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Abstract
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1 Introduction

An entrepreneur requires a minimum level of seed capital when undertaking a new venture. Conse-

quently, seed capital campaigns are inherently “all-or-nothing”; if the entrepreneur is successful in

acquiring the minimum level of capital needed, the venture is undertaken, otherwise the venture is

canceled. When attempting to secure seed capital, the entrepreneur often taps on the shoulders of

many, at times diverse, investors, e.g., family, friends, and angel investors. As such, investors form

an informal syndicate and the syndicate’s ability to coordinate the members’ collective information

and actions may be limited due to fragmentation. Moreover, without the ability to coordinate,

members of the syndicate may act non-cooperatively to compete for scarce expected profits.

In this paper, we study a model of early venture financing in which (i) financing is all-or-

nothing, (ii) financing requires multiple, non-cooperative investors, and (iii) investor profits are

scarce. We interpret any financing setting characterized by these three features as securities-

based crowdfunding.1 Our analysis focuses on the financing efficiency achieved via crowdfunding.

Including multiple investors creates a rich information environment and a larger crowd collectively

possesses better information about a venture’s unobservable quality, i.e., the “wisdom of the crowd.”

However, we show that non-cooperative actions and coordination frictions erode the benefit of

greater information. In fact, the erosion in financing efficiency is so severe that a large crowd

exhibits no “wisdom” and instead acts collectively uninformed.

The sources for financing inefficiency are threefold. The first and second sources of inefficiency

are both driven by the fact that investor participation is (weakly) correlated with the project’s

unobservable quality, i.e., all else equal, more investors participate in good projects and fewer

participate in bad projects. As such, the first inefficiency is due to investors’ greater exposure to

good projects via the all-or-nothing threshold — if the project is bad, it is less likely that enough

1While “crowdfunding” is typically associated with capital campaigns conducted via the internet, it has been a
method of capital fundraising for centuries. For example, donation-based crowdfunding has existed since at least the
19th century when the base for the Statue of Liberty was financed by 160,000 donors after the government failed to
provide funding. http://www.bbc.com/news/magazine-21932675
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investors participate and thus more likely that the project is canceled. This asymmetric exposure

relates to what we coin the loser’s blessing : because investors are somewhat hedged against bad

projects, investors respond with more aggressive investment strategies in equilibrium. At times,

the loser’s blessing leads investors to contribute to projects that they believe are actually bad. The

second inefficiency is due to investors’ greater exposure to bad projects via limited investment profits

— if the project is good, many investors participate and their claims to the project are small and

if the project is bad, only a few investors participate and their claims are large. This asymmetric

exposure relates to the winner’s curse and, in equilibrium, investors respond with more conservative

investment strategies, at times abstaining from investing in projects that they believe are actually

good. Both the loser’s blessing and the winner’s curse are associated with a social cost as they

distort investors’ expected payoffs and investors’ investment strategies. Finally, the third source of

financing inefficiency is investors’ inability to credibly share their private information. Without the

ability to share private information, a coordination cost results and financing efficiency is dampened

as some valuable projects are forgone and some poor projects are undertaken.

A direct application of our model is to internet (securities-based) crowdfunding in which all-or-

nothing thresholds are mandatory and investor participation decisions are decentralized.2,3 While

securities-based crowdfunding via the internet is in its infancy, it is preceded by reward-based crowd-

funding (e.g., KickStarter and Indigogo) and donation-based crowdfunding (e.g., GoFundMe) which

attract investors who enjoy private benefits from contributing (Boudreau, Jeppesen, Reichstein and

Rullani 2015). Beyond securing necessary financing, both reward-based and donation-based crowd-

funding have benefited entrepreneurs by enabling feedback from consumer-investors that aids in

product and business development.4 For example, product pre-sales allow consumers to express

2The JOBS Act and the SEC’s adoption of Regulation Crowdfunding, which became effective May 16, 2016, have
set the stage for the growth of securities-based crowdfunding in the United States. See Stemler (2013) for details
regarding the JOBS Act, specifically Title III (the CROWDFUND Act) and see Massolution (2015) for an overview
of worldwide crowdfunding activity.

3In the United States, all-or-nothing financing mechanisms are mandated by Regulation Crowdfunding for
securities-based crowdfunding and have been used in Regulation D filings since 1982. The all-or-nothing financ-
ing mechanism is also known as a “provision point mechanism” (Bagnoli and Lipman 1989).

4Grüner and Siemroth (2016) and Ellman and Hurkens (2016) model crowdfunding as a way to get consumer
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their demands for potential products. Only the popular, and likely profitable, products receive

sufficient financing and are produced. In this way, reward-based and donation-based crowdfund-

ing harnesses the wisdom of the crowd to finance only the best projects.5 While it is tempting

to hope that securities-based crowdfunding will also harness the wisdom of the crowd, securities-

based campaigns differ from reward-based and donation-based campaigns in an important way: the

projects in securities-based campaigns are common value goods while the projects in reward-based

and donation-based campaigns are private value goods. Our analysis shows that this difference

has first-order consequences on financing outcomes. Securities-based crowdfunding destroys the

wisdom of the crowd.

Turning to the details of the model, we consider two crowdfunding settings: pivotal crowdfund-

ing and non-pivotal crowdfunding. In pivotal crowdfunding, a small number of non-cooperative,

privately-informed investors choose whether or not to provide capital to an entrepreneur. Each

investor considers both the impact of her own investment decision and the expected actions of

other investors. In the non-pivotal setting, a large number of non-cooperative, privately-informed

investors choose whether or not to participate. Unlike the pivotal setting, investors do not inter-

nalize their individual actions and instead choose their investment decisions based on the expected

actions of all other investors and the project’s characteristics.

In the pivotal crowdfunding setting, we first consider a crowd consisting of two investors. Each

investor receives a private signal with precision α > 1
2 about the project’s quality and decides

whether or not to participate. If the project is good, the project pays a gross return ∆ > 1,

otherwise the project is bad and pays a gross return of zero. The project requires c units of

capital and each investor can contribute at most M/2 units. If both investors participate, they

split the project’s return. If M/2 ≥ c, a single investor may finance the project and we term

feedback. Agrawal, Catalini and Goldfarb (2014) and Xu (2017) consider other potential benefits of crowdfunding,
including increased trade between investors and entrepreneurs, innovation spill-overs, and better geographic dispersion
of capital.

5There is also strong evidence from prediction markets and earnings forecast platforms that the information
content from many dispersed investors is relatively accurate, i.e., the so-called “wisdom of the crowd.” See Wolfers
and Zitzewitz (2004) and Da and Huang (2016).
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this the solo setting. In the solo setting, the winner’s curse is in play and investors’ equilibrium

strategies reflect the possibility of financing a bad project alone or splitting the return of a good

project. The asymmetric exposure to project outcomes leads investors to abstain from some projects

that they believe are positive valued because the expected payoffs of investing are negative. If

M/2 < c ≤ M , joint participation by investors is required to finance the project. We term this the

joint setting. In the joint setting, the winner’s curse does not exist as any funded project requires

joint participation. The loser’s blessing, however, is present. Investors rationally anticipate that

they both must participate to finance the project, and in equilibrium their mutual best responses

lead them to invest with nonzero probabilities in projects that they believe are negative valued.

To analyze the efficiency of securities-based crowdfunding, we outline two welfare benchmarks.

The first-best benchmark corresponds to the surplus generated by a single monopolist if he possessed

all investor capital and observed investors’ private signals. The second-best benchmark corresponds

to the surplus generated by investors if they could commit to participation strategies that maximize

joint surplus (as opposed to individual payoffs). We define coordination costs as the differences

between the first-best and second-best benchmarks, and social costs as the differences between

the second-best benchmarks and the non-cooperative surplus. In both the solo and joint settings,

financing inefficiencies can be so severe that a lone investor with only a single signal performs better

than two investors with two signals.

We extend the pivotal crowdfunding setting to N > 2 investors to show that financing in-

efficiency increases with N . Moreover, as N increases, the difference between the first-best and

second-best benchmarks shrinks and the coordination cost tends to zero. As such, for large N ,

financing inefficiencies are due almost entirely to the social costs attributed to the loser’s blessing

and the winner’s curse.

In the non-pivotal setting, there is a unit continuum of investors and a single investor’s decision

to participate has no impact on whether or not the project is financed. By the strong law of large

numbers, the coordination cost is equal to zero — the crowd collectively possesses a perfect signal
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of a project’s quality. Despite the potential for first-best financing efficiency, the social cost is

so severe that investment outcomes reflect no information. In equilibrium, either all projects are

financed or no projects are financed — regardless of type.

As an example, suppose each investor in the continuum may contribute M units of capital. If

each investor followed her signal and signals were accurate with 75% probability, good projects

would raise 0.75M units of capital and bad projects would raise 0.25M units of capital. If the all-

or-nothing threshold were between these two values, there would be a perfect loser’s blessing and

financing would be first-best; good projects would always be financed and bad projects would never

be financed. However, this cannot be an equilibrium. An investor observing a bad signal would

deviate from following her signal because she expects to earn a risk-less profit. If her bad signal is

incorrect she obtains ownership in a good project. Conversely, if her signal is correct, her capital

is returned because the project is canceled. Due to the discontinuity in payoffs attributed to the

loser’s blessing, all investors face the same incentive to deviate and a loser’s blessing cannot exist

in equilibrium. Therefore, the only equilibria are those in which both good and bad projects are

either always financed or never financed. In particular, a range of ex ante positive valued projects

are never financed, implying that uninformed investors may outperform an informed crowd.

Our analysis challenges the notion that, like reward-based and donation-based crowdfunding,

securities-based crowdfunding will harness the wisdom of the crowd. We show that securities-based

crowdfunding will not only fail to aggregate information, but may actually be counterproductive.

1.1 Related Literature

Our paper’s focus on fundraising outcomes’ partially determining project returns (i.e., the pos-

sibility that a project is canceled due to not reaching the all-or-nothing threshold) is related to

a growing literature on the real effects of financial markets.6 In our setting, the combination of

6See Bond, Edmans and Goldstein (2012) for a review of the literature. See Dow and Gorton (1997), Dow and
Rahi (2003), Dye and Sridhar (2002) and Subrahmanyam and Titman (1999) for theoretical models of financial
market feedback. There is also strong empirical support that real decision-makers glean information from secondary
trading. Luo (2005) shows that, after announcing an acquisition, managers may cancel the deal if the market responds
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private information and the possibility of projects’ being canceled leads to information breakdowns.

Consequently, our analysis of both the winner’s curse and loser’s blessing is directly related to the

idea that price feedback can hamper the incorporation of information into prices.7 Goldstein and

Guembel (2008), Goldstein, Ozdenoren and Yuan (2013), Edmans, Goldstein and Wei (2015) and

Bond, Goldstein and Prescott (2010) provide models in which price feedback either alters investors’

trading strategies or obfuscates the signal in prices.8 In each of these models, active trading mar-

kets allow investors to somewhat coordinate and at least partially communicate their information

to real decision-makers.

The mechanism for our results differ due to two key features of crowdfunding. First, there is no

market in which investors can trade and incorporate their information into prices. In crowdfunding,

prices are fixed by entrepreneurs and fundraising quantities convey information.9,10 Second, all-or-

nothing financing creates an asymmetric payoff structure; investors can only profit when they

invest.11 The discrete payoffs that arise due to all-or-nothing financing result in the financing

inefficiencies we document.

Goldstein, Ozdenoren and Yuan (2011) and Bond and Goldstein (2015) both show that infor-

negatively. Similarly, Jegadeesh, Weinstein and Welch (1993) and Michaely and Shaw (1994) provide evidence from
IPOs that outsiders have incremental information about firm value relative to insiders. Finally, Chen, Goldstein
and Jiang (2007) show that firms with more informationally-efficient stock prices demonstrate stronger investment
sensitivity to stock price.

