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Use of Machine Learning (ML) in FICO® Score Development 

• FICO® Score developments use ML for over 25 years 

• Optimal binning 

• Characteristic selection 

• Optimizing score weights 

• Interaction detection and multi-scorecard segmentation 

• Benchmarking 

• Data-driven ML is balanced with domain expertise 

• To ensure transparency, palatability, fairness 

• To stand up to regulatory and consumer scrutiny 

• To mitigate data biases 
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Anatomy of a Typical ML Model 
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Anatomy of FICO® Score Model* 

• Easy-to-explain multi-scorecard system captures 
nonlinearities, interactions; increases score power 

• FICO® Score 9 uses 13 scorecards dedicated to 
distinctive population segments 

• Characteristic selection, Points patterns 
are subject to palatability constraints 

Focus on Prediction and Explanation—Balance Best Fit to Data with Domain Expertise 

*Graphics for illustrative purposes only 
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Benchmarking ML Scores Against FICO® Score 9 
Purely Data-driven ML Yields Modest Predictive Lift; Significantly More Streamlined Model Build 

40 vs 800 
Resource hours required to build model  

(vs status quo approach) 

< 2%
 

Relative improvement in KS     

on in-time holdout sample* 

40 vs 800 
Resource hours required to 

train ML model vs multi-

scorecard development 

Stochastic Gradient Boosting 

Neural Networks 

*ML models were trained and evaluated on same data used to develop and to evaluate FICO® Score 9 
(= nationally representative sample of 10M credit files)  
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Assessing Palatability of Models Through Score Simulations 

• Pose payment behavior scenarios, such as: 

• How does paying off ~90% of total credit card debt impact my score? 

Scenario 
Simulated Score 

Probe 
Model 

$1,493 

FICO® Score 9 

ML model 
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Simulations Reveal Lack of Palatability of ML Models 

Probe Model Result of Simulation* 

FICO® Score 9 
0% of consumer records experienced a decrease in score as a 

result of this positive credit behavior (reducing debt) 

Stochastic Gradient 

Boosting 
9.2% of consumer records experienced a decrease in score 

*Based on representative national sample of millions of FICO scorable credit files                                                 
Held everything else fixed in simulation (credit history, non-revolving balances, etc.) 

• Positive credit action leads to ML score decrease 9.2% of the time 

• Consumers and lenders would be confounded by such a deviation from expectations 
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Explainable AI/ML Approach to Credit Score Development* 

Find best ML model 1 

Diagnose model 
Diagnostics 

Variable importance 

Interactions      

Partial Dependence Plots 

2 

Add domain expertise 
to segment scorecards 

5 Deploy 6 

3 Augment data with Best Score variable 

*See full paper: “Developing Transparent Credit Risk Scorecards More Effectively: An Explainable Artificial Intelligence Approach” 

4 
Approximate Best Score by automatically 
grown multi-scorecard system 

 Util < 40%   Util >= 40%  
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Performance Comparison* 

*Performance on bankcard accounts over 24 months (Bad = 90+ days past due)   

Model 

(Score Development Technology) 

% improvement in KS                    

over FICO® Score 9  

FICO® Score 9 N/A 

Stochastic Gradient Boosting 1.7% 

Neural Network 0.5% 

Explainable AI/ML Approach 0.3% 
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Conclusions 

AI/ML offers substantial efficiently gains for credit risk score developers,                     
but lack of palatability can render purely data-driven models unfit for deployment.   

To ensure transparency, palatability, and fairness of scores,                                   
model development must balance data-driven learning with domain expertise.  

Explainable AI/ML approaches are required to strike this balance.   
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Thank You! 

Gerald Fahner 

C 512 698 0609 
geraldfahner@fico.com 


