Network Externalities and Technology Adoption: Lessons from Electronic Payments

Gautam Gowrisankaran
Department of Economics
University of Minnesota,
Federal Reserve Bank of San Francisco,
and NBER

Joanna Stavins
Research Department
Federal Reserve Bank of Boston

The views expressed herein are not those of the Federal Reserve Banks of Boston or San Francisco or of the Federal Reserve System.
Examine network externalities

Market: automated clearinghouse (ACH)

- ACH is an electronic payment product
- Developed by the Federal Reserve

- Typical usages: paying recurring bills, such as paychecks, mortgages, electricity bills, etc.

What is a network externality?

- Utility from using the good increases when other people use the good
- Must be true after controlling for price and exogenous characteristics
Why should we care about network externalities?

1) Implications for electronic payments

Puzzle: Computers and technology dominant
 Why are paper checks so used?

Two explanations:
A) Network externalities
B) Preference for checks
Different policy implications for A and B

2) Implications for other industries

- Many technologically intensive industries may have network aspects
- Examples VCRs, FAX machines, e-mail
- Many theoretical models, little empirical work
Existing empirical work

1) Time series studies
 - Park (1997) VCRs
 - Economides and Himmelberg (1995) FAXs
 - Cabral and Leite (1992) Telex

Central problem:
 - Technological advances => falling prices
 - Is the rising quantity movement along a demand curve or network externalities?

2) Cross-sectional studies
 - Rysman (2000) Yellow pages

 - Correlations in preferences leads to “reflection problem”
 - X variables can be used as a source of variation, i.e. instruments
Goals of this study

We want to understand:
- Are there network effects in electronic payments?
- What causes these effects (informational problems, or more users)?
- Economic magnitudes of the effects

Innovation of our methodology

- Use panel data with geographic variation
- Simple theoretical model with testable implications
- Develop three different methods to identify network externalities:
 1) Clustering of adoption
 2) Externalities internalized in concentrated markets
 3) Quasi-experimental variation from small branches
- Compute economic impact using estimated parameters
Data

We merge several sources of data

1) ACH Billing data from the Federal Reserve
 - Volume and usage of transaction origination for each ABA bank/quarter

2) FDIC Call Reports database
 - Assets, deposits, location
 - HQ zip code, quarterly

3) Summary of Deposits database
 - Deposits, branch locations
 - Branch zip code, annual

4) Geographical data
 - Use to determine network
Table 1: ACH usage by bank size

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Number Using ACH</th>
<th>Percent Using ACH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>small</td>
<td>medium</td>
</tr>
<tr>
<td>95:Q2</td>
<td>4208</td>
<td>1811</td>
</tr>
<tr>
<td>95:Q3</td>
<td>4235</td>
<td>1831</td>
</tr>
<tr>
<td>95:Q4</td>
<td>4273</td>
<td>1893</td>
</tr>
<tr>
<td>96:Q1</td>
<td>4383</td>
<td>1911</td>
</tr>
<tr>
<td>96:Q2</td>
<td>4559</td>
<td>1901</td>
</tr>
<tr>
<td>96:Q3</td>
<td>4600</td>
<td>1948</td>
</tr>
<tr>
<td>96:Q4</td>
<td>4732</td>
<td>2032</td>
</tr>
<tr>
<td>97:Q1</td>
<td>4857</td>
<td>2042</td>
</tr>
<tr>
<td>97:Q2</td>
<td>5061</td>
<td>2057</td>
</tr>
<tr>
<td>97:Q3</td>
<td>5138</td>
<td>2057</td>
</tr>
<tr>
<td>97:Q4</td>
<td>5169</td>
<td>2112</td>
</tr>
</tbody>
</table>
Table 2: Entrants and Exiters