7While not directly relying on prices, the analysis of informational cascades in Bikhchandani, Hirshleifer and
Welch (1992) features individuals who may ignore their own information. In their setting, this is due to learning
in a sequential-action game, while in our simultaneous-action setting, asymmetric payoffs lead investors’ actions to
diverge from their beliefs regarding project quality.

8See also Axelson and Makarov (2016) for related work on adverse outcomes when real decisions are made based on
fundraising outcomes. In Axelson and Makarov (2016)’s model, an auction’s informational efficiency can be destroyed
when the information is subsequently used to make an investment decision.

9Entrepreneurs can set a fixed price for an offering, or can create a price schedule based on capital raised. In
either case, price is established prior to the offering and cannot be adapted in response to information revealed in the
fundraising process.

10A fundraising process without an all-or-nothing feature is similar to a price as it aggregates dispersed information
(Hellwig 1980, Grossman 1976, Hayek 1945). If the fundraising process did not have an all-or-nothing-feature,
investors would allocate capital if their information implied the project was worthwhile and would otherwise abstain.

11The asymmetric payoff structure separates our analysis from the voting literature, in which collective actions take
place when there are enough votes in favor of a proposal. While investors can be pivotal in both settings, only those
who contribute to a crowdfunding campaign are committed to the action (investment). For analyses of information
aggregation in voting settings, see e.g., Feddersen and Pesendorfer (1997), Feddersen and Pesendorfer (1998) and
Bond and Eraslan (2010).
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mational inefficiencies can be mitigated when decision makers are willing and able to commit to

actions that may run against their best interest. In our model, the social costs associated with

the winner’s curse and loser’s blessing arise because investors cannot commit to socially-optimal

decision rules. Our analysis of the second-best benchmark provided by a social planner illustrates

the ill effects of individual investors’ incentives and inabilities to coordinate or pre-commit.

Our analysis of crowdfunding is also related to IPOs, a setting in which underwriters aggregate

information from investors during the bookbuilding process.12 Similar to Rock (1986), we show

that the winner’s curse leads to fundraising distortions. However, in our setting, not all projects

are financed and the possibility of project cancellation leads to a loser’s blessing. Our results of

information breakdowns are somewhat surprising in light of the IPO literature which details how

to aggregate information from informed investors via bookbuilding. While bookbuilding models

of Benveniste and Spindt (1989) and Benveniste and Wilhelm (1990), among others, show that

allocation and pricing schedules can be used to elicit investors’ information, those papers depend

on two important assumptions that are violated in our setting. First, allocation discretion is not

common in crowdfunding. Second, small average contributions result in extremely dispersed own-

ership, likely preventing entrepreneurs from learning individuals’ signals, except through aggregate

fundraising activity.13 Bookbuilding models rely on allocation discretion and communication with

investors to reward informative bids and effectively aggregate information.14 Furthermore, it is

often assumed in IPO models that adequate financing is available. Failing to acquire adequate

financing at any price is common.15,16 Taken together, these key differences between crowdfunding

12See Ritter and Welch (2002), Ljungqvist (2007) and Ritter (2011) for reviews of the literature.
13Most investor contributions on crowdfunding platforms are small. Mollick (2014) documents an av-

erage investment size of $64 and proposed SEC rules set maximums on individual investments. See
https://www.congress.gov/bill/112th-congress/senate-bill/2190/text.

14Sherman and Titman (2002) considers the number of investors invited to bid on an IPO, and like our analysis,
shows that underwriters may want to limit the size of the invited syndicate.

15While less than 20% of firms that begin the IPO filing process ultimately withdraw (Busaba, Benveniste and
Guo 2001), about two-thirds of crowdfunding campaigns fail to reach their target (Vulkan, Åstebro and Sirra 2016).

16Edelen and Kadlec (2005) consider IPO withdrawals by modeling firms that balance the surplus generated from
aggressive pricing against the probability of failed offerings. As in other bookbuilding models, underwriters have
allocation discretion, dampening the loser’s blessing present in our model.
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and IPOs prevent traditional bookbuilding methods from being used to elicit information.

Finally, our work also relates to a nascent theoretical literature on crowdfunding. Hakenes and

Schlegel (2014) models endogenous information production in the presence of the winner’s curse

and all-or-nothing financing thresholds, showing that too much information production may result.

Our analysis shows the opposite occurs when crowds become large — breakdowns in financing

efficiency would remove all incentives to produce information. Li (2017) considers the optimal

financial contract in crowdfunding, showing that typical pro rata allocations are suboptimal in

aggregating investors’ private information. We are agnostic towards the optimal security design

and instead we examine the positive implications of investment efficiency given standard features

of crowdfunding. Cumming, Leboeuf and Schwienbacher (2015) compares keep-it-all versus all-

or-nothing financing, showing that keep-it-all mechanisms are better for small, scalable projects.

We only consider all-or-nothing financing, given its prominence in practice and requirement for US

securities-based crowdfunding.

2 Base Model

There exist two risk neutral investors and a project controlled by a benevolent entrepreneur who

does not suffer from any agency conflicts. Each investor possesses scarce investment capital.

The project is financially valued according to its quality F ∈ {G,B}, its upfront cost c (which

is equivalent to its scale), and its promised gross rate of return ∆ > 1 (net return δ > 0):

V = 1G∆c− c, (1)

where 1G equals one when F = G. The project’s quality is not observable, but with equal proba-

bility, will be good, F = G, or bad, F = B, i.e.,

Pr(F = G) = Pr(F = B) =
1

2
. (2)
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The project’s upfront cost and fundraising goal is c ∈ R
++. To finance the project, initial owners

sell 100% of the project’s cash flows via equity claims.17

Assumption 1. If the project does not raise an amount weakly greater than c, the project is canceled

and committed capital (if any) is returned to investors, i.e., financing is all-or-nothing.

The all-or-nothing threshold of c could be exogenously imposed, or the entrepreneur controlling

the startup may credibly commit to canceling the project if after “testing the waters” he does not

attract at least c dollars of investor interest.

Each of the two investors can contribute a maximum of M
2 > 0 dollars to the project, so that

the total pool of available capital equals M . Prior to making an investment decision, each investor

receives a conditionally i.i.d. private signal regarding the project’s type and the signal is correct

with probability α. Specifically, investors receive a binary signal F̂ ∈ {Ĝ, B̂} and,

Pr(G|Ĝ) = Pr(B|B̂) = α >
1

2
. (3)

Assumption 2. If the project raises c from investors (i.e., it is “funded”), returns are allocated

on a pro rata basis.18

According to assumption 2, if both investors contribute M
2 dollars of capital, they each receive

a 50% claim to the project’s return. If only one investor contributes capital and funds the project,

she receives 100% claim to the project’s return. We assume that,

M ≥ c, (4)

so that the analysis is nontrivial (i.e., it is possible for the two investors to fund the project).

17With two possible states {G,B} and the value of the project equaling zero in bad states, it is equivalent to
consider the financial claims as being debt.

18It is equivalent to assume that the project generates a net return of δ on c dollars and zero net return on any
excess quantity greater than c.
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t=1

(a) Project sets fundraising goal of c

(b) Investors receive conditionally

i.i.d. signals

(c) Investors choose whether

or not to participate

t=2

(a) If committed capital does not exceed c,

project is canceled and investors

receive a payoff of 0

(b) If committed capital exceeds c,

payoffs are realized and allocated

on a pro rata basis

Figure 1: Investment game model timing.

Assumption 3. Investors cannot credibly share their signals and make their investment decisions

simultaneously.

Assumption 3 represents that entrepreneurs often assemble patchwork networks of investors for

early venture financing.

In what follows, we consider the Bayesian Nash Equilibrium to the simultaneous-move invest-

ment game. When possible, we focus on non-zero participation equilibria. We only highlight zero

participation equilibria when no non-zero participation equilibria exist. While the two investors

employ identical strategies in equilibrium, we denote the strategy of investor i as, ~πi = {gi, bi},

where gi ∈ [0, 1] and bi ∈ [0, 1] are investor i’s mixed strategies based on signals of Ĝ and B̂

respectively.19 The model’s timing is summarized in Figure 1.

The level of the financing threshold can lead to two settings. If M/2 ≥ c, a single investor

may finance the project and we term this the solo setting (denoted with the superscript S). If

M/2 < c ≤ M , joint participation by investors is required to finance the project. We term this the

joint setting (denoted with the superscript J).

First, consider the solo setting, i.e., M
2 ≥ c. Investor i’s expected payoff (as a return on invested

19While we explicitly restrict investors to contributing the full amount of their capital, relaxing this assumption does
not change the main insights of the model. Whenever investors play non-deterministic strategies, there are infinite
potential equilibria that satisfy investors’ binding participation constraints with less than 100% contributions, and
each equilibria gives rise to the same financing probabilities in each state, thus giving identical financing efficiency.
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capital), conditional on observing Ĝ, is equal to,

Π(Ĝ|~πS
i , ~π

S
−i) =α2δ

(

gSi g
S
−i

1

2
+ gSi (1− gS−i)

)

+α(1 − α)δ

(

gSi b
S
−i

1

2
+ gSi (1− bS−i)

)

−(1− α)α

(

gSi b
S
−i

1

2
+ gSi (1− bS−i)

)

−(1− α)2
(

gSi g
S
−i

1

2
+ gSi (1− gS−i)

)

. (5)

The expression in (5) is intuitive: when investor i observes Ĝ, she believes that the project is

good with probability α. Furthermore, conditional on the project’s being good, investor i believes

that investor −i will also observe a signal of Ĝ with probability α. Thus, conditional on investor

i observing Ĝ, her state probability that (i) the project is good and (ii) investor −i observes Ĝ

as well is equal to α2. In this state, she chooses a mixed strategy of gSi and rationally expects

investor −i to choose a mixed strategy of gS−i. Therefore, she expects to split the project’s return

with probability gSi g
S
−i, expects to be the lone investor with probability gSi (1 − gS−i), and does not

participate (earning zero) with probability (1 − gSi ). The first line in (5) represents these possible

outcomes,

α2
︸︷︷︸

Project is type G

Both investors observe Ĝ

δ







gSi g
S
−i

1

2
︸ ︷︷ ︸

Both investors invest

+ gSi (1− gS−i)
︸ ︷︷ ︸

Only investor i invests







.

A similar analysis applies to (i) the state in which investor i is correct while investor −i observes

the incorrect signal B̂; (ii) the state in which she is incorrect while investor −i observes the correct

signal B̂; and (iii) the state in which she is incorrect and investor −i also observes the incorrect

signal Ĝ.

12



Investor i’s expected payoff, conditional on observing a signal of B̂, is equal to,

Π(B̂|~πS
i , ~π

S
−i) =(1− α)2δ

(

bSi b
S
−i

1

2
+ bSi (1− bS−i)

)

+(1− α)αδ

(

bSi g
S
−i

1

2
+ bSi (1− gS−i)

)

−α(1− α)

(

bSi g
S
−i

1

2
+ bSi (1− gS−i)

)

−α2

(

bSi b
S
−i

1

2
+ bSi (1− bS−i)

)

. (6)

While the expected payoff in (6) is similar to that in (5), it differs in the strategy played by investor

i (bSi rather than gSi ), and she believes that the project is good with probability (1− α).

In this non-cooperative game, investors do not coordinate their investment decisions to exploit

the informational content of the two signals they possess. Instead, each investor makes her invest-

ment decision based on her individual signal and as a best response to the other investor’s strategy.

The following lemma provides the symmetric strategies used by the two investors in the solo setting

(the subscripts i and −i are suppressed).

