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1 Introduction

Neutral technical change is of central importance to researchers of economic growth and

business cycle fluctuations. For understanding the sources of economic growth over particu-

lar historical episodes it is often essential to separate the growth in efficiency of particular

inputs used in production from the Hicks-neutral, or disembodied, technological change that

does not affect the marginal rate of substitution between factors of production. The evo-

lution of technology at business cycle frequencies is essential for understanding the sources

of economic fluctuations. Moreover, the relationships between neutral technology and other

economic variables provide the essential guidance for the development of economic models.

These relationships are also routinely used to distinguish between competing models. For

example, the empirical finding that aggregate hours worked fall in response to a technology

shock called into question the usefulness of the Real-business-cycle (RBC) model (Kydland

and Prescott (1982), Long and Plosser (1983)) for interpreting aggregate fluctuations.

In light of the importance of the technology series, considerable effort was devoted to

obtaining robust empirical measures of the (growth of) neutral technology. Yet, in this paper

we will argue that the key identifying assumptions of the existing empirical approaches are

typically not satisfied in the presence of heterogeneous capital and labor inputs (e.g., when

the effective labor input aggregates services of different and possibly imperfectly substitutable

labor inputs, e.g., high and low skilled, young and old, workers in white collar or blue collar

occupations, etc). This leads us to develop a new method to estimate neutral technology that

is robust to the presence of (unobserved) factor heterogeneity.

The classic approach proposed by Solow (1957) identified neutral technology with the

residual output growth, i.e., the growth of output not accounted for by the growth of inputs.1

Clearly, because the technology shock is computed as a residual, the contribution of all the

factors of production must be accounted for which places high demands on the data. Moreover,

to identify technology shocks following this approach it is essential that an econometrician

knows the true production function. If the production function used by the econometrician

does not aggregate heterogeneous inputs appropriately, the identified technology shocks will

1The current state-of-the-art implementation of this procedure can be found in Basu, Fernald, and Kimball

(2006).
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be biased. Unfortunately, the true aggregation of heterogeneous labor and capital inputs

is not known. The solution adopted in the literature, following the work by Jorgenson, is

to aggregate all distinct labor and capital inputs into aggregate labor and capital inputs

measured in efficiency units using Tornquivst indices.2 The bias of this procedure is small

if (1) the distinct factor inputs observed in the data correspond to true distinct inputs into

the aggregate production function, (2) the true production function is well approximated

by a translog function, and (3) the parameters of the aggregate production function (for

example, the relative productivity of different inputs) are constant over time. The latter

requirement represents a major empirical challenge to this framework as it is well documented

that relative factor productivities exhibit non-trivial dynamics (e.g., Katz and Murphy (1992)

interpret the skill-biased technical change as the increase in the relative productivity of highly

educated and experienced workers). We will show that a violation of this assumption imparts a

quantitatively sizable bias on technology shocks identified as Solow residuals with Jorgenson’s

correction.

An alternative approach to identifying neutral technology shocks that drew substantial

recent interest in the literature is based on the identifying assumption that only technology

shocks have a long-run effect on labor productivity.3 The idea of using long-run restrictions

was developed in Blanchard and Quah (1989) and King, Plosser, Stock, and Watson (1991)

and was implemented in the business cycle context by Gali (1999) using structural vector au-

toregressions (SVAR). Although this approach has been intensely discussed in the literature,

the key identifying assumption is rarely questioned.4 Instead, most of the issued raised are of

2This is also the approach followed in practice. For example, the measures of productivity provided by the

Bureau of Labor Statistics are based on this procedure.
3A third approach adopts a more narrow interpretation of productivity shocks and attempts to directly

measure technological advances in the data. In a business cycle context, for example, Shea (1998) finds that

technological innovations identified using observations on R&D and patents in the data have only a weak

relationship to TFP and hours. In contrast, Alexopoulos (2010) finds that technological innovations identified

using data on books published in the field of technology are strongly positively correlated with TFP and

hours of work.
4It is widely recognized that this assumption is inconsistent with endogenous growth models. Capital taxes

also may have a long-run effect on labor productivity in a RBC model but were found to have a relatively

small effect in Francis and Ramey (2005). Shea (1998) suggests that if low-productivity firms are destroyed in

recessions this might have a long run effect on productivity. Uhlig (2004) argues that permanently changing
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econometric nature, such as the small sample bias, small number of lags, etc (e.g., Faust and

Leeper (1997), Chari, Kehoe, and McGrattan (2008), Fernandez-Villaverde, Rubio-Ramirez,

Sargent, and Watson (2007)). In this paper we question the long-run restriction itself. In

particular, we show that non-technology shocks do not have a long-run effect on productivity

only in a very restrictive class of models with homogeneous capital and homogeneous labor.

In models with heterogeneous labor or capital inputs most non-technology shocks can have

a long-run effect on labor productivity as well. Thus, even if econometric difficulties associ-

ated with this approach can be overcome,5 the fundamental economic difficulties presented

by factor heterogeneity will lead to biased inference of neutral technology.

Given these limitations of the existing procedures we propose an alternative method for

estimating neutral technology shocks that is robust to the presence of factor heterogeneity.

The proposed method does not make use of the long run restrictions and does not impute the

technology shocks as a residual. Instead, we interpret the technology shock as an unobserved

state and, using some equilibrium conditions of the model, we prove that this state can be

identified using filtering/smoothing techniques. Since we do not treat the technology shock

as a residual our method does not require to specify an explicit function that aggregates

heterogeneous labor inputs. Moreover, it does not require the parameters of this function

to be invariant over time. Rather, the derivatives of that function are themselves treated as

unobserved states in the filtering problem.

While heterogeneity presents a challenge to the existing procedures, it enables the identi-

fication of shocks in the method proposed in this paper. For example, the log of the wage of

workers of a particular type can be written as a sum of a common component and a compo-

nent that is partially idiosyncratic to that worker type. The system of equations represented

by wages of at least two distinct labor inputs thus has a factor structure that we exploit to

identify the common neutral technology component.

The paper is organized as follows. In Section 2 we describe the procedures used in the

social attitudes to workplace whereby workers substitute leisure activities at home with leisure activities at

work will result in effective mismeasurement of effective work hours and affect measured productivity in the

long run. The latter two papers do not study the quantitative importance of these mechanisms.
5For example, Christiano, Eichenbaum, and Vigfusson (2006) propose alternative procedures for estimating

long-run-identified SVARs with better small sample properties.

4



literature to identify technology shocks and show theoretically that they are biased in the

presence of worker heterogeneity that is not properly accounted for. In Section 3 we develop

a new method to recover technology shocks and prove its identification. In Section 4 we

asses how the different methodologies perform in small samples drawn from an estimated

RBC model with heterogeneous labor. The results suggest that the method that we propose

performs substantially better than the existing ones even in small samples. Finally, in Section

5 we apply our method in the data and estimate a quarterly technology series for the US. We

describe and analyze the sequence of identified shocks and document its co-movement with

other economic aggregates. Section 6 concludes.

2 Inputs’ Heterogeneity and the Identification of Tech-

nology Shocks

2.1 Identification of technology shocks in models with homoge-

neous inputs

The environment we consider is that of an RBC model with homogeneous inputs. We assume

that households are all alike and value consumption, ct, and dislike labor, ht, according to a

following utility function:

U(ct, ht, At). (1)

At represents a shock to preferences and it is best thought as a reduced form representation

of the “demand” disturbances that affect individual’s attitude toward working in the market

or not. It summarizes the effects of productivity shocks in the home production technology

relative to market technology as in Benhabib, Rogerson, and Wright (1991), changes in the

share in government spending as in Christiano and Eichenbaum (1988), true preference shocks

as in Bencivenga (1992), changes in labor income tax and transfers policies as in Prescott

(2004), etc. We assume that a final homogeneous good Yt can be produced in the economy

according to the CRS technology

Yt = F (Kt, e
ZtLt), (2)
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where Kt and Lt denote the effective capital and labor-input services employed (even allowing

for unobservable variations in the utilization rate of both inputs) and Zt is an exogenous

stochastic technology parameter.

