

these results as indicating that the DSGE model identification does not line up with the narrative

identification. These results are robust to estimating the model separately with the monetary or fiscal

instruments. To provide evidence on the specific channels, I also compare impulse response functions

(IRFs) and historical shocks. Regarding the historical shocks, the DSGE model does best at matching

up the monetary policy shocks that the narrative VAR implies and worst for the tax shocks. The

model also struggles particularly to explain the inflation and tax dynamics in the narrative VAR.

Since it provides an intuitive way to incorporate prior information, the narrative DSGE-VAR

framework can also be of interest for future narrative studies. In my application, the posterior distri-

butions over the effects of fiscal shocks remain wide based on narrative shocks alone. Incorporating

prior information sharpens the posterior by shrinking the estimates toward theory-consistent policy

rules. This is similar to the work by Arias et al. (2015), who document that even weak structural

priors over policy rules help to identify shocks via sign restrictions.

The application to a fiscal DSGE model with monetary policy is important from a substantive point

of view: With monetary policy constrained by the zero lower bound, “stimulating” fiscal policy has

gained a lot of attention and influential papers such as Christiano et al. (2011b) have used quantitative

DSGE models for the analysis of fiscal policies. Since the fiscal building blocks of DSGE models are less

well studied than, say, the Taylor rule for monetary policy (e.g., Clarida et al., 2000), assessing the fiscal

policy implications of these models is warranted. Indeed, fully structural and partial identification of

fiscal shocks can lead to widely different conclusions about the drivers of business cycles: Rossi and

Zubairy (2011) document that when applying a Blanchard and Perotti (2002) type identification of

government spending shocks in a VAR, the fraction of the variance of GDP driven by those shocks

rises significantly with the forecast horizon, whereas the DSGE model-based variance decomposition

in Smets and Wouters (2007) implies the opposite pattern.4

This paper is structured as follows: Section 2 frames the research question in general and formal

terms. The paper proceeds by describing the methods used in the analysis in Section 3. Sections 4 and

5 describe the empirical specification and the empirical results. A web appendix contains the proofs

and additional empirical results.

2 Framework

To fix ideas, consider the following canonical representation of a state-space representation of a linear

DSGE model with the vector Y of observables and vector X of potentially unobserved state variables:

Yt = B∗X∗
t−1 +A∗ǫ∗t (2.1a)

4Table 2 in Rossi and Zubairy (2011) implies that the fraction of the variance of GDP driven by government spending 
shocks rises with the forecast horizon from below 5% at four quarters to 35% at 40 quarters, whereas Smets and Wouters 
(2007, Figure 1) imply that the output variance explained by GDP falls from roughly 30% at one quarter to about 15%at 
four quarters and less than 5% at 40 quarters. Note that throughout this paper, I focus on discretionary fiscal policy, as 
opposed to the effect of policy rules.
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X∗
t = D∗X∗

t−1 + C∗ǫ∗t , (2.1b)

where E[ǫ∗t (ǫ
∗
t )

′] = Im. m is the dimensionality of Yt.

In this paper, I am interested in estimating the following VAR(p) approximation to this state-space

model:

Yt = BXt−1 +Aǫt (2.2a)

Xt =
[
Yt Yt−1 . . . Yt−(p−1)

]
, (2.2b)

t

where the dimension of the state vector is typically different across the VAR and the DSGE model but 
the shocks ǫt and ǫ∗ are assumed to be of the same dimension. Importantly, the observables Yt are also 
the same.

The typical challenge in VARs is that observables only identify AA′ but not A. The standard

DSGE-VAR in Del Negro et al. (2007) therefore uses the same rotation scheme that identifies shocks

in the DSGE model also to identify shocks in the VAR. In contrast, I bring in additional data to

identify a subset of shocks in the VAR.

Stock and Watson (2012) and Mertens and Ravn (2013) have shown how to use narrative or

external instruments to (partially) identify A for given parameter estimates. In the next section,

I first summarize their identification results and show how to use a standard seemingly unrelated

regression (SUR) estimator for inference. Second, I provide conditions when this procedure is correct

in a class of DSGE models. Last, I show how to implement a prior for the narrative VAR based on a

DSGE model.

3 Bayesian VAR estimation with narrative instruments

In this section, I first discuss identification and Bayesian estimation in the instrument-identified VAR.

I refer to this model as narrative BVAR in what follows. The second part of this section links

identification in the VAR to identification in a DSGE model with Taylor-type policy rules and outlines

how to use a DSGE model for prior elicitation and for testing the identifying assumption.5

3.1 Narrative BVAR

I use the following notation for the statistical model:

yt = µy +Byt−1 + vt (3.1a)

vt = Aǫstrt , ǫstrt
iid
∼ N (0, Im) (3.1b)

zt = µz + Fvt +Ω−1/2ut, ut
iid
∼ N (0, Ik) (3.1c)

5Caldara and Herbst (2015) provide an alternative way to estimate a narrative or proxy VAR using Bayesian methods.
Their approach factors the likelihood function differently than I do and thereby highlights nicely how the instruments
restrict the rotation matrix that maps forecast errors to structural shocks.
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Here, Yt is the observed data, B is a matrix containing the (possible stacked) lag coefficient matrices

of the equivalent VAR(p) model as well as constants and trend terms, vt is the m-dimensional vector

of forecast errors, and zt contains k narrative shock measures.6

Note that, knowing B, vt is data. We can thus also observe Var[vt] = AA′ ≡ Σ. Note that A is

identified only up to an orthonormal rotation: ÃQ(ÃQ)′ = AA′ for Ã = chol(Σ) and QQ′ = I.

The observation equation for the narrative shocks (3.1c) can alternatively be written as:

zt =
[
G 0

]
ǫstrt +Ω−1/2ut =

[
G 0

]
A−1

︸ ︷︷ ︸
≡F

Aǫstrt︸ ︷︷ ︸
≡vt

+Ω−1/2ut (3.2)

By imposing zero restrictions on the structural representation of the covariance matrix, knowledge of

F and AA′ identifies the shocks that are not included in (3.2). However, only the covariance matrix

FAA′ is needed for identification. It is therefore convenient for inference and identification to introduce

a shorthand for the covariance matrix between the instruments and the forecast errors. Formally:

Assumption 1. For some invertible square matrix G, the covariance matrix Γ can be written as:

Γ ≡ Cov[zt, vt] = FAA′ =
[
G 0

]
A′. (3.3)

The assumption that G is invertible follows Mertens and Ravn (2013) and corresponds to the

assumption that the instruments are relevant.

The model in (3.1) can then be written compactly as:

[
yt

zt

]∣∣∣Y t−1 ∼ N

([
µy +Byt−1

µz

]
,

[
AA′ Γ′

Γ Ω̃

])
, (3.4)

where Ω̃ = Ω + FAA′F ′ is the covariance matrix of the narrative instruments.

3.1.1 Identification given parameters

This section largely follows Mertens and Ravn (2013). It considers the case of as many instruments

as shocks to be identified, with k ≤ m.

Partition A = [α[1], α[2]] =

[
α11 α12

α21 α22

]
, α[1] = [α′

11, α
′
21]

′ with both α11(mz ×mz) being invertible

and α21((m−mz)×mz).

Using the definitions of Γ and the forecast errors gives from (3.3):

Γ ≡ Cov[zt, vt] = Cov[zt, Aǫ
str
t ] =

[
G 0

]
A′ = Gα′

1 = [Gα′
11, Gα

′
21] (3.5)

6One could easily generalize the model to include conditioning information in the instrument equation. For example,
I use forward-looking information from Ramey (2011) and Fisher and Peters (2010) in robustness checks to make sure
the instrument does not pick up the measure anticipatory policy measures.
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Under Assumption 1, G is invertible, and we can partition Γ so that G−1 = α′
11Γ

−1
1 . From (3.5),

we also know that α′
21 = G−1Γ2 and hence we can write α′

21 = α′
11(Γ

−1
1 Γ2) (i.e., as a function of α11

and the observable matrix Γ). Hence, the (structural) impulse vectors to shocks 1, . . . ,mz satisfy:

α[1] =

[
α11

α21

]
=

[
Imz

(Γ−1
1 Γ2)

′

]
α11, (3.6)

where Γ2 is mz × (m−mz) and Γ1 is mz ×mz. This m×mz dimensional vector is a known function

of the mz
2 parameters in α11. It therefore restricts (m−mz)mz elements of A.

The VAR implies further restrictions on α11. To see this, it is useful to restate the VAR identifica-

tion problem. From the covariance Σ of forecast errors alone, A is only identified up to multiplication

by an orthonormal rotation matrix Q′. Denote the lower Cholesky factor of Σ by Ã. Then it holds

true that A = ÃQ (Uhlig, 2005, e.g.). Here, this implies that:

[
α[1], α[2]

]
= ÃQ =

[
Ãq[1], Ãq[2]

]
⇒ α[1] = Ãq[1]

The fact that Q is a rotation matrix provides additional restrictions. In particular, it holds that:

Imz = (q[1])′q[1] = α′
11

[
Imz

κ

]′
Σ−1

[
Imz

κ

]
α11 ⇔ α11α

′
11 =

([
Imz

κ

]′
Σ−1

[
Imz

κ

])−1

(3.7)

This requires mz(mz−1)
2 additional restrictions to identify α11 completely.

The following Lemma summarizes the above results:

Lemma 1. (Stock and Watson, 2012; Mertens and Ravn, 2013) Under Assumption 1, the impact of

shocks with narrative instruments is generally identified up to an mz × mz scale matrix α11 whose

outer product α11α
′
11 is known, requiring an extra (mz−1)mz

2 identifying restrictions and the impulse

vector is given by (3.6). Proof: See Appendix A.1.

Thus, for mz > 1, the extra data by themselves only identify a set of IRFs, and the statistical fit of
the model is invariant to the particular choice of α11.

7 To uniquely characterize impulse responses

or historical shocks, however, I need further assumptions to partially identify specific responses. One

simple assumption is that of a Cholesky structure. While not compelling in general,8 I show in

Section 3.2 that this is the appropriate choice for a class of DSGE models below. I therefore use this

particular choice as my baseline but also provide an alternative statistical factorization.

Let me summarize the baseline factorization that follows Mertens and Ravn (2013) first. It is

a Cholesky decomposition in a population two-stage least squares (2SLS) representation of previous

the problem (i.e., given Σ,Γ). In this 2SLS, the instruments zt serve to purge the forecast error

1

variance to the first mz variables in yt from shocks other than ǫ[t
1]
. Mertens and Ravn (2013) call the 

resulting residual variance-covariance matrix S1S′ and propose either an upper or a lower Cholesky 

7Without extra structure, the model is thus only set identified in the sense of Moon and Schorfheide (2012).
8The countable number of Cholesky orderings does not span the uncountably many possible shock rotations consistent

with the data when there are multiple shocks.
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decomposition of S1S
′
1. To see this result mathematically, note that A−1vt can be rewritten as the

following system of simultaneous equations:

[
v1,t

v2,t

]
=

[
0 η

κ 0

][
v1,t

v2,t

]
+

[
S1 0

0 S2

] [
ǫ1,t

ǫ2,t

]
, (3.8)

where η = α12α
−1
22 and κ = α21α

−1
11 are functions of Σ,Γ, given in Appendix A.2. Using the definition

of vt = Aǫt and simple substitution allows me to rewrite this system as:
[
α11 α12

α21 α22

][
ǫ1,t

ǫ2,t

]
=

[
v1,t

v2,t

]
=

[
(I − ηκ)−1

(I − κη)−1κ

]
S1ǫ1,t+

[
(I − ηκ)−1η

(I − κη)−1

]
S2ǫ2,t,

This shows how identifying S1 identifies α[1] up to a Cholesky factorization as:

α[1] =

[
α11

α21

]
=

[
(I − ηκ)−1

(I − κη)−1κ

]
chol(S1S

′
1). (3.9)

The second factorization I consider is a generalization of the Cholesky decomposition of α11α
′
11,

the contemporaneous forecast error variance attributable to the instrument-identified shocks ǫ
[1]
t . The

(lower) Cholesky decomposition of α11α
′
11 implies that all of the one period ahead conditional forecast

error is attributable to the first instrument-identified shock. All of the remaining residual variation

in the second shock is then attributed to the second instrument-identified shock and so forth.9 The

procedure described by Uhlig (2003) generalizes this by identifying the first instrument-identified shock

as the shock that explains the most conditional forecast error variance in variable i over some horizon

{h, . . . , h}.10

With either factorization scheme, both the IRFs to the mz policy shocks and the time series of

the mz policy shocks are identified given parameters. In my application, I look at both IRFs and

historical shocks to explain different discrepancies in model fit. Next, I consider inference when the

covariance matrix underlying the identification scheme has to be estimated.

9Note that this does not imply that no shock besides the first shock in ǫt has an impact effect on the variable ordered
first; shocks in ǫ

[2]
t generally still have effects.

10Following the steps in Uhlig (2003), this amounts to solving the following principal components problem:

max
λℓ

Sq̃αℓ = λℓq̃ℓ, ℓ ∈ {1, . . . ,mz}, S =

h̄
∑

h=0

(h+ 1−max{h, h})

(

Bh

[

Imz

κ

]

α̃11

)′

e1e
′
1

(

Bh

[

Imz

κ

]

α̃11

)

.

Here α˜11 is the Cholesky factorization associated with (3.7), and e1 is a selection vector with zeros in all except the first 
position. The desired α11 is given by α11 = α̃11qℓ

α, where the eigenvectors q̃ℓα can be normalized to form an orthogonal 
matrix because S is symmetric and such that the signs of diag(α11) are positive. Here I used that the variance whose 
forecast error variance is of interest is among the first mz variables. Otherwise, redefine α11 to include κ or reorder 
variables as long as α11 is guaranteed to be invertible.
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3.1.2 Posterior uncertainty

Here, I consider the case when the posterior over Γ is nondegenerate.11 Inference is analogous to 
inference in a SUR model (e.g., Rossi et al., 2005, ch. 3.5). In the special case in which the control 
variables for Zt coincide with the variables used in the VAR, the SUR model collapses to a standard 
scheme hierarchical Normal-Wishart posterior. Stack the vectorized model (3.4) as follows:

YSUR = XSURβSUR + vSUR, vSUR ∼ N (0, V ⊗ IT ), (3.10)

where YSUR = [vec(Y )′, vec(Z)′]′ and vSUR is defined analogously. In addition, I use the following

definitions:

V =

[
AA′ Γ′

Γ Ω̃

]
βSUR =

[
vec(B)

vec(µz)

]
,

XSUR =

[
Imy ⊗Xy 0T (myp+1)×Tmz

0Tmz×Tmy Imz ⊗Xz

]
Xy =

[
Y−1 . . . Y−p 1T

]
, Xz =

[
1T

]
.

The model is transformed to make the transformed errors independently normally distributed,
taking advantage of the block-diagonal structure of the covariance matrix: ṽ = Ỹ − X̃β ∼ N (0, I).
Standard conditional Normal-Wishart posterior distributions arise from the transformed model. For
the transformation, it is convenient to define U as the Cholesky decomposition of V such that U ′U =
V :

X̃ = ((U−1)′ ⊗ IT )

[

Imy ⊗Xy 0T (myp+1)×Tmz

0Tmz×Tmy Imz ⊗Xz

]

Ỹ = ((U−1)′ ⊗ IT )

[

Imy ⊗ Y 0T (myp+1)×Tmz

0Tmz×Tmy Imz ⊗ Z

]

NXX(V ) = X̃ ′X̃ NXY (V ) = X̃ ′Ỹ

ST (β) = 1
ν0+T

[

(Y −XB)′

(Z − 1Tµ
′
z)

′

]

[

(Y −XB) (Z − 1Tµ
′
z)
]

+ ν0
ν0+T

S0.

Given the above definitions, the following Lemma holds (e.g., Rossi et al., 2005, ch. 3.5):

Lemma 2. The conditional likelihoods are, respectively, conditionally conjugate with Normal and

Wishart priors. Given independent priors β ∼ N (β̄0, N0) and V
−1 ∼ W((ν0S0)

−1, ν0), the conditional

posterior distributions are given by:

β̄T (V ) = (NXX(V ) +N0)
−1(NXY (V ) +N0β̄0)

β|V, Y T ∼ N (β̄T (V ), (NXX(V ) +N0)
−1), (3.11a)

V −1|β, Y T ∼ W(ST (β)
−1/(ν0 + T ), ν0 + T ). (3.11b)

In general, no closed form posterior is available. The exception occurs when SUR collapses to

ordinary least squares (OLS): If Xz = Xy, then X̃ = Imc+mz ⊗ Xy and NXX = (V −1 ⊗X ′
yXy) and

11When the prior and hence the posterior is close to a point mass, a metropolized sampling algorithm that exploits
the fact that B, V are pinned down by θ may be more efficient. In the main application, I impose a relatively tight prior
on the relevance of the instrument and thus also abstract from potentially weak instruments, an issue surveyed by Lopes
and Polson (2014).
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analogously for NXY . In this special case, closed forms are available for the marginal distribution of V ,

allowing me to draw directly from the posterior. In general, however, the block closed form structure

gives rise to a natural Gibbs sampler as in the following algorithm:

1. Initialize V (0) = ST (β̄T ).

2. Repeat for i = 1, . . . nG:

(a) Draw β(i)|V (i−1) from (3.11a).

(b) Draw V (i)|β(i) from (3.11b).

3.2 Narrative DSGE-VAR

Having established identification and estimation in the purely narrative VAR, I now show that the

conditional Cholesky method in the narrative BVAR recovers policy rule coefficients in a class of

DSGE models. This class of models is invertible and only has Taylor-type policy rules, two conditions

I define first. Then I adapt the idea of dummy variables (e.g., Del Negro and Schorfheide, 2004) to

the previous SUR framework for estimating the narrative VAR.12, 13

3.2.1 Invertibility

A necessary condition for the VAR and DSGE models to agree on the shocks affecting the economy

is for both models to be able to span the same economic shocks. Fernandez-Villaverde et al. (2007)

provide succinct sufficient conditions to guarantee that the economic shocks in the state space system

(2.1) match up with those from the VAR (2.2):

Assumption 2. A∗ is nonsingular, and the matrix C∗ −D∗(A∗)−1B∗ is stable.