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Entrants</th>
<th>Percent of total</th>
<th>Exiters</th>
<th>Percent of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>95:Q2</td>
<td>--</td>
<td>--</td>
<td>407</td>
<td>6.3%</td>
</tr>
<tr>
<td>95:Q3</td>
<td>462</td>
<td>7.1%</td>
<td>414</td>
<td>6.4%</td>
</tr>
<tr>
<td>95:Q4</td>
<td>528</td>
<td>8.0%</td>
<td>397</td>
<td>6.0%</td>
</tr>
<tr>
<td>96:Q1</td>
<td>531</td>
<td>7.9%</td>
<td>388</td>
<td>5.7%</td>
</tr>
<tr>
<td>96:Q2</td>
<td>535</td>
<td>7.7%</td>
<td>493</td>
<td>7.1%</td>
</tr>
<tr>
<td>96:Q3</td>
<td>612</td>
<td>8.7%</td>
<td>319</td>
<td>4.5%</td>
</tr>
<tr>
<td>96:Q4</td>
<td>537</td>
<td>7.4%</td>
<td>328</td>
<td>4.5%</td>
</tr>
<tr>
<td>97:Q1</td>
<td>454</td>
<td>6.2%</td>
<td>256</td>
<td>3.5%</td>
</tr>
<tr>
<td>97:Q2</td>
<td>472</td>
<td>6.2%</td>
<td>266</td>
<td>3.5%</td>
</tr>
<tr>
<td>97:Q3</td>
<td>343</td>
<td>4.5%</td>
<td>254</td>
<td>3.3%</td>
</tr>
<tr>
<td>97:Q4</td>
<td>335</td>
<td>4.3%</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 3: Fraction adopting in 1997:Q4, by 1995:Q2 adoption

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19%</td>
<td>0.376 0.033 0.010 0.005 0.002</td>
</tr>
<tr>
<td>20%-39%</td>
<td>0.105 0.208 0.014 0.019 0.005</td>
</tr>
<tr>
<td>40-59%</td>
<td>0.097 0.136 0.214 0.077 0.028</td>
</tr>
<tr>
<td>60-79%</td>
<td>0.093 0.143 0.221 0.271 0.129</td>
</tr>
<tr>
<td>80-100%</td>
<td>0.329 0.481 0.540 0.629 0.837</td>
</tr>
</tbody>
</table>
Table 4: Fraction adopting, by population and concentration

<table>
<thead>
<tr>
<th>HHI</th>
<th>20,000 - 40,000</th>
<th>100,000 - 200,000</th>
<th>400,000 - 1 million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>No. of obs.</td>
<td>Mean</td>
</tr>
<tr>
<td>0 - 0.1</td>
<td>0.591</td>
<td>3</td>
<td>0.661</td>
</tr>
<tr>
<td>0.1 - 0.2</td>
<td>0.766</td>
<td>108</td>
<td>0.797</td>
</tr>
<tr>
<td>0.2 - 0.3</td>
<td>0.810</td>
<td>247</td>
<td>0.878</td>
</tr>
<tr>
<td>0.3 - 0.4</td>
<td>0.850</td>
<td>131</td>
<td>0.935</td>
</tr>
<tr>
<td>0.4 - 1.0</td>
<td>0.862</td>
<td>81</td>
<td>0.972</td>
</tr>
</tbody>
</table>
Model of technology adoption

- Set of customers \(i\) of banks \(j\)
- Discrete choice between ACH and checks:
 \[u_{i,j}(\text{Usage}_{-i,j}) = \gamma^C X_{i,j} + f(\beta^C, \text{Usage}_{-i,j}) \]
- Consumers use ACH if utility is positive and their bank adopts
- Networks extend 30 kilometers, static model
- Network externality:
 \[\frac{\partial u_{i,j}}{\partial \text{Usage}_{-i,j}} > 0 \]
- Two stage game: banks choose adoption, then consumers choose usage
- Consumer game has unique Pareto-dominating Nash equilibrium, given adoption
- For this equilibrium, \(\text{Usage}^P(\text{Adoption})\) is increasing in Adoption
Model (continued)