Lemma 1. In a solo setting, the equilibrium investment strategies are,







gS = bS = 1 δ ∈
[

α
1−α ,∞

)

gS = 1 , bS = 0 δ ∈
[(

1−α
α

) (
1+α
2−α

)

, α
1−α

)

gS = 2(α(1+δ)−1)
2(α(1+δ)−1)+(1−α2 (1−δ)−2αδ) , bS = 0 δ ∈

[
1−α
α ,
(
1−α
α

) (
1+α
2−α

))

gS = bS = 0 δ ∈
[
0, 1−α

α

)
.

(7)

In the solo setting, both investors are willing to invest if δ is sufficiently large, i.e., δ ≥ α
1−α .

Investors that observe B̂ are willing to invest because the return is large enough to overcome their

belief that the project will payoff with probability (1 − α). For smaller values of δ, the relevant

thresholds become slightly more nuanced. No investor that observes B̂ is willing to invest if δ is
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smaller than α
1−α because she expects the project to be negative valued. An investor that observes

Ĝ has greater confidence that the project will yield a positive payoff and will invest with probability

one if, δ ≥
(
1−α
α

) (
1+α
2−α

)

. At first blush, it may seem surprising that the threshold is not equal to

1−α
α ; the threshold at which an investor that observes Ĝ believes that the project itself is weakly

positive valued. Instead, the threshold is larger by a factor of,

1 + α

2− α
> 1 ∀ α ∈

(
1

2
, 1

]

. (8)

A larger return is required due to the winner’s curse. Specifically, in a solo setting, investors are

asymmetrically exposed to project outcomes due to pro rata allocations. If an investor observes Ĝ

she expects that the project is (i) good with probability α and (ii) that it is likely that the other

investor observed Ĝ. Thus, she will likely split the project’s return if the project is indeed revealed

to be good. If, however, her signal is incorrect, she is more likely to fund an entire bad project

by herself. Thus, she is less exposed to good projects when she invests and more exposed to bad

projects. This implies that she requires a return greater than 1−α
α to invest with probability one.

Therefore, the winner’s curse may lead to investment distortions in which investors observing Ĝ

act almost as if they observed a bad signal.

For promised returns smaller than
(
1−α
α

) (
1+α
2−α

)

, an investor that observes Ĝ will not invest

with probability one. Below this threshold, the probability of investing is declining in δ and equals

zero at,

δ =
1− α

α
,

which is the return that makes the project’s expected value equal to zero for an investor that

observes Ĝ.

Now, consider the joint setting in which M
2 < c and M ≥ c. Due to the all-or-nothing feature,
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investor i’s expected payoff, conditional on observing Ĝ is equal to,

Π(Ĝ|~πJ
i , ~π

J
−i) =α2

(

gJi g
J
−i

δ

2

)

+ α(1 − α)

(

gJi b
J
−i

δ

2

)

−(1− α)α

(

gJi b
J
−i

1

2

)

− (1− α)2
(

gJi g
J
−i

1

2

)

. (9)

The expression in (9) is similar to that outlined in (5). However, the payoffs in the states in which

one investor participates and the other does not are set equal to zero. In the states in which both

investors do not invest, the project does not attract sufficient capital and is canceled, yielding a

payoff equal to zero for both investors (committed capital, if any, is returned). Requiring joint

investor participation implies that the winner’s curse is not a concern. Investor i’s expected payoff

conditional on observing B̂ is similar to that in (6), except that the states in which only one investor

participates are set to zero.

Π(B̂|~πJ
i , ~π

J
−i) =(1− α)2

(

bJi b
J
−i

δ

2

)

+ (1− α)α

(

bJi g
J
−i

δ

2

)

−α(1− α)

(

bJi g
J
−i

1

2

)

− α2

(

bJi b
J
−i

1

2

)

. (10)

The following lemma provides the symmetric strategies used by the two investors in the joint

setting (the subscripts i and −i are suppressed).

Lemma 2. In a joint setting, the equilibrium investment strategies are,







gJ = bJ = 1 δ ∈
[

α
1−α ,∞

)

gJ = 1 , bJ = (1−α)α(δ−1)
(1−α)α(δ−1)+α(1+δ)−δ δ ∈

[

1, α
1−α

)

gJ = 1 , bJ = 0 δ ∈
[
(1−α)2

α2 , 1
)

gJ = bJ = 0 δ ∈
[

0, (1−α)2

α2

)

.

(11)

According to Lemma 2, both investors will participate in the joint setting if δ is sufficiently
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large. Furthermore, the threshold δ that compels both investors to participate corresponds to

the same threshold in the solo setting, i.e., α
1−α . Below the threshold return of α

1−α , an investor

that observes a signal of B̂ will employ a nondeterministic strategy as long as δ ≥ 1. Intuitively

this relates to the loser’s blessing. Because both investors are required to fund the project due

to all-or-nothing financing and, ceteris paribus, good projects merit more investor participation,

investors are asymmetrically exposed to projects’ returns. Unlike the winner’s curse which implies

the asymmetry weights bad projects more heavily, the loser’s blessing weights good projects more

heavily. All else equal, this makes investors more willing to invest in projects. In fact, for project

returns in the region
[

1, α
1−α

)

, there is positive probability that an investor observing B̂ will invest,

despite that investor believing the project itself is negative valued. The threshold at which no

investor that observes B̂ is willing to invest is δ = 1. Intuitively, this is the threshold that a single

investor with no information would use. Therefore, the loser’s blessing may lead to investment

distortions in which investors observing B̂ act almost as if they observed a good signal.

In the following section, we explore the welfare costs associated with inefficient crowdfunding.

Specifically, we decompose the welfare losses into two components: (i) a coordination cost due to

investors’ inability to coordinate their private information and (ii) a social cost due to investors’

acting to maximize their individual payoffs rather than social welfare.

2.1 Welfare Analysis

Both the winner’s curse and loser’s blessing lead to investment efficiency distortions. To examine

these investment distortions, we define a welfare metric termed value-add,

v =Pr(Funded) (Pr(G|Funded)δ − Pr(B|Funded)) . (12)

The value-add metric considers the implications of both investing and not investing. The term

within parenthesis in (12) corresponds to the welfare effects of investing: conditional on investment,

welfare goes up when the project is good and goes down when it is bad. The term within parenthesis

16



is then scaled by the probability of investing. The value-add metric can be thought of similarly to

that of a portfolio return on the set of all available projects — the expected return on any selected

project is Pr(G|Funded)δ − Pr(B|Funded) and the probability that a given project is financed is

Pr(Funded).

The first-best (denoted FB) value-add corresponds to our welfare metric if a single monopolist

hadM units of capital and received two conditionally i.i.d. signals regarding the project’s type. The

first-best value-add serves as an upper bound: the non-cooperative investors cannot outperform the

monopolist. We adopt the notation N,n as a subscript on value-add denoting the total number of

investors N and the number of investors required for investment n. For example, the solo setting

value-add is denoted v2,1, and the joint setting value-add is denoted v2,2. We focus only on the

projects with δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

, as the investment criteria and value-add metrics are trivial

outside of this range.

Proposition 1. In a two investor setting, the solo setting value-add is equal to the first-best value-

add for δ ∈
[

1, α
1−α

]

, otherwise the solo setting value-add is strictly less than the first-best value-add,

vFB
N − v2,1 =







> 0 δ ∈
(

α
1−α ,

α2

(1−α)2

)

= 0 δ ∈
[

1, α
1−α

]

> 0 δ ∈
(
(1−α)2

α2 , 1
)

.

(13)

The joint setting value-add is equal to the first-best value-add for δ ∈
[
(1−α)2

α2 , 1
]

, otherwise the

joint setting value-add is strictly less than the first-best value-add,

vFB
N − v2,2 =







> 0 δ ∈
(

1, α2

(1−α)2

)

= 0 δ ∈
(
(1−α)2

α2 , 1
)

.

(14)

Solo and joint investment efficiency underperforms relative to first-best according to the value-
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Figure 2: Value-add metrics relative to first-best: the horizontal axis represents a project’s promised
return and the vertical axis measures value-add. The first-best, solo and joint value-add metrics
are depicted. For projects with δ < 1, the solo value-add (the solid line) appears below both the
joint value-add (the dashed line) and the informed monopolist benchmark. The opposite holds for
δ > 1. The discontinuity at δ = α

1−α for the solo value-add is due to investors observing B̂ switching
between investing with probability zero below α

1−α and investing with probability one above it.

add metric. Figure 2 shows that the solo setting underperforms when δ < 1 and δ > α
1−α , while

the joint setting underperforms when δ > 1. The welfare inefficiencies implied by Proposition 1

and Figure 2 are due to two sources. First, welfare losses may come from investors’ inability to

coordinate their private signals — a coordination cost. Second, welfare losses may also come from

investors acting in their own interest rather than what is socially optimal — a social cost.

To decompose welfare losses into coordination costs and social costs, we outline a second-

best value-add metric. The second-best (denoted SB) value-add corresponds to the maximum

joint surplus that can be achieved when investors cannot coordinate signals but can commit to

participation strategies. The second-best benchmark is equivalent to a setting in which a social

planner dictates a strategy {gSB , bSB} and that strategy maximizes joint surplus.
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Comparing vFB
N to vSBN,n provides a measure of the coordination cost,

Coordination Cost = vFB
N − vSBN,n. (15)

The coordination cost is the difference in value-add from a monopolist that observes all private

signals and the value-add of investors whose participation strategies maximize joint surplus (as

opposed to individual payoffs). Similarly, comparing vSBN,n to vN,n provides a measure of the social

cost,

Social Cost = vSBN,n − vN,n. (16)

The social cost is the difference in value-add of investors whose strategies maximize joint surplus

and the value-add of investors who maximize their individual payoffs.

Corollary 1.1. In a two investor setting, the social cost in the solo setting is strictly positive for

δ ∈
[
1−α
α , 1

)
and δ ∈

[
α

1−α ,
α2

(1−α)2

]

, otherwise the social cost equals zero,

vSB2,1 − v2,1 =







> 0 δ ∈
(

α
1−α ,

α2

(1−α)2

)

= 0 δ ∈
[

1, α
1−α

]

> 0 δ ∈
(
1−α
α , 1

)

= 0 δ ∈
[
(1−α)2

α2 , 1−α
α

]

.

(17)

The social cost in the joint setting is equal to zero for all δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

,

vSB2,2 − v2,2 =

{

= 0 δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

. (18)

According to Corollary 1.1, the welfare losses in solo financing are due partly to a social cost. In

fact, a comparison of Proposition 1 to Corollary 1.1 shows that for projects with δ ∈
(
1−α
α , 1

)
and

δ ∈
(

α
1−α ,

α2

(1−α)2

)

, solo financing is associated with both a coordination cost and a social cost. The
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coordination cost is straightforward; because a single investor can finance the project, the inability

to coordinate information increases the chances that a bad project is financed. The social cost

is due to investor’s individual payoff functions being different than the aggregate payoff function.

Specifically, investors are asymmetrically exposed to project payoffs due to the winner’s curse.

For joint financing, non-cooperative investors perform equal to second-best. The welfare losses

with joint financing are entirely due to a coordination cost; because both investors are required

to finance the project, the inability to coordinate information increases the chances that a good

project is not financed. Corollary 1.1 suggests that there is not a social cost associated with the

loser’s blessing. The result is because an investor’s individual payoff function is proportional to

the aggregate payoff function (by a factor of 1/2). However, we show in Section 2.2 that there is

a social cost associated with the loser’s blessing for larger crowds. As long as all investors are not

required to finance the project, the loser’s blessing leads investors to employ strategies that are

different from what a social planner would prescribe.

2.1.1 Two Investors versus One Investor

Given the inefficiencies induced by the two non-cooperative investors, it is natural to compare solo

and joint financing to a setting in which there is only one investor with one signal. That is, how does

one investor with a single signal and M units of capital compare to two non-cooperative investors

each possessing a private signal?

Corollary 1.2. For projects with δ < 1, non-cooperative solo investing performs worse than a

single investor. For projects with δ > 1, non-cooperative joint investing performs worse than a

single investor.