Under this condition, it follows that the forecast errors from the VAR and the DSGE model

coincide, as summarized in the following lemma:14

Lemma 3. (Fernandez-Villaverde et al., 2007, p. 1022) Let Yt be generated by the DSGE economy

(2.1). Under Assumption 2, the variance-covariance matrix of the one-step-ahead prediction error in

the Wold representation of Yt is given by Σ∗ = (A∗)(A∗)′.

12For a given DSGE model, one can also test the identifying Assumption 1 parametrically by comparing a restricted
model satisfying the Assumption with a more general model that violates it. Appendix C.2.1 reports the results of this
exercise. In summary, I find evidence in favor of Assumption 1.

13Note that these results can be extended to also add peripheral variables. In that case, however, the independence of
the estimation of the core VAR parameters from the periphery parameters is lost since the posterior over the structural
parameters depends on both the core and the periphery posterior density kernels. For simplicity, I abstract from this
extension in what follows.

14To see this, note that xt can be expressed as a square-summable linear combination in terms of yt. Hence,
Var[xt|y

t] = 0, and the Wold representation of yt is given by:

yt = B∗
∞
∑

j=0

(C∗ −D∗(A∗)−1B∗)jD∗(A∗)−1yt−1−j +A∗ǫt.

The one-step-ahead prediction error is, therefore, yt − E[yt|y
t−1] = A∗ǫt with variance (A∗)(A∗)′.
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I assume throughout that Assumption 2 holds so that a VAR(p) can approximate the DSGE model

dynamics arbitrarily well. Thus, AA′ ≈ A∗(A∗)′. This assumption is not necessarily satisfied and,

in general, depends on the observables Yt. In my application with an equal number of AR(1) shock

processes as observables, the only violation of Assumption 2 that I could find was a model with capital

that did not include investment as an observable.15 Figures C.12 and C.13 in the Appendix also show

that the dynamics of the estimated VAR(4) approximation follow those of the pure DSGE model very

closely.

3.2.2 Identification of policy rules using instruments

For more than one instrument, mz > 1, the narrative VAR identifies shocks only up to an arbitrary 
rotation. How do we choose among these infinitely many rotations? Mertens and Ravn (2013) argue 
that, in their application, the factorization is of little practical importance since two different Cholesky 
compositions yield almost identical results. Here, I argue that, for a class of policy rules, the lower 
Cholesky decomposition actually recovers the true impact matrix α[1] in the DSGE model.16

I call the class of policy rules for which the narrative VAR correctly recovers α[1] “simple Taylor-

type rules”:

Definition 1. A simple Taylor-type rule in economy (2.1) for variable yp,t is of the form:

yp,t =
m∑

i=mp+1

ψp,iyi,t + λpXt−1 + σpǫp,t,

where ǫp,t ⊂ ǫY,t is iid and yi,t ⊂ Yt, i = 1, . . . , np.

Note that the policy rules are defined with respect to the set of observables in the structural model. 
The canonical Taylor rule for monetary policy based on current inflation and the output gap is a useful 
clarifying example: Only when the output gap is constructed based on observables is it a “simple” policy 
rule according to Definition 1.

Example 1. An interest rate rule with observables only is a simple Taylor rule when output yt and

inflation πt are observed:

rt = (1− ρr)(γππt + γyyt) + ρrrt−1 + (1− ρr)(−γyyt−1) + ωrǫ
r
t .

This rule maps into Definition 1 with yp,t = rt, λp = erρr + (1 − ρr)(−γy)ey, ψ1 = (1 − ρr)γπ, ψ2 =

(1− ρr)γy, σp = ωr.

15I also verify this condition for each draw of the DSGE model parameters in my empirical application. Chari et al.
(2005) also point to the challenge of recovering impulse responses in VAR models in economies with capital.

16Note that showing that two different Cholesky factorization do not affect the results substantially does not generally
mean that the results are robust to different identifying assumptions (cf. Watson, 1994, fn. 42). If taxes follow what
I define as simple Taylor rules, however, the two Cholesky factorizations coincide, rationalizing the exercise in Mertens
and Ravn (2013).
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Example 2. Taylor-type rules with a dependence on an unobserved output gap(i.e., ỹt = yt − yft with

yft 6⊂ Yt) are not simple Taylor rules:

rt = (1− ρr)(γππt + γyỹt) + ρrrt−1 + ωrǫ
r
t

yft = B∗
yfX

∗
t−1 +A∗

yf ǫt

In general, the entire column vector A∗
yf

is nonzero, violating the exclusion restrictions for a simple

Taylor rule.

The key difference between examples 1 and 2 is that according to the rules in example 2, monetary 
policy also reflects other policy shocks contemporaneously despite controlling for output and inflation. 
But as long there is no more than general policy rule that violates Definition 1, the narrative VAR 
with Cholesky factorization still recovers the right IRFs.

Formally, the following proposition shows that in the DSGE model with simple policy rules, S1

has a special structure that allows me to identify it uniquely using Γ,Σ, up to a normalization.

Equivalently, when the analogue of Assumption 1 holds in the structural model, the narrative VAR

recovers the actual policy rules based on the procedure in (3.9).

Proposition 1. Assume Σ = AA′ = A∗(A∗)′ and order the policy variables such that the mp = mz

or mp = mz − 1 simple Taylor rules are ordered first and Γ = [G,0]A∗. Then α[1] defined in (3.9)

satisfies α[1] = A∗[Imz ,0(m−mz)×(m−mz)]
′ up to a normalization of signs on the diagonal if

(a) mz instruments jointly identify shocks to mp = mz simple Taylor rules w.r.t. the economy (2.1),

or

(b) mz instruments jointly identify shocks to mp = mz − 1 simple Taylor rules w.r.t. the economy

(2.1) and ψp,mz = 0, p = 1, . . . ,mp.

Proof: See Appendix A.2.

While the proof proceeds by Gauss-Jordan elimination, the intuition in case (a) can be understood

using partitioned regression logic: S1S
′
1 is the residual variance of the first mp forecast errors after

accounting for the forecast error variance to the last m −mp observed variables. Including the non-

policy variables that enter the Taylor rule directly among the observables controls perfectly for the

systematic part of the policy rules and leaves only the variance-covariance matrix induced by policy

shocks. Since this variance-covariance matrix is diagonal with simple Taylor rules, the Cholesky

decomposition in (3.9) works.

Formally, the Cholesky factorization of S1S
′
1 proposed by Mertens and Ravn (2013) imposes the

mz(mz−1)
2 zero restrictions needed for exact identification. The structure imposed by having simple

Taylor rules rationalizes these restrictions in a class of DSGE models. In fact, the mechanics of the

proof would carry through if the block of policy rules had a Cholesky structure, confirming that what is

needed for identification via instrumental variables in the model is precisely the existence of mz(mz−1)
2

restrictions.17 More generally, identification requires restrictions on the contemporaneous interaction

between policy instruments that need not have the form of simple Taylor rules.

17In the notation of Appendix A.2, D0 need only be lower triangular to achieve identification, not diagonal as implied
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3.2.3 Prior elicitation

A natural way to elicit a prior over the parameters of the VAR, tracing back to Theil and Goldberger

(1961), is through dummy observations. Del Negro and Schorfheide (2004) use this approach to elicit

a prior for the VAR based on a prior over structural parameters of a DSGE model. Here I adapt their

approach for use within the SUR framework. Using a dummy variable prior with normally distributed

disturbances no longer yields a closed-form prior, as in Lemma 2. Using dummy variables, however,

still generates conditional posteriors in closed-form and conditional priors with the same intuitive

interpretation as in Del Negro and Schorfheide (2004).

Since the likelihood function of the SUR model is not conjugate with a closed-form joint prior 
over (β, V −1), unless it collapses to a standard VAR model, the DSGE model implied prior also fails 
to generate unconditionally conjugate posteriors. Therefore, I consider an independent priors for the 
dynamics and the covariance matrix. In this approach, the prior is available in closed form, but the 
conditional prior variance of β is necessarily independent of V −1, unlike in the standard DSGE-VAR 
model.

To implement the prior, I follow Del Negro and Schorfheide (2004): I generate the prior for B,V −1

by integrating out the disturbances to avoid unnecessary sampling error. That is, the prior is centered

at:

B̄y
0 (θ) = E

DSGE[X0X
′
0|θ]

−1
E
DSGE[X0Y

′
0 |θ] ⇔ β̄y0 (θ) = vec(B̄y

0 (θ)) (3.12a)

V̄0(θ)
−1 =

[
A(θ)∗(A(θ)∗)′ (A(θ)∗)[diag([c1, . . . , cmz ]),0]

′

[diag([c1, . . . , cmz ]),0](A(θ)
∗)′ ω2

z diag(A1(θ)
∗(A1(θ)

∗)′) +A1(θ)
∗(A1(θ)

∗)′

]
, (3.12b)

where EDSGE[·|θ] denotes the unconditional expectation based on the linear DSGE model (2.1) when

the coefficient matrices are generated by the structural parameters θ. V̄0(θ) satisfies Assumption 1

with G = Imz and measurement error that is independent across instruments. The variance of the

measurement error is parametrized to be ω2
z times the univariate shock variance.

The following dummy observations and likelihood implement the prior that β ∼ N (β̄0, NXX(V̄0))

and V −1 ∼ W(V̄0T
V
0 , T

V
0 ):

vec([Y B
0 , Z

B
0 ]) = X̄0,SUR(θ)β̄0(θ) + 0, (3.13a)

vec([Y B
0 , Z

B
0 ]) ∼ N (X̄0,SUR(θ)β̄0(θ), V̄0(θ)⊗ ITB

0
) (3.13b)

[Y V
0 , Z

V
0 ] = 0× β + V̄0(θ)⊗ ITV

0
, (3.13c)

vec([Y V
0 , Z

V
0 ]) ∼ N (0, V ⊗ ITV

0
) (3.13d)

where X0,SUR is the Cholesky factor of the following matrix:

X̄0,SUR(θ)
′X̄0,SUR(θ) = E

DSGE[X ′
SUR(V̄ (θ)−1 ⊗ Ip(m+mz))XSUR|θ].

in Proposition 1. Indeed, there are extra restrictions coming from the assumption of simple Taylor rules rather than
allowing for a block-diagonal structure in the Taylor rules. Rather than imposing these overidentifying restrictions, I
back out the implied Taylor-type policy rules and analyze the distribution of implied coefficient loadings.
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Appendix C.3 provides additional details on the prior densities. The important distinction to a

standard DSGE-VAR approach is that the coefficient prior depends on V̄0(θ) and not on the unknown

covariance V .

The prior incorporates the Normal likelihoods over the dummy observations and Jeffrey’s prior

over V −1 along with scale factors chosen to make the prior information equivalent to TB0 observations

about B and T V0 observations on V −1. Lemma 2 implies that the corresponding marginal priors are

given by:

β|V −1, θ ∼ N (β̄0(θ), (T
B
0 × X̃ ′

0(V
−1 ⊗ I)X̃ ′

0)
−1),

X̃0 = diag([Xy
0 , . . . ,X

y
0 ,X

z
0 , . . . ,X

z
0 ]),

V −1|β, θ ∼ Wm+mz(SSR0(β, θ)
−1, T V0 )

SSR0(β, θ) = T V0 × V̄0(θ) + TB0 ([Y0(θ), Z0(θ)]−X0B(β))([Y0(θ), Z0(θ)]−X0B(β))′.

For fixed θ (e.g., θ fixed at its prior mean θ¯0) inference simply proceeds according to Lemma 2. To 
estimate θ, I need an extra step. Specifically, if θ has a nondegenerate prior distribution, I can simulate 
its posterior by sampling θ|β, V −1. Allowing for a nondegenerate distribution then also yields estimates 
of the structural parameters of the DSGE model as a byproduct of the DSGE-VAR estimation.

The prior and data density are given by:

θ ∼ π(θ) (3.14a)

π(B,V −1|θ) ∝ |V −1|−ny/2ℓ(B,V −1|Y0(θ), Z0(θ))

= |V −1|−ny/2f(Y0(θ), Z0(θ)|B,V
−1) (3.14b)

f̃(Y,Z|B,V −1, θ) = f(Y,Z|B,V −1). (3.14c)

The conditional posterior for B,V −1|θ is as characterized before. The conditional posterior for θ

can be written as:

π(θ|B,V −1, Y, Z) =
f(Y,Z|B,V −1)π(B,V −1|θ)π(θ)∫
f(Y,Z|B,V −1)π(B,V −1|θ)π(θ)dθ

=
p(B,V −1|θ)π(θ)∫
π(B,V −1|θ)π(θ)dθ

∝ π(B,V −1|θ)π(θ), (3.15)

as in the example in Geweke (2005, p. 77).

Adding a Metropolis-within-Gibbs step to the previous Gibbs sampler allows to simulate from the

DSGE-VAR with a nondegenerate prior:

(1) Initialize VAR parameters: Set B(0), V
−1
(0) to OLS estimates.

(2) Initialize structural parameters: θ0 =
∫
Θ θπ(θ)dθ.

(3) Metropolis-Hastings within Gibbs:

(a) With probability ph, set i = h, or else set i = rw.
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(b) Draw a candidate θc from θc ∼ N (θ(d−1)),Σ). Assign unstable draws or draws violating the

Fernandez-Villaverde et al. (2007) condition zero density.

(c) With probability αd−1,i(θc), set θ(d) = θc, otherwise, set θ(d) = θ(d−1).

αd−1,i(θc) = min

{
1,

π(B(d−1), V
−1
(d−1)|θc)π(θc)

π(B(d−1), V
−1
(d−1)|θ(d−1))π(θ(d−1))

fi(θ(d−1)|θc)

fi(θc|θ(d−1))

}
. (3.16)

(d) Draw B(d)|θ(d), V
−1
(d−1) given by (3.11a) and including dummy observations.

(e) Draw V −1
(d) |B(d), θ(d) given by (3.11b) and including dummy observations.

(f) If d < D, increase d by one and go back to (a), or else exit.

Note that when i = rw, a symmetric proposal density is used so that the frw term drops out of the

acceptance probability αd−1,rw(·).

In practice, I use a random-blocking Metropolis-Hastings with random walk proposal density with

t-distributed increments.18 To calibrate the covariance matrix of the proposal density, I use a first

burn-in phase with a diagonal covariance matrix for the proposal density. The observed covariance

matrix of the first stage is then used in subsequent stages up to scale. I use a second burn-in phase

to calibrate the scale to yield an average acceptance rate across parameters and draws of 30%. To

initialize the Markov chain, I then use a third burn-in phase whose draws are discarded. The order

of the parameters is uniformly randomly permuted, and a new block is started with probability 0.15

after each parameter. This Metropolis-Hastings step is essentially a simplified version of the algorithm

proposed by Chib and Ramamurthy (2010). Similar to their application to the Smets and Wouters

(2007) model, I otherwise obtain a small effective sample size because of the high autocorrelation of

draws when using a plain random-walk Metropolis-Hastings step.19, 20

3.3 Marginal likelihood

The joint distribution of the data [Y,Z], the VAR parameters β, V −1, and the DSGE model parameters

θ is given by

p(Y,Z, β, V −1, θ) = p(Y,Z|β, V −1)p(β, V −1|θ)p(θ),

where equation (A.12) in the Appendix spells out the individual components.

18The t-distribution has 15 degrees of freedom as in Chib and Ramamurthy (2010).
19See also Herbst and Schorfheide (forthcoming).
20An alternative approach to increasing the efficiency of the sampler could be metropolization: Liu (1995) shows that,

in a discrete setting, metropolization of the Gibbs sampler can lead to efficiency increases in terms of variance reduction.
More generally, Robert and Casella (2005, ch. 10.3) discuss metropolization of the Gibbs sampler as a possibility to
speed up the exploration of the parameter space. Here, metropolization is potentially interesting when the DSGE model
prior becomes tight. Intuitively, a tight DSGE model prior means that movements in β become smaller. If the initial β
is in an isolated region of the posterior, the resulting θ draws also tend to be drawn from the same region, and crossing
over into other regions of the parameter space can be slow. This is not a problem in Del Negro and Schorfheide (2004)
because they can draw directly from the marginal distribution of θ.
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Integrating out the VAR and DSGE parameters gives the marginal likelihood:

p(Y,Z) =

∫ ∫ ∫
p(Y,Z, β, V −1, θ)dβdV −1dθ (3.17)

Since the prior is a function of T V0 , T
B
0 , the marginal likelihood is, implicitly, indexed by these

prior hyperparameters. Next, I discuss the interpretation of the marginal likelihood in terms of these

prior DSGE model weights. Then, I discuss the computation of the marginal likelihood.

3.3.1 Interpretation

Del Negro and Schorfheide (2004) introduce the prior DSGE model weight with the highest marginal 
likelihood as a diagnostic of misspecification: If the DSGE prior generates observations with properties 
like the data, these are informative and improve the model fit by reducing weight put on the wrong 
parameters. Del Negro et al. (2007) show in an AR(1) case with known variance that when the DSGE 
model and sample moments differ, there can be an interior optimum for the prior weight, trading off 
shrinkage with bias. In other cases, they find that the best-fitting prior weight can diverge, so that a high 
weight on the pure DSGE model or the (almost) flat prior VAR can emerge as optimal. Thus, the 
analysis of the prior weight that maximizes the marginal likelihood is meaningful and has a clear 
interpretation.

