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Abstract

A tractable production-externality-based circular city model in which both firms and work-

ers choose location as well as intensity of land use is presented. The equilibrium structure

of the city has either (i) no commuting (“mixed-use” form) or (ii) a central business district

(CBD) of positive radius and a surrounding residential ring. Regardless of which form pre-

vails, the intra-city variation in all endogenous variables displays the negative exponential

form: x(r) = x(0)e−φxr (where r is the distance from the city center and φx depends only

on preference and technology parameters). An application is presented wherein it is shown

that population growth may lead to a smaller increase in land rents in cities that cannot

expand physically because these cities are less able to exploit the external effect of greater

employment density.

Keywords: Land use, density gradients, agglomeration economies, commuting costs
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1 Introduction

We present a model of a production-externality-based circular city in which both firms and

workers choose location as well as intensity of land use. In our model, the internal structure

of the city is endogenous and can take exactly one of two forms. Either the city is of the

“mixed-use” form where there is no commuting and workers reside at the same location

as the firm they work for or it has a “monocentric city” structure with a circular central

business district (CBD) of positive radius and a surrounding residential ring. Regardless

of which form prevails, the intra-city variation in all endogenous variables – residential and

commercial rents, employment and residential densities, and wages – display (over their

relevant domains) the negative exponential form: x(r) = x(0)e−φxr, where r is distance from

the city center (which is indexed by 0) and φx depends only on preference and technology

parameters.

Our model is a variant of the Lucas & Rossi-Hansberg (2002) circular city model in which

the proximity between two firms located at different points in the plane is measured not as

the crow flies (as is the case in Lucas & Rossi-Hansberg) but as the sum of the lengths of the

rays connecting each point to the city center. With this one change, the equilibrium of their

model simplifies dramatically to one with the properties noted above. Our model is also a

close relative of what Anas, Arnott & Small (2000) call a panexponential city model, defined

to be a city in which all rent and density gradients are negative exponentials. While Anas,

Arnott and Small offered their definition in the context of the classic monocentric city model

(where all employment, by assumption, occurs at the city center), negative exponentiality

arises in our model for the more general setting where firms and workers compete for land

at each point in the city.

Aside from connecting two ostensibly different theoretical structures, our model makes

three other contributions. First, it strengthens the link between urban economic theory and

an influential strand of empirical work that began with Clark (1951) and Mills (1969). The

first of these early studies established that the negative exponential form gave a remarkably
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good description of population density in urban areas and the second showed that the same

was true for land values in Chicago during most of the 19th century.1 Since then, the

negative exponential (or, equivalently, the log-linear) form has been analyzed extensively in

the empirical literature.2 By providing a structural interpretation to the exponents of e (or,

equivalently, the coefficients on distance in the log-linear form), our model sheds light on

the determinants of population, employment and land price variation within a city, and why

these patterns change over time.

Second, it sharpens our understanding of the equilibrium relationship between the utility

deliverable by a city and its population. In the standard monocentric city model, higher

population leads to lower utility because there is no explicit benefit for firms to locate together

at the center of the city (see for instance, Brueckner (1987)). In contrast, studies that focus

on the creation of cities imply that the relationship between utility and population is an

inverted-U (Henderson (1974)). These models posit some benefit from agglomeration but

assume that firms must locate at the city center and, typically, also assume that intensity

of land use by households is exogenously given (see, for instance, the survey by Abdel-

Rahman & Anas (2004)). Thus, an important question left open in the existing literature is

the conditions under which the inverted-U result is maintained when intra-city land use is

analyzed in more detail.3 We will show that for the inverted-U to emerge, the agglomeration

parameter must be bounded above by a quantity that depends on parameters that govern

the intensity of land use by businesses and households, and, in the case in which cities have

the CBD form, it also requires that communication costs exceed commuting costs.

The third contribution of our paper is to present an application of our model to a substan-

tive economic question. The question is the impact of urban growth controls on urban land

price appreciation when the economy is experiencing population growth. Intuition might

1Eden & Sclar (1975) and Atack & Margo (1998) establish similar patterns in historical land values for
Boston and New York City, respectively. More recently, Glaeser & Kahn (2001) have used the negative
exponential form to track the evolution of employment density in U.S. metropolitan areas over the last 50
years or so.

2See, for instance, Anas, Arnott & Small (1998) and the references cited therein.
3This question was not addressed in Lucas & Rossi-Hansberg (2002), although the structure of their

model is certainly suited to answering it.
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suggest that land price appreciation will be greater in cities where urban development is

more restricted.4 We show that this intuition ignores the impact of production externali-

ties: Population growth can cause cities that can expand more easily to experience larger

increases in land prices than cities that cannot expand easily. This effect comes from the fact

that a city that can expand more easily benefits more from the production externality. This

is always true if cities are of mixed-use form and is true for the CBD form if the externality

is more important in production than land.5

The paper is organized as follows. In the next section, we describe the basic environment.

In section 3, we analyze the internal structure of the city and establish that it can take only

one of two forms, depending on technological and preference parameters. In section 4, we

analyze the nature of spatial equilibrium when the city is of the mixed-use form. In section 5,

we do the same for the CBD city. Section 6 presents an application of the model to the role

of urban development constraints on land rents when the economy as a whole experiences

population growth. The Appendix gives proofs of some of the more technical results.

2 Environment

Space is modeled as a flat featureless plain extending infinitely in all directions, with an

arbitrary point marked off as the center. In polar coordinates, the center is the point (0, 0)

and all other points have coordinates (r, θ), where r is the length of a straight line connecting

the point to the center and θ is the angle this line makes at (0, 0). Given that each point

in space is physically indistinguishable from any other, it is natural to focus on allocations

that are symmetric relative to the center. A location is then described fully by the radius,

4This intuition appears to have guided recent work on house price appreciation. Glaeser, Gyourko & Saiz
(2008) looked for evidence of a negative relationship between elasticity of housing supply and the amplitude
of housing price cycles. They found some supportive evidence but also noted that there are many cities with
an elastic supply of housing that also experienced puzzlingly large price increases and subsequent declines.
In the same vein, Davidoff (2010) finds a puzzling lack of relationship between supply elasticities and house
price movements.

5As discussed later in the paper, this case can occur in our model without implying that all production
is concentrated in one location.
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r, of the circle centered at (0, 0) on which it resides, and there is a continuum of locations

for each r (all the points on the circle of radius r).

Utility function of a worker depends on the consumption of the single numeraire good

avaliable in this economy and on the service flow from land. A worker who resides in location

r has utility

U = cβ(r)l(r)1−β, β ∈ (0, 1) (1)

where l(r) is the consumption of land in location r and c(r) is consumption at location r.

A firm has a technology to produce the single consumption good. The production function

of a firm that uses one unit of land at location s is:

Y (s) = Az(s)γnα(s), α ∈ (0, 1), γ > 0 (2)

where n(s) is the number of workers per unit of land at location s, A is a TFP term that is

common to all firms in the city, and z(s) is a term – to be defined more precisely below –

that captures the efficiency gain that comes from proximity to workers employed by firms in

other locations.

A key assumption is that the proximity between any two firms is measured by the sum

of the distance of the two firms from the city center. In other words, if one firm is located

on a circle of radius r and the other firm is located on a circle of radius s, the distance

of the firms to each other is simply (r + s). The assumption that “distance” between two

firms is measured by the sum of the lengths to the city center is reasonable if communication

between workers in different firms requires travel to a central meeting place and the road

system is radial.

Letting N(s) denote the number of workers employed by a firm at location s, the total
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“production externality” utilized by a firm at location r is:

z(r) =

∫ ∞
0

2πs exp (−δ (r + s))N(s)ds.

Since z(0) =
∫∞

0
2πs exp (−δs)N(s)ds, the above definition implies

z(r) = z(0) exp (−δr) . (3)

Thus, irrespective of the distribution of employment across the city, the strength of the

production externality decays at the rate δ with distance from the city center. The spatial

distribution of employment affects the strength of the production externality at any location

only through the z(0) term. This property of the production externality greatly simplifies

model mechanics.