A typical household enters period t with some savings, kt, remunerated at the gross rate

of Rt, it earns a wage Wt for the hours worked ht, and it spends its total income to acquire

the final good Yt which is then used for consumption and saving purposes. It is assumed that

all these choices are optimal, in the sense that they solve the decision problem:

max
{ct,ht,kt+1}∞t=0

E0

{
∞∑
t=0

βtU(ct, ht, At)

}

ct + kt+1 ≤ Wtht +Rtkt ∀ t

ct ≥ 0 kt+1 ≥ 0 ht ∈ [0, 1] ∀ t

where the stochastic process governing At and Zt, wages Wt and capital rental rates Rt are

taken as given by the household. A typical firm at time t rents labor and capital services

from the households sector at competitive prices and use the technology of Equation (2) to

produce the final output Yt. Factors’ demand at time t is determined as the solution to the

static optimization program:

max
Kt≥0,Lt≥0

[
F (Kt, e

ZtLt)−WtLt −RtKt

]
. (3)

The model is completed by a stochastic law of motion for (Zt, At) and by the assumption

that factors’ prices clear the markets for capital and labor services in every period.

This set of conditions concerning preferences, technology, agents behavior and the func-

tioning of markets implicitly defines the stochastic law of motion for the endogenous variables:

real GDP, hours worked, real wages, etc. at time T are all functions of the path for the ex-

ogenous disturbances {At, Zt}Tt=1 and, as such, they carry information on the unobservable

structural shocks. Based on this insight, researchers have thought of using some of the restric-

tions implied by RBC models to back-out the actual realization of technology from aggregate

time series. Different procedures have been developed in the literature for this purpose.

A first approach consists in calculating the technology series as the residual of an aggregate

production function. We can use a log-linear approximation of the technology in Equation
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(2) and first difference the variables to obtain:

∆ log(Yt) = α∆ log(Kt) + (1− α)∆ log(Lt) + (1− α)∆Zt. (4)

This approximation would be exact if α and 1 − α are the constant factor shares and thus

the technology is Cobb-Douglas. Since output, hours worked and capital are observed in the

data, knowledge of α would allow the researcher to recover the realization of the technology

series {∆Zt}. While conceptually straightforward, this procedure poses major econometric

challenges. For example, the RBC model suggests that the labor input reacts to contempora-

neous changes in technology, making the regressors in Equation (4) endogenous.6 Moreover,

varying utilization rates of capital and labor, if not properly accounted, would be reflected

in the Solow residual and would lead to a mismeasurement of the resulting technology series.

Basu, Fernald, and Kimball (2006) address these and related issues and back-out a quarterly

technology series for the US finding that hours worked respond negatively to a technology

shock.

In view of the difficulties that arise in the estimation of aggregate production functions,

researchers have thought of using other approaches to identify technology shocks. In par-

ticular, Gali (1999) points out that a wide range of RBC models share a common long-run

neutrality property: only technology shocks have a long-run effect on labor productivity. In

our model, for example, the logarithm of output per worker is given by:

log

(
Yt
Lt

)
= Zt + log

(
F (

Kt

eZtLt
, 1)

)
. (5)

Under the auxiliary assumption that capital intensity Kt
eZtLt

follows a stationary stochastic

process (or equivalently the interest rate in the economy is a stationary series), it is not

affected in the long run by any structural shock. Thus, Equation (5) suggests that stochastic

trends in labor productivity can be induced only by the technology shock Zt. The idea of Gali

(1999), then, is to retrieve the technology series from the low frequency behavior of log
(
Yt
Lt

)
.

6In principle, one could get consistent estimates for capital and labor elasticities using information on

labor income share, thus avoiding this endogeneity problem. Though, this is true only for the Cobb-Douglas

case and only if we were to impose that factor prices equal marginal productivities at every point in time.

Since the objective of this literature is to identify technology shocks placing as little theoretical restrictions

as possible, researchers typically end up estimating the production function using instrumental variables.
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In particular, applying the procedure developed in Blanchard and Quah (1989) on a bivariate

VAR for labor productivity and hours worked, Gali (1999) distinguishes between shocks that

have a “long run” effect on log
(
Yt
Lt

)
and shocks that have only a transitory effects on it: the

former, then, are interpreted as a direct measure for technology. In his empirical application,

Gali (1999) finds that hours worked react negatively to the identified technology shock.

The findings of Basu, Fernald, and Kimball (2006) and Gali (1999) have been seen as a

major counterfactual of the RBC model and they have been hotly debated in the literature.

Most of the focus has been placed on the empirical strategy adopted by Gali (1999). In

particular, researchers have mostly questioned the use of SVARs for implementing the long

run identification scheme. The growth accounting procedure, however, does not suffer from the

econometric issues highlighted above and, therefore, it can potentially validate the robustness

of the SVAR approach. In fact, Gali (2004) has recently showed that the technology series

identified using the SVAR and the production function procedure implemented in Basu,

Fernald, and Kimball (2006) are highly correlated. This correlation is interpreted as a sign of

robustness of Gali (1999) findings to the criticisms raised in the literature.

In what follows we show that the identifying restrictions underlying the production func-

tion approach and the SVAR procedure with long run restrictions are not valid when the

data generating process features a particular form of workers’ heterogeneity. We also show

that under a reasonable restriction of the structural parameters, both procedures generate a

systematic downward bias in the estimation of the response of hours to technology shocks.

2.2 The Effects of Input Heterogeneity

We introduce workers’ heterogeneity in its simplest form, assuming that there are two types

of households in our economy, indexed by u and s (e.g., unskilled and skilled). The total

measure of households in the economy is 1 = u + s, i.e., the sum of measures of unskilled

and skilled households. Suppose agents of type j = {u, s} value consumption and leisure

according to type-dependent utility functions:

Uj(ct, ht, At). (6)

8



We are also going to assume that firms use the production function:

Yt = F (Kt, e
ZtLs,t, e

ZtLu,t), (7)

where Ls,t = shs,t is total hours worked by skilled individuals, Lu,t = uhu,t is total hours

worked by unskilled individuals, and Lt = Ls,t + Lu,t is total hours worked. Beside these

modifications, the model is the one described in the previous section.

The main question we ask in this section is what happens in this environment if a re-

searcher backs-out technology shocks as the residual of a production function or as the shock

affecting labor productivity in the long run. Notice, first, that the simple Solow residual in

this economy no longer represents a direct measure of technology. From the production func-

tion in equation (7), in fact, we can use a log-linear approximation of the technology (7) and

first difference the variables to obtain:

∆ log(Yt) = α∆ log(Kt) + αu∆ log(Lu,t) + αs∆ log(Ls,t) + (1− α)∆Zt, (8)

where CRS imply that αu + αs = 1− α. We get that

∆ log(Yt)− α∆ log(Kt)− (1− α)∆ log(Lt) (9)

= (1− α)∆Zt + αu∆ log

(
Lu,t
Lt

)
+ αs∆ log

(
Ls,t
Lt

)
= (1− α)

[
∆Zt + ∆ log

(
Le,t
Lt

)]
,

where Let , effective labor input, is an aggregator of unskilled and skilled labor inputs Le,tt =

L
αu

1−α
u,t L

αs
1−α
s,t .

The failure to properly measure hours worked in efficiency units, thus, results in an im-

proper account of technology if shocks, for example to the disutility of labor, have an impact

on log
(
Let
Lt

)
and are consequently reflected in the Solow residual.

We can also show that the long-run neutrality property of labor productivity is lost in

this model. In fact, the logarithm of labor productivity in this economy is given by:

log(
Yt
Lt

) = Zt + logF (
Kt

eZtLt
,
Ls,t
Lt

,
Lu,t
Lt

).

If neutral technology shocks were the only shocks affecting labor productivity in the long run
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then

Yt
eZtLt︸ ︷︷ ︸

stationary

= F (
Kt

eZtLt︸ ︷︷ ︸
stationary

,
Ls,t
Lt

,
Lu,t
Lt

).

This implies that any non-neutral technology shock X does not affect the LHS in the long-run

and thus does not affect the RHS. Since Kt
eZtLt

is also stationary it is not affected by X in the

long-run either. As a result, the long-run changes of Lu and Ls in response to a shock to X

have to neutralize each other:

FLs
∂ Ls
L

∂X
+ FLu

∂ Lu
L

∂X
=
∂ Ls
L

∂X
(FLs − FLu) = 0. (10)

We have therefore established the following proposition:

Proposition 1. Let Ls(ws, A) and Lu(wu, A) be labor supply of the two groups. If for the

elasticities εLs,A 6= εLu,A and if the two groups have distinct marginal products FLs 6= FLu

then Yt
eZtLt

is not stationary. In particular, any shock that changes labor composition in the

long-run, has a permanent effect on labor productivity Yt
Lt

.