On one hand, moving from a single investor to two increases the total information available. On

the other hand, moving from a single investor to two produces a welfare loss due to the coordination

cost and social cost. According to Corollary 1.2, for projects with δ < 1 (ex ante negative valued)

that can be financed by a sole investor, the welfare loss exceeds the benefit of more information.
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Figure 3: Value-add metrics relative to an single investor setting: For projects with δ < 1, the
single investor setting weakly outperforms solo financing. For projects with δ > 1, the single
investor setting weakly outperforms joint financing.

For projects with δ > 1 (ex ante positive valued) that require joint financing, the welfare loss also

exceeds the benefit of more information. The results of Corollary 1.2 are depicted in Figure 3,

further highlighting the welfare costs associated with non-cooperative syndicates. In the figure,

the horizontal axis represents a project’s promised return and the vertical axis measure value-add.

The solo and joint financing value-add metrics are depicted as the bold lines and the single investor

value-add metric is the solid thin line. The solo value-add metric (the solid bold line) falls below

the single investor value-add for projects with δ < 1. The joint value-add metric (the dashed bold

line) falls below the single investor value-add for projects with δ > 1.

The welfare analysis in this section highlights that inefficiencies may be so strong that financing

outcomes would improve if there were only one investor with one signal. Taken together, the

findings suggest that the coordination and social costs due to the winner’s curse and the loser’s

blessing are exacerbated as the number of investors increases.
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2.2 Large Crowds

In this extension, we consider a setting with a finite N > 2 investors. We maintain the base

model’s assumptions regarding project values, types and the precision of investors’ signals. We also

maintain Assumptions 1, 2, and 3 — financing is all-or-nothing, project returns are allocated on a

pro rata basis, and investor cannot coordinate. To adapt our model to more than two investors,

we assume M dollars are available from N investors, so each can invest M
N . Let n be the total

number of investors who contribute to a project, noting that n also indexes the realized financing

state. The probability of realizing state n depends on investors’ strategies. We use the superscript

LC to signify the pivotal-investor, large-crowd setting. We denote the strategy of investor i as,

~πLC
i = {gLCi , bLCi }, where gLCi ∈ [0, 1] and bLCi ∈ [0, 1] are investor i’s mixed strategies based on

signals of Ĝ and B̂ respectively. We denote all other investors’ strategies, not including investor i,

as ~πLC
−i . Given the project cost c, at least,

n ≡
cN

M
, (19)

investors must participate for the project to be financed. In state n, n investors contribute c
n dollars

to the project (nM
N − c

n is returned), and will receive payoffs V
n if the project is good.

Investor i will contribute capital as long as her expected payoff from doing so is weakly positive.

Following a good signal, investor i will contribute capital if:

Πi(Ĝ|~πLC
i , ~πLC

−i ) =
N−1∑

n=n−1

(

αPr(n|G,~πLC
−i , N − 1, α)

V − c

n
− (1− α) Pr(n|B,~πLC

−i , N − 1, α)
c

n

)

≥ 0,(20)

and will contribute capital after receiving a bad signal if:

Πi(B̂|~πLC
i , ~πLC

−i ) =
N−1∑

n=n−1

(

(1− α) Pr(n|G,~πLC
−i , N − 1, α)

V − c

n
− αPr(n|B,~πLC

−i , N − 1, α)
c

n

)

≥ 0.(21)

Several features of (20) and (21) are worth highlighting. First, only those states in which the
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Table 1: Example equilibria of discrete agent model with N = 20, n = 15, δ = 1 and α = 0.75.

Non-Cooperative Second-Best First-Best
(1) (2) (3)

gLC 1 1
bLC 0.530 0.368

E[Π|G] 0.037 0.040
E[Π|B] 0 0.004

Value-Add 0.369 0.441 0.491

aggregate financing equals or exceeds c are included in the summations due to the all-or-nothing

feature. Second, the summations are indexed from n − 1 to N − 1, as from the perspective of

investor i, her investment will provide the additional capital to meet the threshold (thus, she is

pivotal). Third, for states with more aggregate financing, investor i’s shares are diluted. Finally,

investors’ equilibrium strategies determine Pr(n|G,~πLC
−i , N − 1, α) and Pr(n|B,~πLC

−i , N − 1, α).

To solve the model, we first establish two results that simplify the search for equilibrium strate-

gies, and then use numerical methods to find investors’ mixing probabilities.20 The first result is

that all investors play identical strategies. If this were not the case, then either (20) or (21) would

not bind for some investor i, which cannot be an equilibrium. The second result is that if investors

play an internal mixing probability after observing one type of signal, then investors’ mixing prob-

ability must be a corner solution after observing the other type of signal. The intuition is that

internal mixing probabilities imply that either (20) or (21) binds, and thus the other condition is

either satisfied strictly, or does not hold. Using these results, we use numerical methods to solve

for the probabilities that set (20) or (21) equal to zero, giving investors’ equilibrium strategies.

Table 1 provides an example equilibrium to illustrate both the coordination cost and social

cost associated with the loser’s blessing. The example highlights a high threshold, n = 15 and

N = 20. The example is also compared to both the first-best outcome (when a monopolist observes

20Appendix B provides details on our solution strategy and numerical methods.
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all signals) and the second-best outcome (when investors commit to strategies that maximize joint

surplus). Before examining the equilibrium strategies, note that coordination costs and individual

incentive distortions affect total value-add. Comparing columns (2) and (3), the second-best value-

add measures is smaller than the first-best value-add, signifying coordination costs. Comparing

columns (1) and (2), the second-best value-add is greater than the non-cooperative value-add.

This implies that individual incentives are distorting investment decisions (relative to the social

optimum) leading to a social cost.

Turning to the individual strategies, column (1) shows the influence of the loser’s blessing.

Because bad projects would be unlikely to meet a high threshold if investors simply followed their

signals, investors observing bad signals have an incentive to invest; in this case, 53% of the time.

For these investors, the expected payoff from investing is zero. Individual investors increase their

investment probability as long as it is profitable to invest, and in doing so, collectively compete

away any profit opportunities for those observing a bad signal. However, column (2) shows that

the second-best strategies result in expected profits to investors that observe both good and bad

signals. The second-best strategies prescribe that investors observing bad signals invest 37% of

the time. Without their occasional investment, good projects would be funded less often, although

financed projects would be more likely good quality. Ultimately, the second-best strategies trade

off ex-post financing quality with ex-ante financing probability, balancing the forces to maximize

value-add.

The example equilibrium provides some insight into investors’ equilibrium strategies and their

performance relative to a social planner. In particular, the example highlights that both coordina-

tion costs and social costs from inefficient individual investment decisions harm financing efficiency.

The following analysis considers how individual investment strategies and financing efficiency de-

pend on the size of the syndicate.

Figure 4 displays equilibrium strategies for investors under two scenarios that correspond to

our base model analysis. The left panel shows the equilibrium strategies when only one investor
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Figure 4: Investors’ equilibrium strategies for δ = 0.5 and α = 0.75.

is required to meet the threshold, corresponding to the solo financing setting. The horizontal axis

represents the number of investors N and the vertical axis represents the probability of investing.

The probability of investing based on a bad signal, bLCN,1, is equal to zero because an investor

observing B̂ believes the project is negative valued and knows it will be funded if she participates.

The probability of investing based on a good signal, gLCN,1, is decreasing with the number of investors

N . This effect is due to a worsening winner’s curse. As investors are added, the distributions for

the number of investors receiving good signals for good and bad projects separate, increasing the

severity of the asymmetric exposure to bad projects.

The right panel of Figure 4 shows the equilibrium strategies when all investors are required to

meet the threshold, corresponding to the joint financing setting. When all investors are required

to finance the project, the loser’s blessing drives investors’ strategies. As N grows, it becomes less

likely that an investor will be pivotal and investors become more willing to ignore their informa-

tion. Accordingly, we see that the probability of investing conditional on a bad signal increases

with N (the probability of investing based on a good signal equals one). While these two panels

depict particular sets of parameters, they show the general feature that as the number of investors

increases, the winner’s curse and loser’s blessing are both exacerbated. In other words, individual
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Figure 5: Non-cooperative and second-best value-add metrics (relative to first-best) as functions of
the number of investors N . The unshaded region represents the coordination cost due to investors’
inability to coordinate their private information. The lighter shaded region represents the social
cost due to non-cooperative investors acting to maximize their individual payoffs rather than the
aggregate surplus. The darkest shaded region represents the value-add captured by non-cooperative
investors. The non-varying parameters are n = N

4 , α = 0.75, and δ = 1.5.

investors’ incentives lead them to increasingly ignore their information.

In both panels of Figure 4, as N increases and investors make less use of their information,

overall financing efficiency decreases. The solid line in both panels represents the non-cooperative

value add vN,n as a fraction of vFB
N . As N increases, non-cooperative value-add declines. Including

a greater number of investors impedes financing efficiency due to greater social costs attributed to

the winner’s curse when n = 1 and the loser’s blessing when n = N .

Figure 5 decomposes the welfare losses associated with changes in N when 25% of investors are

required to finance a project (n = N
4 ). The welfare losses are decomposed into the coordination

cost component and the social cost component. The top line represents the second-best value-add

as a fraction of first-best. The bottom line represents the non-cooperative value-add as a fraction

of first-best. The unshaded area between first-best (i.e., 100%) and second-best value-add depicts

the coordination cost. The lighter shaded area between second-best and non-cooperative value-add

depicts the social cost.
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Figure 5 shows that N can have opposite effects on coordination cost and social cost. The coor-

dination cost is shrinking in N ; as N gets large the first-best and second-best value-add benchmarks

converge. When participation strategies are socially optimal, larger N allows for better separation

between good and bad projects. However, larger N leads to more distortion to individuals’ strate-

gies, so social cost is increasing in N . As such, financing inefficiencies are almost entirely due to the

social cost for large N . In the next section, we consider a setting in which there is a continuum of

investors and no single investor is pivotal. We show that financing inefficiency suffers and financing

outcomes reflect no information.

3 Non-pivotal Investors

We extend our venture financing model to a setting of many atomistic investors. We maintain

all assumptions regarding the project and its payoffs from Section 2. The entrepreneur solicits

contributions from a unit continuum of risk neutral investors. Each investor can invest at most M

dollars into the project so that the total available capital equals M . We assume that c ≤ M so

that financing the project is possible.

As in the base model, investors simultaneously participate on the crowdfunding platform. In-

vestors that observe Ĝ invest with probability gNP ∈ [0, 1] and investors that observe B̂ invest with

probability bNP ∈ [0, 1] (NP denotes non-pivotal crowdfunding). While all investors employ iden-

tical strategies in equilibrium, we denote the strategy of investor i as, ~πNP
i = {gNP

i , bNP
i }. Further-

more, we denote the strategy of all other investors, not including investor i, as, ~πNP
−i = {gNP

−i , gNP
−i }.

Financing outcomes depend on individual investors’ decisions. Investors weigh potential pay-

offs against explicit project costs as well as dilution expected from other investors. Formally, an

investors’s participation is determined by the sign on,

Pr(G|F̂ )σ(G)δ − Pr(B|F̂ )σ(B), (22)
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in which the share of investors’ committed capital deployed to the project is,

σ(F ) ≡
c

Mℓ(F )
1F . (23)

ℓ(F ) is the measure of participating investors, which depends on α and investors’ strategies. 1F

is an indicator function that equals one if ℓ(F )M ≥ c, reflecting that financing is all-or-nothing

and projects that receive insufficient capital are canceled. σ(G) therefore represents each investor’s

expected investment in good projects and σ(B) represents expected investment in bad projects. In

many cases, σ(G) < σ(B), meaning investors are more exposed to bad projects due to the winner’s

curse. With a continuum of investors, there also exists the possibility of a loser’s blessing. If a

loser’s blessing exists, it perfectly screens projects. That is, when the loser’s blessing is in place,

bad projects are not financed and σ(B) = 0. As will be seen shortly, both the winner’s curse and

the loser’s blessing influence the participation strategies of investors.