There is a technology for commuting. This technology allows workers to commute to any

firm that is located on the straight line that connects the worker’s residential location to the

city center. We follow Anas, Arnott & Small (2000) and Lucas & Rossi-Hansberg (2002)

and assume that a worker who resides in location s and commutes to a firm at location r

has exp(−κ|s− r|) unit of time to devote to production, where κ > 0.6

There is also a technology for converting land from its natural state into land that can

be used by workers and firms. The cost of converting a unit of natural land into developed

land is d units of the consumption good.

Finally, following convention, it is assumed that all land in the economy is owned by

entities outside of the model. These entities decide whether to convert any given unit of

natural land into developed land and then rent the developed land to workers and firms.

6As noted in Anas, Arnott & Small (2000), this assumption is key to obtaining an exponentially declining
land rent and population density function without making counterfactual assumptions on the structure of
preferences for land. Coupled with our assumption regarding how proximity between firms is calculated, we
can extend the negative exponential form to commercial rents as well as employment density.
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3 On the Internal Structure of the City

In this section, we show that the spatial organization of the city is consistent with either

one of two forms, depending on technology and preference parameters. From this we infer

that only one of these two forms can occur in equilibrium. This result can be rigorously

established by applying the method described in Lucas & Rossi-Hansberg (2002) (section 3,

pp. 1453-1462) to the case in which the productivity function z(r) is of the form in 3, namely,

z(0) exp(−δr). In the interests of brevity, what we do here is simply derive conditions on

parameter values under which the two forms can prevail and show that these conditions are

mutually exclusive and exhaust the parameter space.

We will assume that the set of developed locations are all points on and inside of a circle

of radius S (this circle defines the city boundary). The question we want to answer is: How

is this developed land allocated between commercial and/or residential use? It is customary

in urban economic theory to approach land use in terms of bid rent functions (Alonso (1964)

and Fujita (1989)). Let w(r) be the market wage at location r. Turning first to firms, let

qF (r) be the maximum rent a firm would be willing to pay for a unit of land at location r.

This quantity is simply Az(r)γn∗(r)α − w(r)n∗(r), where n∗(r) is the optimal choice of n

conditional on locating at r, and is given by

n∗(r) = [Aαz(r)γ/w(r)]1/(1−α) . (4)

Then,

qF (r) = [(1− α)/α]
[
αAz(r)γw(r)−α

]1/(1−α)
. (5)

As is intuitive, the maximum rent a firm is willing to pay depends positively on the location’s

productivity and negatively on the location’s wage.

Turning to households, let qH(r, s) be the maximum rent a worker would be willing to

pay for a unit of land at location r, given that he will work at location s. Conditional on
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paying qH(r, s) in rent, a worker’s optimal choices of c and l at location r are

c∗(r, s) = βw(s) exp (κ|s− r|) and l∗(r, s) = (1− β)w(s) exp (κ|s− r|)/qH(r, s), (6)

and his optimal utility is ββ(1− β)1−βw(s) exp(κ|s− r|)qH(r, s)−(1−β). If ū is the maximum

utility a worker can obtain from locating somewhere else, then

qH(r, s) = (1− β) ββ/(1−β)(w(s) exp (κ|s− r|)/ū)1/(1−β). (7)

As is intuitive, the maximum rent a worker is willing to pay for land at r depends positively

on the wage he earns and negatively on the utility he can get elsewhere.

Consider first the mixed-use case in which firms and their workers co-locate. In this case,

the bid rent functions qF (r) and qH(r, r) must coincide for all r ∈ [0, S]; otherwise, either

firms will outbid workers or workers will outbid firms, and a location will be fully commercial

or fully residential. Setting s equal to r in the bid rent function for households, setting the

resulting bid rent function equal to the bid rent function for firms, and using the expression

in 3 for z(r) implies

w(r) = [(1− α)α−α]
1−β
1−αβ [β(1−β)(1− β)β]−

1−α
1−αβA

1−β
1−αβ ū−

1−α
1−αβ z(0)

γ(1−β)
1−αβ ×

exp

(
−δγ(1− β)

1− αβ
r

)
. (8)

It is evident that wages decline exponentially from the city center, reflecting the fact that

the production externality is felt most strongly at the center. However, for this wage profile

to be an equilibrium, it must be the case that workers do not have an incentive to commute

to a job closer to the city center to take advantage of higher wages. This requires that the

rise in wages as a worker commutes toward the center not exceed the loss in working time

due to commuting, namely,

δγ(1− β)

1− αβ
≤ κ. (9)
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If commuting costs are high (κ is large), if the production externality is weak (γ is small),

and if communication between workers in different locations is not too difficult (δ is low),

then mixed use of urban land can be sustained in equilibrium.

We now turn to the case in which the city has a CBD structure. In this case, there

is an endogenously determined boundary SF < S such that all r ∈ [0, SF ) are devoted to

production and all s ∈ (SF , S] are devoted to residential use and the boundary SF can be

devoted to either use. If there is a central business district, workers must be indifferent

between working at different locations within this district. This implies that in the business

district the wages must satisfy the condition

w(r) = w(0) exp (−κr) for r ∈ [0, SF ]. (10)

Substituting this into the expression for n∗(r) and using the expression for z(r) in (3) yields

qF (r) = [(1− α) /α]w(r)n(r) = qF (0) exp

(
κα− δγ

1− α
r

)
.

Given that workers earn the same regardless of where they work, there is no need to keep

track of their place of work in order to determine their bid rent for a particular residential

location. The maximum rent a worker is willing to pay for land at location r and still get a

utility of u (using the equilibrium condition above) is:

qH(r) = (1− β) β
β

1−β

(
w(0) exp (−κr)

u

) 1
1−β

.

For CBD structure to be an equilibrium outcome, it must be the case that at the boundary

of the CBD, the bid rent curve for firms is steeper than the bid rent curve of workers. This

requirement imposes a constraint on the admissable value of κ. Observe that

ln qH(r) = ln (1− β) +
β

1− β
ln β +

(
1

1− β

)
ln

(
w(0)

u

)
− κ

1− β
r,
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which implies that the slope of the worker’s bid-rent function at SF is [−κ/(1− β)]qH(SF ).

Next, observe that

ln qF (r) = ln(qF (0)) +

(
κα− δγ

1− α

)
r

which implies that the slope of the firm’s bid-rent function at SF is [(κα−δγ)/(1−α)]qF (SF ).

Since at the boundary of the CBD qH(SF ) = qF (SF ), the necessary slope condition boils

down to two conditions. First, it must be the case that κα− δγ < 0 (otherwise the bid-rent

curve for firms would be rising away from the center) and, second, it must be the case that

−(κα− δγ)/(1− α) > κ/(1− β). This implies that

κ <
(1− β)γδ

(1− βα)
. (11)

Since both α and β are less than unity, it follows that the factor (1−β)/(1−βα) is less than

1. Therefore, the above condition implies that κ < γδ, which in turn implies that ακ < γδ.

Therefore, the only condition that κ must satisfy in order for the city to have a CBD is (11).

Observe that this condition is the exact complement of the condition (9). This shows that

the internal structure of the city can be only one of these two types.

4 The Mixed-Use City

The goal of this section (and the next) is to understand the nature of the equilibrium re-

lationship between the utility deliverable by a city and its population. We will show that

for the inverted-U to emerge, the agglomeration parameter γ must be bounded above by a

quantity that depends on parameters that govern the intensity of land use by businesses and

workers.

In the first part of the analysis, we will take the population of the city P and its size S as

given and see how employment and residential densities as well as wages and rents in each
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location are determined. In the second part of the analysis, we will endogenize S, which will

depend on the cost of converting undeveloped land into developed urban land.

To begin, observe the expression for n∗(r) along with the expressions for w(r) in (8) and

z(r) in (3), pins down the equilibrium spatial profile of employment density as a negative

exponential function:

n(r) = n(0) exp

(
− δγβ

1− αβ
r

)
. (12)

Employment density declines with distance from the city center because labor is less pro-

ductive farther from the city center, and, notwithstanding the fact that wages are also lower

farther from the city center, fewer workers can be profitably employed on a unit of land. The

rate of decline is faster the larger is the communication cost parameter δ.