The implication of Proposition 1 is that any long-run restriction on labor productivity

will spuriously interpret persistent movements in demand disturbances as a technology shock.

In order to gain intuition for this result consider a shock to the disutility of labor and let

us focus on the empirically relevant case in which low-skilled individuals are more elastic,

| εLu,A |>| εLs,A |.7 A permanent increase in the disutility of labor implies that both types of

agents reduce their labor effort in the long run. Since low-skilled individuals are more elastic,

they will reduce their labor effort more than high-skilled ones: the fraction of hours worked

by the latter group, therefore, increases this pushing up labor productivity in the long run.

The identification scheme will interpret this change in the composition of the labor force as

a positive technology shock. Notice also that, under this restriction of the parameters, the

long-run identification scheme induces a systematic downward bias in the estimation of the

response of hours to technology shock. Similar considerations hold for the Solow residual

accounting procedure. In Section 4 we will quantitatively assess the magnitude of this bias.

7A larger elasticity for low-skilled individual is consistent with the finding, discussed in Section 4 of

this paper, that hours worked of low-skilled workers are more volatile than hours worked by high-skilled

individuals.
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2.3 Standard Approaches to Controlling for Input Heterogeneity

The fact that inputs heterogeneity complicates the measurement of technology is a well known

problem in the growth accounting literature. Here we discuss the most widely accepted pro-

cedure that was developed by Jorgenson (1966). An alternative but closely related procedure

due to Hansen (1993) is discussed in Appendix I. Central to these approaches is the approxi-

mation of the growth rate of Let in terms of a weighted sum of the hours worked by different

groups of individuals:

∆ log(Let ) ≈
J∑
j=1

aj,t∆ log(Lj,t). (11)

The procedures differ in the way the weights {aj,t} are computed. Jorgenson uses the

following Tornqvist aggregator:

aj,t =
νj,t + νj,t−1

2
, (12)

and

νj,t =
wi,tLi,t∑
j wj,tLj,t

. (13)

As shown in Diewert (1976), this would be the right correction to make in the case that

Let is a deterministic homogeneous translog function of the J groups considered, log(Let ) =

f(log(Lt)), where Lt is the vector of hours worked by the J groups.8 Using the properties of

quadratic function (e.g., translog as defined in footnote 8), one obtains:

∆ log(Let ) = f(log(Lt))− f(log(Lt−1)) (15)

=
1

2
[∇f(log(Lt)) +∇f(log(Lt−1))]

′
(log(Lt)− log(Lt−1)),

where the matrix ∇f(log(Lt)) collects the partial derivatives of f(.). Under the additional as-

sumption that prices equal marginal products at all points in time, the Jacobian ∇f(log(Lt))

8 Defined by

lnf(x) = α0 +

K∑
k=1

αklnxn +
1

2

K∑
m=1

K∑
l=1

γmllnxmlnxl, (14)

where
∑K

k=1 αk = 1, γml = γlm and
∑K

l=1 γml = 0 for j = 1, 2, . . . ,K.
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is equal to
wi,tLi,t∑
j wj,tLj,t

. Thus, equation 11 is exact for a homogeneous translog aggregator when

the weights are Turnquivst indexes of labor shares of different groups. All other functional

forms, e.g., CES aggregator, will generate a bias.

A fundamental problem of this strategy arises when hours in efficiency units is not a

deterministic aggregator of hours worked. An implicit assumption in this procedure is that

the parameters of the aggregator have to be constant, making it for example difficult to ex-

plain movements in the skill premium. Thus even if the aggregator satisfies the functional form

requirements at every point of time but parameters are changing over time, technology is mea-

sured with a bias. In order to make this point explicit, suppose that log(Let ) = f(log(Lt),Θt),

where Θt is a vector of time varying observable or unobservable factors and parameters. In

this environment, one immediately verifies that equation 16 is an incorrect expansion for Let

as it neglects changes in Θt.

3 A New Method for Identifying Technology Shocks

In this section we show how neutral technology shocks can be identified in a wide class of

models using standard filtering/smoothing techniques. The crucial insight is that equilibrium

models share optimality conditions of the following form:

Dt = Zt + ft(Dt), (16)

where Dt is a vector of observable variables and Zt is the technology shocks. One example

of the above restrictions is at the core of the Solow residual accounting, in which case Dt

include the logarithm of output and inputs. As another example, suppose that the aggregate

production function in the economy is given by

Yt = Kα
t (eZtLe,t)

1−α, (17)
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where Le,t = F (L1,t, . . . , LN,t; θt) is a general aggregator of hours worked by different types

of agents. Then, assuming that factor prices equal marginal productivities one gets:9

log(Wj,t) +
α

1− α
log(rt) (18)

=

[
(1− α) +

α

1− α
log(α)

]
+ log(Zt) + log

(
∂F (L1,t, . . . , LN,t,Θt)

∂Lj,t

)
The structure of the system in equation (16) and (18) is that of a dynamic factor model

where a set of observables depends on a common factor, Zt, and on partially idiosyncratic

factors. The method we propose does not require the researcher to specify a functional form

for the aggregator Le,t = F (L1,t, . . . , Ln,t; θt). Instead, we treat both the technology series and

the partial derivatives of Le,t as being unobserved and identify them using filtering/smoothing

techniques.

The key identification challenge is that the common and idiosyncratic factors are contem-

poraneously related: a shock to technology is likely to move hours worked of different types

of agents which in turn moves the factors log

(
∂F(L1,t,...,LN,t,Θt)

∂Lj,t

)
. In this section we present

a set of sufficient conditions that allow one to identify the technology series from restrictions

of the type presented in equation (16). For illustrative purpose, we will discuss our procedure

within the context of equation (18).

First of all, in order to use standard tools adopted in the literature for the identification

of state space model, we are going to make the following assumption concerning the DGP for

Zt and log

(
∂F(L1,t,...,LN,t,Θt)

∂Lj,t

)
:

Assumption 1.

Let St =

[{
log

(
∂F(L1,t,...,LN,t,Θt)

∂Lj,t

)}k
j=1

,Yt

]′
be a vector of dimension n × 1, with Yt

being a vector of dimension (n− k)× 1 containing variables that are observed by the econo-

metrician. We assume that St has the following V AR(p) representation:

St = Φp(L)St + et, (19)

9These conditions are going to be satisfied in models featuring constant returns to scale and perfect

competition. A similar version for the system in ((18)) holds also in models with non-constant return to scale

and time varying mark-ups over factor prices. See the Appendix for details.
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where Φp(L) is a polynomial of order p in the lag operator L. We also assume that Zt follows

the first order process:

Zt = ρzZt−1 + ez,t. (20)

As Appendix III.1 shows, this assumption is satisfied in a wide class of models whenever

p→∞. Data limitation necessitate that we rely on the finite dimensional approximation to

the V AR(∞).

Given Assumption 1, we can write down our state space model as follows:

Dt =

 1 IJ 0

0 0 IK

 Zt

St

 = B

 Zt

St

 (21)

 Zt

St

 =

 ρoz 0

Φo
z Φo

S


︸ ︷︷ ︸

Φo

 Zt−1

St−1

+

 ez,t

et

  ez,t

et

 ∼ WN (0,Σo) (22)

where Dt is a vector collecting Wj,t + α
1−αRt for every observed group j and Yt.

Assumption 2.

E[Dt|Dt−1] 6= E
[
Dt| log(Zt−1),St−1] .

Assumption 2 ensures that the state space considered is minimal.

Lemma 1. Let Assumption 2 hold. Then, the state space model in (21) and (22) is minimal.

Proof. See Appendix III.2.