Because investor i is atomistic, she is not pivotal and she does not internalize the impact of

her investment decision on whether or not the project is funded. Therefore, her participation

decision is dictated by the sign on the expression in (22). Taking all other investors’ equilibrium

participation strategies as given, investor i will invest with probability one if the expression in (22)

is strictly positive. If the expression equals zero, investor i is indifferent between participating

and not participating and she may choose to mix between her options. Investor i abstains from

investing if the expression in (22) is strictly negative.

If investor i observes Ĝ, the expression in (22) is explicitly given by,

Pr(G|Ĝ)
︷︸︸︷
α

(

c1G

M(αgNP
−i + (1− α)bNP

−i )

)

︸ ︷︷ ︸

σ(G)

δM −

Pr(B|Ĝ)
︷ ︸︸ ︷

(1− α)

(

c1B

M((1 − α)gNP
−i + αbNP

−i )

)

︸ ︷︷ ︸

σ(B)

M, (24)

where 1G is an indicator function that equals one if M
(
αgNP

−i + (1− α)bNP
−i

)
≥ c and 1B is an

indicator function that equals one if
(
(1− α)gNP

−i + αbNP
−i

)
≥ c, reflecting whether fundraising suc-
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cessfully met the all-or-nothing threshold. Similarly, if investor i observes B̂ instead, the expression

in (22) is explicitly given by,

(1− α)

(

c1G

M(αgNP
−i + (1− α)bNP

−i )

)

δM − α

(

c1B

M((1− α)gNP
−i + αbNP

−i )

)

M. (25)

If 1B = 0, then there would exist a perfect loser’s blessing; a type B project would never reach its

financing goal of c. As such, investor i would be perfectly hedged against bad projects and it would

be dominant for her to choose gNP
i = bNP

i = 1 as the expressions in (24) and (25) would be strictly

positive. Likewise, all other investors would also find a strategy of gNP
−i = bNP

−i = 1 optimal. If all

investors always invest, then both types of projects would attract M units of capital (each investor

in the unit continuum participates). Therefore, if a bad project cannot be financed it must be the

case that a good project also cannot be financed, i.e., 1G = 0. Because c ≤ M , our analysis implies

that a loser’s blessing cannot exist in equilibrium.

Lemma 3. A loser’s blessing never exists in equilibrium.

Lemma 3 says that a loser’s blessing cannot occur in equilibrium. For a loser’s blessing to

exist, there must exist a wedge between the quantities of capital that good and bad projects raise.

Additionally, the project’s scale c must lie within this wedge so that only a good project achieves

its fundraising goal while a bad project fails. A necessary condition for a loser’s blessing is that

investor participation varies depending on the project’s unobservable quality. If, however, a loser’s

blessing exists in equilibrium, all investors would find participation optimal. Thus, the equilibrium

would unravel and investor participation for both types of projects would be full participation,

eliminating the financing wedge.

Before proceeding with the remainder of our analysis, it is useful to divide projects according to

scale c. If investors commit to following their signals (which may not be an equilibrium strategy),
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the minimum quantity of capital that can be raised is,

K ≡ (1− α)M, (26)

and the maximum quantity of capital that can be raised is,

K ≡ αM. (27)

The preceding capital boundaries, K and K, are useful in characterizing investors’ equilibrium

strategies and the resulting financing efficiency. To ease exposition, we define small-scale, medium-

scale, and large-scale projects using these boundaries.

Definition 1. Define small-scale projects as projects with c ∈ (0,K ], medium-scale projects

as projects with c ∈ (K,K], and large-scale projects as projects with c ∈ (K,M ].

In what follows, we provide lemmas which divide the characterization of the simultaneous-move

Bayesian Nash Equilibrium strategies according to the small-scale, medium-scale, and large-scale

boundaries, highlighting that different tensions arise according to the scale of the project.

Lemma 4. For small-scale projects, the equilibrium investment strategy for δ ∈ [1,∞) is,







gNP = bNP = 1
[

α
1−α ,∞

)

gNP = 1 , bNP = 0
[

1, α
1−α

)

.

(28)

For δ ∈ [0, 1) any strategy ~π = {gNP , bNP } with gNP , bNP ∈ [0, 1] is an equilibrium strategy if and

only if no projects are financed, i.e.,

M(αgNP + (1− α)bNP ) < c, (29)

M((1 − α)gNP + αbNP ) < c. (30)
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Small-scale projects with ex ante positive values (i.e., δ ≥ 1) will be financed. Enough investors

will observe good signals, regardless of true project type, to meet the financing threshold. Ex ante

negative valued projects (i.e., δ < 1) will not be financed. While a good signal indicates positive

conditional value, the winner’s curse exactly offsets the informational advantage provided by the

signal, leading to no projects’ being financed. Because more investors will receive good signals for

a good project, investors will be more heavily rationed in good projects.21

Lemma 5. For medium-scale projects and large-scale projects, the equilibrium investment strategy

for δ ∈
[

α
1−α ,∞

)

is,

gNP = bNP = 1 (31)

For δ ∈
[

0, α
1−α

)

any strategy ~π = {gNP , bNP } with gNP , bNP ∈ [0, 1] is an equilibrium strategy if

and only if no projects are financed, i.e.,

M(αgNP + (1− α)bNP ) < c, (32)

M((1 − α)gNP + αbNP ) < c. (33)

Proposition 2. In equilibrium, either (i) all projects are financed regardless of quality or (ii) no

projects are financed.

Proposition 2 highlights that, with a continuum of investors, the crowd’s information cannot

be utilized; either all projects or no projects are financed. Figure 6 characterizes the financing

and no-financing regions based on project scale (c) and promised returns (δ). At the top of the

figure, all projects with high promised returns, δ > α
1−α , are financed regardless of quality. The

return is sufficiently high that investors observing bad signals are willing to invest. At the bottom

of the figure, no projects with low promised returns, δ < 1, are financed. Due to the winner’s

21Note that for projects with δ ∈
[

1, α
1−α

)

, financing outcomes perfect reveal project quality ex post. This suggests

entrepreneurs may be able to use the realized capital attracted to cancel bad projects. However, if the entrepreneur
committed to canceling projects only raising (1−α)M , a loser’s blessing would exist and all investors would participate,
and capital attracted would no longer be a valuable signal.
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Figure 6: Non-pivotal crowdfunding financing regions. Projects with sufficiently high promised
returns are always financed in equilibrium and projects with low promised returns are never financed
in equilibrium. Financing outcomes only depend on a project’s promised return δ and not on
unobservable project quality.

curse, even investors receiving good signals are not willing to invest. For projects with moderate

promised returns, either all projects or no projects are financed. Small-scale projects are always

financed, as even a bad project has sufficiently many investors observing (incorrect) good signals.

However, above K, a bad project will not attract sufficiently many investors to be financed. As

a result, if investors followed their signals, a loser’s blessing would exist. However, this cannot be

an equilibrium, and the only possible equilibria involve no financing of any projects. As a result,

medium and large-scale projects are never financed for moderate levels of promised returns.22

22The financing disparity between small-scale and medium and large-scale projects suggests that entrepreneurs
may endogenously set their all-or-nothing thresholds artificially low in order to influence financing success. Most
importantly, increasing the proportion of small-scale projects will not lead to efficient financing, as all small-scale
projects are financed regardless of project quality. Furthermore, while moral hazard or asymmetric information
may lead entrepreneurs to manipulate all-or-nothing thresholds, the cost associated with setting a higher threshold

32



(1−α)2

α2
1−α
α

1
α

1−α
α2

(1−α)2

0

δ

V
al
u
e-
A
d
d

vFB
N

vUI

vNP

(a) Value-add for crowdfunded small-scale projects vNP

compared to first-best vFB
N and a setting with no informa-

tion vUI .

(1−α)2

α2
1−α
α

1
α

1−α
α2

(1−α)2

0

δ

V
al
u
e-
A
d
d

vFB
N

vUI

vNP

(b) Value-add for crowdfunded medium- and large-scale
projects vNP compared to first-best vFB

N and a setting
with no information vUI

Figure 7: Value-add metrics in the crowdfunding setting.

From a welfare perspective, the crowdfunding setting underperforms a setting in which investors

have no information (in which the relevant participation threshold would be δ = 1). There are two

forces at play that cause this inefficiency. One, the rationality of investors eliminates the possibility

of a loser’s blessing to exist. Therefore, either all projects or no projects are financed in equilibrium.

Second, in any equilibria in which all medium- and large-scale projects are financed, the required

return is larger than what would be required in a setting in which agents have no information.

Specifically, because investors have some information, they will not rationally invest after receiving

a bad signal unless the return is sufficiently high. Thus, for all investors to participate, they require

a higher promised return, δ ≥ α
1−α (small-scale projects perform equally as well when investors

have no information, i.e., all projects with δ ≥ 1 are financed).

Figure 7 shows the financing inefficiency for small-scale projects (left panel) and medium and

large-scale projects (right panel). For small-scale projects, the value-add is equal to what unin-

formed investors would earn (uninformed investors are denoted by UI). For medium and large-scale

projects, the value-add is equal to uninformed value-add for low and high-promised-return projects.

likely varies based on project quality, allowing thresholds to serve as signaling mechanisms. We leave the analysis of
signaling in crowdfunding to future research.
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However, for moderate-promised-return projects, the crowdfunding setting strictly underperforms

uninformed investors. Because ex ante positive valued projects are not financed in crowdfunding,

value-add is left on the table and thus uninformed investors would perform better.23 Since no

projects are financed in this region, ex ante and ex post measures of welfare decline in α.

4 Concluding Discussion

Our analysis highlights tensions in financing efficiency when (i) financing is all-or-nothing, (ii)

profits are scarce, and (iii) investors are dispersed and non-coordinating. While the winner’s curse

is well understood by financial economists, we highlight the loser’s blessing and its role in eroding

financing efficiency. So long as all-or-nothing financing thresholds result in project cancellation

and investor participation is correlated with project quality, investors internalize the implicit hedge

coming from the loser’s blessing and ignore negative information. All-or-nothing financing leads

investors to make less use of bad signals (due to the loser’s blessing), pro-rata allocations lead

investors to make less use of good signals (due to the winner’s curse), and financing is inefficient.

While we model a single-period financing game to focus attention on the sources of financing

inefficiency, we expect the same economic forces to apply to similar multiple-period games. For

example, investors would wait to contribute until the last period as long as financing cannot be

secured in earlier periods, essentially reducing the multiple-period game to a one-period game.

Conversely, if investors were incentivized to contribute early via first-come, first-served allocations,

the same would apply to the first-period of a multiple-period game. In both cases, multiple-period

games reduce to one-period games in which the winner’s curse and loser’s blessing affect investors’

participation strategies.24 Incorporating heterogeneous investors could mitigate these forces in a

23While the continuum setting results in zero welfare for moderate-return, medium-scale projects, the same is not
true in the N-agent setting, i.e., the limit of the N-agent model is not equal to the model of the limit. With a finite
number of investors, each investor internalizes that there is some probability that she may be pivotal and she responds
with very precise mixed strategies. The strategies aggregate to higher funding probabilities for good projects relative
to bad projects, resulting in higher financing efficiency.

24On many platforms, contributions can be withdrawn prior to the end of the campaign. In such cases, all investors
would optimally contribute in the first period, and would make their ultimate decisions in the final period by either
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multiple-period game, and this extension is left to future research.