The value of n(0) is determined by invoking the two market clearing conditions that apply

in this model. First, there is the labor market clearing condition. Since a firm and its workers

co-locate, each location is a “local labor market” and demand and supply have to match

for each location. Letting θ(s) denote the fraction of land that is devoted to production in

location r, we can express this requirement as

n∗(r)θ(r) = [1− θ(r)]/l∗(r). (13)

Since n∗(r) = [αq(r)]/[(1 − α)w(r)] and l∗(r) = (1 − β)w(r)/q(r), we find that θ(r) =

[1−β]/[1−αβ] = θ.7 Thus, the proportion of land devoted to production is constant across

all locations in the city, and the level of employment in location r, N(r), is simply θn(r).

The second market clearing condition requires that the total number of residents in the

7The mixed-use case has also been analyzed in Wheaton (2004) for an exogenously given productivity
gradient and exogenously given land use intensities for firms and workers. Wheaton does not impose the
local labor market clearing condition (13). Instead, the fraction of land in use by firms (or workers) at any
location is determined by the relative magnitude of the rent levels for each use.
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city must equal the total population of the city, P , namely,

P =

∫ S

0

2πr[1− θ]/l∗(r)dr.

Using (12) and (13), the above implies

P = 2πθn(0)

∫ S

0

r exp

(
− δγβ

1− αβ
r

)
dr. (14)

Using (14), we can express employment density at the city center as a function of S and P :

n(0) =
P

2πθ
∫ S

0
r exp

(
− δγβ

1−αβ r
)
dr
. (15)

Knowing N(r) also allows us to express the strength of the production externality at the

city center in terms of n(0), namely,

z(0) = 2π

∫ S

0

r exp(−δr)N(r)ds = 2πθn(0)

∫ S

0

r exp

(
−
[

δγβ

1− αβ
+ δ

]
r

)
dr, (16)

which then implies

z(0) = P

∫ S
0
r exp

(
−
[
δγβ

1−αβ + δ
]
r
)
dr∫ S

0
r exp

(
− δγβ

1−αβ r
)
dr

. (17)

Once z(0) and n(0) are determined, rents in each location can be recovered from expres-

sion q(r) = (1− α)Az(r)γn(r)α:

q(r) = (1− α)Az(0)γn(0)α exp

(
− γδ

1− αβ
r

)
(18)
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Finally, equilibrium residential density is given by

1/l(r) = (1− β)/[β(1− α)]n(0) exp

(
− δγβ

1− αβ
r

)
. (19)

Before proceeding further, it may be helpful to summarize some partial equilibrium results

so that the basic mechanisms in the model can be highlighted. Proposition 1 deals with the

effect of changes in population, holding fixed the size of the city.

Proposition 1 (The Effect of Population Size P ): Holding S constant, (i) employment

and productivity rise proportionately with P , (ii) the elasticity of rents in any location with

respect to P is α+γ, (iii) the elasticity of wage in any location with respect to P is α+γ−1,

and (iv) elasticity of ū with respect to P is β(α + γ)− 1.

Proof. (i) follows from the fact that both n(0) and z(0) are proportional to P ; (ii) follows

from (i) and the fact that q(r) = (1 − α)Az(r)γn(r)α; (iii) follows from (i) and the fact

that w(r) = αAz(r)γn(r)α−1; (iv) follows from (ii) and (iii) and the fact that ū = ββ(1 −

β)1−βw(r)q(r)−(1−β).

Proposition 2 deals with effects of changes in the size of the city, holding city population

fixed.

Proposition 2 (The Effect of City Size S): Holding P constant, (i) employment, produc-

tivity, and rents at the city center are decreasing in S, (ii) if α + γ ≤ 1, wages at the city

center are decreasing in S, otherwise the effect is ambiguous, (iii) if β(α + γ) ≤ 1, ū is

increasing in S, otherwise the effect is ambiguous.

Proof. Knowing n(0) and z(0) in terms of P and S allows us to express w(0), q(0), and ū
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in terms of P and S. For w(0) we substitute (15) and (17) into (4) to obtain

w(0) = αAP (α+γ)−1

∫ S0 r exp
(
−
[
δγβ

1−αβ + δ
]
r
)
dr∫ S

0
r exp

(
− δγβ

1−αβ r
)
dr

γ ×
[
2πθ

∫ S

0

r exp

(
− δγβ

1− αβ
r

)
dr

](1−α)

. (20)

For q(0), we substitute (20) and (17) into (5) to obtain

q(0) = (1− α)AP (α+γ)

∫ S0 r exp
(
−
[
δγβ

1−αβ + δ
]
r
)
dr∫ S

0
r exp

(
− δγβ

1−αβ r
)
dr

γ ×
[
2πθ

∫ S

0

r exp

(
− δγβ

1− αβ
r

)
dr

]−α
. (21)

For ū we substitute (15) and (17) into ββ(1− β)1−βw(r)q(r)−(1−β) to obtain

ū = KAβP−(1−β(α+γ)) × (22)[∫ S

0

r exp

(
−
[

δγβ

1− αβ
+ δ

]
r

)
dr

]γβ [
2πθ

∫ S

0

r exp

(
− δγβ

1− αβ
r

)
dr

]1−β(α+γ)

,

where K is a positive constant.

By Lemma 2 (in the Appendix), (
∫ S

0
r exp

(
−
[
δγβ

1−αβ + δ
]
r
)
dr)/(

∫ S
0
r exp

(
− δγβ

1−αβ r
)
dr)

is decreasing in S. Given this, the results follow from the expressions given above.

So far we have taken S as given. Now we turn to the determination of S. Since it costs

d units of the consumption good to convert one unit of undeveloped land into urban land,

the equilibrium value of S is simply one that solves:

q(S;P ) = d, (23)

where q(S;P ) denotes the rent at the boundary of the city when the population is P . The

following proposition establishes monotonicity of rent at the city boundary with respect to
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the distance of the boundary from the city center. This property implies that a unique value

of S solves (23).

Proposition 3 Given P , the rent at the boundary of the city is strictly decreasing in S with

limS→0 q(S;P ) =∞ and limS→∞ q(S;P ) = 0. Furthermore, q(S;P ) is increasing in P .

Proof. : From (18) we have that

q(S;P ) = q(0) exp

(
− γδ

1− βα
S

)
.

By Proposition 2, q(0) is decreasing in S. Since exp
(
− γδ

1−βαS
)

is strictly decreasing in S, it

follows that q(S;P ) is strictly decreasing in S. To establish the limit properties, we use equa-

tion (21). As S approaches 0, the term
∫ S

0
r exp

(
−
[
δγβ

1−αβ + δ
]
r
)
dr/

∫ S
0
r exp

(
− δγβ

1−αβ r
)
dr

in q(0) approaches 1 (this follows from an application of L’Hospital’s Rule) and the term[
2πθ

∫ S
0
r exp

(
− δγβ

1−αβ r
)
dr
]−α

approaches infinity. Since exp
(
− γδ

1−βαS
)

approaches 1, it fol-

lows that limS→0 q(S;P ) = ∞. Going the other way, as S approaches ∞, all three terms

approach 0. Hence, limS→∞ q(S;P ) = 0. To prove the second part, observe from (21) that,

given S, q(0) is increasing in P . Therefore, q(S;P ) is increasing in P .

Corollary 1 Given P , there exists a unique Sd that solves q(Sd;P ) = d.

Finally, we come to the relationship between U (the utility deliverable by a city) and P

when the city boundary adjusts so that the rent at the boundary is d. We will denote this

relationship by Ud(P ) : R++ → R.

We can think of this function as a composition of two functions: One function is the

relationship between S and P , denoted Sd(P ), that gives the size of the city when the

population is P and rent at the boundary is d. The other function, denoted Ud(S), gives the

relationship between utility deliverable by a city of size S, when rent at the boundary is d.

Unfortunately, the function Sd(P ) is an implicit one, without a closed-form expression. As a

result, Ud(P ) is also implicitly defined. However, the function Ud(S) does have a closed-form

14



(and easily visualizable) expression. Therefore, in what follows, we first characterize the

(implicit) function Sd(P ) and then the explicit function Ud(S). The end result will be an

implicit characterization of Ud(P ) = Ud(Sd(P )).