Given minimality, lack of identification in our state space model is known to be represented

by linear transformations of the state vector through an invertible matrix T. Thus, denoting

by an “ .̂ ” an observationally equivalent structure, one must have that:

T

 ρz 0′

Φz Φ

T−1 =

 ρ̂z 0′

Φ̂z Φ̂

 (23)

BT = B (24)

TΣ1/2 = Σ̂1/2 (25)
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The assumptions made so far restrict the set of admissible T matrices, but they are still

not sufficient to guarantee that the state space system is identified. We impose one of the

following two assumptions:

Assumption 3. The vector of innovations et is related to the structural innovations

as follows:

et = Aηt ηt ∼ WN (0, I)

Assumption 4. There exists a vector of instruments xt, orthogonal to ez,t and such

that cov

(
xt,
{

log
(
∂F(L1,t,...,LN,t,θt)

∂Lj,t

)}k

j=1

)
is full rank.

Proposition 2. Suppose that Assumption 3 holds. Then, θo = (Φo,Σo) is locally identified

from the probability density of {Dt}.

Proposition 3. Suppose that Assumption 4 holds. Then, up to a scale and a sign normal-

ization, θo = (Φo,Σo) is globally identified from the probability density of {Dt,xt}.

Proposition 4. Suppose that Assumption 3 and Assumption 4 hold. Then, θo = (Φo,Σo)

is globally identified from the probability density of {Dt,xt}.

Let us illustrate the idea of the proof in the case that we do not have observed states (the

state vector does not include Yt). Given equation 24 and the expression for B, the matrix T

has to satisfy:

I +



κ1 κ2 . . . κi . . . κk+1

κ1 κ2 . . . κi . . . κk+1

· · · · · · · · · · · · · · · · · ·

κ1 κ2 . . . κi . . . κk+1

κ1 κ2 . . . κi . . . κk+1


.

Notice that since [Zt,St]
′ and T[Zt,St]

′ are not distinguishable, one has that log(Ẑt) =

e1T[Zt,St]
′ is not distinguishable from log(Zt). Given the restrictions we have so far on T

one has that:

log(Ẑt) = log(Zt)(1 + κ1) + κ2 log(FL1,t) + κ3 log(FL2,t) + . . .+ κk+1 log(FLk,t). (26)
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By Assumption 4 we have that Cov(xit, log(Zt)) = 0 for every instrument instrument.

Imposing this condition in our system, we must also have that Cov(xit, log(Ẑt)) = 0. Thus,

by equation (26), one has:

Cov

(
xt,

{
log

(
∂F (L1,t, . . . , LN,t,Θt)

∂Lj,t

)}k
j=1

)


κ2

κ3

· · ·

κk+1

 = 0.

Since the covariance matrix has full rank by Assumption 4, the above restrictions imply

κj = 0 for all j > 1. Therefore, the matrix T has the following form:

1 + κ1 0 . . . 0 . . . 0

κ1 1 . . . 0 . . . 0

· · · · · · · · · · · · · · · · · ·

κ1 0 . . . 0 . . . 0

κ1 0 . . . 0 . . . 1


.

In this case we have that

log( ˆFLk,t) = log(Zt)κ1 + log(FLk,t). (27)

Under the condition that
∑k

m=1 φjm 6= ρz for at least one j, we have that κ1 = 0 through the

restrictions that the first column of the transition matrix is zero as is implied by Assumption

3. One can easily verify that if Assumption 2 holds, then we can always find such a j. This

implies that T = I, that is the state space is identified.

4 Monte Carlo Simulations using a Calibrated Model

with Heterogeneous Labor

In this section we calibrate the standard RBC model with two types of workers, simulate data

from it and study the relation between identified “technology” shocks and the true structural

disturbances in the model economy. In particular, we consider the small sample performance

of the method for identifying technology shocks proposed in this paper and contrast it with

the performance of the standard methods.
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4.1 Model

We consider an RBC model with worker heterogeneity described in Section 2. In particular,

we assume that agents of type j = {u, s} (unskilled and skilled) value consumption and

leisure according to type-dependent utility functions

Uj(ct, ht) = log(ct)− eAtbj
h

1+ν−1
j

t

1 + ν−1
j

. (28)

Firms have access to the production function

Yt = Kα
t (eZtLet )

1−α, (29)

where Let , the effective labor inputs, is an aggregator of low and high-skilled labor inputs

Let = Lφth,tL
1−φt
l,t .

Technology and preference shocks are assumed to follow the AR(1) processes:

Zt = ρzZt−1 + σzεz,t,

At = ρaAt−1 + σaεa,t,

while φt ∈ [0, 1] follows the law of motion:

φt =
eφ̃t

1 + eφ̃t
φ̃t = (1− ρφ)µφ + ρφφ̃t−1 + σφεφ,t

The innovation εt = [εz,t, εa,t, εφ,t]
′ are i.i.d. standard normal random variates.

Appendix II discusses the equilibrium relations as well as the solution method adopted.

4.2 Calibration

The vector of structural parameters of our model is given by:

θ = [β, δ, α, bu, bs, l, µφ︸ ︷︷ ︸
θ1

, ρφ, σφ︸ ︷︷ ︸
θ2

, ν, xl, ρz, σz, ρa, σa︸ ︷︷ ︸
θ3

].

Model period is one quarter. We use quarterly postwar data on the US economy in order to

estimate the vector θ.The parameters in θ1 are pinned down using long run average for selected
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time series. In particular, the parameters β, α and δ are chosen so that, in a deterministic

steady state of the model, the real interest rate, the depreciation rate of capital and a labor

income share are respectively 1%, 2.5% and 66%, values that are common in the business cycle

literature. The parameters bu, bs, l and µφ are chosen so that the model matches 22.6 weekly

hours worked by low-skilled individual, 31.8 weekly hours worked by high-skilled individuals,

a fraction of low-skilled individuals over total population of 0.774 and a skill premium equal

to 1.7. These numbers are calculated using CPS quarterly data (1976-2006) on wages and

hours worked by education level.10

The parameters in θ2 are estimated using quarterly observations on wages and hours

worked by education group. In particular, the model implies that:

φ̃t = log

(
Ws,tHs,t

Wu,tHu,t

)
.

Given our definition of low and high skilled individuals, we obtain a quarterly series on wages

and hours worked from CPS data and estimate an AR(1) process for hp-filtered (λ = 1600)

φ̃t using OLS.

The remaining parameters in θ3 are estimated via a standard Simulated Method of Mo-

ments (SMM) algorithm. In particular, let m be a vector of moments for selected time series

computed using US time series of length T and let mT(θ) be their model counterpart when

the vector of structural parameter is θ = {θ∗1, θ∗2, θ3}. The estimator for θ3 solves:

min
θ3

[mT − m̂({θ∗1, θ∗2, θ3})]′WT[mT − m̂({θ∗1, θ∗2, θ3})],

where WT is a diagonal matrix whose nonzero elements are the inverse of the variance of the

corresponding moment.

As for the empirical moments, we include in the vector m standard measures of cyclical

volatility and comovement for hp-filtered (λ = 1600) quarterly US data.11 The time series

adopted are output for the business sector, private non-durable consumption, private non-

residential investment, total hours worked in the business sector, total hours of low and high

10We define high-skilled individuals as those possessing college education and low-skilled individuals as

those with no college education. See Appendix B.
11All time series are in logs. As measures of volatility we include the standard deviation while for comove-

ment we include the correlation coefficient.
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skilled individuals in the business sector and labor productivity. Moreover, in view of our pre-

vious discussion, we include in mT the empirical IRFs to a “long run” shock identified using

Gali (1999) methodology on a bivariate VAR(4) on the growth rate of labor’s productivity

and total hours worked for the US economy. The horizon of the IRFs is 5.

Simulated moments are calculated using a Monte Carlo procedure. In particular, for each

θ, we solve the model using first order perturbation, simulate a realization of length T = 250

for the model’s counterparts of the above time series and we calculate the vector m̂T(θ) using

the same procedure on the model generated data. We repeat this procedure M = 300 times,

each time changing the seed used in the simulation. We then take the (component wise)

median of m̂(θ) across the Monte Carlo replications.

We apply standard numerical minimization routines to estimate θ3. Since the minimization

algorithm was pushing preference shocks to their non-stationary region, we have decided to

impose ρa = 1 and to reformulate the model for normalized (stationary) variables. This

amounts to scale variable i in the model by the eΛi,aAt with Λi,a being the long run effect of

a preference shock on variable i. Details on this normalization procedure and on the method

adopted to solve the log-linearized model can be found in Appendix II. Table 1 summarizes

the procedure used for the calibration of our model and reports numerical values for the

structural parameters along with robust standard errors. Table 2 and Figure 2 report the fit

our model in terms of the targets in the SMM estimation.