My model differs from Del Negro et al. (2007) in two dimensions: First, because of the extra

information via instruments, my prior is not conjugate. Second, I allow for the weight on the covariance

matrix and the dynamics to differ. I, therefore, characterize the behavior of the marginal likelihood

in terms of the prior weight in the case of my model in Appendix A.8.1. For the case of known model

dynamics, I characterize the marginal likelihood analytically and prove a lemma characterizing the

slope of the marginal likelihood in the scalar case.21 The appendix also provides a numerical example

for the empirically relevant matrix case.

In summary, I show in Appendix A.8.1 that when the DSGE model prior fits the sample moments

well, the marginal likelihood is strictly increasing in the number of dummy observations. In particular,

the analytical results imply that the marginal likelihood is strictly increasing in T V0 when the prior

variance fits well enough. Vice versa, when the DSGE model fits the sample variance (sufficiently)

poorly, the marginal likelihood is strictly decreasing in the prior weight T V0 . A good fit of the model

implied covariance matrix, therefore, shows in a higher optimal T V0 that may even diverge to +∞.

3.3.2 Computation

I combine the methods of Chib (1995) and Geweke (1999) to compute the likelihood (3.17).22 Specif-

ically, I first compute the marginal likelihood conditional on a specific θd – that is, the two inner

integrals in (3.17) – using the method of Chib (1995) for models with fully conditional posteriors.

This conditional marginal likelihood, when combined with the prior, gives the kernel of the θ posterior

21See Lemma 5 in Appendix A.8.1. In the analytic characterization, as in Del Negro et al. (2007), I consider the case
of a single DSGE model parameter that maps directly into the VAR variance parameters.

22See Appendix A.5 for details.
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that I use in the Geweke (1999) algorithm. While I find that relatively few draws – that is, 2,000

draws after 1,000 burn-in draws – are accurate to ±0.1 log points, the repeated approximation takes

time. Since the posterior draws {θd}d are autocorrelated, I subsample every jth draw to yield a more

efficient sample of 1,000 posterior draws that economizes on computing time.23

4 Empirical specification

4.1 Data and sample period

I use seven variables in the estimation. Importantly, I include information on the fiscal and monetary

instruments: government spending, the average labor tax rate, and the effective Federal Funds Rate

(FFR). In addition, I include standard macroeconomic variables: real GDP, real investment (including

consumer durables), the debt-to-GDP ratio, and GDP inflation. GDP and its components are in per

capita terms. Appendix C describes the details of the data construction, which follows Fernandez-

Villaverde et al. (2015) for the tax time series. All fiscal variables consolidate the federal government

with state and local governments.

To ensure my sample period covers both periods of significant variation in the fiscal variables, I

start the estimation in 1947:Q1. This period includes Korean War expenditures as well as periods of 
declining and rising debt-to-GDP ratios. This can be important because Bohn (1991) has argued that 
long samples can be important since debt is slow moving. I stop the estimation in 2007:Q4, before the
zero lower bound became binding. The resultant sample period is similar to that in Christiano et al.

(2011a). Following Francis and Ramey (2009) and Ramey (2011), I allow for a quadratic trend.24

Narrative shock measures are taken from Romer and Romer (2004) for monetary policy shocks,25

the Survey of Professional Forecasters’ real defense spending forecast errors from Ramey (2011) for

government spending, and Mertens and Ravn (2013) for tax policy shocks. These are, broadly speak-

ing, the subset of the shocks in Romer and Romer (2010) that are not considered to be motivated

by economic conditions.26 In unreported robustness checks, I also consider alternative instruments

for monetary policy shocks. First, I consider shocks identified by Kuttner (2001) and updated by

Gürkaynak et al. (2005) based on federal funds futures changes around Federal Open Market Com-

mittee announcements. Second, I apply the same identification strategy to 13-week T-Bill futures

23I verify the pairwise rankings using the Meng and Wong (1996) bridge sampler with the iterative bridge function, as 
well as with plain importance sampling as described by Geweke (2005, ch. 8.2). Using these alternative methods, I confirm 
the shape of the marginal likelihood as a function of T0, even though small differences exist between the pairwise Bayes 
factors. See Table A.1 in the Appendix. Another alternative would be to specify an explicit prior over τ = (T0

B, T0
V ) and 

estimate τ as Adjemian et al. (2008) do for a standard DSGE-VAR. The advantage of my approach is that by only 
providing Bayes factors, I can report model fit independent of the prior over the hyperparameters τ .

24I detrend prior to estimation to match the detrended data with my stationary DSGE model.
25I also experimented with an update of their shock measures using the updated Greenbook data, available at 

www.philadelphiafed.org/research-and-data/real-time-center/greenbook-data/philadelphia-data-set. While 
the preliminary results are very similar, a potential issue is that toward the end of the Romer and Romer (2004) 
sample, there was a switch to chain weighting in the calculation of GDP that leads to persistent discrepancies 
between the underlying Greenbook data published on the www.philadelphiafed.org website and the original Romer 
and Romer (2004) data.

26Since instrument data are scarce, I follow Mertens and Ravn (2013) and set missing observations for instruments
to zero. Alternatively, one could use data augmentation at the cost of including an extra step in the Gibbs sampler. We
explore this possibility in Amir-Ahmadi et al. (2016).
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that started trading more than a decade earlier, combining the announcement dates from Romer and

Romer (2004) with those in Gürkaynak et al. (2005).27

4.2 DSGE model specification

In this section, I outline the empirical specification of the generic DSGE model in (2.1). The model is

based on the standard medium-scale New Keynesian model as exemplified by Christiano et al. (2005)

and follows closely Smets and Wouters (2007). There is monopolistic competition in intermediate

goods markets and the labor market and Calvo frictions to price and wage adjustment, partial price

and wage indexation, and real frictions such as investment adjustment cost and habit formation. I

add labor, capital, and consumption taxes as in Drautzburg and Uhlig (2015) and fiscal rules as in

Leeper et al. (2010) and Fernandez-Villaverde et al. (2015). Here, I only discuss the specification of

fiscal and monetary policy. The remaining model equations are detailed in Appendix A.6.

The monetary authority sets interest rates according to the following standard Taylor rule:

r̂t = ρr r̂t−1 + (1− ρr)
(
ψr,ππ̂t + ψr,yỹt + ψr,∆y∆ỹt

)
+ ξrt , (4.1)

where ρr controls the degree of interest rate smoothing and ψr,x denotes the reaction of the interest

rate to deviations of variable x from its trend. ỹ denotes the output gap (i.e., the deviation of output

from output in a frictionless world). ξrt follows an AR(1) process.28

The fiscal rules allow for both stabilization of output and the debt burden as well as smoothing of

the different fiscal instruments:29

ĝt = ρgĝt−1 + (1− ρg)

(
−ψg,yŷt − ψg,b

b̄

γȳ
b̂t

)
+ ξgt (4.2a)

ŝt = ρsŝt−1 + (1− ρs)

(
−ψs,yŷt − ψs,b

b̄

γȳ
b̂t

)
+ ξst (4.2b)

w̄n̄

ȳ
dτnt = ρτ

w̄n̄

ȳ
dτnt−1 + (1− ρτ )

(
ψτn,yŷt + ψτn,b

b̄

γȳ
b̂t

)
+ ξτ,nt (4.2c)

The disturbances ξ◦t follow exogenous AR(1) processes: ξ◦t = ρ◦ξ
◦
t−1 + ǫ◦t .

30 Note that the sign of

the coefficients in the expenditure components gt, st is flipped so that positive estimates always imply

consolidation in good times (ψ◦,y > 0) or when debt is high (ψ◦,b > 0).

27The source of the daily T-Bill data is Thomson Reuters’ “CME-90 DAY US T-BILL CONTINUOUS” series from
June 1976 to September 2003.

28Money supply is assumed to adjust to implement the interest rate and fiscal transfers are adjusted to accommodate
monetary policy.

29Note that Leeper et al. (2010) assume there is no lag in the right-hand side variables, while Fernandez-Villaverde
et al. (2015) use a one quarter lag.

30Not only the fiscal policy shocks but all shocks in my specification follow univariate AR(1) processes, unlike Smets
and Wouters (2007) who allow some shocks to follow ARMA(1,1) processes. Ruling out MA(1) components helps to
guarantee that a VAR can approximate the DSGE model dynamics as discussed by Fernandez-Villaverde et al. (2007).
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The consolidated government budget constraint is:31

b̄

r̄ȳ
(b̂t − r̂) +

w̄n̄

ȳ
(dτnt + τ̄n(ŵt + n̂t)) +

c̄

ȳ
τ̄ cĉt +

(r̄k − δ)k̄

ȳ
(dτkt + τ̄k(r̂kt

r̄k

r̄k − δ
+ k̂pt−1))

=ĝt + ŝt +
b̄

γȳ
(b̂t−1 − π̂t) (4.3)

Following Christiano et al. (2011a), I include a cost channel of monetary policy: Firms have to

borrow at the nominal interest rate to pay the wage bill at the beginning of the period. This allows

monetary policy to cause inflation in the short run.32

The debate about variable selection in singular DSGE models is still ongoing; see Guerron-Quintana 
(2010), Canova et al. (2013), and the comment by Iskrev (2014). When taking the model to the data, I 
consider as many structural shocks as observables in the observation equation of the DSGE model (2.1a) 
and the VAR (2.2a). Including the policy variables naturally suggests to include the corresponding 
policy shocks. Additionally, I include a total factor productivity (TFP) and investment-specific 
technology shock to explain GDP and investment, a price markup shock to contribute to inflation, and a 
shock to lump-sum transfers to add variation to the debt-to-GDP ratio.

Backing out the DSGE model implied historical shocks generally requires Kalman smoothing.

Here, I exploit that under the invertibility Assumption 2, Lemma 3 implies that the data eventually

fully reveal the hidden state variables of the DSGE model so that the contemporaneous uncertainty

matrix for the state is zero. I initialize the Kalman filter with this matrix so that the Kalman smoother

coincides with the Kalman filter.33 I use Dynare (Adjemian et al., 2011) to solve the DSGE model for

a given set of parameters.

Table 1: Calibrated parameters
Parameter Value

Elasticity of substitution (inverse) σ 1.500
Discount rate (quarterly) 0.5%

Capital share α 0.300
Depreciation rate δ 0.020
Net TFP growth (quarterly) 0.4%

Steady state gross wage markup 1.150
Kimball parameters 10.000

Steady state government spending 0.200
Steady state consumption tax rate 0.073
Steady state capital tax rate 0.293
Steady state labor tax rate 0.165

To limit the dimensionality of the estimation problem, I calibrate a number of structural parameters

and focus on the estimation of policy rules and shock processes (Table 1). These parameters largely

31Seigniorage revenue for the government enters negatively in the lump-sum transfer to households ŝt.
32This feature increases the marginal likelihood by about three log points in the benchmark specification.
33Since convergence to the fixed point is fast, the results are virtually unchanged when I initialize the filter with the

stationary variance instead and use the Koopman (1993) Kalman smoother algorithm.
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correspond to the prior mean in Smets and Wouters (2007). Average tax rates are calibrated as in

Drautzburg and Uhlig (2015).

Priors for policy rules and shock processes are standard: I follow Smets and Wouters (2007) for 
common parameters and choose similar priors for new parameters of the fiscal rules. To parametrize the 
observation equations (3.2) of the instruments, I assume that both the matrix of loadings G and the 
covariance matrix of measurement errors are diagonal. My prior for the loadings ci is that they are 
centered around unity, given the appropriate scaling of the narrative variables. Both the loadings and 
the relative standard errors of the measurement error have inverse gamma priors, so that the 
instruments are relevant for all parameter draws. The prior for the relative standard deviation is a 
relatively tight prior with a mean of 0.5 and a standard deviation of 0.1. This prior is intended to 
make the instruments informative to allow them to influence other parameter estimates: Overall the 
prior mean implies a signal-to-noise ratio of two in terms of standard deviations. Table C.2 in the 
Appendix lists all estimated parameters alongside their prior distributions.34

4.3 DSGE-VAR model specification

I use a VAR with p = 4 lags throughout this paper, estimated with the seven variables and three

narrative instruments listed earlier. The specification of the lags follows Ramey (2011), but I also find

that this finite lag approximation to the underlying DSGE model does well empirically: Figures C.13

and C.12 in the Appendix show that the VAR dynamics match that of the underlying estimated DSGE

model. When I estimate the model with the DSGE model prior, I verify that the invertibility condition

in Fernandez-Villaverde et al. (2007) holds for every draw.35

In the reported results, I do not control for exogenous variation in the instruments by including

regressors Xz
t other than a constant. For robustness, however, I check if anticipated shocks or com-

modity prices drive the government spending or monetary policy instruments. This check is simple

in the SUR framework: I add extra regressors that can soak up variation in the instruments. The

regressors are the Fisher and Peters (2010) defense spending excess returns and the log-change in the

producer price commodity index. I find no noticeable change in the results.

To calibrate the Gibbs sampler, I discard the first 50,000 draws as a burn-in period and keep

every 20th draw thereafter until accumulating 5,000 draws. With a low prior weight on the DSGE

model, this generates negligible autocorrelations of model summary statistics. The sampler is less

efficient with a stronger DSGE model prior but performs well with the above sample size for moderate

weights on the DSGE prior. Appendix C.3 also presents evidence on the convergence of the parameter

estimates based on the Brooks and Gelman (1998) diagnostic.

34Increasing the prior standard deviation increases the marginal likelihood but otherwise leads to qualitatively similar 
results. In earlier stages, I tested the assumption that the matrix G is diagonal under full information, and I found 
evidence in favor of the current parsimonious parametrization. See Appendix C.2.1.

35Experimenting with the lag length in the flat prior VAR did not change the results quantitatively. Information
criteria in a DSGE-VAR with the structural parameters fixed at their prior means indicated an optimal lag length of two
or three.
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5 Results

I choose to compare the estimated DSGE-VAR with its pure DSGE model counterpart based on

the joint distribution of structural parameters. Alternatively, I could have computed shocks and

IRFs under the VAR approximation to the DSGE model. However, the implied model dynamics

are indistinguishable for almost all variables, and the discrepancies that do arise are small (see the

estimated IRFs in Figures C.12 and C.13).

5.1 Marginal likelihood

Figure 1 shows the Bayes factors implied by the marginal likelihood. Panel (a) shows the likelihood

when TB0 moves in lockstep with T V0 . The marginal likelihood initially increases but then falls first

slightly and then sharply with the weight on the DSGE model. There is thus clear evidence for an

interior peak as in Del Negro et al. (2007), here estimated at T0 = 2×T .36 Thus, a pure DSGE model

is misspecified compared with the data.

(a) TB0 = T V0 (b) General TB0 , T V0
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The marginal narrative DSGE-VAR likelihood peaks at an interior overall weight on the DSGE model restrictions: On the 
grid, T0 = 2 (i.e., adding two full samples worth of observations) yields the highest data density. Panel (b) shows Bayes 
factors comparing models when T0

B and T0
V differ. At the grid points I considered, increasing the weight on the dynamics 

strictly increases the fit, while increasing the prior weight on the DSGE model covariance structure significantly lowers 
the fit. These effects weaken as the overall prior weight increases. This is evidence against the DSGE model implied 
identification via its contemporaneous covariance structure.

Figure 1: Marginal likelihood for varying DSGE model weights

However, it is unclear whether the overall likelihood is driven by the (mis-)specification of the

dynamics or the shock identification. This is explored in the right panel of Figure 1. It shows that

the DSGE dynamics agree with the data to a significant degree: The likelihood is increasing when

adding prior weight to the DSGE dynamics. In contrast, the likelihood is decreasing significantly when

increasing the prior weight on the DSGE model covariance matrix. This suggests that the DSGE model

36In Table A.1, I provide a comparison with two alternative estimators for the likelihood that confirm the overall
shape reported here.
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can capture the sample dynamics reasonably well, but the implied shock identification is problematic.

These qualitative results also hold for models estimated separately with either the fiscal or monetary

shock proxies and for different priors (see Figures C.4 and C.5 in the Appendix).

To better understand the model fit along the two dimensions of shock identification and dynamics,

I proceed by presenting the IRFs that shape the model dynamics. Subsequently, I turn to the policy

shocks directly to gain intuition on the identification. Policy rule estimates and, more generally, DSGE

model parameter estimates provide an additional way to understand the results summarized by the

likelihood. For presenting the historical shocks and the estimated IRFs, I focus on the DSGE-VAR

model with a weak prior to highlight the discrepancy between the sample and prior moments that

determine the marginal likelihood.

5.2 IRFs

5.2.1 Benchmark DSGE-VAR estimates

Figure 2 shows the responses of output to the three policy shocks in the estimated DSGE-VAR: Shown 
in black and shades of gray are the pointwise posterior median and 68% and 90% credible sets. Start 
with the government spending shock. A 1% shock leads to an additional buildup in government 
spending that declines but persists for more than five years. Output rises persistently, too. The 
impact response of output is centered slightly below 0.4. This corresponds to an impact multiplier 
slightly below 2. While this value is large, the persistence of the spending increase implies that the 
wealth effects are also large.

Tax shocks lead to an initially hump-shaped and persistent drop in output. While the taxes decline

smoothly back to their normal level after the initial rise, there is evidence that this reversion to zero

may last more than five years and thereby explain the persistence in the output drop.

Shocks to monetary policy, in contrast to fiscal shocks, last only about two years. The rise in the

nominal interest rate causes the real rate to rise and leads, with a delay of half a year, to a hump-

shaped drop in output for up to two years after the shock. In addition, there is a double dip after four

years. This double dip, as well as the large effects of fiscal policy, may be related to the fiscal policy

interactions that I discuss later.