- Banks capture all the surplus from adoption, adopt if surplus positive
 \[A_j = \{ \pi_j(A_{-j}) > 0 \} = \{ \gamma X_j + \beta h(A_{-j}) + \varepsilon_j > 0 \} \]
 where:
 - \{ \} is the indicator function
 - \(A_{-j} \) is the adoption decisions of other banks
 - \(X_j \) are the banks’ own characteristics, such as size, fixed effects, etc.
 - \(h(A_{-j}) \) is the bank-level network externality, with 2 functional forms:
 - \(\#(j) \) measures the fraction of banks adopting ACH
 - \(\#^Q(j) \) measures the number of ACH transactions per dollar assets

- Consumer network externality leads to bank-level network externality
- Overall game has unique Pareto-dominating subgame perfect equilibrium
Identifying network externalities from clustering

- Find network externalities if adoption is correlated within a network
- Bank and time fixed effects control for technological differences and advancements
- Main identifying assumption: $\text{Corr}[\varepsilon_{1t}, \varepsilon_{2t}] = 0$ (iid errors)

Stylized case with two banks:
\[A_{1t} = \{ \Pi_{1t} (A_{2t}) > 0 \} = \{ \beta h(A_{2t}) + \delta_t + \alpha_1 + \varepsilon_{1t} > 0 \} \]
\[A_{2t} = \{ \Pi_{2t} (A_{1t}) > 0 \} = \{ \beta h(A_{1t}) + \delta_t + \alpha_2 + \varepsilon_{2t} > 0 \} \]

- Use Chamberlain’s fixed effects logit
- Method can test for positive network externality
- More structural methods can identify magnitudes (see Ackerberg and Gowrisankaran)
- Using quantity and adoption, can distinguish from other phenomena
<table>
<thead>
<tr>
<th>Model</th>
<th>Regressor: Fraction adopting [#(j)]</th>
<th>Regressor: ACH volume per [#^Q(j)]</th>
<th>Conditional log like R^2 (within)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Adoption on #(j)</td>
<td>1.874*** (0.096)</td>
<td>--</td>
<td>-12,882.9</td>
</tr>
<tr>
<td>Model 2: Adoption on #(j) and #^Q(j)</td>
<td>1.873*** (0.096)</td>
<td>0.142 (0.109)</td>
<td>-12,882.0</td>
</tr>
<tr>
<td>Model 4: Adoption on #(j) with alternate definition of entry/exit</td>
<td>2.073*** (0.135)</td>
<td>--</td>
<td>-9,218.2</td>
</tr>
<tr>
<td>Model 6: Volume per assets on #(j) and #^Q(j)</td>
<td>0.0013 (0.0057)</td>
<td>0.0075 (0.0052)</td>
<td>0.0012</td>
</tr>
</tbody>
</table>
Identifying network externalities from size & concentration

- Idea: \(f(X_{-j}) \) is an excluded exogenous variable in adoption decision:
 \[
 A_j = \{\pi_j(A_{-j}) > 0\} = \{\gamma X_j + \beta h(A_{-j}) + \varepsilon_j > 0\}
 \]
- Adoption will be correlated with other banks’ sizes, but other banks’ sizes do not directly enter into adoption decision
- Concentration is a nice way of encapsulating \(f(X_{-j}) \): concentrated markets can internalize network externalities
- Need to worry about some similar implications of market power
- Reduced-form test of network externalities:
 \[
 A_j = \{\gamma X_j + \alpha HHI_j + \varepsilon_j > 0\}
 \]
- Instrumental variables estimation - linear probability model:
 \[
 A_j = \gamma X_j + \beta h(A_{-j}) + \varepsilon_j
 \]
Table 6: Identification using size and concentration