As we can see from Figure 1, preference shocks have permanent effects on all model vari-

ables. In particular, following an increase in At, both low-skilled and high-skilled individuals

reduce their labor supply, this implying that aggregate hours falls permanently. The reduc-

tion in aggregate hours, though, is due mainly to the low-skilled individuals since their labor

supply is more elastic. The decline in total output, therefore, is not dramatic since aggre-

gate hours fall mainly due to workers with low productivity: as a result, output per worker

increases permanently following a positive innovation to At. A positive innovation to technol-

ogy has transitory effects on model’s variables: hours worked, total output and productivity

increase on impact and decay slowly toward zero.

To evaluate the performance of the model in matching the calibration targets in Table

2 we report the measures of cyclical volatility, persistence and comovement collected in the
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vectors m̂(θ∗) and mT. The model is consistent along many dimensions with the behavior of

aggregate time series at business cycles’ frequencies. We are able to match volatilities and the

correlation of the time series considered with real GDP. Conditional on a preference shock,

labor productivity is negatively correlated with hours worked and with output. Since prefer-

ence shocks drive most of the fluctuation in hours, our model predicts a negative correlation

between worked hours and productivity, a statistic that is often difficult to match in RBC

models. Despite that, as the variance decomposition in Table 2 shows, technology shocks

still explain most of the variation in output, investment and productivity at business cycles’

frequencies in the model.

Figure 2 plots IRFs retrieved using long run restrictions on a VAR(4) for the growth rate

of labor’s productivity and hours worked. In this graph, the blue (solid) line describe the IRFs

retrieved from data simulated from our economy at the calibration considered in Table 1, the

red (dashed) line refers to the empirical IRFs and black lines reports 95% bootstrap bands for

the empirical IRFs. As we can see from the figure, a researcher that applies the Blanchard and

Quah (1989) methodology on data simulated from our model would reach conclusions similar

to those reported in Gali (1999) since the blue line tracks closely its empirical counterpart.

4.3 Identifying Technology Shocks in Model-Generated Data

We simulate 30 samples of 250 quarters each from the calibrated model. For each sample we

estimate technology shocks using

i) Solow residual with Jorgenson’s correctionfor labor composition effects.12

ii) SVAR with long-run restrictions as in Gali (1999).

iii) The Unobserved Component model (UC) proposed in this paper. As instruments we

use noisy signals over εz,t and εφ,t with signal to noise ratio of 50%, 25%, and 10%.

For each Monte Carlo replication m, we esstimate the following linear regression:

εtruej,t = α + βεidentified
z,t + ηt  ∈ {z, a, φ},

12When calculating the Solow residual we use the true parameter α rather than estimating it.
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and we store the R2(m). We then average across the Monte Carlo replications and report

the results in Table 3. Clearly, a method that recovers technology innovations perfectly (up

to a scale factor) would obtain an R2 of 1 in the technology equation, and zero in the other

equations.

We can verify from Table 3 that, consistent with the argument of Section 2, the Long-

Run shock and the Solow residuals have little structural interpretation in our model. Both

series represent a combinations of shocks to technology, preferences, and the skill premium,

with non trivial weights placed on the latter two. The Long Run shocks captures 25% of

the variation in preference shocks, while shocks to the skill premium are misinterpreted as

an indicator of technological change in the growth accounting procedure. This is true even

when we apply Jorgenson correction to account for labor compositional effect. As we can

verify from the Table, the Solow residual corrected for labor composition accounts for 20%

of the variation in the skill premium shock. The evidence of Table 3 suggests that when

data are generated from an empirically plausible version of the RBC model with workers

heterogeneity the commonly used practice of backing-out the technology series either as a

residual of an aggregate production function or as the shock affecting labor productivity in

the long run does not produce reliable results. Changes in the composition of the labor force

induced by exogenous demand shocks or by changes in the relative productivities of workers

are misinterpreted by the two procedures as movement in technology.

Table 3 also illustrates that the method proposed in this paper performs quite well in

identifying the true technology shocks. In particular, the identified technology shocks are

nearly perfectly correlated with the true technology shocks and are uncorrelated with the

preference shocks and the shocks to the relative productivity of skilled workers. Clearly, more

informative signals result in better inference: the R2 in the technology equation ranges from

98%-91% when using instruments whose signal to noise ratio that ranges from 50%-10%.

Figure 3-5 give a graphical intuition of the results in Table 3. In this figure we plot for

a particular realization of our model a scatter plot of the structural shocks against the tech-

nology shocks identified using SVAR procedure with long-run restriction, and Solow residual

with Jorgenson’s correction, and the unobserved component model discussed in this paper.

The technology shocks identified with the existing procedures are clearly correlated with pref-
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erence shocks and the shocks to the skill premium while inference with the proposed method

appears robust in this dimension.

Figure 6 reports a response surface for the relation between true and identified technology

shocks when using the procedure described in Section 3. In particular, we consider different

combinations of the signal to noise ratio and plot this measure of accuracy against these

different combinations. The results suggests that the procedure is robust to using instruments

that are informative at different degrees.

In Table 4 we show how each method performs when estimating the IRFs of hours worked

to the identified technology shocks. In particular, we consider the following measure of bias:

Biasj =

∣∣∣∂Lt+j∂εtrue
z,t
− E

[
∂Lt+j

∂εidentified
t

]∣∣∣∣∣∣∂Lt+j∂εtrue
z,t

∣∣∣ × 100

From the Table we can verify that inference over the response of hours worked to a

technology shocks is imprecise. In particular, the average bias is 150% for the Long Run shock

while it is 130% for the Solow residual. This large bias in the calculation of the response of

hours to technology shocks are due to the combination of two factors: the two procedures

capture a substantial ammount of other shocks in the economy; these non-technology shocks

drive a substantial fraction of hours worked in our model at business cycle frequencies.

5 Technology Shocks in the U.S. Data

In this section we apply our method to identify technology shocks in U.S. data.

5.1 Instruments

We plan to use balanced growth restrictions. In fact, if preferences and technology are con-

sistent with balanced growth, one gets that:

i) Neutral technology shocks can not induce a trend in hours per capita;

ii) Neutral technology shocks can not induce a trend in relative wages of different groups

(e.g. skill premium);
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We can then use low frequency information in wages and hours worked of different types

of workers in order to construct our instruments for the partial derivatives of the aggregator

Le,t.

5.2 Findings

In the next draft we will describe and analyze the sequence of identified shocks and document

its co-movement with other economic aggregates.

6 Conclusion

In this paper we have shown that the standard methods for identifying the technology shocks

in the data are biased in models with heterogeneous inputs. In particular, presence of worker

heterogeneity invalidates the key identification assumption in Blanchard and Quah (1989)

and Gali (1999) because not only technology, but virtually all persistent shocks have a long

run effect on productivity in such models. The identification of technology shocks using the

production function estimation is also biased if the effects of worker heterogeneity are not

explicitly accounted for. In particular, if less productive workers also have a more elastic

labor supply, Solow residuals will be negatively correlated with labor input in response to

preference shocks. The standard procedures used to correct for labor composition rely on

strong assumptions that are unlikely to be satisfied in the data.

We proposed a new method to identify technology shocks in the data. We interpret the

technology shock as an unobserved state and using the structure of the model we show that

this state can be identified using filtering techniques. Since we do not treat the technology

shock as a residual our method does not require to specify an explicit function that aggregates

heterogeneous labor inputs. Moreover, we do not even require the parameters of this function

to be invariant over time.

We evaluate the small sample properties of our method using an estimated RBC model

that features two imperfectly substitutable types of labor (skilled and unskilled) and per-

sistent demand and supply shocks. We find that the model is quantitatively consistent with

unconditional RBC statistics and conditional correlations identified by a structural vector
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autoregression with long run restrictions. Most of the cyclical fluctuations in output and pro-

ductivity in the model are driven by technology shocks which the identification strategy based

on long run restrictions misinterprets as largely representing demand disturbances. Most of

the fluctuations in hours, on the other hand, are accounted for by shocks to preferences.