Besides the substantive lessons of the narrative DSGE-VAR, the wide credible sets stand out: For

example, the 68% posterior credible set for the impact spending multiplier ranges from about 1.25 to

2.5. However, these wide bands represent an improvement over the even wider credible sets in the

narrative VAR with a flat prior discussed next.37

5.2.2 Robustness: flat prior and different identification schemes

Here I briefly discuss how the DSGE model prior affects inference relative to a flat prior VAR and

whether the conclusions are robust to departure from the conditional Cholesky factorization that

37Appendix B shows for the flat prior VAR with a single instrument that the SUR-based credible sets also have
reasonable sampling properties.
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There is a buildup in government spending in response to a government spending shock, causing a significant and lasting

increase in output. A tax shock raises tax rates persistently but implies a smooth decline to zero. With a one quarter lag,

output drops persistently. A FFR shock increases the real rate and causes a significant output drop after two quarters,

with no significant response on impact.

Figure 2: VAR response with TB0 = T V0 = 1
5T DSGE model prior
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Taylor-type policy rules imply. Figure 3 shows that moderate amounts of prior information, such as 
adding data worth one fifth of the U.S. postwar sample, already sharpen the inference significantly.
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A weak DSGE model prior tightens the posterior bands substantially, as illustrated here with the output response to a

government spending shock.

Figure 3: Effects of the prior precision on the posterior uncertainty: response of output to government 
spending

Figure 4 takes the robustness check one step further. It compares two different factorizations of

the jointly identified effects of the narrative shocks. While I have shown earlier that the conditional

Cholesky factorization is justified in DSGE models with Taylor-type policy rules, one may be interested

in what happens when we relax this assumption. In addition to the benchmark conditional Cholesky

procedure, I also show the results from maximizing the conditional forecast error variance decom-

position (FEVD). I find that the same qualitative features remain. Specifically, the persistent and

uncertain output responses to either fiscal shock remain. Also, the delayed contraction to a monetary

policy shock shows in both of the identification schemes, although the posterior uncertainty increases

significantly for the impact response. These wider posterior bands are natural in the FEVD because

it also depends on the uncertain VAR dynamics.
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This figure shows two analogues to the output responses in the bottom panel of Figure 2 with a flat VAR prior and two

different identification schemes. The output responses are qualitatively the same with a flat prior and the DSGE model

prior but more uncertain. The qualitative results for the fiscal policy shocks are also largely unchanged when the shocks

are decomposed by maximizing the forecast error variance (FEVD) due to the fiscal shocks over the first 20 quarters,

except that the contraction of output in response to a monetary policy shock becomes less significant.

Figure 4: Robustness of output effects across identification schemes with a flat prior
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5.2.3 DSGE-VAR vs DSGE model

A key component that enters the marginal likelihood is the particular model dynamics. This section

discusses the shortcomings of the DSGE model relative to the DSGE-VAR impulse responses.38 In

particular, the pure DSGE model misses policy interactions and tax and inflation dynamics.

For the government spending shock in Figure 5,39 the first order mismatch is that the DSGE

model understates the speed of the government spending buildup. I, therefore, scale the government

spending shock to yield the same median cumulative government spending over the first five years,

that is, roughly matching its present discounted value. The second striking fact about the identified

responses is that both inflation and the FFR drop, both in the DSGE-VAR and the pure DSGE model.

This is possible even though monetary policy in the model pays attention only to output and inflation.

However, the pure DSGE model understates also the initial increase in output, presumably because it

predicts a drop in investment.
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Figure 5: Full set of responses to spending policy shock with weak prior T0 =
1
5T

Figure 6 shows the responses to a tax rate shock. The responses reveal that the DSGE model

struggles to match the dynamics of the tax rate and, hence, the inflation and nominal interest rate:

The DSGE-VAR tax increases are less persistent and cause only short-lived increases in inflation and

interest rates. Otherwise, the responses largely agree, not least because of the large error bounds in

38I choose to present results based on the state-space representation of the DSGE model. None of the results depend
on this, since the DSGE-VAR and the pure DSGE model produce virtually identical responses. See Figures C.12 and C.13
in the Appendix.

39The responses of debt to all shocks are shown in Figure C.6 in the Appendix, immediately before the responses in
the best-fitting DSGE-VAR.
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the DSGE-VAR. The DSGE model explains the ambiguous output response to a tax increase with

increased in government spending in response to a lower debt burden in the economy.
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Figure 6: Full set of responses to tax rate shock with weak prior T0 =
1
5T

Are the estimated reactions of monetary policy to fiscal policy in the DSGE-VAR a plausible

benchmark? Romer and Romer (2014) provide qualitative evidence that the Federal Reserve has

indeed considered fiscal policy in its monetary policy decisions. They document staff presentations

to the FOMC suggesting monetary accommodation of the 1964 and 1972 tax cuts (p. 38f) as well as

monetary easing in response to the 1990 budget agreement. The tax-inflation nexus is also reflected in

staff presentations and in the comments during at least one FOMC meeting: According to Romer and

Romer (2014), the Federal Reserve Bank staff saw social security tax increases in 1966, 1973, and 1981

as exerting inflationary pressure (p. 40). Romer and Romer (2014) conclude that monetary policy

did not counteract expansionary tax policy but may have tightened policy in response to attempts to

stimulate demand through fiscal transfer programs (p. 41f.). The DSGE-VAR similarly produces a

lower interest rate in response to government spending increases and only short-lived responses to tax

increases.

The responses to the monetary policy shock in Figure 7 are most precisely estimated and exhibit

the largest discrepancies between the DSGE-VAR and the pure DSGE model. The latter struggles

to explain the responses of output, investment, and inflation reminiscent of the price puzzle. This is

despite including a cost channel of monetary policy as in Christiano et al. (2011a).40 The DSGE model

also fails to match the sizable fiscal contraction at the one-year horizon that the DSGE model implies.

40Controlling for commodity prices in the flat prior VAR does not affect these results. It may hint at another dimension
of misspecification of monetary policy shock measures. For example, Caldara and Herbst (2015) argue that monetary
policy also reacts to credit spread shocks.
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While the model can match most dynamics in response to fiscal shocks with a tighter DSGE model

prior, the model continues to have problems to match the estimated dynamics following a monetary

policy shock. See Figures C.7 to C.9 in the Appendix.
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Figure 7: Full set of responses to FFR shock with weak prior T0 =
1
5T

5.3 Historical shocks

What is the relationship between the identified policy shocks in the DSGE-VAR, the DSGE model,

and their narrative proxies? Importantly, the three shock proxies have median correlations between

0.5 and 0.65 with the corresponding identified shocks, with lower bounds of 0.37 or higher. Thus, the

shock proxies are of reasonably good quality. See the middle column in Table 2(a).

The combined DSGE-VAR and the pure DSGE model also agree regarding the identified shocks

across different subsamples, as Figure 8 exemplifies for the government spending shock.41, 42 The

overall correlation between the DSGE-VAR spending shock and its DSGE counterpart is 0.62. The

correlation for tax shock is slightly lower at 0.55, while the monetary policy shock matches up very

well across the two models, with a median correlation of 0.82; see Table 2(a). As panel (b) of the same

table shows, this correlation mechanically increases with the prior weight on the DSGE model.

Note that the pure DSGE has a notably lower correlation with the narrative shock proxies than

41Figures C.10 and C.11 in the Appendix show these subsamples for the tax and monetary policy shocks.
42Comparing shocks is in the spirit of the work by Rudebusch (1998). Sims (1998) disputes that comparing different

historical monetary policy shocks across different VARs in Rudebusch (1998) is meaningful. Note that their dispute
involves VARS with differing information sets, whereas I compare models with identical information sets except for the
instruments. Since the instruments do not add information in the DSGE model, forecasts and forecast errors from these
models should be close if the VAR approximation is accurate, as I assume in Proposition 1. Comparing the subset of
identified shocks that I extract from these forecast errors is therefore a meaningful exercise.
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Table 2: Historical shock comparison: full sample correlation

(a) Weak prior: T0 = 1
5
T

DSGE-VAR vs DSGE DSGE-VAR vs IV DSGE vs IV
Shock Median (90% band) Median (90% band) Median (90% band)

G 0.62 (0.43, 0.73) 0.50 (0.37, 0.59) 0.40 (0.37, 0.43)
Tax 0.55 (0.37, 0.69) 0.56 (0.39, 0.69) 0.30 (0.19, 0.40)
FFR 0.82 (0.74, 0.88) 0.65 (0.63, 0.67) 0.58 (0.55, 0.60)

(b) DSGE-VAR vs DSGE
T0 = 1

5
T T0 = 2× T T0 = 4× T

Shock Median (90% band) Median (90% band) Median (90% band)

G 0.62 (0.43, 0.73)) 0.77 (0.70, 0.83) 0.81 (0.75, 0.86)
Tax 0.55 (0.37, 0.69) 0.73 (0.60, 0.82) 0.79 (0.67, 0.86)
FFR 0.82 (0.74, 0.88) 0.83 (0.75, 0.88) 0.87 (0.82, 0.91)

Shown are the posterior median correlations (and posterior credible sets) between the identified VAR shocks and the

corresponding structural shocks from the DSGE model and their respective correlation with the nonzero instrumental

variables (IV). Underlying are draws from the joint posterior of the structural parameters θ and the corresponding VAR

parameters.
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The solid lines represent the DSGE-VAR shocks; the dashed lines represent the corresponding DSGE model shocks. The 
plot of the entire sample shows that the shocks are reasonably close to iid. Their correlation is high and robust across 
subsamples.

Figure 8: Historical government spending shocks

26



the DSGE-VAR. This indicates that the model may lack the flexibility to fit the narrative data and

the standard time series simultaneously; see the upper panel of Table 2.

5.4 Policy rules

Partial identification of policy shocks implies identification of the underlying policy rules. Arias et al.

(2015) exploit this, and it underlies the link between the narrative instruments and the DSGE model

here. It is therefore instructive to back out the underlying policy rules to understand the mechanics of

the DSGE-VAR model. The implied policy rules itself, however, should be interpreted with caution:

Christiano et al. (1999), for example, show how an econometrician can recover the correct IRF to a

monetary policy shock but estimate the wrong policy rule when the policymaker observes the data

only imperfectly.

The raw data are rather uninformative about policy rules: The lower panel in Table 3 shows that

the policy rule coefficients have wide posterior confidence bands that often include zero. This is where

the DSGE model prior helps: It pulls the imprecise estimates of the policy rule coefficients toward

those implied by the DSGE model prior. Figure 9 illustrates this clearly for the monetary policy rule:

With the DSGE model prior, the policy rule estimates imply that the Fed increases interest rates in

response to higher inflation or output growth.
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Shown are the posterior median and 68% and 90% credible set of the monetary policy rule coefficients implied by the

partially identified VAR with a flat prior and the DSGE prior. With a flat prior, there is no systematic pattern. With

the DSGE-VAR prior, the model implies monetary tightening in response to higher inflation but also a reaction to fiscal

policy.

Figure 9: Monetary policy rule estimates

5.5 Parameter estimates

As a byproduct of the estimation of the DSGE-VAR, the estimator also yields estimates of the struc-
tural DSGE model parameters. For brevity, I present the full estimates only in Table C.2 in the 
Appendix. As shown there, the tighter the DSGE model prior, the higher the estimated stickiness and 
adjustment costs.43 With few exceptions, the posterior also differs significantly  from  the  prior,  and  the

43Figure C.17 in the Appendix uses the Brooks and Gelman (1998) diagnostic to show that the posterior simulator
for θ has converged reasonably well.
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Table 3: Policy rule estimates
Dogmatic prior: T0 = ∞

G tax FFR Y Debt Inv Inf
G 0 0 -0.05 (-0.12, 0.02) -0.01 (-0.02, -0.00) 0 0
tax 0 0 0.02 (0.01, 0.03) 0.01 (0.00, 0.01) 0 0
FFR 0 0 0.02 (0.01, 0.02) 0 0 0.24 (0.21, 0.28)

Best-fitting model: T0 = 2 × T
G tax FFR Y Debt Inv Inf

G 0 0 -0.45 (-1.74, 0.44) -0.17 (-1.01, 0.49) 0.04 (-0.12, 0.24) 0.36 (-0.60, 1.34)
tax 0.01 (-0.08, 0.09) -0.03 (-0.36, 0.35) -0.04 (-0.29, 0.24) 0.00 (-0.06, 0.07) -0.08 (-0.43, 0.28)
FFR -0.02 (-0.04, 0.00) 0.03 (-0.02, 0.07) 0.06 (-0.00, 0.13) 0.04 (-0.01, 0.09) -0.01 (-0.02, 0.00) 0.17 (0.09, 0.25)

Weak prior: T0 = 1
5
T

G tax FFR Y Debt Inv Inf
G 0 0 0.52 (-2.92, 2.82) 1.06 (-1.27, 3.33) 0.20 (-0.17, 0.90) 2.61 (-0.08, 7.20)
tax 0.01 (-0.25, 0.17) 0 -0.16 (-0.91, 1.01) -0.22 (-0.84, 0.71) -0.00 (-0.15, 0.15) -0.43 (-1.44, 0.71)
FFR -0.02 (-0.04, 0.01) 0.03 (-0.05, 0.10) 0.02 (-0.11, 0.14) -0.00 (-0.10, 0.10) -0.01 (-0.03, 0.01) 0.04 (-0.10, 0.18)

Shown are the posterior median and 90% credible set of the policy rule coefficients implied by the partially identified

DSGE-VAR. The coefficients on policy interactions have a triangular pattern by construction. With a weak prior, the

posterior over the coefficients is very dispersed. The best-fitting model implies monetary tightening in response to higher

inflation and some indications of accommodating fiscal policy. The estimates for fiscal policy rules are very dispsersed

and are bounded away from zero only with a very strong prior.

policy rule estimates are economically meaningful. The exception is the wage indexation parameter,

which is plausible because I do not use wages in the estimation. I now focus on the parameters linking

the DSGE model to the observed narrative shocks.
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The plot shows the signal-to-noise ratio as a function of the prior weight given to the DSGE model. The ration is defined

as the standard deviation of the instrument attributable to the structural shock divided by the standard deviation of the

measurement noise. The prior signal-to-noise ratio in the DSGE model is 2. The plot implies that the data is informative

about the signal-to-noise ratio that falls initially quickly and then stabilizes around 0.4 for the two fiscal instruments

and falls toward 0.75 for the monetary policy shock.

Figure 10: Signal-to-noise ratio of instruments with varying DSGE model weight

The estimates include the parameters that link the narrative instruments and the structural shocks. 
Figure 10 plots the posterior of the implied signal-to-noise ratio for the three instruments as a function 
of the weight on the DSGE model. It shows that the posterior signal-to-noise ratio decreases initially 
quickly and then stabilizes around 0.4 for the two fiscal instruments and falls toward 0.75 for the 
monetary policy shock. This may indicate that the monetary policy shock instrument is measured more 
precisely than the fiscal shock instruments. This is in line with the evidence from the historical shocks 
that the narrative monetary policy shock proxies match up the best with the identified shocks.
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6 Conclusion

A key question for academics and practitioners using quantitative DSGE models is whether these

models agree with results derived from methods that, in the words of Sims (2005, p. 2), “get by with

weak identification.” This paper takes a step toward formally assessing the potential misspecification

along the dimension of shock identification, extending earlier work (Del Negro et al., 2007) that leaves

out the question of shock identification.

The paper makes two methodological contributions: First, it shows that the VAR identification

based on narrative instruments correctly identifies policy rules in DSGE models when these are Taylor

rules with limited direct interaction between policy instruments. Second, it shows how to estimate a

narrative VAR using the standard SUR framework and how to incorporate a DSGE model prior.

In terms of the substance, I find that a standard medium-scale DSGE model such as Christiano 
et al. (2005) and Smets and Wouters (2007) augmented with fiscal Taylor rules improves the overall 
statistical fit of the DSGE-VAR model as measured by the marginal data density. However, by 
varying separately the prior weight on the DSGE model dynamics and covariance, I show that this fit 
comes from matching the dynamics rather than the covariance structure in the data. Looking at impulse 
responses shows that the best-fitting DSGE-VAR and the corresponding pure DSGE model largely 
agree on the dynamics following fiscal shocks. In contrast, the dynamics following a monetary policy 
shock differ. This may reflect the fact that the FOMC has already practiced forward guidance in 
monetary policy since prior to the Great Recession (see Campbell et al., 2012) and that the monetary 
policy shock measures also capture this news component. Looking at historical shocks, the pure DSGE 
fits the estimated fiscal shock worse than the monetary shocks, as well as their respective proxies.

Several extensions are possible. First, from a substantive perspective, it would be of interest to

assess the degree of misspecification of different medium-scale models to isolate model ingredients that

improve the DSGE models’ fit. Here, for example, I introduce a cost channel from Christiano et al.

(2011a) that improves the model fit slightly but does not overcome the estimated price puzzle. A

more systematic way would be to use the Macroeconomic Model Database introduced in Wieland et

al. (2012). Since their DSGE model code is standardized, my narrative DSGE-VAR framework can

readily be used to compare a variety of different models.

Second, interesting methodological improvements are possible. Within the Bayesian paradigm,

imputing missing values for the instruments simply amounts to an extra step in the Gibbs sampler. In

Amir-Ahmadi et al. (2016), we are currently exploring this possibility while also allowing for stochastic

volatility in a factor-augmented VAR (FAVAR). The FAVAR framework also allows us to address

challenges arising from anticipated effects. Here, I addressed these challenges only by using control

variables. While these extensions still use instruments for identification, it is also be possible to test

identifying assumptions based only on stochastic volatility alone (e.g., Lanne et al., 2015), and this

approach could also be applied to assess DSGE models.