The Sd(P ) function is given by the requirement that the rent at the boundary of the city

be d. From (21) and (23), it follows that Sd(P ) satisfies:

d = (1− α)AP (α+γ)

∫ Sd(P )

0
r exp

(
−
[
δγβ

1−αβ + δ
]
r
)
dr∫ Sd(P )

0
r exp

(
− δγβ

1−αβ r
)
dr

γ ×
[

2πθ

∫ Sd(P )

0

r exp

(
− δγβ

1− αβ
r

)
dr

]−α [
exp

(
− γδ

1− βα
Sd(P )

)]
.

Proposition 4 Sd(P ) : R++ → R++ is strictly increasing in P . Furthermore, limP→0 Sd(P ) =

0 and limP→∞ Sd(P ) =∞.

Proof. There are three square-bracketed terms in which Sd(P ) appears. The last term

is strictly decreasing in Sd. Ignoring the exponent −α, the second term in square brackets

is strictly increasing in Sd. Therefore, taking into account the exponent, this term is also

strictly decreasing in Sd. Finally, by Lemma 2, the first term in square brackets is also strictly

decreasing in Sd. Therefore, the r.h.s. of the above equation is strictly decreasing in Sd. Since

the r.h.s. is strictly increasing in P , it follows that Sd(P ) must be strictly increasing in P.

To establish the first limiting property, let {Pn} be a sequence converging to 0. From the

first part, we know that Sn = S(Pn) is a strictly decreasing sequence. Since Sn is bounded

below by 0, it follows that limSn = S0 ≥ 0 must exist. Suppose, to get a contradiction, that

S0 > 0. Then all square-bracketed terms converge to positive numbers. This implies that

the r.h.s. converges to 0, which is impossible since the l.h.s. is strictly positive. Therefore,

limP→0 Sd(P ) = 0.

To establish the second limiting property, let {Pn} be a sequence diverging to∞. By the

first part of this proposition, Sn = S(Pn) is a strictly increasing sequence. We claim that

this sequence is unbounded. Suppose not. Then, since the sequence is strictly increasing
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and bounded above, it must converge to a limit S∞ > 0. This means that all the terms

involving Sd(Pn) converge to positive numbers. Therefore, the r.h.s. diverges to ∞, which

is impossible since the l.h.s. is finite. Therefore, limP→∞ S(Pn) =∞.

The Ud(S) function also derives from the requirement that rent at the boundary be d, that

is from the requirement, d = q(0)e−
δγ

1−αβS. To obtain this relationship, we use the expression

for q(0) = (1− α)Az(0)γn(0)α, which can be expressed in terms of only n(0) using (16).

The other equation we will use is that qH(0) = qF (0) = q(0). This gives us the condition

(1− α)Az(0)γn(0)α = (1− β) β
β

1−β

(
w(0)
ū

) 1
1−β

, which again can be expressed in terms of only

n(0)and ū by expressing w(0) and z(0) only in terms of n(0)and other parameters.

When these two equations in terms of n(0) and ū are solved, we obtain

Ud(S) = Kd−
(1−β(α+γ))

α+γ A
1

(α+γ) ×

exp

(
−δγ (1− β(α + γ))

(1− αβ) (α + γ)
S

)
∗
[∫ S

0

2πr exp

(
−δ (1− βα + γβ)

1− βα
r

)
dr

] γ
(α+γ)

, (24)

where K is a positive constant.

Proposition 5 If 1−β(α+γ) > 0, Ud(S) is single-peaked with respect to S, with limS→0 Ud(S) =

limS→∞ Ud(S) = 0 and the peak occuring for a strictly positive S.

Proof. It is clear that limS→0 Ud(S) = 0. Furthermore, since 1− β(α + γ) > 0, the integral

term in square brackets converges to a positive finite number as S diverges to ∞ and the S

term converges to 0. Hence, limS→∞ Ud(S) = 0.

To determine the shape of this function, it is convenient to examine the ln(Ud(S)) :

ln(Ud(S)) = D +

γ

γ + α
ln

(∫ S

0

2πr exp

(
−δ (1− βα + γβ)

1− βα
r

)
dr

)
−
(
γδ (1− βα− γβ)

(γ + α) (1− βα)
S

)
,

where D is a constant. Thus, on the logarithmic scale, Ud(S) has a linear component that

starts at 0 and declines linearly with S and a component that starts at −∞ and increases
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at most logarithmically with S. Since the rate of growth of a log function at 0 is infinite, it

is clear that ln(Ud(S)) increases at S = 0 and reaches a peak at some point S > 0. Hence,

Ud(S) has the same shape.

Corollary 2 If 1 − β(α + γ) > 0, Ud(P ) = Ud(Sd(P )) is single-peaked with respect to S.

Furthermore, limP→0 Ud(P ) = limP→∞ Ud(P ) = 0.

Proof. Treating Ud(P ) as differentiable with respect to P, we have

∂Ud(P )

∂P
=
∂Ud(S)

∂S

∂Sd(P )

∂P
.

Since the second term on the r.h.s. is always positive, the shape of the Ud(P ) function is

determined by the shape of the Ud(S) function. Hence, Ud(P ) is also single-peaked. The

limiting properties follow directly from (24) and the limiting properties of Sd(P ).

It is worth noting that Proposition 5 is consistent with the results in Propositions 1 and

2. Recall that Proposition 1 states that when 1−β(α+γ) > 0, utility in the city is decreasing

in P and Proposition 2 states that under the same condition utility is increasing in S. Thus,

as S increases and the city fills up with people so that the rent at the boundary is d, there

are two offsetting forces working on utility obtained by residents of the city. When the city is

physically small, the utility enhancing effect of S is stronger than the utility decreasing effect

of higher population. Eventually, though, the utility depressing effect of higher population

dominates and utility declines with S.

To understand better why utility is increasing when P is low but declining when P is

high, it is helpful to think of the case in which the city cannot expand at all. In this case,

utility deliverable by the city declines as population increases. With population growth,

even if the wages increase (which happens when α+ γ − 1 > 0), utility declines because the

increase in wages, and the implied increase in c, is not large enough to compensate for the

lower consumption of residential space. This comes from the condition 1− β(α+ γ) > 0. In

the case in which the city can expand at the cost of d, the city does expand with higher P and
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allows workers to increase their consumption of land, but only when the city is small. As we

see from the equation (15), employment density at the center (which is inversely proportional

to the consumption of land per worker at the center) becomes increasingly insensitive to an

increase in S as S gets higher. In the limit, equilibrium allocations at the center become

similar to the case in which S does not change. Although some people move to the outskirts

when S goes up, they form an increasingly small portion of the general population, and, so,

this re-shuffling does not affect employment and residential densities in the center much.

The condition 1 − β(α + γ) > 0 is our analog of what Fujita, Krugman & Venables

(1999) call the “no-black-hole condition.” If this condition is violated then, as is evident

from the expression of ln(Ud(S)), utility deliverable by the city would be increasing in S.

Since Sd(P ) is always increasing in P , this, in turn, would imply that utility deliverable

by the city would be increasing in P . Under these conditions, the model would imply that

all production should take place in one giant city. To rule this out (hence the appellation

“no-black-hole condition”), the strength of increasing returns in the model must be bounded

above.8

5 The CBD City

As in the previous section, we will first explain the determination of employment and resi-

dential density functions, and the wage and rent functions for given values of S and P . In

the second part, we will explain how S is determined.

To begin, the expression for n∗(r) along with the expression for w(r) in (10) pins down

8It is of interest to note that Lucas (2001) and Lucas & Rossi-Hansberg (2002) assume a condition that
is stronger, namely, 1 − (α + γ) > 0. Although this condition is also labeled a “no-black-hole condition,”
it is needed to rule out a different kind of black hole, one in which all firms pile up at 0 (the city center)
with each firm using a vanishingly small amount of land but enjoying unboundedly high external effect. This
possibility is not a concern for us because the form of the external effect function implies that equilibrium
employment density must have the negative exponential form and, hence, productivity at the city center is
naturally bounded above by city size and total population, as seen in (17).
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the equilibrium spatial profile of employment density as:

n(r) = n(0) exp

(
−(δγ − κ)

1− α
r

)
for all s ∈ [0, SF ].