We find that our method performs quite well in identifying technology shocks in the model

generated data as compared to the existing methods.
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Table 1: Calibrated Parameters

Parameter Value Data used to Identify Parameters

α 0.330 Labor Income Share

δ 0.025 Depreciation of Capital Stock

β 0.995 Real Interest Rate

h∗s 0.318 Weekly Hours per Individual (College)

h∗u 0.226 Weekly Hours per Individual (no College)

u 0.774 % of Individuals without College

µφ -0.140 Skill Premium

ρφ 0.522 Estimated by OLS

σφ × 100 3.000 Estimated by OLS

ν 1.500 Fixed

νs 0.526 Estimated by SMM

ρa 1.000 Estimated by SMM

ρz 0.950 Estimated by SMM

σz × 100 1.140 Estimated by SMM

σa × 100 1.820 Estimated by SMM

Note: The time horizon is quarterly. In the SMM algorithm we match (1) standard deviation, first order autocorrelation and

correlation with GDP of the following h-p filtered quarterly time series: real GDP, labor productivity, hours worked (total and

by skill group), consumption and investment. (2) The impulse response functions of a VAR(4) on labor productivity and hours

worked (1948-1994). Shocks are identified imposing long-run restrictions on labor productivity as in Gali (1999).
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Table 2: Estimation Targets: Business Cycle Statistics

Yt It Ct Lt
Yt

Lt

St. Deviation (%)
Data 2.07 5.13 1.16 1.85 1.08

Model 1.81 5.27 0.67 1.78 0.97

Corr. with Yt

Data 1.00 0.78 0.75 0.86 0.45

Model 1 0.98 0.82 0.85 0.30

% St. Dev., Ls

Data 1.43
% St. Dev., Lu

Data 2.15

Model 1.04 Model 2.28

Corr. Lt and Yt
Lt

Data -0.07
Corr. Ls and Lu

Data 0.51

Model -0.25 Model 0.56

Note: All series are quarterly (see Appendix x for data definition). Prior to compute all relevant statistics, variables have been

transformed trough natural logarithms and hp-filtered (λ = 1600). We perform the same operations on data simulated from our

model (each data series has length 250) and report the median over the 300 Monte Carlo replications.
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Table 3: True Shocks vs. Identified Technology Shocks

E[R2(ηz,t)] E[R2(ηφ,t)] E[R2(ηa,t)]

Long-Run SVAR 0.70 0.03 0.25

Solow (Corrected) 0.74 0.20 0.01

UC (50%) 0.98 0.01 0.01

UC (25%) 0.96 0.01 0.02

UC (10%) 0.91 0.02 0.06

Note: Results are based on a Monte Carlo studies with 30 replications. The Solow residual is calculated using Equation (4) and

applying Jorgenson correction for labor composition effects. The Long-Run shock is calculated applying the procedure

described in Gali (1999) on the simulated data. We estimate the Unobserved Component model and back out the realization of

the technology innovations as discussed in Section 3.1.

Table 4: Bias in the estimated response of hours to technology

Horizon (j) 0 1 2 3 4

Long-Run shock 154% 155% 175% 184% 185%

Solow Residual (Corrected) 188% 158% 157% 148% 148%

UC 23% 10% 13% 12% 1%
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Figure 1: Impulse Response Functions to Preference and Technology Shocks
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Figure 2: Impulse Response Functions
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Figure 3: Structural Shocks vs Technology Shocks Identified using the Method

Proposed in this Paper
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Figure 4: Structural Shocks vs Technology Shocks Identified using VAR with Long-

Run Restrictions
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Figure 5: Structural Shocks vs Technology Shocks Identified as Solow Residuals
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Figure 6: Response Surface
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APPENDICES

I Hansens’ Procedure for Controlling for Input Hetero-

geneity

Hansen (1993) measures the efficiency units of labor as∑
i

αiLi,t, (A1)

where αi is the constant weight of group i. The weights αi are the average hourly earnings

αi =
HEi
HE

, (A2)

where HEi is average hourly earnings for group i and HE is average hourly earnings.

We first compute a log-linear approximation of log(
∑

i αiLi,t) with respect to log(Li,t):

log(
∑
i

αiLi,t) ≈
∑
i

αiLi∑
j αjLj

log(Li,t), (A3)

where Li is the average labor supply of group i. In addition to this approximation, a second

difference between Hansen and Jorgensen is that they use different coefficients. Jorgensens

uses νj,t, an average of two adjacent periods whereas Hansen uses

αiLi∑
j αjLj

, (A4)

a time average for the full sample. This means the second bias in the measurement due to

differences in computing averages of wages equals

νj,t −
αiLi∑
j αjLj

. (A5)

After these approximations, Hansen measurement is equal to Jorgenson and thus is unbiased

if and only if the aggregator is a homogeneous translog function (with constant coefficients).
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II Model Solution and its State-Space Representation

The decision problem of the Social Planner is:

max
{{cj,t,hj,t}j∈{H,L},Kt+1}∞t=0

E0


∞∑
t=0

∑
j∈{H,L}

ψ̃jβ
t

[
log(cj,t)− eAtbj

h1+ν−1

j,t

1 + ν−1

]
(1−m)ch,t +mcl,t +Kt+1 − (1− δ)Kt ≤ Kα

t

{
eZt [(1−m)hh,t]

φ[mhl,t]
1−φ}1−α

(A6)

hj,t ∈ [0, 1] cj,t ≥ 0 Kt ≥ 0 ∀ t ≥ 0 ∀ j ∈ {H,L} (A7)

We denote by ψ̃h = ψ(1−m), with ψ being the Pareto weight on high-skilled individuals

and (1−m) their measure on total population. Correspondingly, we have that ψ̃l = (1−ψ)m.

The Social Planner takes as given the law of motion for preference and technology shocks,

given by:

Zt = ρzZt−1 + uz,t At = ρaAt−1 + ua,t (A8)

uz,t = λzuz,t−1 + σzεz,t ua,t = λaua,t−1 + σaεa,t (A9)

 εz,t

εa,t

 i.i.d∼ N (0, I) (A10)

The optimality conditions of the planner decision problem are given by:

(1−m)ch,t +mcl,t +Kt+1 − (1− δ)Kt = Kα
t

[
eZt(Lφh,tL

1−φ
l,t )

]1−α
(A11)

ψ(1−m)

ch,t
=

(1− ψ)m

cl,t
(A12)

1

cj,t
= βEt

[
MPKt+1

cj,t+1

]
eAtbjh

v−1
j

j,t =
MPLj,t
cj,t

∀ j ∈ {h, l} (A13)

Lh,t = (1−m)hh,t Ll,t = mhl,t (A14)
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MPKt = α
Yt
Kt

MPLh,t = φ(1− α)
Yt
Lh,t

MPLl,t = (1− φ)(1− α)
Yt
Ll,t

(A15)

We denote by θ ∈ Θ the vector of structural parameters. The optimality conditions in

(A8 )-(A15) defines a low of motion for the state st and control variables yt that we denote

by:

yt = B(st, θ) (A16)

st = Φ(st−1, εt, θ). (A17)

The function B and Φ are not known in closed form. We approximate them via a first

order Taylor expansion around a deterministic steady state of the model (Uribe and Schmitt-

Grohe, 2004). Since in the empirical specification of Section 4 we impose a unit root on the

preference shock process, we normalize the model’s variables to make them stationary. In

particular, we scale Yt, Kt+1 and cj,t by the factor e
−
[
φ

vH
1+vH

+(1−φ)
vL

1+vL

]
At and hours worked of

a j type by the factor e
−

vj
1+vj

At
. Denoting by a ˜ a normalized variable, one can verify that

equations in (A11)-(A15) can be equivalently rewritten as:

(1−m)c̃h,t +mc̃l,t + K̃t+1 − (1− δ)K̃te

[
φ

vH
1+vH

+(1−φ)
vL

1+vL

]
= Kα

t

[
eZt(Lφh,tL

1−φ
l,t )

]1−α
(A18)

ψ(1−m)

ch,t
=

(1− ψ)m

cl,t
(A19)

1

cj,t
= βEt

[
MPKt+1

cj,t+1

]
eAtbjh

v−1
j

j,t =
MPLj,t
cj,t

∀ j ∈ {h, l} (A20)

Lh,t = (1−m)hh,t Ll,t = mhl,t (A21)

MPKt = α
Yt
Kt

MPLh,t = φ(1− α)
Yt
Lh,t

MPLl,t = (1− φ)(1− α)
Yt
Ll,t

(A22)