What lessons go beyond my specific application? I find that narrative macro shocks alone allow only

for imprecise shock identification. This suggests that there are limits to applying the theoretically work
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on instrument identification in VARs more broadly unless we can systematically generate additional

information. In this paper, economic theory generates this information through the DSGE model

prior. In ongoing work in a panel VAR, Carlino and Drautzburg (2015) build instruments based on

cross-sectional heterogeneity in regional micro data. Both micro data and the combination of economic

theory to generate priors seem promising for instrument-based shock identification in macro models.
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Technical Appendix
– not for publication –

A Narrative VAR and DSGE-VAR

A.1 Narrative shock identification

Here I derive how the observables, Γ and Σ, identify the impulse responses of interest up to an extra
mz(mz−1)

2 restrictions, where mz is the number of instruments and shocks to identify.
Define

κ = (Γ−1
1 Γ2)

′, (A.1)

so that α21 = κα11. Then:

Σ =

[
α11α

′
11 + α12α

′
12 α11α

′
11κ

′ + α12α
′
22

κα11α
′
11 + α22α

′
12 κα11α

′
11κ

′ + α22α
′
22

]
(A.2)

The covariance restriction identifies the impulse response (or component of the forecast error) up to
an mz ×mz square scale matrix α11:

ut = Aǫt =
[
α[1] α[2]

]
ǫt = α[1]ǫ

[1]
t + α[2]ǫ

[2]
t =

[
Imz

κ

]
α11ǫ

[1]
t +

[
α12

α22

]
ǫ
[2]
t

Given that ǫ[1] ⊥⊥ ǫ[2], it follows that:

Var[ut|ǫ
[1]
t ] = α[2](α[2])′ =

[
α12α

′
12 α12α

′
22

α22α
′
12 α22α

′
22

]

Var[ut|ǫ
[2]
t ] = α[1](α[1])′ =

[
α11α

′
11 α11α11κ

κα11α
′
11 κα11α

′
11κ

]

Σ = Var[ut] = Var[ut|ǫ
[2]
t ] + Var[ut|ǫ

[1]
t ] =

[
Σ12Σ

′
12 Σ12Σ

′
22

Σ22Σ
′
12 Σ22Σ

′
22

]

Note that:

urest ≡ ut − E[ut|ǫ
[1]
t ] ⊥ E[ut|ǫ

[1]
t ] =

[
Imz

κ

]
α11ǫ

[1]
t

Any vector in the nullspace of
[
Imz κ′

]
satisfies the orthogonality condition.

Note that

{[
Imz

κ

]
,

[
κ′

−Im−mz

]}
is an orthogonal basis for Rm.

Define

Z ≡
[
Z [1] Z [2]

]
≡

[
Imz κ′

κ −Im−mz

]
(A.3)

Note that Z [2] spans the nullspace of α[1]. Hence, (Z [2])′vt projects vt into the nullspace of the

instrument-identified shocks ǫ
[1]
t .

(Z [2])′vt = (Z [2])′Aǫt = (Z [2])′
[
α[1] α[2]

]
ǫt

= (Z [2])′
[
Z [1]‖Z̃‖α11 α[2]

]
ǫt =

[
0 (Z [2])′α[2]

]
ǫt
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= 0× ǫ
[1]
t + (Z [2])′α[2]ǫ

[2]
t ⊥⊥ ǫ[1]

Note that (Z [2])′α[2] is of full rank, and I can therefore equivalently consider ǫ
[2]
t or (Z [2])′vt. Thus,

the expectation of vt given ǫ
[2]
t is given by:

E[vt|ǫ
[2]
t ] = Cov[vt, (Z

[2])′vt] Var[(Z
[2])′vt]

−1(Z [2])′vt,

vt − E[vt|ǫ
[2]
t ] = (I − Cov[vt, (Z

[2])′vt] Var[(Z
[2])′vt]

−1(Z [2])′)vt,

Cov[vt, (Z
[2])′vt] = ΣZ [2] = Σ

[
κ′

−Im−mz

]

Var[vt|ǫ
[2]
t ] = E[(I −Cov[vt, (Z

[2])′vt] Var[(Z
[2])′vt]

−1(Z [2])′)vtv
′
t]

= E[vtv
′
t]− Cov[vt, (Z

[2])′vt] Var[(Z
[2])′vt]

−1
E[(Z [2])′)vtv

′
t]

= Σ− Cov[vt, (Z
[2])′vt] Var[(Z

[2])′vt]
−1 Cov[vt, (Z

[2])′vt]

= Σ− Σ
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−Im−mz

]([
κ −Im−mz

]
Σ
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−Im−mz

])−1 [
κ −Im−mz

]
Σ

=

[
α11α

′
11 α11α11κ

κα11α
′
11 κα11α

′
11κ

]
(A.4)

This gives a solution for α11α
′
11 in terms of observables: Σ and κ = Γ−1

1 × Γ2. For future reference,
note that this also implies that:

Var[vt|ǫ
[1]
t ] = Σ−Var[vt|ǫ

[2]
t ]

= Σ

[
κ′

−Im−mz

]([
κ −Im−mz

]
Σ

[
κ′

−Im−mz

])−1 [
κ′

−Im−mz

]′
Σ (A.5)

In general, α11 itself is unidentified: Additional (mz−1)mz

2 restrictions are needed to pin down its

mz
2 elements from the (mz+1)mz

2 independent elements in α11α
′
11. Given α11, the impact response to

a unit shock is given by:

[
Imz

κ

]
α11

A.2 Narrative policy rule identification

To show that the lower Cholesky factorization proposed in Mertens and Ravn (2013) identifies Taylor-
type policy rules when ordered first, I start by deriving the representation of the identification problem
as the simultaneous equation system (3.8). Recall the definition of forecast errors vt in terms of
structural shocks ǫt:

vt = Aǫt ≡

[
α11 α12

α21 α22

] [
ǫ1,t
ǫ2,t

]
⇔

[
α11 α12

α21 α22

]−1

vt =

[
ǫ1,t
ǫ2,t

]
(A.6)

Note that:

[
α11 α12

α21 α22

]−1

=

[
(α11 − α12α

−1
22 α21)

−1 −α−1
11 α12(α22 − α21α

−1
11 α12)

−1

−α−1
22 α21(α11 − α12α

−1
22 α21)

−1 (α22 − α21α
−1
11 α12)

−1

]
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=
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(α11 − α12α

−1
22 α21)

−1 −(α11 − α12α
−1
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−1α12α
−1
22

−(α22 − α21α
−1
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Note that
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and define:

S1 ≡ (I − α12α
−1
22 α21α

−1
11 )α11 S2 ≡ (I − α21α

−1
11 α12α

−1
22 )α22 (A.7)

so that
(α11 − α12α

−1
22 α21)

−1 = S−1
1 (α22 − α21α

−1
11 α12)

−1 = S−1
2

Using these equalities gives the first equality in what follows, whereas the second equality is
straightforward algebra:

[
α11 α12

α21 α22

]−1

vt =

[
S−1
1 −S−1

1 α−1
11 α12

−S−1
2 α−1

22 α21 S−1
2

]
vt

=

[
S−1
1 0

0 S−1
2

] [
I −α12α

−1
22

−α21α
−1
11 I

]
vt =

[
ǫ1,t
ǫ2,t

]

and equivalently:

[
I −η
−κ I

]
vt =

[
S1 0

0 S2

] [
ǫ1,t
ǫ2,t

]
(A.8)

defining η ≡ α12α
−1
22 and κ ≡ α21α

−1
11 . Equation (3.8) follows immediately.

[ ]

1

Lemma 4 (Mertens and Ravn (2013)). Let Σ = AA′ and Γ = G 0 A, where G is an mz × mz invertible 
matrix and A is of full rank. Then α[1] is identified up to a factorization of S1S′ with S1 defined in (A.7).

Proof. Since A is of full rank, it is invertible, and (A.8) holds for any such A. Given η, κ, (A.8) implies 
(3.9), which I reproduce here for convenience:

α[1] =

[
α11

α21

]
=

[
(I − ηκ)−1

(I − κη)−1κ

]
chol(S1S

′
1). (3.9)

If Σ and Γ pin down η, κ uniquely, α[1] is uniquely identified except for a factorization of S1S
′
1.

To show that Σ and Γ pin down η, κ uniquely, consider κ first. Since Γ =
[
G 0

]
A and G is

an mz × mz invertible matrix, it follows that Assumption 1 holds. It then follows from (3.3) that
κ = α21α

−1
11 = Γ2Γ−1

1 .

To compute η, more algebra is needed. Partition Σ =

[
Σ11 Σ12

Σ′
12 Σ22

]
, where Σ11 is mz ×mz, Σ12 is

mz × (m−mz) and Σ22 is (m−mz)× (m−mz). Define

α22α
′
22 = Σ22 − κα11α

′
11κ

′ = Σ22 − κ(Σ11 − α12α
′
12)κ

′,

using (A.2) twice. Using the upper left element of (A.5), it follows that

α12α
′
12 = (Σ′

12 − κΣ11)
′(ZZ ′)−1(Σ′

12 − κΣ11)
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with

ZZ ′ = κΣ11κ
′ − (Σ′

12κ
′ + κΣ12) + Σ22 =

[
κ −Im−mz

]
Σ

[
κ′

−Im−mz

]
.

The coefficient matrix of interest, η, is then defined as:

η ≡ α12α
−1
22 = α12α

′
22(α22α

′
22)

−1 = (Σ′
12 − κα11α

′
11)

′(α22α
′
22)

−1

= (Σ′
12 − κΣ′

11 + κα12α
′
12)

′(α22α
′
22)

−1.

Thus, η and κ are uniquely identified given Σ,Γ.

The above derivations link S1 to A−1. I now compute S1 for a class of models.

Proposition 1. Assume Σ = AA′ = A∗(A∗)′ and order the policy variables such that the mp = mz

or mp = mz − 1 simple Taylor rules are ordered first and Γ = [G,0]A∗. Then α[1] defined in (3.9)
satisfies α[1] = A∗[Imz ,0(m−mz)×(m−mz)]

′ up to a normalization of signs on the diagonal if

(a) mz instruments jointly identify shocks to mp = mz simple Taylor rules w.r.t. the economy (2.1),
or

(b) mz instruments jointly identify shocks to mp = mz − 1 simple Taylor rules w.r.t. the economy
(2.1) and ψp,mz = 0, p = 1, . . . ,mp.

Proof. Given Lemma 4, α[1] is identified uniquely if S1 is identified uniquely. In what follows, I
establish that under the ordering in the proposition, S1, as defined in (A.7) for arbitrary full rank A,
is unique up to a normalization. It then follows that α[1] is identified uniquely and, hence, equal to
A∗[Imz ,0(m−mz)×(m−mz)]

′.
To proceed, stack the mp policy rules:

Y p
t =

m∑

i=mp+1




ψ1,i 0 . . . 0
0 ψ2,i . . . 0
... . . .

. . .
...

0 0 . . . ψmp,i


 yi,t +




λ1
λ2
...
λnp


Xt−1 +




σ11 0 . . . 0
σ21 σ22 . . . 0
...

...
. . .

...
σnp,1 σnp,2 . . . σnp,np


 ǫ

p
t

≡
m∑

i=mp+1

Diyi,t + ΛXt−1 +
[
D0 0

]
ǫt,

=


[D0 0

]
ǫt +

m∑

i=mp+1

Di1A
′
i


 ǫt +




m∑

i=mp+1

Di1B
′
iXt−1 + Λ


Xt−1,

where m −mp ≤ n̄ ≡ maxp np. Define ei as the selection vector of zeros except for a one at its ith
position and denote the ith row of matrix A by Ai = (e′iA)’ and similarly for Bi.

Without loss of generality, order the policy instruments first, before the m −mp = n̄ nonpolicy
variables. Then A∗ in the DSGE model observation equation (2.1a) can be written as:




[D0,0] +
∑m

i=mp
Di1(A

∗
i )

′

(A∗
mp+1)

′

...
(A∗

m)
′


 ,

where D0 is a full-rank lower diagonal matrix and the Dj matrices are mp ×mp matrices.
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To find (A∗)−1, proceed by Gauss-Jordan elimination to rewrite the system A∗X = Im, with

solution X = (A∗)−1, as [A∗|Im]. Define E as a conformable matrix such that [A∗|Im]
E
→ [B|C] =

[EA∗|EIm]. Then:

[(A∗)|Im] =




[
D0 0

]
+
∑m

i=mp+1Di1(A
∗
i )

′ Imp 0 0 . . . 0

(A∗
mp+1)

′ 0′ 1 0 . . . 0
...

...
...

...
. . .

...
(A∗

m)
′ 0′ 0 0 . . . 1




E1→




[
D0 0

]
+
∑m

i=mp+2Di1(A
∗
i )

′ Imp −Dmp+11 0 . . . 0

(A∗
mp+1)

′ 0′ 1 0 . . . 0

(A∗
mp+2)

′ 0′ 0 1 . . . 0
...

...
...

...
. . .

...
(A∗

m)
′ 0′ 0 0 . . . 1




E2→




[
D0 0

]
+
∑m

i=mp+3Di1(A
∗
i )

′ Imp −Dmp+11 −Dmp+21 . . . 0

(A∗
mp+1)

′ 0′ 1 0 . . . 0

(A∗
mp+2)

′ 0′ 0 1 . . . 0
...

...
...

...
. . .

...
(Am∗)

′ 0′ 0 0 . . . 1



E3→ . . .

Em−mp
→




[
D0 0

]
Imp −Dmp+11 −Dmp+21 . . . −Dm1

(A∗
mp+1)

′ 0′ 1 0 . . . 0

(A∗
mp+2)

′ 0′ 0 1 . . . 0
...

...
...

...
. . .

...
(Am∗)

′ 0′ 0 0 . . . 1




ED→




[
Imp 0

]
D−1

0 −D−1
0 Dmp+11 −D−1

0 Dmp+21 . . . −D−1
0 Dm1

(A∗
mp+1)

′ 0′ 1 0 . . . 0

(A∗
mp+2)

′ 0′ 0 1 . . . 0
...

...
...

...
. . .

...
(Am∗)

′ 0′ 0 0 . . . 1




Thus, ((A∗)−1)1:mp,1:mp = (EDEm−mp . . . E1Im)1:mp,1:mp .
Now consider cases (a) and (b):

(a) mz = mp. From (A.7), S1 is the upper left corner of (A∗)−1:

S1 ≡ ((A∗)−1)1:mp,1:mp = D−1
0

and S1 is a (lower) diagonal matrix because D0 is (lower) diagonal.

(b) mz = mp + 1, ψp,mp+1 = 0, p = 1, . . . ,mp. The second condition implies that Dmp+1 = 0mp×mp .
It follows that S1 defined in (A.7) is given by:

S1 ≡ ((A∗)−1)1:mp+1,1:mp+1 =

[
D−1

0 Dmp+11

smp+1,1:mp smp+1,mp+1

]
=

[
D−1

0 0

smp+1,1:mp smp+1,mp+1

]

Thus, S1 is lower triangular.

In both cases, S1 is lower triangular. Since the lower Cholesky decomposition is unique, a Cholesky
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decomposition of S1S
′
1 recovers S1 if we normalize signs of the diagonal of S1 to be positive. Given

identification of S1, the identification of α[1] follows from Lemma 4.

A.3 Priors and posteriors

Let ut
iid
∼ N (0, V ) and let U = [u1, . . . , uT ]

′, where ut is ma × 1 and U is T ×ma. Then the likelihood
can be written as:

L = (2π)−mT/2|V |−T/2 exp

(
−
1

2

T∑

t=1

u′tV
−1ut

)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2

T∑

t=1

tr(u′tV
−1ut)

)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2
tr(V −1

T∑

t=1

utu
′
t)

)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2
tr(V −1U ′U)

)
(A.9)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2
vec(U)′(V −1 ⊗ IT ) vec(U)

)
,

using that tr(ABC) = vec(B′)′(A′ ⊗ I) vec(C) and that V = V ′.

For the SURmodel, [Y,Z] = [Xy,Xz ]

[
By
Bz

]
+U . Consequently, YSUR ≡ vec([Y,Z]) = XSUR vec

([
By
Bz

])
+

vec(U), where

XSUR ≡

[
Im ⊗Xy 0

0 Imz ⊗Xz

]
.

The likelihood can then also be written as:

L = (2π)−mT/2|V |−T/2 exp

(
−
1

2
(YSUR −XSURβ)

′(V −1 ⊗ IT )(YSUR −XSURβ)

)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2
(ỸSUR − X̃SURβ)

′(ỸSUR − X̃SURβ)

)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2
(ỸSUR − X̃SURβ)

′(ỸSUR − X̃SURβ)

)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2
(X̃SUR(β − β̃SUR))

′(X̃SUR(β − β̃SUR))

)

= (2π)−mT/2|V |−T/2 exp

(
−
1

2
(β − β̃SUR)

′(X̃ ′
SURX̃SUR)(β − β̃SUR)

)
, (A.10)

where β̃SUR ≡ (X̃ ′
SURX̃SUR)

−1X̃ ′
SURỸSUR and the second to last equality follows from the normal

equations.
Note that expression (A.10) for the likelihood is proportional to a conditional Wishart distribution

for β: β|V −1 ∼ N (β̃SUR, (X̃
′
SURX̃SUR)

−1) ≡ N (β̃SUR, (X
′
SUR(V

−1 ⊗ I)XSUR)
−1). Alternatively,

expression (A.9) for the likelihood is proportional to a conditional Wishart distribution for V −1:
V −1|β ∼ Wma((U(β)′U(β))−1, T +ma+1). Premultiplying with a Jeffrey’s prior over V , transformed
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to V −1, is equivalent to premultiplying by π(V −1) ≡ |V −1|−
ma+1

2 and yields:

π(V −1)× = |V −1|−
ma+1

2 × (2π)−mT/2|V |−T/2 exp

(
−
1

2
tr(V −1U ′U)

)

= (2π)−mT/2|V −1|(T−ma−1)/2 exp

(
−
1

2
tr(V −1U ′U)

)
, (A.11)

which is V −1|β ∼ Wma((SSR(β))
−1, T ), with

SSR(β) ≡ U(β)′U(β) = [Y −XyBy(β), Z −XzBz(β)]
′[Y −XyBy(β), Z −XzBz(β)]

=

T∑

t=1

[yt − xy,tBy(β), zt − xz,tBz(β)]
′[yt − xy,tBy(β), zt − xz,tBz(β)].