Thus, employment density declines with distance from the city center. The rate of decline is

faster the larger is the communication cost parameter δ, smaller is commuting cost κ, and

smaller is (1−α) (i.e., less important is land in the production function). The rate of decline

depends positively on γ also, which comes from the fact that when the external effect is

strong, firms have stronger reason to congregate toward the center of the city.

From our discussion of bid rent functions for the CDB, we have that the equilibrium rent

function q(r) is given by

q(r) = max

{
qF (0) exp

(
−δγ − κα

1− α
r

)
, qH(0) exp

(
− κ

1− β
r

)}
(25)

The rent function is a continuous function declining in distance from the city center with the

speed of decline undergoing a discrete drop at the boundary between the commercial and

residential districts. The fact that there must be a discrete drop follows from (11). Observe

that at SF

qF (0) exp(−δγ − κα
1− α

SF ) = qH(0) exp(− κ

(1− β)
SF ). (26)

The labor market clearing condition ensures that exactly the right level of labor is avail-

able in each work location, taking into account the time lost in commuting to work. In the

mixed city case, this condition is determined by θ(s). In the CBD case, we already know

that θ(s) = 1 for s ∈ [0, SF ] and θ(s) = 0 for s ∈ (SF , S]. As we will see, what this condition

determines now is the boundary of the commercial district, namely, SF . To develop this con-

dition, note that taking into account the time lost in commuting, the total supply of labor

time available at the border of the CBD is
∫ S
SF

2πr
l(r)
e−κ(r−SF )dr. If the employment density at

a CBD location r is n(r), the labor time needed at the border of the commercial district
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to fulfill this demand is eκ(SF−r)n(r). Therefore, the total time needed at the border of the

CBD to satisfy total labor demand inside the commercial district is
∫ SF

0
2πrn(r)eκ(SF−r)dr.

Equality of labor demand and supply then requires

∫ SF

0

2πrn(r) exp (κ(SF − r)) dr =

∫ S

SF

2πr

l(r)
exp (−κ(r − SF )) dr,

which, using the fact that l(r) = (1 − β)w(0)e−κr/qH(r) and the expressions for n(r) and

qH(r) derived earlier, simplifies to:

n(0)w(0)(1− β)

∫ SF

0

r exp

(
−δγ − κα

1− α
r

)
dr = qH(0)

∫ S

SF

r exp

(
− κ

(1− β)
r

)
dr. (27)

Finally, using (26) and 1−α
α
n(0)w(0) = qF (0), we obtain:

 S∫
SF

s exp

(
− κ

1− β
s

)
ds

 =

(1− β)

(1− α)
α

 SF∫
0

s exp

(
ακ− γδ

1− α
s

)
ds

 exp

(
−κ+ δγ + βκα− βδγ

(1− α) (1− β)
SF

)
(28)

Observe that this is an equation in which the only endogenous variables are SF and S.

Taking S as given, we have the following proposition regarding the relationship between SF

and S.

Proposition 6 For each S > 0, there exists a unique SF (S) ∈ (0, S), where SF (S) is strictly

increasing in S. Furthermore, limS→0 SF (S) = 0 and limS→∞ SF (S) = S̄F > 0.

Proof. Given any S > 0, the upper bound on κ implies that the r.h.s. of (28) is increasing

in SF . The l.h.s. of (28) is clearly decreasing in SF . Furthermore, the r.h.s. is 0 for SF = 0,

while the l.h.s. is strictly positive, and the r.h.s. is strictly positive for SF = S, while the

l.h.s. is 0. Therefore, for each S > 0 there is a unique SF ∈ (0, S) that ensures that (28) is

satisfied. Observe also that as S goes up and SF does not change, the integral on the l.h.s.
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goes up. Since the r.h.s. is increasing in SF , the equilibrium SF must be strictly higher.

Thus SF (S) is strictly increasing in S.

To prove the second part, observe that since SF (S) < S for all S, it must be the case

that limS→0 SF (S) = 0. To prove the other limiting result, we will first establish that

limS→∞ SF (S) is bounded above. Let Sn be an increasing sequence diverging to ∞. Let

SF (Sn) be a corresponding sequence of SF that satisfies (28). Then SF (Sn) is also a strictly

increasing sequence. Suppose that this sequence diverges to∞. Then, by Lemma 2, we know

that

lim
Sn→∞

Sn∫
SF (Sn)

s exp

(
− κ

1− β
s

)
ds = 0.

But this implies that the l.h.s. of (28) converges to 0, while the r.h.s. diverges to ∞, which

is impossible. Hence, SF (Sn) must be bounded above. Since SF (S) is strictly increasing, it

follows that limSF (S) must converge to some number S̄F > 0.

Proposition 6 makes sharp predictions about the size of the CBD relative to the size of the

city. In particular, controlling for the physical size of the city, the physical size of the CBD

is predicted to not depend upon population size or productivity of the city. Also, it predicts

that there is an upper bound on CBD size that depends only on technology and preference

parameters. Since the monocentric city literature tends to ignore the determination of the

size of the CBD, these – potentially testable – implications of the model are noteworthy.

The requirement that the number of residents of the city equal total population P

pins down n(0). Specifically, we must have P =
∫ S
SF

2πr
l(r)
dr, where the integrand gives

the total number of residents living on each circle of radius r. Observing that l(r) =

(1− β)w(0) exp (−κr) /qH(0) exp
(
− κ

1−β r
)
, yields

P =
qH(0)

(1− β)w(0)

∫ S

SF

2πr exp

(
− βκ

(1− β)
r

)
dr.
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Using (26), the fact that qF (0) = (1− α)w(0)n(0), and (28), we obtain:

n(0) =
P[

2π
S∫

SF (S)

r
(

exp −κβ
1−β r

)
dr

]
[

S∫
SF (S)

r exp
(
− κ

1−β r
)
dr

]
[
SF (S)∫

0

r exp
(
ακ−γδ

1−α r
)
dr

] . (29)

Knowing n(0) allows us to pin down the external effect at the city center. Observe that

z(0) = n(0)
∫ SF

0
2πr exp

(
κ−δγ
1−α − δ

)
rdr and so,

z(0) =

P

[
SF∫
0

2πr exp
((

κ−δγ
1−α − δ

)
r
)
dr

]
[

2π
S∫
SF

r exp
(
−κβ
1−β r

)
dr

]
[
S∫
SF

r exp
(
− κ

1−β r
)
dr

]
[
SF∫
0

r exp
(
ακ−γδ

1−α r
)
dr

] (30)

Once n(0) and z(0) are known, all other endogenous variables (employment and residen-

tial density, wages and rents by location) can be easily determined.

As in the mixed-use case, we provide some partial comparative static results in order to

highlight how the model with CBD works.

Proposition 7 (The Effect of Population Size P ): Holding S constant, (i) employment and

productivity rise proportionately with P , (ii) the elasticity of rents in all locations with respect

to P is α+γ, (iii) the elastcity of wages with respect to P is α+γ−1, and (iv) the elasticity

of utility deliverable by the city with respect to P is β(α + γ)− 1.

Proof. If S is fixed, then by Proposition 6 SF is fixed as well. Then (i) follows from

the expressions given above for n(0) and z(0); (ii) follows from (i), (25), (26) and qF (0) =

(1−α)Az(0)γn(0)α; (iii) follows from (i), (ii), and the fact that w(r) = [α/(1−α)]qF (r)/n(r);

and (iv) follows from (ii) and (iii) and the fact that ū = ββ(1− β)1−βw(SF )qH(SF )−(1−β)

Proposition 8 (The Effect of City Size S): Holding P constant and provided that δ > κ (i)

employment, productivity, and rents at the city center are decreasing in S (ii) if α + γ ≤ 1,
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wages in all locations are increasing in S; otherwise, the effect of S on wages is ambiguous,

(iii) if β(α + γ) ≤ 1, ū is increasing in S, otherwise the effect of S on ū is ambiguous.

Proof. (i) Lemma 3 in the Appendix establishes that, holding fixed P, n(0) is decreasing in S

and, provided δ > κ, z(0) is decreasing in S. Since qF (0) = (1−α)Az(0)γn(0)α, it follows that

rents at the city center are also declining in S. For (ii) we know that w(0) = αAz(0)γn(0)α−1.