We use the set of equations (1)-(8) defines a probability distribution for the endogenous

variables of our model in terms of a set

We denote by yt = [log(cH,t), log(cL,t), log(hH,t), log(hL,t), log(Yt)]
′ the vector collecting

the control variables and by st = [log(Kt), At, Zt]
′ the state variables of our model. The

above system implicitly defines a probability distribution over (yt, st) given by:

yt = B(st, θ), (A23)

st = Φ(st−1, εt, θ). (A24)
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In the above notation, εt is a vector stacking the innovations to preference and technology

shocks and θ is the vector of structural parameters. The functions B and Φ are not known

in closed form. Our solution method consists in approximating them linearly:

yt = B(θ)st, (A25)

st = Φs(θ)st−1 + Φε(θ)εt, (A26)

where Φs(θ), Φε(θ) and B(θ) are linearization constants derived around a deterministic steady

state for our model.13 Since the model does not have a unique deterministic steady state when

the structural disturbances follow a unit root, some forms of normalization are required. In

what follows, we are going to assume that At has a unit root while Zt follows a station-

ary process. Under these assumptions, the required normalization consists in scaling every

model variables i by eΛi,aAt , with Λi,a denoting the long run effect of a preference shock on

variable i. This amounts of scaling capital, output and individual consumption by the factor

e
−
[
φ

vH
1+vH

+(1−φ)
vL

1+vL

]
At and hours worked of a j type by the factor e

−
vj

1+vj
At

. In fact, performing

these operations to the above equilibrium conditions we obtain:

[NORMALIZED OPTIMALITY CONDITIONS HERE]

As we can see, the transformed variables are stationary since the unit root process At

disappears from the equilibrium conditions.

13Quote the paper by Uribe on details for linear approximation of the policy function.
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III Proofs and Derivations

III.1 More on VAR representation

Following Fernandez-Villaverde et al. (2006), we assume that the endogenous variables of our

model are generated by the system:

xt = Axt−1 + Bwt (A27)

yt = Cxt−1 + Dwt (A28)

where yt = [log(L1,t, L2,t, . . . , Ln−1,t, Ln,t)]
′ is the n × 1 vector of labor inputs (control vari-

ables), xt = [log(kt, Zt−1, At−1)]′ is the vector of state variables,wt is a vector of i.i.d. inno-

vations, and kt = (K1,t, . . . , Km,t). It is required that yt has the same dimension as wt.

For the production function:

Yt = ZtF (K1, . . . , Km, L1, . . . , Ln,Θt) (A29)

assume that we observe groups L̃1, . . . , L̃l, which may not coincide with the groups from the

production function. Consider the vector ŷt = [log(FL̃1,t
, . . . , FL̃2,t

, . . . , FL̃l,t),Vt]
′, collecting

the “marginal products” of the observed groups and other endogenous variables Vt such that

the dimension of ŷt equals the dimension of wt. Suppose L̃1 = L1 + L2 then the marginal

product FL̃1,t
=

FL1,t
L1+FL2,t

L2

L1+L2
.

Now approximate ŷt as a function of the observables and the state variables:

[
ŷt

]
≈

[
X1 X2

] yt

xt

 (A30)

=
[
X1 X2

] Cxt−1 + Dwt

Axt−1 + Bwt

 (A31)

=
[
X1C +X2A

]
︸ ︷︷ ︸

=:C̃

[
xt−1

]
+
[
X1D +X2B

]
︸ ︷︷ ︸

=:D̃

[
wt

]
(A32)

We thus get:

xt = Axt−1 + Bwt (A33)

ŷt = C̃xt−1 + D̃wt (A34)

41



Under the mild assumption that D̃ is invertible, one has that:

wt = D̃−1(yt − C̃xt−1).

We can then substitute wt in equation (1) and obtain:[
I− (A−BD̃−1C̃)L

]
xt = BD̃−1yt.

In the above notation, L is the lag operator. Under the assumption that the eigenvalues of(
A−BD̃−1C̃

)
are less than 1 in modulus, the invertibility condition is satisfied and one can

express the vector of unobservable states xt through the histories of the observables yt. The

SVAR literature (long run restrictions, sign restrictions, short run restrictions, etc.) implicitly

assume that this invertibility condition holds.

The model, if that condition holds, admits the following VAR(∞) representation for the

observables:

ŷt = C
[
I− (A−BD̃−1C̃)L

]−1
BD̃−1ŷt−1 + D̃wt.

It is important to notice that under these assumptions:

E
[
ŷt|Zt−1, {ŷj}t−1j=−∞

]
= E

[
ŷt|{ŷj}t−1j=−∞

]
.

This implies, among other things, that: Zt

ŷt

 =

 ρz 0

0 Φ∞(L)

 Zt−1

ŷt−1

+

 σzεz,t

D̃wt

 .
This justifies in the limit (p→∞) Assumption 1 and Assumption 3 in the main text.

42



III.2 Proof of Lemma 1

Suppose that the dimension of Yt is n − k − 1. In order to check that our state space is

minimal, one need to verify the observability and controllability conditions are satisfied in

our state space model. The observability matrix is given by:

On(n−1)2×n =


B(n−1)×n

BΦo
(n−1)×n

. . .

BΦo,n−1
(n−1)×n

 .

The observability condition is satisfied if On(n−1)2×n is of full rank. First notice that B is

of rank n − 1. Now, suppose that the observability condition is violated. That would imply

that one can find a set of coefficients, that we collect in the matrix A with the property that:

AB = BΦo.

Given our knowledge of the B matrix, that would imply the following relation between A

and Φo:

k∑
l=1

aj,l = ρz ∀j < k + 1
k∑
l=1

aj,l = ρz ∀j ≥ k

A = Φo

Notice that Assumption 2 in the main text guarantees that
∑k

l=1 aj,l 6= ρz for at least one

j < k + 1. Thus, by contradiction we must have that BΦo can not be written as a linear

combination of B. The observability matrix is of full rank. The controllability matrix in our

state space system is of full rank as long as the variance covariance error of the state variables

is positive definite.

As a result, our state space realization is observable and controllable, hence minimal.
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III.3 Proof of Proposition 1

Without loss of generality, assume that St follows a VAR(1). From the restriction:

BT = B

one gets that the set of admissible T matrices satisfies:

 T̃ 0

0 I

 =



1 + κ1 κ2 . . . κi . . . κk+1 κk+2 κk+3 . . . κn κn+1

κ1 1 + κ2 . . . κi . . . κk+1 κk+2 κk+3 . . . κn κn+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

κ1 κ2 . . . κi . . . κk+1 κk+2 κk+3 . . . κn κn+1

κ1 κ2 . . . κi . . . 1 + κk+1 κk+2 κk+3 . . . κn κn+1

0 0 . . . 0 . . . 0 1 0 . . . 0 0

0 0 . . . 0 . . . 0 0 1 . . . 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 . . . 0 . . . 0 0 0 . . . 1 0

0 0 . . . 0 . . . 0 0 0 . . . 0 1



,

where m is the dimension of Yt.

The matrix T has to satisfy also the system of equations:

Φ̂ = TΦoT−1, (A35)

Given the above characterization for T, one has:

T−1 =



1− κ1

κ
−κ2

κ
. . . −κi

κ
. . . −κk+1

κ

−κk+2

κ

−κk+3

κ
. . . −κn

κ
−κn+1

κ

−κ1

κ
1− κ2

κ
. . . −κi

κ
. . . −κk+1

κ

−κk+2

κ

−κk+3

κ
. . . −κn

κ
−κn+1

κ

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−κ1

κ
−κ2

κ
. . . −κi

κ
. . . −κn+1

κ

−κk+2

κ

−κk+3

κ
. . . −κn

κ
−κn+1

κ

−κ1

κ
−κ2

κ
. . . −κi

κ
. . . 1− κn+1

κ

−κk+2

κ

−κk+3

κ
. . . −κn

κ
−κn+1

κ

0 0 . . . 0 . . . 0 1 0 . . . 0 0

0 0 . . . 0 . . . 0 0 1 . . . 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 . . . 0 . . . 0 0 0 . . . 1 0

0 0 . . . 0 . . . 0 0 0 . . . 0 1



,
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where κ = 1 + κ1 + κ2 + . . .+ κk+1. Let λij = (ΦoT−1)ij. Then:

λij = φoij +
k+1∑
l=1

φoil
−κl
κ

(A36)

and thus

γij = λij +
n+1∑
l=1

κlλlj, if i ≤ n+ 1 (A37)

γij = λij, if i > n+ 1. (A38)

We are interested in the first row and column of this matrix, γ1j and γj1. Assumption 3

implies that:

γ1j = 0, for j > 1 (A39)

γj1 = 0, for j > 1. (A40)

We have that

λj1 =
k+1∑
l=1

φojl
−κ1

κ
(A41)

and using restrictions on Φ̂:

λj1 =
k+1∑
l=1

φojl
−κ1

κ
if j ≥ 2 (A42)

λ11 = φo11 +
k+1∑
l=1

φojl
−κ1

κ
(A43)

= φo11 −
κ1

κ
φo11if j = 1. (A44)

Therefore:

γ11 = λ11 +
n+1∑
l=1

κlλl1 (A45)

= φo11 −
κ1

κ
φo11 + φo11κ1 +

n+1∑
l=1

κl

k+1∑
m=1

φolm
−κ1

κ
(A46)

γj1 = λj1 +
n+1∑
l=1

κlλl1 (A47)

=
k+1∑
l=1

φojl
−κ1

κ
+ φo11κ1 +

n+1∑
l=1

κl

k+1∑
m=1

φolm
−κ1

κ
, if 2 ≤ j ≤ k + 1 (A48)

γj1 = λj1 =
k+1∑
l=1

φojl
−κ1

κ
, if j > k + 1. (A49)
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Considering the first row, we have that:

λ1j = φo1j +
k+1∑
l=1

φo1l
−κl
κ

(A50)

= −φo11

κj
κ

if j ≥ 2 (A51)

λ11 = φ11 +
k+1∑
l=1

φ1l
−κj
κ

(A52)

= φo11 − φo11

κ1

κ
(A53)

and thus:

γ11 = λ11 +
n+1∑
l=1

κlλl1 (A54)

= φo11 − φo11

κ1

κ
+ φo11κ1 +

n+1∑
l=1

κl

k+1∑
m=1

φolm
−κ1

κ
if 2 ≤ j ≤ n+ 1 (A55)

γ1j = λ1j +
n+1∑
l=1

κlλlj (A56)

= −φ11
κj
κ

+
n+1∑
l=1

κl

(
φolj +

k+1∑
m=1

φolm
−κj
κ

)
if j ≤ n+ 1 (A57)

γ1j = λ1j = −φo11

κj
κ

if j > n+ 1. (A58)

Equation (A58) implies that κj = 0 if j > k + 1.

If m ≥ 1 (that is we have endogenous variables) and for some j > k + 1,
∑k+1

l=1 φ
o
jl 6= 0

then equation (A49) implies that κ1 = 0. If m = 0 then we have to use equation (A48) to be

able to say something about κ1. Suppose κ1 6= 0 then equation (A48) implies that
∑k+1

l=1 φ
o
jl

is constant for all 2 ≤ j ≤ k + 1. If this is not the case, κ1 = 0. Assumption 1 rules out this

last scenario, so κ1 = 0.

What remains to be considered are κ2, . . . κk+1. To this aim, we use equation (A57) and

that κj = 0 if j > k + 1 so that for each 2 ≤ j ≤ k + 1

0 = −φo11κj +
k+1∑
l=1

κlκφ
o
lj − κj

k+1∑
l=1

κl

k+1∑
m=1

φolm (A59)

= −φo11κj + (1 + κ1 + κ2 + . . .+ κk+1)
k+1∑
l=1

κlφ
o
lj − κj

k+1∑
l=1

κl

k+1∑
m=1

φolm (A60)
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Using also that κ1 = 0, the gradient w.r.t. κ2 = 0, . . . , κn+1 = 0 equals

(φ2j, φ3j, . . . , φjj − φ11, . . . , φk+1j). (A61)

Thus the derivative(-matrix) equals

φo22 − φo11 φo32 . . . φoj2 . . . φon2 φon+12

φo23 φo33 − φo11 . . . φoj3 . . . φon3 φon+13

· · · · · · · · · · · · · · · · · · · · ·

φo2n φo3n . . . φojn . . . φon3 − φo11 φon+13

φo2n+1 φo3n+1 . . . φojn+1 . . . φonn+1 φon+13 − φo11


,

If the Φo matrix has full rank and φo11 is not an eigenvalue then this matrix has full rank

too. This implies that the set of equations in locally invertible what is equivalent to being

locally identified.

We finally show that the assumption of VAR(1) is without loss of generality. First of all,

let’s define Γ = [−1, Ik] and let’s rewrite the transition equation as:

St = ΦSt−1 +

 Σ1/2

0

 et

where St = [Su
t ,S

o
t ,S

u
t−1,S

o
t−1, . . . ,S

u
t−p+1,S

o
t−p+1]′ (u stands for unobserved, o stands for

observed). First of all, notice that since: Σ̂1/2

0

 = Tp

 Σ1/2

0


The Tp matrix must have its lower-left block equal to 0 (Su

t ,S
o
t can not depend on

Su
t+k,S

o
t+k for k > 0.

Also, by using the restrictions on the Tp matrix implied by the measurement equation,
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we obtain:

Tp =



I + Ku
11 Ko

11 Ku
12 Ko

12 . . . Ku
1p Ko

1p

0 I 0 0 . . . 0 0

0 0 I + Ku
22 Ko

22 . . . Ku
2p Ko

2p

0 0 0 I . . . 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 . . . I + Ku
pp Ko

pp

0 0 0 0 . . . 0 I


and where the above matrices solve the set of equations:

ΓKu
ij = ΓKo

ij = 0.

Now, notice that from the above Tp matrix we obtain for k = 1, . . . , p:

Ŝu
t−k+1 = Su

t−k+1 +

p∑
m=k

Ku
kmSu

t−m+1 + Ko
kmSu

t−m+1.

Using the equation for Ŝu
t at different lags yields:

Ŝu
t = Su

t +

p∑
m=1

Ku
1mSu

t−m+1 + Ko
1mSu

t−m+1 (A62)

= Su
t +

p∑
m=2

Ku
2mSu

t−m+2 + Ko
2mSu

t−m+2 (A63)

= . . . (A64)

= Su
t +

p∑
m=p

Ku
pmSu

t−m+p + Ko
pmSu

t−m+p. (A65)

Taking the difference between equation k ≤ p− 1 and equation p yields

0 =

p∑
m=k

Ku
kmSu

t−m+k + Ko
kmSu

t−m+k − (Ku
ppSu

t + Ko
ppSu

t ) (A66)

= (Ku
kk −Ku

pp)Su
t + (Ko

kk −Ko
pp)Su

t ) +

p∑
m=k+1

Ku
kmSu

t−m+k + Ko
kmSu

t−m+k. (A67)

Controllability of our state space (see Lemma 1) guarantees that for every vector x

(of the same dimension as the state vector) we have a sequence of shocks such that
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x = [Su
t ,S

o
t ,S

u
t−1,S

o
t−1, . . . ,S

u
t−p+1,S

o
t−p+1]′. In particular, this is true for the vector x =

[0, . . . , 1, . . . , 0]′. Using these insights in the above equation, we see that for any element κ of

any of these matrices we get the equation 0 = κ. We thus get that

Ku
kk = Ku

pp for all k (A68)

Ko
kk = Ko

pp for all k (A69)

Ku
km = Ko

km = 0 for all k and m > k (A70)

This means for the transformation matrix Tp:

Tp =



I + Ku
11 Ko

11 0 0 . . . 0 0

0 I 0 0 . . . 0 0

0 0 I + Ku
22 Ko

22 . . . 0 0

0 0 0 I . . . 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 . . . I + Ku
pp Ko

pp

0 0 0 0 . . . 0 I


or equivalently

Tp =



T1 0 0 . . . 0 0

0 T1 0 . . . 0 0

0 0 T1 . . . 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 . . . T1 0

0 0 0 . . . 0 T1


where T1 is the transformation matrix for the case with one lag.

As is the VAR(1) case we know that the off-diagonal elements of the first row and the

first column of Φ̂ and T1Φ
oT−11 are zero and thus the same arguments as above apply. We

therefore have that T1 is the identity matrix and thus is Tp.
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