Our analysis suggests that crowds of strictly-profit-motivated investors are unlikely to provide

significant capital to early stage ventures due to inefficient financing. However, rewards-based and

donations-based crowdfunding have grown successfully based on contributions from individuals who

receive private benefits. To the extent that profit-motivated investors also enjoy private benefits

from a project, e.g. access to a new local brewery, a portion of investors may be able to commit to

following their signals, restoring some degree of financing efficiency. By attracting consumer-like

investors, securities-based crowdfunding platforms may be able to efficiently finance projects by

enticing investment with the promise of future returns (having a common value), while relying on

investors’ preferences (their private values) to reveal their true beliefs.

maintaining or withdrawing their investments.
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Appendix A

We establish several useful results before proving Section 2’s lemmas and propositions.

Lemma A1. In both the solo and the joint investment settings, each investor’s equilibrium proba-

bility of investing is weakly higher conditional on observing Ĝ relative to the probability conditional

on observing B̂, i.e., gSi ≥ bSi and gJi ≥ bJi .

Proof of Lemma A1: Suppose not: in a solo setting, there exists an equilibrium in which gS < bS

for some value δ′ (where the notation i and −i are suppressed since strategies are symmetric in

equilibrium). First, the expression in (5) simplifies to,

Π(Ĝ|~πS) =gS
(
(
δα2 − (1− α)2

)
(

1−
gS

2

)

+ α(1 − α)(δ − 1)

(

1−
bS

2

))

, (A1)

and the expression in (6) simplifies to,

Π(B̂|~πS) =bS
(
(
δ(1 − α)2 − α2

)
(

1−
bS

2

)

+ α(1− α)(δ − 1)

(

1−
gS

2

))

. (A2)

Furthermore, at δ = δ′, gS < bS ≤ 1 implies that gS < 1. Thus, gS is either an internal value or gS

equals zero. Both imply Π(Ĝ|~πS , δ = δ′) = 0. Π(B̂|~πS , δ = δ′), however, is weakly positive,

Π(B̂|~πS , δ = δ′) =bS
(
(
δ′(1− α)2 − α2

)
(

1−
bS

2

)

+ α(1 − α)(δ′ − 1)

(

1−
gS

2

))

(A3)

≥0. (A4)

The preceding expression is rearranged to provide a lower bound on δ′,

δ′ ≥
α(2 − αbS − (1− α)gS)

(1− α)(2 − (1− α)bS − αgS)
. (A5)

The lower bound is decreasing in bS ,

d

dbS

(
α(2− αbS − (1− α)gS)

(1− α)(2 − (1− α)bS − αgS)

)

= −
α(2α − 1)(2− gS)

(1− α)(2 − (1− α)bS − αgS)2
(A6)

≤ 0, (A7)

40



and the bound takes it smallest value at bS = 1,

α(2− αbS − (1− α)gS)

(1− α)(2 − (1− α)bS − αgS)

∣
∣
∣
∣
bS=1

= 1 +
2α − 1

(1− α)(1 + α(1 − gS))
. (A8)

However, at δ = 1+ 2α−1
(1−α)(1+α(1−gS ))

, the payoff Π(Ĝ|~πS) is strictly positive for all values of bS and

non-zero values of gS ,

Π

(

Ĝ

∣
∣
∣
∣
~πS , δ = 1 +

2α− 1

(1− α)(1 + α(1− gS))

)

=
gS(2α− 1)(2 − gS + (1− α)α((1 − bS) + (1− gS)2))

2(1 − α)(1 + α(1 − gS))
.

(A9)

Thus, an investor observing Ĝ strictly increases her payoff by choosing gS = 1 at δ = 1 +
2α−1

(1−α)(1+α(1−gS ))
and for all larger values of δ. Therefore, there does not exist any value δ′ at

which gS < bS .

A similar proof shows that there does not exist any value of δ for which bJ > gJ in joint settings

as well. The proof is omitted for the a sake of brevity.

�

Lemma A2. No equilibrium exists in which both mixed strategies in ~πS (~πJ) are internal values.

That is, either gS , bS or both are deterministic (either gJ , bJ or both are deterministic).

Proof of Lemma A2: Suppose not: in a solo setting, both gS and bS are internal values. Internal

values of gS and bS imply that, in equilibrium, the following equalities hold,

0 = Π(Ĝ|~πS) = 0 (A10)

0 = Π(B̂|~πS) = 0. (A11)

The preceding system of equations is explicitly given by,

0 =gS
(
(
δα2 − (1− α)2

)
(

1−
gS

2

)

+ α(1− α)(δ − 1)

(

1−
bS

2

))

(A12)

0 =bS
(
(
δ(1− α)2 − α2

)
(

1−
bS

2

)

+ α(1− α)(δ − 1)

(

1−
gS

2

))

. (A13)

There are four solutions to the system: (i) {gS , bS} = {0, 0}, (ii) {gS , bS} = {2, 2}, (iii) {gS , bS} =

{0, 2(α−(1−α)δ)
2(α−(1−α)δ)−(2α−α2 (1−δ)−δ)

}, and (iv) {gS , bS} = { 2(αδ−(1−α))
2(αδ−(1−α))+(1−α2 (1−δ)−2αδ)

, 0}. None of the

solutions consist of two internal values.

A similar proof may be conducted in joint settings. The proof is omitted for the sake of brevity.
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�

Proof of Lemma 1: The proof is constructed as follows: first, we solve for the region of δ for

which investors are willing to invest regardless of their signals. Second, we solve for the strategy

of investors observing B̂ for values of δ smaller than those for which investors invest regardless of

their signal. Finally, we solve for the strategy of investors observing Ĝ for values of δ smaller than

those for which investors invest regardless of their signal, controlling for the strategy of investors

that observe B̂.

First, consider the case in which investors always invest regardless of signal, i.e., ~πS
i = {1, 1}

and ~πS
−i = {1, 1}. For the equilibrium to exist, it must be the case that Π(B̂|~πS

i , ~π
S
−i) ≥ 0. The

inequality Π(B̂|~πS
i , ~π

S
−i) ≥ 0 binds at,

0 =
(
δ(1 − α)2 − α2

)
+ (1− α)α(δ − 1). (A14)

Thus, if,

δ ≥
α

1− α
, (A15)

an equilibrium in which both investors will always invest (regardless of signal) is sustainable. There-

fore, bSi = bS−i = gSi = gS−i = 1 for δ ∈
[

α
1−α ,∞

)

.

Now consider δ < α
1−α . Investor i’s probability of investing based on a signal B̂ must be less

than one. By Lemmas A1 and A2, if bS is an internal value, it must be that gS is equal to one.

Here, because the outside option is zero, the mutual best responses that implicitly define bSi and

bS−i must satisfy the following two equalities,

0 =

(

(
δ(1 − α)2 − α2

)

(

bSi b
S
−i

2
+ bSi (1− bS−i)

)

+ (1− α)α(δ − 1)

(
bSi
2

))

(A16)

0 =

(

(
δ(1 − α)2 − α2

)

(

bS−ib
S
i

2
+ bS−i(1− bSi )

)

+ (1− α)α(δ − 1)

(

bS−i

2

))

. (A17)

The symmetric solutions to the preceding mutual best responses are,

bSi = bS−i = 0, (A18)
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and

bSi = bS−i =
(2− α)(1 − α)δ − α(1 + α)

(2− α)(1 − α)δ − α(1 + α) + α(1 + δ)− δ
. (A19)

The internal solution for bSi and bS−i in (A19) is weakly less than one so long as,

α(1 + δ) − δ ≥ 0, (A20)

or written differently,

δ ≤
α

(1− α)
, (A21)

and is weakly positive so long that

(2− α)(1− α)δ − α(1 + α) ≥ 0, (A22)

or written differently,

δ ≥
α(1 + α)

(2− α)(1 − α)
. (A23)

However,
α(1 + α)

(2− α)(1 − α)
≥

α

1− α
, (A24)

because α > 1/2. Thus, investors that observe B̂ will never invest if δ < α
1−α , i.e., b

S
i = bS−i = 0 for

δ ∈
[
(1−α)2

α2 , α
1−α

)

.

Continuing with δ < α
1−α , consider gSi and gS−i. In this parameter range, bSi = bS−i = 0 and

investors who observe Ĝ will invest with probability one, i.e., gSi = gS−i = 1 if

0 ≤
(
δα2 − (1− α)2

)
(
1

2

)

+ α(1 − α)(δ − 1). (A25)

The threshold value of δ at which the inequality binds is given by,

δ =

(
1− α

α

)(
1 + α

2− α

)

. (A26)

Note,
α

1− α
−

(
1− α

α

)(
1 + α

2− α

)

=
α2(2− α)− (1− α)2(1 + α)

(1− α)(2 − α)α
, (A27)

which is weakly positive so long as α ≥ 1/2.25 Therefore, gSi = gS−i = 1 for δ ∈
[(

1−α
α

)(
1+α
2−α

)

, α
1−α

)

.

25The roots that set the numerator to zero are α = 1
2
, α = 1

2
(1−

√
5), and α = 1

2
(1+

√
5). Thus, the only relevant
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If δ <
(
1−α
α

) (
1+α
2−α

)

, the mutual best responses must satisfy the following two equalities,

0 =
(
δα2 − (1− α)2

)

(

gSi g
S
−i

2
+ gi(1− g−i)

)

+ α(1− α)(δ − 1)gSi (A28)

0 =
(
δα2 − (1− α)2

)

(

gS−ig
S
i

2
+ g−i(1− gi)

)

+ α(1− α)(δ − 1)gS−i. (A29)

The symmetric solutions to the preceding mutual best responses are,

gSi = gS−i = 0, (A30)

and

gSi = gS−i =
2(α(1 + δ)− 1)

2(α(1 + δ) − 1) + (1− α2(1− δ) − 2αδ)
. (A31)

Focusing on the non-zero solution, the internal mixed strategy is weakly less than one so long as

(1− α2(1− δ) − 2αδ) ≥ 0, (A32)

or written differently,

δ ≤

(
1− α

α

)(
1 + α

2− α

)

. (A33)

Furthermore, the internal mixed strategy is weakly greater than zero so long as,

2(α(1 + δ)− 1) ≥ 0, (A34)

or written differently,

δ ≥
1− α

α
. (A35)

Therefore, gSi = gS−i =
2(α(1+δ)−1)

2(α(1+δ)−1)+(1−α2 (1−δ)−2αδ)
for δ ∈

[
1−α
α ,
(
1−α
α

)(
1+α
2−α

))

and gSi = gS−i = 0

for δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

�

Proof of Lemma 2: The proof is constructed as follows: first, we solve for the region of δ for

which investors are willing to invest regardless of their signal. Second, we solve for the strategy

of investors observing B̂ for values of δ smaller than those for which investors invest regardless of

their signal. Finally, we solve for the strategy of investors observing Ĝ for values of δ smaller than

root in [1/2, 1] is α = 1/2.
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those for which investors invest regardless of their signal, controlling for the strategy of investors

that observe B̂.

First, consider the case in which investors always invest, regardless of signal, i.e., ~πJ
i = {1, 1}

and ~πJ
−i = {1, 1}. For the equilibrium to exist, it must be the case that Π(B̂|~πJ

i , ~π
J
−i) ≥ 0. The

inequality Π(B̂|~πJ
i , ~π

J
−i) ≥ 0 binds at,

0 = (δ(1 − α)2 − α2) + (1− α)α(δ − 1), (A36)

which maps to the same threshold in (A15). Therefore, bJi = bJ−i = gJi = gJ−i = 1 for δ ∈
[

α
1−α ,∞

)

.

Now consider δ < α
1−α . Investor i’s probability of investing based on a signal B̂ must be less

than one. By Lemmas A1 and A2, if bJ is an internal value it must be the case that gJ is equal to

one. Here, because the outside option is zero, the mutual best responses must satisfy the following

two equalities.