Using the fact that z(0) = n(0)
∫ SF

0
2πre(

κ−δγ
1−α −δ)rdr, we have that

w(0) = αA

[∫ SF

0

2πre(
κ−δγ
1−α −δ)rdr

]γ
n(0)α+γ−1. (31)

Hence, given (i), we have that if α+ γ ≤ 1, w(0) is increasing in S. For (iii), note that using

26) and ū = ββ(1− β)1−βw(SF )qH(SF )−(1−β), we obtain

ū = KAβe
[δγ−κ]−β[δγ−ακ]

1−α SF

[∫ SF

0

2πre(
κ−δγ
1−α −δ)rdr

]γβ
n(0)−(1−β(α+γ)), (32)

where K is a positive constant. Since [δγ − κ]− β[δγ − ακ] > 0 (by the upper bound on κ),

it follows that ū is increasing in S provided β(α + γ)) ≤ 1.

Now we turn to the determination of S. The following proposition establishes that rent

at the boundary is decreasing in the city size, provided the communication cost parameter

δ is larger than the commuting cost parameter κ.

Proposition 9 Given P, qH(S) is decreasing in S if δ > κ. Furthermore, (i) limS→∞ qH(S) =

0 and (ii) limS→0 qH(S) =∞.

Proof. See Appendix.

Corollary 3 Given P , there exists a unique Sd(P ) such that qH(Sd(P ), 0) = d.

Now we turn to characterizing the relationship between the utility deliverable by the

CBD city and its population. As in the mixed-use city case, we will view this relationship

as a composition of two functions: Ud(P ) = Ud(Sd(P )).
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The relationship between S and P when rent at the boundary is d is obtained by setting

d = qH(S). Since qH(S) = qH(0)e−
κ

(1−β)S and qF (0) = (1 − α)Az(0)γn(0)α from (26), (29),

(30) we get

d = (1− α)APα+γ ×

SF (Sd(P ))∫

0

s exp
(
κ−δ(γ+1−α)

1−α s
)
ds

SF (Sd(P ))∫
0

s exp
(
ακ−γδ

1−α s
)
ds




Sd(P )∫
SF (Sd(P ))

s exp
(
− κ

1−βs
)
ds

Sd(P )∫
SF (Sd(P ))

s
(

exp −κβ
1−β s

)
ds



γ

×




Sd(P )∫
SF (Sd(P ))

s exp
(
− κ

1−βs
)
ds

Sd(P )∫
SF (Sd(P ))

s
(

exp −κβ
1−β s

)
ds

 1

2π

[
SF (Sd(P ))∫

0

s exp
(
ακ−γδ

1−α s
)
ds

]

α

×

exp

(
κ− γδ − ακβ + βγδ

(1− α) (1− β)
SF (Sd(P ))

)
× exp

(
− κ

(1− β)
Sd(P )

)
.

Proposition 10 If δ > κ, Sd(P ) : R++ → R++ is strictly increasing in P. Furthermore,

limP→0 Sd(P ) = 0 and limP→∞ Sd(P ) =∞.

Proof. We will establish that the r.h.s. of the above equation is decreasing in S. The r.h.s.

is a product of five positive terms. The last (fifth) term is clearly decreasing in S. From the

upper limit on κ, the fourth term is decreasing in SF and, since SF (S) is increasing in S, it

is also decreasing in S. By Lemma 4 (in the Appendix), the third term is decreasing in S.

Finally, also by Lemma 4, the second term is decreasing in S as well. Hence, the r.h.s. is

decreasing in S. Since the r.h.s. is strictly increasing in P, it follows that Sd(P ) is strictly

increasing in P.

To establish the limit properties, consider first a sequence {Pn} converging to zero. Then,

Sd(Pn) is a decreasing sequence that is bounded below by 0. Therefore, it must converge to

some Sd ≥ 0. Suppose, to get a contradiction, that Sd > 0. Then, all the terms containing S

or SF converge to strictly positive quantitities. Therefore, the r.h.s will converge to 0, which

is impossible given that the l.h.s. is strictly positive. To the prove the other limit result,
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let {Pn} be a sequence diverging to infinity. Then, Sd(Pn) is a strictly increasing sequence.

Suppose, to get a contradiction, that this sequence is bounded above. Then, the sequence

must converge to some strictly positive number S̄d > 0. Then, all the terms containing S or

SF will also converge to strictly positive numbers. Thus, the r.h.s. will diverge to infinity,

which is impossible given that the l.h.s. is a finite number d. Hence, Sd(Pn) must also diverge

to infinity.

To obtain the relationship between utility deliverable by the city and its TFP and size,

when rent at the boundary is d, we begin with the requirement that qH(S) = d, which

gives that d = qH(0)e(−
κ

1−βS). The second equation we utilize is the labor market clearance

equation (27). These two equations can be expressed in terms of n(0), u, SF , and other

parameters. Thus, we obtain

Ud(S) = KA
1

(γ+α)d
β(α+γ)−1

(γ+α) ×[
2π

∫ SF (S)

0

se(
κ−δ(γ+1−α)

1−α s)ds

] γ
(γ+α)

e(κ
β(α+γ)−1
(1−β)(γ+α)S)

[
e(
−κ+δγ+βκα−βδγ

(1−α)(1−β) SF (S))
] γ+α−1

γ+α

, (33)

where K is some positive constant.

Proposition 11 If δ > κ and 1− β(α + γ) > 0, limS→0 Ud(S) = limS→∞ Ud(S) = 0.

Proof. From Proposition 6 we know the SF (S) converges to zero as S converges to 0,

and therefore the integral term in (33) converges to 0. Also, we know that as S diverges to

infinity, SF converges to a finite number, and so behavior of Ud(S) is ultimately dominated

by eκ
β(α+γ)−1
(1−β)(γ+α)S, which converges to 0 (given our assumption that β(α + γ) < 1). Hence,

limS→∞ Ud(S) = 0.

While it is harder to establish that Ud(S) has a single peak in general (because of the

positive dependence of SF on S), it is likely to have a single peak if α + γ ≈ 1. To see this,
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observe

ln(Ud(S)) = D +
γ

α + γ
ln

[
2π

∫ SF

0

r exp

(
κ− δ (γ + 1− α)

1− α
r

)
dr

]
+

κ
β (α + γ)− 1

(1− β) (γ + α)
S +

(
γ + α− 1

γ + α

)
−κ+ δγ + βκα− βδγ

(1− α) (1− β)
SF ,

where D is a constant. Notice that the term that is linear in SF is small when α+γ ≈ 1 and

the behavior of ln(Ud(S)) is then determined by two terms, one of which increases at most

logarithmically in SF and another which declines linearly in S. If a unit increase in S leads

to a less than unit increase in SF (which must be true eventually since SF is bounded above

by S̄F ), we have the same situation as in the mixed-use case: one component rises at most

logarithmically in S, and another component starts at the origin and declines linearly in S.

Therefore ln(Ud(S)) must be single-peaked in S, and, thus, Ud(S) must be single-peaked in

S as well.

6 Population Growth, Development Constraints, and

Land Rents

In this section, we use the model developed in previous sections to explore the effects of

urban growth controls on land rents when the economy as a whole experiences population

growth. As noted in the introduction, our goal is to assess the notion that locations that

have difficulty expanding (due to topography or urban growth controls) will experience a

larger increase in the value of land (i.e., rents) as demand for urban land increases. We show

that this intuition needs to be modified when production externalities are present: A city

that can expand easily benefits more from the production externality, and this effect may

end up increasing rents more in that city.

We assume that the economy is composed of two cities and that, initially, these two cities

are in a symmetric equilibrium, each with population P . We assume that P is large enough
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so that the cities are on the downward sloping portion of their Ud(P ) curve. This ensures

that the initial symmetric equilibrium is a stable one.

We will consider the nature of the new equilibrium when there is an increase in population

from P to P ′. To keep matters simple, we will assume that there is some restriction that

makes it impossible to increase the supply of developed land in city 1 so that city 1 cannot

physically grow beyond its current size. There is no such constraint on the expansion of

urban land in city 2. We are interested in determining how land rents respond in the two

cities.