A.4 Dummy variables prior

Note that the dummy variables prior is no longer conjugate. Hence, my prior can be generated from
two different distributions: The coefficients are generated from a N (β0, V̄

−1
0 ) distribution, whereas

the observations that generate the prior for the covariance matrix are generated from a N (0, V −1)
distribution.

Specify:

β ∼ N (β̄0, N̄
−1
0 ), N̄0 ≡ X ′

SUR,0(V̄
−1
0 ⊗ I)XSUR,0

Note that this is not equal to

β|V −1 ∼ N (β̄0, N̄0(V
−1)), N̄0(V

−1) ≡ X ′
SUR,0(V

−1 ⊗ I)XSUR,0,

unless V −1 is known and equal to V̄0.
The prior for V −1 is Wishart independent of β.

V −1 ∼ Wm+mz (V̄0T0, T0)

Note that because the prior for β is independent of V −1, the prior is conditionally conjugate with the
likelihood function. Otherwise, the presence of |N0(V

−1)| terms would undo the conjugacy.
The prior is therefore:

π(β, V −1|θ) = (2π)−n/2|N̄0(θ)|
+1/2e−

1
2
(β−β̄0(θ))′N̄0(θ)(β−β̄0(θ))

× 2−T0(m+mz)/2|V̄0(θ)T0|
−T0/2Γm(T0/2)

−1|V −1|(T0−m−mz−1)/2e−
1
2
tr(V −1V̄0(θ)T0)

= (2π)−n/2|N̄0(θ)|
+1/2e−

1
2
(β−β̄0(θ))′N̄0(θ)(β−β̄0(θ))

× 2−T0(m+mz)/2|S0(θ)|
−T0/2Γm(T0/2)

−1|V −1|(T0−m−mz−1)/2e−
1
2
tr(V −1S0(θ))

The joint density is given by:

p(Y,Z, β, V −1, θ) = p(Y,Z|β, V −1)p(β, V −1|θ)p(θ),

= p(Y,Z|β, V −1)p(β|θ)p(V −1|θ)p(θ), (A.12a)

p(Y,Z|β, V −1) = (2π)−T/2|V −1|T/2e−
1
2
(vec([Y,Z]−XSURβ)

′(V −1⊗IT )(vec([Y,Z]−XSURβ) (A.12b)

p(β|θ) = (2π)−nβ/2
∣∣λBX ′

0,SUR(θ)(V̄0(θ)
−1 ⊗ Im(mp+k))X0,SUR

∣∣1/2
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e−
λB
2

(X0,SUR(β̄0(θ)−β))′(V̄
−1
0 ⊗Im(mp+k))(X0,SUR(β̄0(θ)−β)),

where λB ≡
TB0

m(mp+ k)

= (2π)−nβ/2|N̄0(θ)|
1/2e−

1
2
(β̄0(θ)−β)′N̄0(θ)(β̄0(θ)−β), (A.12c)

p(V −1|θ) =
e−

1
2
tr(V −1TV

0 V̄0(θ))

2T
V
0 (m+mz)/2Γm+mz

(
TV
0
2

) |T V0 V̄0(θ)|
TV
0 /2

|V |(T
V
0 −m−mz−1)/2

(A.12d)

p(θ) = 1{DSGE model has a unique & stable solution|θ} ×

nθ∏

n=1

pn(θ
(n)), (A.12e)

where θ(n) denotes the nth component of the vector θ and pn(θ
(n)) is a univariate density.

A.5 Likelihood computation

I compute the marginal data density by applying the Chib (1995) method to the inner integral over
the SUR-VAR parameters and then applying the Geweke (1999) estimator to integrate over the DSGE
model hyperparameters.

The basic insight from Chib (1995) is that:

π(y, Z) =
p(y, Z)π(V −1, B|θ)π(θ)

π(θ, V −1, B|y, Z)
=

p(y, Z)π(V −1, B|θ)π(θ)

π(θ|y, Z)π(V −1|y, Z, θ)π(B|y, Z, θ, V −1)
, (A.13)

for any θ. For numerical purposes, however, it is advisable to evaluate (A.13) at a high density point.
In what follows I denote this point by (θ∗, B∗, V

−1
∗ ).

Geweke (1999) shows that to find the integrating constant of a Kernel k(ψ), we may use that p(y˜)
is the integrating constant of the posterior kernel k(ψ) = p(ψ|ỹ)p(ỹ). Let g(ψ) ≡ f(ψ)

k(ψ) . Then:

E[g(ψ)] =

∫

Ψ

f(ψ)

k(ψ)
p(ψ|ỹ)dψ = p(ỹ)−1

∫

Ψ

f(ψ)

k(ψ)
k(ψ)dψ = p(ỹ)−1

∫

Ψ
f(ψ)dψ = p(ỹ)−1

for any density f(ψ). Geweke (1999) proposes to use a truncated normal density function with the
posterior mean and covariance of ψ. Denote this truncated density by fα(ψ) and its estimate based
on the sample posterior distribution with sample size M by fα,M(ψ). Then:

p(ỹ)−1 = E[gα(ψ)] ≈ E[gα,M (ψ)] ≈M−1
M∑

m=1

fα,M(ψm)

k(ψm)
,

where ψm are draws from the posterior.
Here, ψ = (θ,B, V −1) – or strictly (θ,B, vech(V −1)). This vector is high dimensional, especially

because of the presence of B. It would therefore be helpful to reduce the dimensionality of the
parameter vector.

k(θ,B, V −1) = p(y, z|B,V −1)p(B,V −1|θ)π(θ)

⇒ k(θ) ≡

∫ ∫
k(θ,B, V −1)dV −1dB = π(θ)

∫ ∫
p(y, z|B,V −1)p(B,V −1|θ)dV −1dB

≡ π(θ)

∫ ∫
k(B,V −1|y, z, θ)dV −1dB
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= π(θ)p(y, z, θ)

∫ ∫
p(B,V −1|y, z, θ)dV −1dB

⇔ k(θ) = p(y, z, θ)π(θ)

Now proceed with this reduced parameter vector as before

E[g(θ)] =

∫

Θ

f(θ)

π(θ)p(y, z, θ)
p(θ|y, z)dθ =

∫

Θ

f(θ)

π(θ)p(y, z, θ)
p(θ|y, z)dθ

= p(y, z)−1

∫

Θ

f(θ)

π(θ)p(y, z, θ)
π(θ)p(y, z, θ)dθ

= p(y, z)−1

∫

Θ
f(θ)dθ = p(y, z)−1

In practice, I approximate p(y, z|θ) with the Chib (1995) estimator:

Ê[ĝ(θ)] =
1

M

M∑

m=1

fα(θ(m))

π(θ(m))p̂(y, z, θ(m))
≈ p̂(y, z)−1

where p̂(y, z, θ(m)) is the Chib estimator of the (conditional) marginal likelihood. The approximation

relies on
∫
Θ f(θ)

p(y,z,θ)
p̂(y,z,θ)dθ being small. In the case without instruments and with a fully conjugate

prior, I verify this numerically by comparing the estimated marginal data density with its analytical
counterpart. For the SUR case, I verify that with a modest number of posterior draws the numerical
error lies within ±0.1 of the truth computed by a very large number of draws.

A.5.1 Structural and reduced-form trends

The DSGE model implies that the detrended and demeaned variables Ỹt are governed by endogenous
dynamics, whereas the VAR models the sum of deterministic and stochastic elements. The DSGE
model trends and steady state parameters map into the deterministic VAR terms as follows:

Ỹt =

k∑

l=1

AlỸt−l + ǫt, Ỹt ≡ Yt − D̃yt− µ̃y. (A.14)

⇔ Yt =

(
k∑

l=1

AlYt−l

)
+

(
I −

k∑

l=1

Al

)
D̃yt+

(
µ̃y −

k∑

l=1

Al(µ̃y − D̃y × l)

)
+ ǫt

≡

(
k∑

l=1

AlYt−l

)
+Dyt+ µy + ǫt (A.15)

Equation (A.15) maps the reduced-form trends and means into those of the DSGE model: D̃y =(
I −

∑k
l=1Al

)−1
Dy and µ̃y =

(
I −

∑k
l=1Al

)−1 (
µy −

∑k
l=1AlD̃y × l

)
.

To compute variances and covariances as required to implement the dummy variable prior, I first
compute the population moments of Ỹt in (A.14), using that E[Ỹt] = 0. In a second step, I then
compute the implied moments for Yt itself, using finite T deterministic moments for the deterministic
mean and trend terms.44 Since the detrended endogenous variables and the deterministic trends are
independent, this also allows to first back out the prior VAR polynomial and then the implied prior
trend and intercepts.

44In particular, use that T−1∑T
t=1 t =

(T+1)
2

, T−1∑T
t=1 t

2 = (T+1)(2T+1)
6

, and T−1∑T
t=1 t

3 = T (T+1)2

22
.
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A.5.2 Instrument validity

Tests of instrument validity typically require overidentification. Conditional on a parametric model
such as (2.1), the identifying Assumption 1 can, however, also be tested from the model perspective
by assessing its fit of the data in terms of marginal densities.

To be precise, to test the validity of instrument Zi, I include the following observation equation in
(2.1a):

zi,t = ciǫi,t +
∑

j 6=i

cjǫj,t + ui,t, ui,t
iid
∼ N (0, 1).. (A.16)

Under Assumption 1 applied to the univariate case, ci = G and cj = 0∀j 6= i. To  test  this assumption,  I 
compare the marginal data densities of the model (2.1) with and without imposing cj = 0∀j 6= i. When

22

not imposing cj = 0∀j 6= i, I use a Normal prior for cj centered at zero. In particular, cj ∼ N (0, 2
1
2 ). For 

ci, I consider both ci ∼ N (1, 1 ) and ci = 1 after scaling the instrument to be measured in units
of ǫi,t.

A.6 DSGE model equations

A.6.1 Households

The law of motion for capital:

k̂pt = (1−
x̄

k̄p
)k̂pt−1 +

x̄

k̄p
(x̂t + q̂t+s) (A.17)

Household wage setting:

ŵt =
ŵt−1

1 + β̄γ
+
β̄γEt[ŵt+1]

1 + β̄γ

+
(1− β̄ζwγ)(1− ζw)

(1 + β̄γ)ζw
Āw

( ĉt − (h/γ)ĉt−1

1− h/γ
+ νn̂t − ŵt +

dτnt
1− τ̄n

+
dτ ct

1 + τ̄ c

)

−
1 + β̄µιw
1 + β̄γ

π̂t +
ιw

1 + β̄γ
π̂t−1

β̄γ

1 + β̄γ
Et[π̂t+1] +

ǫ̂λ,wt
1 + β̄γ

(A.18)

Household consumption Euler equation:

Et[ξ̂t+1 − ξ̂t] + Et[dτ
c
t+1 − dτ ct ] =

=
1

1− h/γ
Et

(
(σ − 1)

1

1 + λ̄w

1− τ̄n

1 + τ c
w̄n̄

c̄
[n̂t+1 − n̂t]− σ

[
ĉt+1 −

(
1 +

h

γ

)
ct +

h

γ
ĉt+1

])
, (A.19)

Other FOC (before rescaling of q̂bt ):

Et[ξ̂t+1 − ξ̂t] = −q̂bt − R̂t + Et[π̂t+1], (A.20)

Q̂t = −q̂bt − (R̂t − Et[πt+1]) +
1

r̄k(1− τk) + δτk + 1− δ
×

×

[
(r̄k(1 − τk) + δτk)q̂kt − (r̄k − δ)dτkt+1+ (A.21)

+ r̄k(1 − τk)Et(r̂
k
t+1) + (1− δ)Et(Q̂t+1)

]
, (A.22)
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x̂t =
1

1 + β̄γ

[
x̂t−1 + β̄γEt(x̂t+1) +

1

γ2S′′(γ)
[Q̂t + q̂xt ]

]
, (A.23)

ût =
a′(1)

a′′(1)
r̂kt ≡

1− ψu
ψu

r̂kt . (A.24)

A.6.2 Production side and price setting

The linearized aggregate production function is:

ŷt =
ȳ +Φ

ȳ

(
ǫ̂at + ζk̂gt−1 + α(1− ζ)k̂t + (1− α)(1 − ζ)n̂t

)
, (A.25)

where Φ are fixed costs. Fixed costs, in steady state, equal the profits made by intermediate producers.
The capital-labor ratio:

k̂t = n̂t + ŵt − r̂kt . (A.26)

Price setting:

π̂t =
ιp

1 + ιpβ̄γ
π̂t−1 +

1− ζpβ̄γ

1 + ιpβ̄γ

1− ζp
ζp

Āp(m̂ct + ǫ̂λ,pt ) +
β̄γ

1 + ιpβ̄γ
Etπ̂t+1. (A.27)

Marginal costs with a cost channel:

m̂ct = αr̂kt + (1− α)(ŵt + R̂t). (A.28)

A.6.3 Market clearing

Goods market clearing requires:

ŷt =
c̄

ȳ
ĉt +

x̄

ȳ
x̂t +

x̄g

ȳ
x̂gt + ĝt +

r̄kk̄

ȳ
ût. (A.29)

A.6.4 Observation equations

For the estimation under full information, I need to specify observation equations. The observation
equations are given by (3.2) as well as the following seven observation equations from Smets and
Wouters (2007) and three additional equations (A.31) on fiscal variables:

∆ ln gobst = gt − gt+1 + (γg − 1), (A.30a)

∆ lnxobst = xt − xt+1 + (γx − 1), (A.30b)

∆ lnwobst = wt − wt+1 + (γw − 1), (A.30c)

∆ ln cobst = ct − ct+1 + (γ − 1), (A.30d)

π̂obst = π̂t + π̄, (A.30e)

n̂obst = n̂t + n̄, (A.30f)

R̂obst = R̂t + (β−1 − 1), (A.30g)

By allowing for different trends in the nonstationary observables, I treat the data symmetrically in the 
VAR and the DSGE model.
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I use the deviation of debt to GDP and revenue to GDP, detrended prior to the estimation, as
observables:

bobst =
b̄

ȳ
(b̂− ŷ) + b̄obs (A.31a)

revn,obst = τ̄n
w̄n̄

c̄

c̄

ȳ

(
dτnt
τ̄n

+ ŵt + n̂t − ŷt

)
+ ¯revn,obs (A.31b)

revk,obst = τ̄k
k̄

ȳ
(r̄k − δ)

(
dτk

τ̄k
+

r̄k

r̄k − δ
r̂kt + k̂pt−1 − ŷt

)
+ ¯revk,obs (A.31c)

A.7 Inferring the response of additional variables

Zha (1999) shows that such a block-recursive system can easily be implemented by including current
values of the original “core” VAR variables as (exogenous) regressors to a separate periphery-VAR,
for which standard inference applies:

Yp,t = Bp
pYp,t−1 +Bp

c,1Yc,t−1 +Bp
c,0Yc,t +Appǫ

p
t . (A.32)

Conditional on current core variables, the additional “peripheral” variables in (A.32) are indepen-
dent of the shocks in (3.4). Given Y T , the posterior is therefore independent, and parameters 
are drawn according to the following hierarchical procedure (e.g., Uhlig, 1994):

Σ−1
p ≡ (App(A

p
p)

′)−1 ∼ Wn(((ν0 + T )Sp,T )
−1, (ν0 + T )), (A.33a)

Np,T = Np,0 +X ′
pXp,

Sp,T =
1

νT
(B̂p − B̄p,0)

′Np,0N
−1
p,TX

′
pXp(B̂p − B̄p,0) +

ν0
νT
S0 +

νT − ν0
νT

Σ̂p

Bp|Σp ∼ N (Bp,T ,Σp ⊗N−1
p,T ). (A.33b)

p pHere,  Bˆp = (X′ Xp)
−1X′ Yp, B¯p,T = N−1 

p,T

(Np,0B̄p,0 +X ′
pXpB̂p), Σ̂p = T−1Y ′

p(I −Xp(X
′
pXp)

−1X ′
p)Yp.

In the computations, I use the flat prior suggested by Uhlig (1994) with ν0 = 0, N0 = 0.
As in Uhlig (2003), the response of peripheral variables to identified shocks is Bp

c,0ÃqIV on impact.
In general, for the core and periphery, the model can be stacked to embody exclusion restrictions and

extra lags to yield the response at time h as
[
Im+mp0(m+mp)×(p−1)(m+mp)

]
Bh

[
ÃqIV

0(p−1)(m+mp)×m

]
. 45

A.8 Results on the marginal data density in T
V
0

A.8.1 Analytic results

Del Negro et al. (2007) show that, in an AR(1) model with known variance, the marginal likelihood is
strictly increasing, decreasing, or has an interior maximum in T V0 = TB0 in their DSGE-VAR framework
with a conjugate prior. I am interested in the case of T V0 6= TB0 and when the prior is not conjugate.
Thus, I analyze the case of increasing the degrees of freedom only of the Wishart prior, abstracting
from unknown model dynamics (i.e., β = 0) so that TB0 becomes irrelevant.