0 =(δ(1 − α)2 − α2)bJi b
J
−i + (1− α)α(δ − 1)bJi (A37)

0 =(δ(1 − α)2 − α2)bJ−ib
J
i + (1− α)α(δ − 1)bJ−i. (A38)

The symmetric solutions to the preceding mutual best responses are,

bJi = bJ−i = 0, (A39)

and

bJi = bJ−i =
(1− α)α(δ − 1)

(1− α)α(δ − 1) + α(1 + δ)− δ
. (A40)

Focusing on the non-zero solution to the mutual best responses, the expression in (A40) is weakly

less than one so long as,

α(1 + δ) − δ ≥ 0, (A41)

or written differently,

δ ≤
α

1− α
, (A42)

and is weakly positive so long that,

(1− α)α(δ − 1) ≥ 0, (A43)
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or written differently,

δ ≥ 1. (A44)

Therefore, bJi = bJ−i =
(1−α)α(δ−1)

(1−α)α(δ−1)+α(1+δ)−δ for δ ∈
[

1, α
1−α

)

and, by Lemma A2, gJi = g−i = 1 for

δ ∈
[

1, α
1−α

)

. Also, bJi = bJ−i = 0 for δ ∈
[
(1−α)2

α , 1
)

.

Now, consider δ < 1 in which bJi = bJ−i = 0. Investors that observe Ĝ will invest with probability

one, i.e., gJi = gJ−i = 1, if the following inequality holds,

0 ≤ δα2 − (1− α)2. (A45)

The preceding inequality binds at,

δ =

(
1− α

α

)2

. (A46)

Therefore, gJi = gJ−i = 1 for δ ∈
[
(1−α)2

α2 , 1
)

.

�

Lemma A3. The first-best investment criteria for the informed monopolist is given by,

πFB
ĜĜ

=







1 if δ ≥ (1−α)2

α2

0 otherwise.
(A47)

πFB
ĜB̂

=







1 if δ ≥ 1

0 otherwise,
(A48)

πFB
B̂B̂

=







1 if δ ≥ α2

(1−α2)

0 otherwise.
(A49)

Proof of Lemma A3: The first-best investment criteria for the informed monopolist requires the
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calculation of the monopolist’s posterior probabilities based on her two conditionally i.i.d. signals,

Pr(G|Ĝ, Ĝ) =
Pr(G ∩ Ĝ, Ĝ)

Pr(Ĝ, Ĝ)
(A50)

=
α2

α2 + (1− α)2
, (A51)

Pr(G|Ĝ, B̂) =
Pr(G ∩ Ĝ, B̂)

Pr(Ĝ, B̂)
(A52)

=
α(1− α)

α(1− α) + α(1 − α)
(A53)

=
1

2
, (A54)

Pr(G|B̂, B̂) =
Pr(G ∩ B̂, B̂)

Pr(B̂, B̂)
(A55)

=
(1− α)2

α2 + (1− α)2
. (A56)

The informed monopolist that observes Ĝ and Ĝ will invest as long as she expects a weakly positive

return. The return binds at zero at,

0 =
α2

α2 + (1− α)2
δ −

(

1−
α2

α2 + (1− α)2

)

, (A57)

implying that πFB
ĜĜ

= 1 if δ is sufficiently large,

δ ≥
(1− α)2

α2
. (A58)

It is straightforward to solve for the return thresholds for πĜB̂ and πB̂B̂ , which are omitted for the

sake of brevity.

�

Lemma A4. The solo value-add is given by,

v2,1 =







δ−1
2 δ ∈

[
α

1−α ,∞
)

αδ − 1+α2(δ−1)
2 δ ∈

[
(1−α)(1+α)

α(2−α) , α
1−α

)

0 δ ∈
[
(1−α)2

α2 , (1−α)(1+α)
α(2−α)

)

.

(A59)
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The joint value-add is given by,

v2,2 =







δ−1
2 δ ∈

[
α

1−α ,∞
)

(2α−1)2δ
2α2−2(1−α)2δ

δ ∈
[

1, α
1−α

)

α− 1+α2(1−δ)
2 δ ∈

[
(1−α)2

α2 , 1
)

.

(A60)

Proof of Lemma A4:

The value-add metric requires the ex ante probability of investment for the solo setting, the

joint setting, the uninformed monopolist and the informed monopolist. The ex ante probability of

investment is calculated as,

Pr(Funded) = Pr(Funded|G) Pr(G) + Pr(Funded|B) Pr(B) (A61)

=
1

2
(Pr(Funded|G) + Pr(Funded|B)) . (A62)

The value-add metric also requires the ex post probability that a funded project is type G. The

conditional probability that a funded project is type G is given by,

Pr(G|Funded) =
Pr(G ∩ Funded)

Pr(Funded)
. (A63)

First, consider the solo setting. The ex ante probability that the project is funded is given by,

Pr(Funded|S) =
1

2
((1− Pr(Neither Invests|G)) + (1− Pr(Neither Invests|B))) (A64)

= 1−
1

2

(
(α2 + (1− α)2)((1 − gS)2 + (1− bS)2)

+4α(1− α)(1 − gS)(1− bS)
)
, (A65)

in which S indicates the solo setting, and its explicit solution is,

Pr(Funded|S) =







1 δ ∈
[

α
1−α ,∞

)

1− 1
2(α

2 + (1− α)2) δ ∈
[
(1−α)(1+α)

α(2−α) , α
1−α

)

2α(1−α)(2α−1)(1+δ)(α(1+δ)−1)
(1−α(2+α(δ−1)))2 δ ∈

[
1−α
α , (1−α)(1+α)

α(2−α)

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A66)
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The conditional probability that a funded solo project is type G is given by,

Pr(G|Funded, S) =
1
2

(
1− α2(1− gS)2 − (1− α)2(1− bS)2 − 2α(1 − α)(1 − gS)(1− bS)

)

1− 1
2 ((α

2 + (1− α)2)((1 − gS)2 + (1− bS)2) + 4α(1 − α)(1 − gS)(1 − bS))
,

(A67)

and its explicit solution is,

Pr(G|Funded, S) =







1
2 δ ∈

[
α

1−α ,∞
)

α(2−α)
1+2(1−α)α δ ∈

[
(1−α)(1+α)

α(2−α) , α
1−α

)

1
1+δ δ ∈

[
1−α
α , (1−α)(1+α)

α(2−α)

)

NA δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A68)

The preceding probabilities for the solo setting may be combined to calculate the value-add measure,

v2,1 =







δ−1
2 δ ∈

[
α

1−α ,∞
)

αδ − 1+α2(δ−1)
2 δ ∈

[
(1−α)(1+α)

α(2−α) , α
1−α

)

0 δ ∈
[
1−α
α , (1−α)(1+α)

α(2−α)

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A69)

Next, consider the joint setting. The ex ante probability that a project is funded is given by,

Pr(Funded|J) =
1

2
(Pr(Both Invest|G) + Pr(Both Invest|B)) (A70)

=
1

2

(

(α2 + (1− α)2)(gJ
2
+ bJ

2
) + 4α(1 − α)gJ bJ

)

, (A71)

in which J indicates the joint setting, and its explicit solution is,

Pr(Funded|J) =







1 δ ∈
[

α
1−α ,∞

)

(2α−1)2(α2+(1−α)2δ2)
2(α2(δ−1)−δ(2α−1))2

δ ∈
[

1, α
1−α

)

1
2(α

2 + (1− α)2) δ ∈
[
(1−α)2

α2 , 1
)

.

(A72)
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The conditional probability that a funded joint project is type G is given by,

Pr(G|Funded, J) =
α2gJ

2
+ (1 − α)2bJ

2
+ 2α(1 − α)gJbJ

(α2 + (1− α)2)(gJ
2
+ bJ

2
) + 4α(1 − α)gJ bJ

(A73)

and its explicit solution is,

Pr(G|Funded, J) =







1
2 δ ∈

[
α

1−α ,∞
)

α2

α2+(1−α)2δ2 δ ∈
[

1, α
1−α

)

α2

1−2(1−α)α δ ∈
[
(1−α)2

α2 , 1
)

.

(A74)

The preceding probabilities for the joint setting may be combined to calculate the value-add mea-

sure,

v2,2 =







δ−1
2 δ ∈

[
α

1−α ,∞
)

(2α−1)2δ
2α2−2(1−α)2δ

δ ∈
[

1, α
1−α

)

α− 1+α2(1−δ)
2 δ ∈

[
(1−α)2

α2 , 1
)

.

(A75)

�

Lemma A5. The first-best value-add is given by,

vFB
2 =







δ−1
2 δ ∈

[
α2

(1−α)2 ,∞
)

αδ − 1+α2(δ−1)
2 δ ∈

[

1, α2

(1−α)2

)

α− 1+α2(1−δ)
2 δ ∈

[
(1−α)2

α2 , 1
)

.

(A76)

Proof of Lemma A5:

Consider the first-best value-add from an informed monopolist. The ex ante probability that

the informed monopolist funds a project is,

Pr(Funded|FB) =
1

2
(Pr(Invest|G) + Pr(Invest|B)) (A77)

=
1

2

(
(α2 + (1− α)2)πGG + 4α(1 − α)πGB + (α2 + (1− α)2)πBB

)
. (A78)
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in which FB indicates the first-best setting, and its explicit solution is,

Pr(Funded|FB) =







1 δ ∈
[

α2

(1−α)2
,∞
)

1
2

(
(α2 + (1− α)2) + 4α(1 − α)

)
δ ∈

[

1, α2

(1−α)2

)

1
2(α

2 + (1− α)2) δ ∈
[
(1−α)2

α2 , 1
)

.

(A79)

The conditional probability that a project funded by the informed monopolist is type G is given

by,

Pr(G|Funded, FB) =







1
2 δ ∈

[
α2

(1−α)2
,∞
)

α2+2α(1−α)
α2+(1−α)2+4α(1−α)

δ ∈
[

1, α2

(1−α)2

)

α2

α2+(1−α)2
δ ∈

[
(1−α)2

α2 , 1
)

.

(A80)

The preceding probabilities for the informed monopolist setting may be combined to calculate the

value-add measure,

vFB
2 =







δ−1
2 δ ∈

[
α2

(1−α)2
,∞
)

αδ − 1+α2(δ−1)
2 δ ∈

[

1, α2

(1−α)2

)

α− 1+α2(1−δ)
2 δ ∈

[
(1−α)2

α2 , 1
)

.

(A81)

�

Proof of Proposition 1: The explicit forms of the value-adds in (A69), (A75), and (A81) are

utilized in the proof of this proposition. The difference between the first-best value-add measure

and the solo setting value-add is given by,26

vFB
2 − v2,1 =







α2−(1−α)2δ
2 δ ∈

[
α

1−α ,
α2

(1−α)2

)

0 δ ∈
[

1, α
1−α

)

α(1− α)(1 − δ) δ ∈
[
(1−α)(1+α)

α(2−α) , 1
)

α− 1+α2(1−δ)
2 δ ∈

[
1−α
α , (1−α)(1+α)

α(2−α)

)

α− 1+α2(1−δ)
2 δ ∈

[
(1−α)2

α2 , 1−α
α

)

.

(A82)

The difference between the value-add measures in the informed monopolist setting and the joint

26Note, (1−α)(1+α)
α(2−α)

is strictly smaller than one for all values of α ∈
(

1
2
, 1
]

.
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setting is given by,

vFB
2 − v2,2 =







αδ − 1+α2(δ−1)
2 − δ−1

2 δ ∈
[

α
1−α ,

α2

(1−α)2

)

αδ − 1+α2(δ−1)
2 − (2α−1)2δ

2α2−2(1−α)2δ
δ ∈

[

1, α
1−α

)

0 δ ∈
[
(1−α)2

α2 , 1
)

.