In the proposition to follow, we establish that if total population rises, city 2 will expand

in size. This result hinges on the shape of the Ud(P ) curve; in particular, that it is an

inverted U. This assumption is satisfied when cities are of the mixed-use form (as shown in

Proposition 5, Corollary 2), and it is likely to be satisfied when the cities have the CBD form.

Once we know that city 2 will be bigger in size in the new equilibrium, it is straightforward

to establish the conditions under which rents will be higher in city 2 relative to city 1. For

the mixed-use case, it will turn out that this will always be the case. For the CBD case, it

will require that γ > (1− α).

Proposition 12 Let S̄ and P̄ be the common size and population of the two cities in the

initial equilibrium and let S ′2 be the size of city 2 in the new equilibrium, with higher total

population. Then S ′2 > S.

Proof. First, we will establish that the population in city 1 must be higher in the new

equilibrium. Suppose, to get a contradiction, that P ′1 ≤ P̄ . Since the size of city 1 is given,

it follows from Proposition 1 for mixed-use cities and from Proposition 7 for CBD cities that

the city must be delivering as much or higher utility relative to the original equilibrium.

However, since overall population is higher, P ′2 > P̄ . Since Ud(P ) is downward sloping at P̄ ,

city 2 must then be delivering strictly lower utility relative to the original equilibrium (it

is further along the Ud(P ) curve to the right). This contradicts the equilibrium condition

of equal utility in the two cities. So, P ′1 > P̄ . Since city 1 cannot expand, it follows, from
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Proposition 1 and 7 again, that utility delivered by city 1 in the new equilibrium must be

strictly lower than in the original equilibrium. The condition of equal utility implies that

the same must be true in city 2. Therefore, given that Ud(P ) is declining at P̄ , P ′2 > P̄ .

Then, it follows from Proposition 6 for mixed-use cities and Proposition 10 for CBD cities

that S ′2 > S̄.

Having established that the city that can expand will, in fact, expand with population

growth, we can now turn to the effects of population growth on land rents. Denote by q′i(r)

the rent in location r in city i in the new equilibrium with higher total population.

Proposition 13 If cities are mixed-use, q′2(r) > q′1(r) for all r ∈ [0, S̄].

Proof. We will use qH(0) = qF (0) = q(0). This gives us the condition (1− α)Az(0)γn(0)α =

(1− β) β
β

1−β

(
w(0)
ū

) 1
1−β

, which again can be expressed in terms of only n(0)and ū by express-

ing w(0) and z(0) only in terms of n(0)and other parameters:

n(0) = KA
β

1−β(α+γ) ū
−(1−β)

1−β(α+γ)

[∫ S

0

r exp

(
−
[

δγβ

1− αβ
+ δ

]
r

)
dr

] γβ
1−β(α+γ)

where K is, again, some positive constant. Observe that this equation must hold in both the

expanding as well as the nonexpanding city. By Proposition 12, S ′2 > S̄ = S ′1, so we have

that n′2(0) > n′1(0). Therefore, it must be the case that z′2(0) > z′1(0). Thus, the external

effect is stronger in the expanding city. Since the utility of workers must be the same across

cities, it follows from (18) that q′2(0) > q′1(0). If rents in the city center are higher in city 2

relative to city 1, it follows from (18) again that rents in city 2 must also be higher relative

to city 1 for all comparable locations (in terms of distance from the city center).

Thus, the result is that when the city is mixed use and there is population growth, the

city that cannot expand physically will see a smaller rise in land rents than the city that can

expand. Ultimately, the reason for this result is intuitive. The city that can expand absorbs

more workers and, therefore, benefits more from the production externality. This means that

firms are more productive in the expanding city and are willing to pay more for land. In
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a mixed-use city, workers compete with firms for land in every location, so residential rents

rise relatively more in the expanding city as well.

It is worth noting that since q′2(0) > q′1(0), it must be the case that w′2(0) > w′1(0)

(otherwise workers would get lower utility in the second city). However, whether wages rise

or fall with the expansion in population depends on the strength of the production externality

relative to the importance of land in the production of goods. We have the following result:

Proposition 14 If γ > 1 − α, the expansion in the population will be accompanied by an

increase in real wages in both locations. If γ = 1 − α, real wages remain unchanged in city

1 but increase in city 2. If α+ γ < 1, wages decline in city 1 but may or may not decline in

city 2.

Proof. The proof follows from (20), which can be re-written as

w(0) = αAP (α+γ)−1 ×[∫ S

0

r exp

(
−
[

δγβ

1− αβ
+ δ

]
r

)
dr

]γ [
2πθ

∫ S

0

r exp

(
− δγβ

1− αβ
r

)
dr

](1−α−γ)

.

Consider first the case in which α+γ > 1. In city 2, both P and S are higher and, therefore,

w2(0) will be higher on both counts. In city 1, S remains unchanged, but P is higher, and

so, real wages are also higher. If α+ γ = 1, then w(0) depends only on S and, so, it remains

unchanged in city 1 but increases in city 2. If α + γ < 1, then w(0) will be lower in city 1

because P is higher and S is unchanged. In city 2, the effect of higher S and higher P work

in opposite directions (the former lowers real wages, while the latter raises it) and, therefore,

the effect on w(0) is ambiguous.

We now turn to the CBD case. We can establish that commercial rents will always be

higher in the city that can expand, but whether residential rents are higher depends on what

happens to real wages with the expansion in population. If real wages rise, residential rents

in the expanding city will be higher as well.

Proposition 15 For CBD cities, q′F,2(r) > q′F,1(r) and, if γ > 1− α, q′H,2(r) > q′H,2(r).
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Proof. To show that commercial rents will be higher in the expanding city, observe that

using (32) we get

n′2(0)

n′1(0)
=

[∫ S′2F
0

2πre(
κ−δγ
1−α −δ)rdr

] γβ
1−β(α+γ)

e−
κ(1−αβ)−δγ(1−β)
(1−α)(1−β(α+γ)) S

′
2F[∫ S̄F

0
2πre(

κ−δγ
1−α −δ)rdr

] γβ
1−β(α+γ)

e−
κ(1−αβ)−δγ(1−β)
(1−α)(1−β(α+γ)) S̄F

Since 1 − β(α + γ) > 0, given (11) and Proposition 12, it follows that n′2(0) > n′1(0).

Hence, z′2(0) > z′1(0). Since qF (0) = (1 − α)Az(0)γn(0)α, it follows that q′F,2(0) > q′F,1(0).

To prove the residential rent part, observe that w(0) = αAz(0)γn(0)α−1, which implies

w(0) = αA
[∫ SF

0
2πre(

κ−δγ
1−α −δ)rdr

]γ
n(0)γ+α−1. Therefore, if α + γ ≥ 1, w′2(0) > w′1(0). Since

qH(0) = ββ/(1−β)(1 − β)w(0)1/(1−β)ū−1/(1−β), it follows that q′H,2(0) > q′H,1(0). Therefore,

residential rents in city 2 will be higher than residential rents in comparable locations in city

1.

Since rent in any location is simply max{qF (r), qH(r)}, the immediate implication of

Proposition 15 is:

Corollary 4 q′2(r) > q′1(r) for all r ∈ [0, S̄].

7 Appendix

Lemma 1 Let 0 ≤ sL < sU . If k1 < k2,

e(k2−k1)sL <

sU∫
sL

sek2sds

sU∫
sL

sek1sds

< e(k2−k1)sU .
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And, if k2 < k1,

e(k2−k1)sU <

sU∫
sL

sek2sds

sU∫
sL

sek1sds

< e(k2−k1)sL .

Proof. We will establish the first set of inequalities (the proof of the second set is entirely

analogous). Turning first to the l.h.s. inequality, observe that sek2s = sesLk2+(s−sL)k2and

sek1s = sesLk1+(s−sL)k1 . Multiplying both sides of the latter equation by e(k2−k1)sL yields

e(k2−k1)sLsek1s = sesLk2+(s−sL)k1 ≤ sesLk2+(s−sL)k2 = sek2s, where the inequality follows be-

cause k2 > k1 and s − sL ≥ 0. Furthermore, the inequality is strict for all s ∈ (sL, sU ].