45As suggested by Rossi et al. (2005, ch. 2.12), I use an equivalent representation of the posterior for the numerical

implementation: I use that N (0, (Σ ⊗ (X ′X)−1))
D
= (chol(Σ) ⊗ chol((X ′X)−1))N (0, I) and draw using the identity

(chol(Σ) ⊗ chol((X ′X)−1)) vec(Z) = vec(chol((X ′X)−1))Z chol(Σ)′), with vec(Z) ∼ N (0, I).
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The marginal likelihood of an iid sample of length T with yt ∈ R
m is given by:

p(y|T V
0 ) ≡

∫ ∞

0

(

T
∏

s=1

f(ys|V )

)

π(V |T V
0 )dV −1

=

∫ ∞

0

(2π)−mT/2|V |−T/2e−
T
2

tr(V −1V̂ )−
TV
0
2

tr(V −1V0)2−mTV
0 /2|V0T

V
0 |T

V
0 /2Γm(T V

0 /2)−1|V |−(T0−m−1)/2dV −1

= π−mT/2 |V0T
V
0 |T

V
0 /2Γm((T + T V

0 )/2)

|V0T V
0 + T V̂ |(T+TV

0
)/2Γm(T V

0 /2)
×

∫ ∞

0

e−
1
2
tr(V −1(TV̂ +TV

0 V0))2−m(T+TV
0 )/2|V0T

V
0 + T V̂ |(T+TV

0 )/2Γm((T + T V
0 )/2)−1|V |−(T+T0−2)/2dV −1

= π−mT/2 |V0T
V
0 |T

V
0 /2Γm((T + T V

0 )/2)

|V0T V
0 + T V̂ |(T+TV

0
)/2Γm(T V

0 /2)

= π−mT/2|V̂ |−T/2 |V̂ −1V0|
TV
0 /2

|V̂ −1V0 + Im
T

TV
0

|(T+TV
0

)/2

(T V
0 )−mT/2Γm((T + T V

0 )/2)

Γm(T V
0 /2)

(A.34)

defining V̂ ≡ 1
T

∑T
s=1 ysy

′
sand using Γm(T/2) = πm(m−1)/2

∏m
j=1 Γ(

1
2(T +1−j)). It is straightforward

to show via the first-order condition that the (log) data density is maximized by a DSGE model prior
centered at V0 = V̂ : the data rewards model fit.

To gain intuition, consider the scalar case m = 1. Abstracting from terms constant in T V0 , the
density can then be simplified to:

ln p(y|T V0 ) = κ(V, T ) −
T

2
ln(T V0 ) +

T V0
2

ln(
V0

V̂
)−

T + T V0
2

ln(T V0
V0

V̂
) + ln

Γ
(
T+TV

0
2

)

ln Γ
(
TV
0
2

)

The slope of the log data density in T V0 is given by:

d ln p(y|T V0 )

dT V0
=

1

2
ln

(
T V0

V0
V̂

T V0
V0
V̂

+ T

)
+

1

2

(
1−

V0

V̂

)
T

T V0
V0
V̂

+ T
+

1

2
ψ

(
T + T V0

2

)
−

1

2
ψ

(
T V0
2

)
, (A.35)

where ψ is the digamma function, the derivative of the log gamma function. Part (a) of the following
Lemma establishes that for V0

V̂
in an open neighborhood around unity, the slope of the log data density

is strictly positive (at T that are multiples of 2). Hence, when the DSGE model V0 fits the data well, an
infinite prior weight on the DSGE model maximizes the fit. Parts (b)and (c) establish the counterpart
that for a sufficiently bad fit so that V0

V̂
is far enough from unity, the slope of the log data density is

negative in T V0 . Thus, the optimal prior weight diverges.

Lemma 5. Let T = 2n, n ∈ N+ and T V0 > 0.

(a) For V0
V in an open neighborhood around unity, d

dTV
0
ln p(y|T V0 ) > 0.

(b) There exists a number v ∈ (0, 1) such that for V0
V < v d

dTV
0
ln p(y|T V0 ) < 0.

(c) For T > 2, there exists a number v̄ > 1 such that for V0
V > v̄ d

dTV
0
ln p(y|T V0 ) < 0.

Proof. Consider the three cases in the lemma separately:
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(a) Let V0 = V̂ . Note that under the assumption on T , the recurrence relation of the digamma
function implies that

ψ

(
T + T V0

2

)
= ψ

(
T V0
2

)
+

T
2
−1∑

s=0

1
TV
0
2 + s

.

The slope (A.35) can therefore be written as:

1

2
ln

(
T V0

T V0 + T

)
+

1

2

T
2
−1∑

s=0

1
TV
0
2 + s

.

Note that for x > 0:

1

2
ln

(
x

2 + x

)
+

1

x
> 0.

This inequality follows from a basic logarithm inequality: − log
(

x
2+x

)
= log

(
1 + 2

x

)
< 2

x . Thus,

1
2 ln

(
x

2+x

)
+ 1

x > 0.

The result on d
dTV

0
ln p(y|T V0 ) follows by induction for V0 = V̂ . Let T = 2 ⇔ n = 1. Then the

above inequality for x = T V0 implies the condition for n = 1 ⇔ T = 2.

Now assume that the condition holds for arbitrary n ∈ N+. Notice that

d

dT V0
ln p(y|T V0 )

∣∣∣
T=2(n+1)

−
d

dT V0
ln p(y|T V0 )

∣∣∣
T=2n

=
1

2
ln

(
2n+ T0

2(n + 1) + T V0

)
+

1

2

2

2n+ T V0
,

which is larger than zero by the above inequality. In addition, by assumption,
d ln p(y|TV

0 )

dTV
0

∣∣∣
T=2n

> 0.

It follows that d
dTV

0
ln p(y|T V0 )

∣∣∣
T=2(n+1)

> 0.

Since the assumption is true for n = 1, the desired result for d
dTV

0
ln p(y|T V0 ) follows for V0 = V̂

and any n ∈ N+ by induction.

Last, because p(y|T V0 ) and its derivatives are continuous in V0, the inequality holds for V0 suffi-
ciently close to V̂ .

(b) Fix T, T V0 . Note that limV0/V̂ց0
d

dTV
0
ln p(y|T V0 ) = −∞. Since the limit is −∞, there exists a

number v such that for V0
V̂
< v d

dTV
0
ln p(y|T V0 ) < 0 holds. Since, by (a), the inequality is not

satisfied at V0 = V̂ , it follows that v < 1.

(c) Note that limV0/V̂→∞
d

dTV
0
ln p(y|T V0 ) = − T

2TV
0
+1

2ψ
(
T+TV

0
2

)
−1

2ψ
(
TV
0
2

)
. Note also that ψ

(
T+TV

0
2

)
−

ψ
(
TV
0
2

)
≤ T

2
2
T0

given the recurrence relation used in (a) and given that the sum in the recurrance

relation has at most T
2 increments. These increments are smaller or equal to 2

T0
. When T > 2, the

equality is strict. Thus, limV0/V̂→∞
d

dTV
0
ln p(y|T V0 ) < 0 for T > 2. By the definition of the limit,

there exists some v̄ such that the inequality holds for all V0 > v̄V̂ and T > 2. By (a), v̄ > 1.
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A.8.2 Numerical example

The logic behind the previous analytic results for the scalar case applies more widely: If the prior is
sufficiently close to the data, increasing the prior precision increases the model fit. Here, I provide a
numerical benchmark for the benchmark VAR specification.

Specifically, I abstract from uncertain DSGE (hyper-)parameters and fix the prior B̄y
0 , B̄

z
0 and V̄0

matrices so that the prior fit is perfect: I choose the prior to equal the posterior given the actual data.
I then vary the prior precision TB0 and T V0 on a grid. As expected, the marginal likelihood is strictly
increasing in both T V0 and TB0 and peaks at the limit point of TB0 = T V0 → ∞.

Equal weights: TB0 = T V0 = λ0 × T Varying weights: TB0 6= T V0 = λV0 × T
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In this numerical example, the prior is chosen to equal the posterior for the baseline narrative DSGE-VAR. Thus, the prior 
fits the data as well as possible. The figures show that increasing the weights T0

B, T0
V strictly increases the model fit, which 

is measured via the marginal likelihood. To give some context, the number of prior observations is expressed as T0 = λ0 × T 
(i.e., relative to the empirical sample size). The marginal likelihood is strictly increasing in both the dimension of 
“dynamics” via the number of dummy observations on the coefficient matrix and the dimension of “identification” via the 
number of dummy observations on the covariance matrix.

Figure A.1: Narrative DSGE-VAR marginal likelihood with fixed hyperparameters when prior is set
to equal the posterior

A.9 Comparing estimators for the marginal likelihood

Besides the nested Chib (1995) likelihood estimator within Geweke (1999), I also use the iterative
bridge sampler (Meng and Wong, 1996) and importance sampling as described in Geweke (2005, ch.
8.2). The latter exploits that the likelihood itself in my application does not depend on the models
that I am comparing. The Bayes factor can then be written as:

BF (τ, τ ′) =

∫

Θ

∫

Rmp×k+mz+1

∫

V −1∈PD(m+mz)
f(y, z|B, V −1)π(B,V −1|θ; τ )π(θ)dBdV −1dθ

∫

Θ

∫

Rmp×k+mz+1

∫

V −1∈PD(m+mz)
f(y, z|B, V −1)π(B,V −1|θ; τ ′)π(θ)dBdV −1dθ

≡

∫

Θ

∫

Rmp×k+mz+1

∫

V −1∈PD(m+mz)

π(B,V −1|θ; τ )

π(B,V −1|θ; τ ′)
π(θ,B, V −1|y, z; τ ′)dBdV −1dθ,

where

π(θ,B, V −1|y, z; τ ′) ≡
f(y, z|B, V −1)π(B,V −1|θ; τ ′)π(θ)

∫

Θ

∫

Rmp×k+mz+1

∫

V −1∈PD(m+mz)
f(y, z|B, V −1)π(B, V −1|θ; τ ′)π(θ)dBdV −1dθ
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is the posterior over the parameters under τ′. I use the following simulation-consistent estimator for the 
Bayes factor:

B̂F (τ, τ ′) = N−1
N∑

i=1

π(B(i), V
−1
(i) |θ(i); τ )

π(B(i), V
−1
(i) |θ(i); τ

′)
,

where B(i), V
−1
(i) , θ(i) are draws from the posterior given τ ′.

TB0 = T V0 Chib-Geweke Importance Meng-Wong
(Baseline) Sampling

0.2×T -32.3 -63.0 -32.9
0.5×T -12.9 -25.6 -15.8
1.0×T -4.1 -7.0 -4.9
1.5×T -3.9 -1.7 -1.2
2.0×T 0.0 -0.4 -0.0
2.5×T -8.7 0.0 0.0
3.0×T -11.9 -0.5 -0.6
4.0×T -15.8 -2.5 -3.0

Shown are the (natural) log of the Bayes factors relative to the best model for different estimators as a function of the

overall prior precision T0. See the text for details about the different estimators.

Table A.1: Comparing marginal likelihood estimators in the baseline model
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B Sampling properties of VAR estimator

The estimated credible sets are wide – wider than they would be if uncertainty about Γ were ignored.
Rather than drawing Γ as part of V from the posterior, one can compute Γ̂ = 1

T (Y −XyBy)
′(Z−XzBz)

conditional on the estimated coefficients. Figure B.2 compares the posterior uncertainty over the
output response to different shocks for both sampling schemes.

Output to G shock Output to tax Output to FFR shock

0 5 10 15 20

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

quarters

%

Y to one sd shock in G

0 5 10 15 20

−4

−3

−2

−1

0

1

quarters

%

Y to one sd shock in tax

0 5 10 15 20

−4

−3

−2

−1

0

1

quarters

%

Y to one sd shock in FFR

Comparing the estimated credible sets in gray to credible sets that abstract from sampling error in the estimated

covariance produce much tighter estimates when instruments used to identify shocks have only few non-zero observations

as is the case for spending and tax shocks. Note: Shown are the pointwise median and 68% and 90% posterior credible

sets of the SUR-sampling scheme (black and gray) and when the point estimate Γ̂ = 1
T
(Y −XyBy)

′(Z −XzBz) is used

for Γ (red). Results based on lower Cholesky factorization of S1S
′
1.

Figure B.2: Effects of policy shocks on output: comparing credible sets for IRFs

Given the different results for the posterior uncertainty, which sampling scheme should be used?
One criterion to judge the proposed prior and Bayesian inference scheme is to investigate its frequentist
properties in a Monte Carlo study. I simulate NMC = 200 datasets based on the actual point estimates
for the reduced-form VAR as well as the instrument-based inference about a structural impulse response
vector. I initialize the VAR at the zero vector and drop the first 500 observations and keep the
last T = 236 observations as the basis for estimating the reduced-form VAR. Different scenarios for
instrument availability are considered for the structural inference: The fraction of zero observations
for the instrument varies from about 5% to 90% of the observations.

The data-generating process is given by the OLS point estimate of a VAR in the core variables and 
its covariance as specified in (3.1). Only one instrument is used: the Romer and Romer (2004) monetary 
policy shocks. I choose their shocks for the analysis because they are available for about half (47%) of the 
sample. As in the data, I modify (3.1) by setting randomly chosen observations to zero. The section of 
observations set to zero varies from 5% to 90%.

For each dataset m, I compute the pointwise posterior credible set using my Bayesian procedure,
with and without conditioning on the observed covariance between instruments and VAR forecast
errors. Similarly, I use the wild bootstrap proposed in Mertens and Ravn (2013) to conduct frequentist
inference.46 Each procedure yields an estimate of the true IRF {Ih,m}

H
h=0 for each point OLS estimate

and a pointwise credible set for horizons up to H: {Ĉ(α)jh,m}
H
h=0 = {[c(α)jh,m, c(α)

j
h,m]}

H
h=0. The

superscript j indexes the different methods. 1 − α is the nominal size of the credible set: A fraction
α of draws from the posterior or the bootstrapped distribution for Ih,m should lie under c(α)jh,m or

above c(α)jh,m.
To assess the actual level of the credible sets of method j, I compute for each (h,m) whether the

truth at horizon h, Ih,m lies inside the pointwise credible set: 1{Ih,m ∈ Ĉ(α)jh,m}. The actual coverage
probability is then estimated as:

46Appendix B describes the algorithm.
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α̂jh =
1

NMC

NMC∑

m=1

1{Ih,m ∈ Ĉ(α)jh,m}

Figure B.3 plots the deviation of the actual coverage probability for model j at horizon h from
the nominal coverage probability: α̂jh − α for α = 0.68. The procedures that ignore “first stage”
uncertainty about the covariance between the forecast errors and the external instruments understate 
the size of the credible sets substantially at short horizons (“Bayes – certain”, BaC and “Bootstrap –
certain,” BoC), while the Bayesian procedure that allows for uncertainty about the covariance matrix 
errs on the conservative side (“Bayes–uncertain,” BaU). For the latter scheme, the actual level is 
typically only zero to five percentage points above the nominal level when half of the instruments are 
nonzero.47 However, when only one in 20 observations for the instrument is non-zero, the actual level 
exceeds the nominal level by around 10 percentage points.
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With enough observations on narrative instruments, the proposed estimator (shown in solid blue) has good classical

coverage probabilities. With few observations, the estimator seems to be too conservative, whereas estimators neglecting

uncertainty in the covariance matrix provide misleading tight confidence bands.

Figure B.3: Monte Carlo analysis of actual minus nominal coverage probability α̂jh − α

With more than one instrument at a time, the coverage probability of the responses to the different
shocks depends on the specific rotation of the shock. Overall, the Monte Carlo study suggests that the
proposed Bayesian procedure accounts properly for the uncertain covariance between instruments and
forecast errors in the context of the present application but may be conservative from a frequentist
point of view both when there is little variation in the instruments or over longer forecast horizons.
This motivates using available prior information to improve on the estimates.

47The actual level depends slightly on the variable under consideration.

52



Frequentist inference

Following Mertens and Ravn (2013), the bootstrap procedure I consider is characterized as follows:

1. For t = 1, . . . , T , draw {eb1, . . . , e
b
T }, where e

b
t ∼ iid with Pr{ebt = 1} = Pr{ebt = −1} = 0.5.

2. Construct the artificial data for Y b
t . In a VAR of lag length p, build Y b

t , t > p as:

• For t = 1, . . . , p set Y b
t = Yt.

• For t = p+ 1, . . . , T construct recursively Y b
t =

∑p
j=1 B̂jY

b
t−j + ebt ût.

3. Construct the artificial data for the narrative instrument:

• For t = 1, . . . , T construct recursively zbt = ebtz
b
t .

C Data and additional results

C.1 Data construction

I follow Smets and Wouters (2007) in constructing the variables of the baseline model, except for allo-
cating durable consumption goods to investment rather than consumption expenditure. Specifically:

yt =

ct =

it =

(Nominal GDP: NIPA Table 1.1.5Q, Line 1)t
(Population above 16: FRED CNP16OV)t × (GDP deflator: NIPA Table 1.1.9Q, Line 1)t 

(Nominal PCE on nondurables and services: NIPA Table 1.1.5Q, Lines 5+6)t
(Population above 16: FRED CNP16OV)t × (GDP deflator: NIPA Table 1.1.9Q, Line 1)t 

(Durables PCE and fixed investment: NIPA Table 1.1.5Q, Lines 4 + 8)t
(Population above 16: FRED CNP16OV)t × (GDP deflator: NIPA Table 1.1.9Q, Line 1)t

πt = ∆ ln(GDP deflator: NIPA Table 1.1.9Q, Line 1)t

rt =

{
1
4 (Effective Federal Funds Rate: FRED FEDFUNDS)t t ≥ (1954:Q3
1
4 (3-Month Treasury Bill: FRED TB3MS)t (else.

nt =
(Nonfarm business hours worked: BLS PRS85006033)t

(Population above 16: FRED CNP16OV)t

wt =
(Nonfarm business hourly compensation: BLS PRS85006103)t

(GDP deflator: NIPA Table 1.1.9Q, Line 1)t

When using an alternative definition of hours worked from Francis and Ramey (2009), I compute:

nFRt =
(Total hours worked: Francis and Ramey (2009))t

(Population above 16: FRED CNP16OV)t

Fiscal data are computed following Leeper et al. (2010), except for adding state and local 
govern-ments (superscript “s&l”) to the federal government account (superscript “f”), similar to 
Fernandez-Villaverde et al. (2015). Since in the real world
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τ ct =
(Production & imports taxes: Table 3.2, Line 4)t

f + (Sales taxes)ts&l

((Durables PCE)t + ct)× (GDP deflator)t − (production & imports taxes)ft − (Sales taxes)s&lt

τpt =
(Personal current taxes)t

1
2(Proprietors’ income)t + (wage income)t + (wage supplements)t + (capital income)t

τnt =
τpt (

1
2(Proprietors’ income)t + (wage income)t + (wage supplements)t) + (wage taxes)ft

(wage income)t + (wage supplements)t + (wage taxes)ft +
1
2(Proprietors’ income)t

τkt =
τpt (capital income)t + (corporate taxes)ft + (corporate taxes)s&lt

(Capital income)t + (Property taxes)s&lt

where the following NIPA sources were used:

• (Federal) production and imports taxes: Table 3.2Q, Line 4

• (State and local) sales taxes: Table 3.3Q, Line 7

• (Federal) personal current taxes: Table 3.2Q, Line 3

• (State and local) personal current taxes: Table 3.3Q, Line 3

• (Federal) taxes on corporate income minus profits of Federal Reserve banks: Table 3.2Q, Line 7
− Line 8.