<table>
<thead>
<tr>
<th>Model</th>
<th>Regressor: MSA/county level concentration [HHI\textsubscript{j}]</th>
<th>Regressor: Fraction adopting ACH [#(j)]</th>
<th>Log likelihood / R2 (within)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Adoption on HHI\textsubscript{j} and bank size dummies (Logit estimation)</td>
<td>0.392*** (0.046)</td>
<td>--</td>
<td>Log L= -64,392.6</td>
</tr>
<tr>
<td>Model 3: Volume per assets on HHI\textsubscript{j}, for adopting banks (Linear FE estimation)</td>
<td>0.171 (0.053)</td>
<td>--</td>
<td>R2=0.002</td>
</tr>
<tr>
<td>Model 5: Adoption on #(j) and bank fixed effects (Linear IV FE estimation)</td>
<td>--</td>
<td>0.930*** (0.072)</td>
<td>--</td>
</tr>
</tbody>
</table>
Identification from quasi-experimental variation in adoption

- Idea: Want to observe exogenous variation in adoption ($\#(j)$)
- Natural experiment: multi-branch banks adopt ACH system-wide
- Small branch adoption of large bank is exogenous
- These decisions trace out structural parameter for local bank

We create a sample of networks with:
- Exactly one local bank
- One or more small branches of large bank
- “Small” defined by < 5% of deposits

- Identification assumption: deposits and presence of large banks are exogenous

Using estimated structural parameters:
- Compute Pareto-best and -worst equilibria
- Compute first-best solution
Table 7: Identification using quasi-experimental variation

<table>
<thead>
<tr>
<th>Model</th>
<th>Regression & Estimation</th>
<th>Regressor: Fraction adopting ACH ([#(j)])</th>
<th>Number of observations</th>
<th>Log likelihood / (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Adoption on (j) (Probit estimation)</td>
<td>1.094 (0.411)*** Robust: (0.354)***</td>
<td>237</td>
<td>Log L= -138.4</td>
<td></td>
</tr>
<tr>
<td>Model 2: Adoption on (j) and bank size dummies (Probit estimation)</td>
<td>1.623 (0.679)** Robust: (0.788)**</td>
<td>158</td>
<td>Log L= -84.7</td>
<td></td>
</tr>
<tr>
<td>Model 3: Adoption on (j) (Linear estimation)</td>
<td>0.511 (0.180)***** Robust: (0.291)*</td>
<td>237</td>
<td>(R^2= 0.467)</td>
<td></td>
</tr>
</tbody>
</table>
Table 8: Simulation of network equilibria

<table>
<thead>
<tr>
<th>Number of firms, N</th>
<th>Pareto-worst Nash equilibrium</th>
<th>Pareto-best Nash equilibrium</th>
<th>First-best (perfect cartel) outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>2</td>
<td>0.30</td>
<td>0.46</td>
<td>0.66</td>
</tr>
<tr>
<td>3</td>
<td>0.32</td>
<td>0.43</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>0.32</td>
<td>0.41</td>
<td>0.67</td>
</tr>
<tr>
<td>5</td>
<td>0.32</td>
<td>0.40</td>
<td>0.67</td>
</tr>
<tr>
<td>6</td>
<td>0.33</td>
<td>0.39</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Cell gives expected percent of banks adopting N symmetric firms, deposits=$34 Million
Extension: Structural estimation

(See Ackerberg and Gowrisankaran, in progress)

- Structural estimation to can combine three methods of identification
- More realistic functional forms for consumers and banks
- Need to model multiple equilibria
- Frequency $\theta (1-\theta)$ of best (worst) equilibrium
- Use maximum likelihood
- Allow for random effects, not fixed effects

Structural estimation algorithm:
1) Construct mutually exclusive networks
2) Draw vector of unobservables
3) Search over parameter vector to maximize likelihood:
 A) Solve N.E. by network given unobservables
 B) Evaluate implied density for draw
 C) Sum over simulation draws to get likelihood
Conclusions

- Detailed panel data helps separate network externalities from other implications

- Significant evidence of network externalities:
 1) Testing from clustering
 2) Identification from size and concentration
 3) Natural experiment from small branches

- Can distinguish network externalities from market power and other explanations

- We find moderately large network externalities, at bank level