Therefore, integrating the first and last expressions in the chain with respect to s, we have

e(k2−k1)sL

sU∫
sL

sek1sds <

sU∫
sL

sek2sds.

Turning to the r.h.s. inequality, observe that sek2s = sesUk2+(s−sU )k2and sek1s = sesUk1+(s−sU )k1 .

Multiplying both sides of the the latter equation by e(k2−k1)sU yields

e(k2−k1)sUsek1s = sek2sU+(s−sU )k1 ≥ sesUk2+(s−sU )k2 = sek2s,

where the inequality follows since k2 > k1 and s − sU ≤ 0. Furthermore, the inequality is

strict for all s ∈ [sL, sU). Therefore, integrating the first and last terms in the chain with

respect to s, we have

e(k2−k1)sU

sU∫
sL

sek1sds >

sU∫
sL

sek2sds.
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Lemma 2 Let 0 ≤ sL < sU . Let

Λ(sL, sU) =

sU∫
sL

sek2sds

sU∫
sL

sek1sds

If k1 < k2, then ∂Λ(sL, sU)/∂sU > 0, and ∂Λ(sL, sU)/∂sL > 0. And, if k2 < k1, ∂Λ(sL, sU)/∂sU <

0, and ∂Λ(sL, sU)/∂sL < 0.

Proof. We begin with the case in which k1 < k2. Observe that

∂ ln(Λ(sL, sU))

∂sU
=
sU exp (k2sU)
sU∫
sL

sek2sds

− sU exp (k1sU)
sU∫
sL

sek1sds

Suppose, to get a contradiction, that ∂Λ(sL, sU)/∂sU ≤ 0. Then, we must have

sU exp (k2sU)
sU∫
sL

sek2sds

≤ sU exp (k1sU)
sU∫
sL

sek1sds

Or, given that all elements are positive, we have

exp ([k2 − k1] sU) =
sU exp (k2sU)

sU exp (k1sU)
≤

sU∫
sL

sek2sds

sU∫
sL

sek1sds

But this contradicts the r.h.s. inequality in Lemma 1. Therefore, ∂Λ(sL, sU)/∂sU > 0.

Analogous proof can be given for the case in which k2 < k1.

Lemma 3 Let 0 < sL < sU and k > 0. Let I(sU , sL, k) =
sU∫
sL

s exp (−ks) ds. Then (i)

limsU ,sL→∞ I(sU , sL, k) = 0 and (ii) limsU→∞,sL→s I(sU , sL, k) = Ī > 0.
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Proof. Observe that

sU∫
sL

se−ksds =
sUe

−ksU − sLe−ksL
−k

− e−ksU − e−ksL
k2

.

To prove (i), notice that as sU and sL go to infinity, the second term goes to 0, and the first

term (on an application of L’Hospital’s rule to s/eks) also goes to 0. To prove (ii), observe

that if sU goes to infinity and sL converges to s, then I(sU , sL, k) converges to

−se−ks

−k
+
e−ks

k2
> 0.

Lemma 4 For the CBD city, n(0) is decreasing in S and, provided δ > κ, z(0) is also

decreasing in S.

Proof. : Consider first n(0) :

n(0) =


S∫
SF

s exp
(
− κ

1−βs
)
ds

S∫
SF

s
(

exp −κβ
1−β s

)
ds


 P

2π
SF∫
0

s exp
(
ακ−γδ

1−α s
)
ds


By Lemma 2, the first term in square brackets is decreasing in S and SF , and the second

term is evidently decreasing in SF . Since SF (S) is an increasing function of S, it follows that

n(0) is a decreasing function of S.

Next, consider z(0):

z(0) = P


∫ SF

0
s exp

(
κ−δ(γ+1−α)

1−α s
)
ds

SF∫
0

s exp
(
ακ−γδ

1−α s
)
ds




S∫
SF

s exp
(
− κ

1−βs
)
ds

S∫
SF

s
(

exp −κβ
1−β s

)
ds

 .

Since δ > κ, it follows from Lemma 2 that the first term in square brackets is decreasing in

SF . And, by Lemma 2 again, the second term in square brackets is also decreasing in both
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S and SF . Since SF is increasing in S, it follows that z(0) is decreasing in S.

Proof of Proposition 9

To prove the first part, note that qH(S) = qH(0)e−
κ

(1−β)S. Since e−
κ

(1−β)S is decreasing in

S, we need to show that qH(0) is decreasing in S. We will show this by first showing that

qF (0)/qH(0) is increasing in S and then showing that qF (0) is decreasing in S. To begin, note

that qF (0)e−
δγ−κα
1−α SF = qH(0)e−

κ
(1−β)SF , which implies that qF (0)/qH(0) = e−

−κ+δγ+αβκ−βδγ
(1−α)(1−β) SF .

By the upper bound on κ, the r.h.s. of the latter equation is increasing in SF . Since SF (S)

is increasing in S, it follows that qF (0)/qH(0) is increasing in S. Turning to qF (0), we have

that qF (0) = (1− α)Az(0)γn(0)α. By Lemma 4 n(0) is decreasing in S and, if δ > κ, z(0) is

decreasing in S. This establishes that qF (0) is decreasing in S. Therefore, qH(0) is decreasing

in S.

We now turn to limiting behavior of qH(S).

Part (i): limS→∞ qH(S) = 0. Consider

qH(S) = (1− β) β
β

1−β

(
w(0) exp (−κS)

u

) 1
1−β

.

Using (29), (31), and (32), we can express the ratio of w(0) to ū as

w(0)

u
= KP (1−β)(γ+α)A−1

 S∫
SF

s

(
exp
−κβ
1− β

s

)
ds

−(1−β)(γ+α)

×

(∫ SF

0

s exp

(
κ− δ (γ + 1− α)

1− α
s

)
ds

)γ(1−β)

×

exp

(
(−κ+ δγ + βκα− βδγ) (γ + α− 1)

(1− α)
SF

)
,

where K is a positive constant. Given that limS→∞ SF (S) = S̄F , the last two terms approach

finite numbers. And, by Lemma 3,
S∫
SF

s
(

exp −κβ
1−β s

)
ds appoaches a strictly positive finite

number. Thus, we can conclude that as S →∞, the ratio w(0)/ū approaches a finite number
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as well. Therefore, the limiting behavior of qH(S) is governed by the limiting behavior of

exp (−κS) . Hence, limS→∞ qH(S) = 0.

Part (ii): limS→0 qH(S) =∞

Since S > SF (S), S → 0 implies SF (S) → 0. Then, it is easiest to show that qF (0) =

(1− α) z(0)γn(0)α goes to infinity, which would imply that qH(S) goes to infinity also. Turn-

ing first to n(0), observe that

n(0) =


S∫
SF

s exp
(
− κ

1−βs
)
ds

S∫
SF

s
(

exp −κβ
1−β s

)
ds

 P

2π

[
SF∫
0

s exp
(
ακ−γδ

1−α s
)
ds

]

We know from Lemma 1 that

exp (κSF ) <

[
S∫
SF

s
(

exp −κβ
1−β s

)
ds

]
[
S∫
SF

s exp
(
− κ

1−βs
)
ds

] < exp (κS) .

This implies that as S and SF converge to 0 (and, so, both exp (κSF ) and exp (κS) converge

to 1) the term in square brackets converges to 1. We also know that

[
SF∫
0

s exp
(
ακ−γδ

1−α s
)
ds

]
goes to zero as SF goes to zero, so n(0) goes to infinity as S goes to zero.

Turning next to z(0), we know that

z(0) = P


∫ SF

0
s exp

(
κ−δ(γ+1−α)

1−α s
)
ds

SF∫
0

s exp
(
ακ−γδ

1−α s
)
ds




S∫
SF

s exp
(
− κ

1−βs
)
ds

S∫
SF

s
(

exp −κβ
1−β s

)
ds


We know from Lemma 1, that the two square-bracketed terms converge to 1 as S and SF

goes to zero. That means z(0) converges to P as S goes to zero. It follows that qF (0) goes
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to infinity as S goes to zero. Since S is almost zero, there is effectively no depreciation of

rents over distance. So, for there to be any residential land, qH(S) must also diverge to ∞.
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