• (State and local) taxes on corporate income: Table 3.3Q, Line 10

• (Federal) wage tax (employer contributions for government social insurance): Table 1.12Q, 
Line 8

• Proprietors’ income: Table 1.12Q, Line 9

• Wage income (wages and salaries): Table 1.12Q, Line 3

• Wage supplements (employer contributions for employee pension and insurance): Table 
1.12Q, Line 7

• Capital income = sum of rental income of persons with CCAdj (Line 12), corporate profits (Line
13), net interest and miscellaneous payments (Line 18, all Table 1.12Q)

Note that the tax base for consumption taxes includes consumer durables, but to be consistent
with the tax base in the model, the tax revenue is computed with the narrower tax base excluding
consumer durables.

(rev)ct =
τ ct × (ct − (Taxes on production and imports)ft − (Sales taxes)s&lt

((Population above 16)t × ((GDP deflator)t

(rev)nt = τnt × ((wage income)t + (wage supplements)t + (wage taxes)ft +
1

2
(Proprietors’ income)t)

(rev)kt = τkt × ((Capital income)t + (Property taxes)s&lt )

I construct government debt as the cumulative net borrowing of the consolidated NIPA government
sector and adjust the level of debt to match the value of consolidated government FoF debt at par
value in 1950:Q1. A minor complication arises as federal net purchases of nonproduced assets (NIPA
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Table 3.2Q, Line 43) is missing prior to 1959:Q3. Since these purchases typically amount to less 
than 1% of federal government expenditures with a minimum of -1.1%, a maximum of 0.76%, and a 
median of 0.4% from 1959:Q3 to 1969:Q3, two alternative treatments of the missing data lead to 
virtually unchanged implications for government debt. First, I impute the data by imposing that 
the ratio of net purchases of nonproduced assets to the remaining federal expenditure is the same for 
all quarters from 1959:Q3 to 1969:Q4. Second, I treat the missing data as zero.

In 2012, the FoF data on long term municipal debt were revised up. The revision covers all 
quarters since 2004 but not before, implying a jump in the debt time series.48 I splice together a new 
smooth series from the data before and after 2004 by imposing that the growth of municipal debt from 
2003:Q4 to 2004:Q1 was the same before and after the revision. This shifts up the municipal and 
consolidated debt levels prior to 2004. The revision in 2004 amounts to $840bn, or 6.8% of GDP.

The above data are combined with data from the web appendices of Romer and Romer (2004),
Ramey (2011), and Mertens and Ravn (2013) on narrative shock measures.

C.2 Additional results
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The two panels show Bayes factors obtained by increasing the weight on the DSGE model covariance structure T V
0 ,

holding the weight on dynamics, TB
0 , fixed. Here, I use only a subset of the instruments in the estimation: Only fiscal

proxies in the top panel and only monetary shock proxies in the bottom. Independent of the prior the main result carries

through: The model fit is decreasing in the weight on the covariance structure.

Figure C.4: Effect on Bayes factors of increasing T V0 by 0.5T – separately with fiscal and monetary
proxies

48www.bondbuyer.com/issues/121 84/holders-municipal-debt-1039214-1.html “Data Show Changes in Muni Buy-
ing Patterns” by Robert Slavin, 05/01/2012 (retrieved 01/24/2014).
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The two panels show Bayes factors obtained by increasing the weight on model dynamics T0
B (top panel) and the model 

covariance structure T0
V separately, starting from T0

B = T0
V = 2 × T for three different prior precision parameters. The 

“tight” parametrization is the benchmark and uses a prior standard deviation for the relative standard deviations of 0.1 and 
a prior standard deviation of 0.25 for the loadings. The “loose” prior uses a common standard deviation of 0.25. Last, the 
“looser” prior uses a common standard deviation of 0.5. As indicated in parentheses, the looser prior has the best overall 
model fit (highest Bayes factor) relative to the tight prior that is the benchmark. However, independent of the prior, the 
main result carries through: The model fit is increasing in the weight on model dynamics and decreasing in the weight on 
the covariance structure.

Figure C.5: Effect on Bayes factors of increasing T0B (top) or T0V (bottom) by 0.5T, \ one at a time for 
different priors
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Note: Shown are the pointwise median and 68% and 90% posterior credible sets. Results based on lower Cholesky

factorization of S1S
′
1.

Figure C.6: Response of the debt-to-output ratio to the identified policy shocks
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Figure C.7: Full set of responses to spending policy shock with best-fitting model T0 = 2 × T
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Figure C.8: Full set of responses to a tax rate shock with weak prior T0 = 2× T
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Figure C.9: Full set of responses to a FFR shock with best-fitting model T0 = 2 × T
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Estimated historical shocks. Note: Shown are the pointwise median and 68% and 90% posterior credible sets of shocks

along with the median, 5th, and 95th percentiles of the shock correlations for the full sample. Results based on lower

Cholesky factorization of S1S
′
1.

Figure C.10: Historical tax shocks
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Estimated historical shocks. Note: Shown are the pointwise median and 68% and 90% posterior credible sets of shocks

along with the median, 5th, and 95th percentiles of the shock correlations for the full sample. Results based on lower

Cholesky factorization of S1S
′
1.

Figure C.11: Historical FFR shocks
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The IRFs implied by the posterior over θ largely coincide independent of whether I use the VAR(4) approximation or

the state-space representation of the DSGE model. Note: Shown are the pointwise median and 68% and 90% posterior

credible sets. Results based on lower Cholesky factorization of S1S
′
1.

Figure C.12: Responses of policy instruments: DSGE model vs DSGE-VAR with dogmatic prior
(T V0 = TB0 ր ∞)
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The IRFs implied by the posterior over θ largely coincide independent of whether I use the VAR(4) approximation or

the state-space representation of the DSGE model. Note: Shown are the pointwise median and 68% and 90% posterior
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Figure C.13: Responses of output, investment, and inflation: DSGE model vs DSGE-VAR with
dogmatic prior (T V0 = TB0 ր ∞)
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T0 = 1
5
× T

Parameter Prior mean (SD) Mean (SD)
st.dev.-TFP 1.000 (2.000) 1.102 (0.214)
AR(1)-TFP 0.500 (0.200) 0.308 (0.150)
st.dev.-Transf. 1.000 (2.000) 0.715 (0.114)
st.dev.-G 1.000 (2.000) 0.783 (0.077)
AR(1)-G 0.500 (0.200) 0.895 (0.070)
st.dev.-Tax 0.500 (0.100) 0.301 (0.023)
AR(1)-Tax 0.500 (0.200) 0.560 (0.187)
st.dev.-qs 1.000 (2.000) 0.536 (0.117)
AR(1)-qs 0.500 (0.200) 0.794 (0.136)
st.dev.-FFR 1.000 (2.000) 0.222 (0.020)
AR(1)-FFR 0.500 (0.200) 0.301 (0.129)
st.dev.-Infl. 1.000 (2.000) 0.165 (0.033)
AR(1)-Infl. 0.500 (0.200) 0.323 (0.174)
Adj. cost 4.000 (1.500) 4.928 (1.373)
Util. cost 0.500 (0.150) 0.423 (0.119)
Fixed cost 1.250 (0.125) 1.376 (0.105)
Habit 0.700 (0.100) 0.752 (0.056)
Labor supply ela. 2.000 (0.750) 2.034 (0.662)
Calvo prices 0.500 (0.100) 0.689 (0.061)
Index. prices 0.500 (0.150) 0.419 (0.160)
Calvo wages 0.500 (0.100) 0.687 (0.089)
Index. wages 0.500 (0.150) 0.493 (0.150)
Taylor-Infl. 1.500 (0.250) 1.501 (0.189)
Taylor-GDP 0.125 (0.050) 0.155 (0.039)
smoothing-FFR 0.750 (0.100) 0.851 (0.031)
G-to-GDP 0.500 (0.500) 0.452 (0.459)
G-to-Debt 1.000 (0.500) 0.716 (0.402)
smoothing-G 0.500 (0.200) 0.956 (0.044)
Tax-to-GDP 1.000 (0.500) 0.601 (0.491)
Tax-to-Debt 1.000 (0.500) 0.291 (0.193)
smoothing-Tax 0.500 (0.200) 0.952 (0.062)
Transf.-to-GDP 0.000 (0.500) -0.022 (0.354)
Transf.-to-Debt 1.000 (0.500) 0.979 (0.501)
smoothing-Transf. 0.500 (0.200) 0.910 (0.100)
Rel. st. dev. IV-G 1.000 (0.100) 1.034 (0.090)
Rel. st. dev. IV-Tax 1.000 (0.100) 0.858 (0.066)
Rel. st. dev. IV-FFR 1.000 (0.100) 1.196 (0.123)
Loading IV-G 1.000 (0.500) 0.550 (0.118)
Loading IV-Tax 1.000 (0.500) 0.440 (0.084)
Loading IV-FFR 1.000 (0.500) 2.705 (0.386)

T0 = 2× T
Mean (SD)
1.323 (0.242)
0.201 (0.112)
1.743 (0.193)
1.171 (0.064)
0.991 (0.005)
0.304 (0.015)
0.225 (0.125)
0.815 (0.161)
0.444 (0.163)
0.237 (0.013)
0.159 (0.073)
0.175 (0.040)
0.345 (0.244)
6.463 (1.147)
0.467 (0.159)
1.355 (0.107)
0.717 (0.057)
3.074 (0.890)
0.735 (0.068)
0.290 (0.110)
0.669 (0.078)
0.527 (0.142)
1.362 (0.300)
0.112 (0.068)
0.828 (0.027)
0.622 (0.466)
0.410 (0.189)
0.797 (0.052)
0.581 (0.622)
0.327 (0.208)
0.944 (0.071)
0.249 (0.274)
1.276 (0.287)
0.251 (0.113)
0.846 (0.053)
0.801 (0.046)
2.077 (0.137)
0.315 (0.044)
0.288 (0.042)
1.941 (0.251)

T0 = ∞
Mean (SD)
1.749 (0.184)
0.427 (0.087)
1.773 (0.089)
1.420 (0.059)
0.998 (0.001)
0.332 (0.013)
0.034 (0.020)
0.910 (0.078)
0.457 (0.061)
0.258 (0.014)
0.320 (0.057)
0.249 (0.018)
0.121 (0.078)
6.895 (0.931)
0.616 (0.066)
1.302 (0.099)
0.715 (0.035)
7.503 (1.310)
0.806 (0.030)
0.393 (0.125)
0.797 (0.036)
0.616 (0.127)
1.523 (0.142)
0.096 (0.026)
0.839 (0.021)
0.144 (0.141)
0.010 (0.006)
0.695 (0.035)
0.467 (0.612)
0.068 (0.100)
0.930 (0.045)
0.888 (0.390)
0.243 (0.132)
0.938 (0.027)
0.746 (0.041)
0.751 (0.039)
2.169 (0.140)
0.238 (0.030)
0.232 (0.030)
1.626 (0.195)

Note: Shown are the prior and posterior mean and standard deviation for the DSGE model parameters. Parameters that

determine the shock processes are shown in the top, policy rule estimates in the middle, and the observation equations

for instruments in the bottom. Overall, the posteriors differ significantly from the priors, consistent with identification

of the parameters.

Table C.2: DSGE-VAR model parameter estimates with varying priors
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The historical shocks implied by the posterior over θ largely coincide independent of whether I use the VAR(4) approxi-

mation or the state-space representation of the DSGE model. Note: Shown are the pointwise median and 68% and 90%

posterior credible sets of shocks along with the median, 5th, and 95th percentiles of the shock correlations. Results based

on lower Cholesky factorization of S1S
′
1.

Figure C.14: Historical policy shocks: DSGE model vs DSGE-VAR with dogmatic prior (T V0 = TB0 ր
∞)
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C.2.1 Instrument validity

For most of this paper, I have worked under the assumption that narrative shocks are noisy measures of
a particular structural shock. This has allowed inference about the response to these structural shocks.
However, what if narrative shock measures are better interpreted as reflecting several structural shocks?

Here, I report results from testing this assumption parametrically: I compare the model fit under
different assumptions about the narrative instruments by relaxing the assumption that each instrument
loads on only one structural shock. To do so, I re-estimate the pure DSGE model, including one
narrative shock at a time with different restrictions in the observation equation for the instrument. I
then compare the resulting models using Bayes factors. Table C.3 shows the results.

Exclusion restriction is . . .
violated satisfied satisfied with cii = 1

Narrative shock log Bayes factor

Defense spending G, Ramey (2011) -10.6 0 -3.0
Personal income tax, Mertens and Ravn (2013) -12.1 0 -2.8
Money shock, Romer and Romer (2004) -5.6 0 -28.4

Money shock, Romer and Romer (2004) extended 0 -3.8 -68.2
Money shock, Romer and Romer (2004) CPI -4.7 0 -79.5
Money shock, Kuttner (2001) -7.3 0 -0.9
Money shock, T-Bill -23.3 0 -191.4

The reported Bayes factors indicate weak to very strong empirical support for models that only allow narrative shocks

to affect the intended shocks themselves for the benchmark instruments reported in the upper half of the table. This

is not a generic result, as the robustness in the lower half shows: With the extended Romer and Romer (2004) shock

series, the most favored model relates the instruments also to shocks other than the monetary policy shock. Note: The
test reports modified harmonic mean estimator of Bayes factors associated with various restrictions of equation (A.16):

Narrative shocks reflect all shocks, or only the intended shock, or have, after appropriate scaling, a unit loading on the

intended shock.

Table C.3: Assessing the restriction of narrative instruments to a single shock

For the narrative policy instruments used in the VAR, the data provide more support for the
restricted model consistent with the VAR assumptions than for the unrestricted model. In particular,
based on the modified harmonic mean approximation to the posterior data density, the Bayes factor
is between +2.8 and +6.3 log points in favor of specifications in which the DSGE model only loads on
the intended shock.

65



C.3 Gibbs sampler

To calibrate the Gibbs sampler, I examine the autocorrelation functions and Brooks and Gelman (1998)-
type convergence statistics of all model parameters within Markov chains. See Figures C.16 and C.17 for 
the flat prior VAR and the DSGE-VAR, respectively. If the distributions differ visibly for different parts 
of the sample, I increase the number of draws. Similarly, I compute the autocorrelation of the maximum 
eigenvalue of the stacked VAR(1) representation of (2.2) as well as of the Frobenius norm of V and the 
log-likelihood. Figure C.15 shows the corresponding plots. With a flat prior, I discard the first 50,000 
draws and keep every 20th draw with a total accept sample of 5,000 for the DSGE-VAR and 2,000 for 
the flat prior VAR. This produces results consistent with convergence of the sampler (see Figures C.16 
and C.17). The resulting samples are also reasonably efficient: the autocorrelation of the subsamples in 
Figure C.15 are reasonably small, particularly with low prior weights on the DSGE model.
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Note: Autocorrelations are reported based on both the Pearson and the Spearman correlation measure. Asymptotic

classical 90% credible sets for the Pearson coefficient, computed under the assumption of zero correlation, are included

around the horizontal axis. The autocorrelations are based on the thinned out sample after keeping every 20th draw.

The resulting sample is reasonably efficient also with a larger prior weight on the DSGE model.

Figure C.15: Gibbs-Sampler of baseline model: autocorrelation functions of univariate summary 
statistics by DSGE prior weight
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Shown are the (within-chain) means of the parameter estimates as the Markov chain grows. To standardize the plots, the

parameter estimates are displayed minus their mean and standard deviation in the first half of the chain: For example,

for element i of θ, the plot shows
t−1 ∑t

s=1 θs(i)−⌊T/2⌋−1 ∑⌊T/2⌋
s=1

θs(i)
(

⌊T/2⌋−1
∑⌊T/2⌋

s=1

(

θs(i)−⌊T/2⌋−1
∑⌊T/2⌋

u=1
θu(i)

)2
)

1/2 as a function of t. Brooks and Gelman

(1998) argue that these means should have converged for a satisfying posterior simulation. The results above indicate

that the convergence is very good for both the elements of the VAR coefficient matrix B and the covariance matrix V .

Figure C.16: Brooks and Gelman (1998) type convergence diagnostic for the flat-prior narrative VAR
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Shown are the (within-chain) means of the parameter estimates as the Markov chain grows. To standardize the plots, the

parameter estimates are displayed minus their mean and standard deviation in the first half of the chain: For example,

for element i of θ, the plot shows
t−1 ∑t

s=1 θs(i)−⌊T/2⌋−1 ∑⌊T/2⌋
s=1

θs(i)
(

⌊T/2⌋−1
∑⌊T/2⌋

s=1

(

θs(i)−⌊T/2⌋−1
∑⌊T/2⌋

u=1
θu(i)

)2
)

1/2 as a function of t. Brooks and Gelman

(1998) argue that these means should have converged for a satisfying posterior simulation. The results above indicate

that the convergence is best for the elements of the VAR coefficients B and almost as good for the elements of the

covariance matrix V . Some structural parameter draws seem to only settle down after about 4,000 draws.

Figure C.17: Brooks and Gelman (1998) type convergence diagnostic for DSGE-VAR with T0 = 1
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