(A83)

�

Lemma A6. The second-best value-add measures for the solo and joint settings are given by,

vSB2,1 =







αδ − 1+α2(δ−1)
2 δ ∈

[

1, α2

(1−α)2

]

(1−α(1+δ))2

4α−2−2α2(1−δ)
δ ∈

[
1−α
α , 1

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

,

(A84)

and

vSB2,2 =







δ−1
2 δ ∈

[
α

1−α ,∞
)

(2α−1)2δ
2α2−2(1−α)2δ

δ ∈
[

1, α
1−α

)

α− 1+α2(1−δ)
2 δ ∈

[
(1−α)2

α2 , 1
)

.

(A85)

Proof of Lemma A6: The second-best value-add is the maximum joint surplus that can be

achieved when investors cannot coordinate their signals. As such, it is equivalent to a setting in

which a social planner dictates a strategy set {g, b} that maximizes joint surplus. Beginning with

the solo setting in which there are N = 2 investors and only n = 1 are required to fund the project,

the planner’s problem is formally given by,

max
g,b∈[0,1]

v2,1(g, b), (A86)

where,

v2,1(g, b) = Pr(Funded|g, b, S)
(
Pr(G|g, b,Funded, S)δ − Pr(B|g, b,Funded, S)

)
. (A87)

Equations (A65) and (A67) give the explicit form of v2,1(g, b),

v2,1(g, b) =
1

2

(
1− α2(1− g)2 − (1− α)2(1− b)2 − 2α(1 − α)(1 − g)(1 − b)

)
(δ + 1)

−

(

1−
1

2

(
(α2 + (1− α)2)((1− g)2 + (1− b)2) + 4α(1 − α)(1 − g)(1 − b)

)
)

. (A88)
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We begin by considering the optimal strategy for an investor that observes B̂. Note that v2,1(g, b)

is convex in b,
d2

db2
(v2,1(g, b)) = α2 − (1− α)2δ, (A89)

because the preceding expression is positive for all values of δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

. Furthermore, the

first derivative with respect to B̂,

d

db
(v2,1(1, b) = (−α2(1− δ) + δ(1 − 2α))(1 − b), (A90)

is negative for all values of δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

, i.e., value-add is decreasing in b. Therefore, the

optimal strategy for investors observing B̂ in the solo setting is,

bSB2,1 =
{

0 δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

(A91)

Now consider the optimal strategy for an investor that observes Ĝ. Note that v2,1(g, b) is concave

in g,
d2

dg2
(v2,1(g, b)) = 1 + α(−2 + α(1− δ)), (A92)

because the preceding expression is negative for all values of δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

. The joint payoff

is maximized with the strategy,

gSB2,1 =







1 δ ∈
[

1, α2

(1−α)2

]

1−α(1+δ)
1−α(1+δ)−α(1−α)(1−δ) δ ∈

[
(1−α)

α , 1
)

0 δ ∈
[
(1−α)2

α2 , (1−α)
α

)

.

(A93)

Using the explicit strategies gSB2,1 and bSB2,1 , the second-best value-add is given by,

vSB2,1 =







αδ − 1+α2(δ−1)
2 δ ∈

[

1, α2

(1−α)2

]

(1−α(1+δ))2

4α−2−2α2(1−δ)
δ ∈

[
1−α
α , 1

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A94)

Continuing with the joint setting in which there are N = 2 investors and n = 2 are required to
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fund the project, the planner’s problem is formally given by,

max
g,b∈[0,1]

v2,2(g, b), (A95)

where,

v2,2(g, b) = Pr(Funded|g, b, J)
(
Pr(G|g, b,Funded, J)δ − Pr(B|g, b,Funded, J)

)
. (A96)

Equations (A71) and (A73) give the explicit form of v2,2(g, b),

v2,2(g, b) =
(
α2g2 + (1− α)2b2 + 2α(1 − α)gb

)
(δ + 1)

−
(
(α2 + (1− α)2)(g2 + b2) + 4α(1 − α)gb

)
. (A97)

We begin by considering the optimal strategy for an investor that observes Ĝ. Note that v2,2(g, b)

is concave in b,
d2

db2
(v2,2(g, b)) = −2α2 + 2(1 − α)2δ, (A98)

because the preceding expression is negative for all values of δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

. Therefore, when

g = 1 the mixing strategy that maximizes joint surplus for investors observing B̂ is,

b2,2 =







1 δ ∈
[

α
1−α ,

α2

(1−α)2

]

(1−α)α(δ−1)
(1−α)α(δ−1)+α(1+δ)−δ δ ∈

[

1, α
1−α

)

0 δ ∈
[
(1−α)2

α2 , 1
)

.

(A99)

Note that v2,2(g, b) is convex in g,

d2

dg2
(v2,2(g, b)) = 2α(2 + α(δ − 1)) − 2, (A100)

because the preceding expression is positive for all values of δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

. Furthermore, the

first derivative with respect to b,

d

dg
(v2,2(g, b) = (2(−1 + α(2 + α(δ − 1)))g (A101)

is positive for all values of δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

, i.e., value-add is increasing in g. Therefore, the
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optimal strategy for investors observing Ĝ in the joint setting is,

gSB2,2 =
{

1 δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

. (A102)

Using the explicit strategies gSB2,2 and bSB2,2 , the second-best value-add is given by,

vSB2,2 =







δ−1
2 δ ∈

[
α

1−α ,∞
)

(2α−1)2δ
2α2−2(1−α)2δ

δ ∈
[

1, α
1−α

)

α− 1+α2(1−δ)
2 δ ∈

[
(1−α)2

α2 , 1
)

.

(A103)

�

Proof of Corollary 1.1:

The explicit forms of the value-adds in (A69), (A75), (A94), and (A103) are utilized in the proof

of this corollary. The difference between the second-best value-add measure and the solo setting

value-add is given by,

vSB2,1 − v2,1 =







(α2−(1−α)2δ)
2 δ ∈

[
α

1−α ,
α2

(1−α)2

]

0 δ ∈
[

1, α
1−α

)

(1−α)2α2(1−δ)2

4α−2−2α2(1−δ)
δ ∈

[
(1−α)(1+α)

α(2−α) , 1
)

(1−α(1+δ))2

4α−2−2α2(1−δ)
δ ∈

[
1−α
α , (1−α)(1+α)

α(2−α)

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A104)

The difference between the second-best value-add measure and the join setting value-add is given

by,

vSB2,2 − v2,2 =
{

0 δ ∈
[
(1−α)2

α2 , α2

(1−α)2

]

. (A105)

�

Lemma A7. If there was only one investor, receiving a single signal, her investment criteria is
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given by,

πSI
Ĝ

=







1 if δ ≥ 1−α
α

0 otherwise.
(A106)

πSI
B̂

=







1 if δ ≥ α
1−α

0 otherwise.
(A107)

Proof of Lemma A7:

The investment criteria is straightforward and omitted for the sake of brevity.

�

Proof of Corollary 1.2:

The single investor’s investment criteria is outlined in Lemma A7. The single investor’s value-

add is now calculated. The ex ante probability that the project is funded is,

Pr(F |SI) =
1

2
(Pr(Invest|G) + Pr(Invest|B)) (A108)

=
1

2
(g + b) , (A109)

in which SI indicates the single-investor setting, and its explicit solution is,

Pr(F |SI) =







1 δ ∈
[

α
1−α ,∞

)

1
2 δ ∈

[
1−α
α , α

1−α

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A110)

The conditional probability that a project funded by the uninformed monopolist is type G is given

by,

Pr(G|F, SI) =







1
2 δ ∈

[
α

1−α ,∞
)

α δ ∈
[
1−α
α , α

1−α

)

NA δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A111)

The preceding probabilities for the uninformed monopolist setting may be combined to calculate
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the value-add measure,

v1,1 =







δ−1
2 δ ∈

[
α

1−α ,∞
)

α(δ+1)−1
2 δ ∈

[
1−α
α , α

1−α

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A112)

The explicit forms of the value-adds in (A69), (A75), and (A112) are utilized to calculate

over and under-performance relative to the single investor. The difference between the value-add

measures in the single investor setting and the solo setting is given by,27

v1,1 − v2,1 =







0 δ ∈
[

α
1−α ,∞

)

− (1−α)α(δ−1)
2 ≤ 0 δ ∈

[

1, α
1−α

)

(1−α)α(1−δ)
2 > 0 δ ∈

[
(1−α)(1+α)

α(2−α) , 1
)

α(δ+1)−1
2 ≥ 0 δ ∈

[
1−α
α , (1−α)(1+α)

α(2−α)

)

0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

.

(A113)

The difference between the value-add measures in the informed monopolist setting and the joint

setting is given by,

v1,1 − v2,2 =







0 δ ∈
[

α
1−α ,∞

)

(1−α)α(δ−1)(α−(1−α)δ)
2α2−2(1−α)2δ

≥ 0 δ ∈
[

1, α
1−α

)

− (1−α)α(1−δ)
2 < 0 δ ∈

[
1−α
α , 1

)

−
(

α− 1+α2(1−δ)
2

)

≤ 0 δ ∈
[
(1−α)2

α2 , 1−α
α

)

(A114)

�

We establish several useful results before proving Section 3’s lemmas and propositions.

Lemma A8. Conditional on investors’ equilibrium participation strategies {gNP , bNP }, an in-

vestor uses an exposure weight φ(gNP , bNP |F̂ ) in place of her subjective state probability in choosing

whether or not to invest.

27Note, (1−α)(1+α)
α(2−α)

is strictly smaller than one for all values of α ∈
(

1
2
, 1
]

.
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Proof of Lemma A8: Investors’ expectations of the project’s value depend on their signals:

E
[
V |F̂

]
=







(α(δ + 1)− 1) c F̂ = Ĝ

((1− α)(δ + 1)− 1) c F̂ = B̂.
(A115)

Investors do not necessarily invest when E
[
V |F̂

]
≥ 0 due to their asymmetric exposure to project

outcomes. Recall, the share of M that is actually invested in the project is state dependent.

Specifically, in (23), the share of investors’ committed capital deployed to the project σ(F ) and the

remaining 1 − σ(F ) is returned to investors implying that each investor’s investment in the risky

project is,

σ(F )M. (A116)

Conditional on the equilibrium participation strategies of investors, an explicit form for σ as a

function of F , gNP , and bNP is given by,

σ(F, gNP , bNP ) =







c1G

M(gNPα+bNP (1−α))
F = G

c1B

M(gNP (1−α)+bNP α)
F = B.

(A117)

where 1F is shorthand notation for an indicator function detailed hereafter. Define,

S(F, gNP , bNP ), (A118)

as the set of projects funded in state F . The set S(B, gNP , bNP ) contains all projects with scale

c ≤ M
(
gNP (1− α) + bNPα

)
,

and S(G, gNP , bNP ) contains all projects with scale,

c ≤ M
(
gNPα+ bNP (1− α)

)
.

Some intuition regarding the importance of these sets is in order. Consider the following example:

a project with scale ĉ 6∈ S(B, gNP , bNP ) will not be funded if it is not financially sound. Because

the project will not attract sufficient capital in the state F = B, investors receive an implicit hedge

against that state because of the all-or-nothing feature. As such, 1F is shorthand notation for the

indicator function 1c∈S(F,gNP ,bNP ).

Investors will invest in a project if their exposure to the state F = G is weakly greater their
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investment. Roughly speaking, define an exposure weight for investors as,

φ(gNP , bNP |F̂ ) =







ασ(G,gNP ,bNP )
ασ(G,gNP ,bNP )+(1−α)σ(B,gNP ,bNP )

F̂ = Ĝ,

(1−α)σ(G,gNP ,bNP )
(1−α)σ(G,gNP ,bNP )+ασ(B,gNP ,bNP )

F̂ = B̂.
(A119)

As such, an investor that observes F̂ will invest if,

φ(gNP , bNP |F̂ )(δ + 1)− 1 ≥ 0. (A120)

�

Lemma A9. The exposure weight φ(gNP , bNP |B̂) is weakly increasing in bNP .

Proof of Lemma A9:

If 1B = 0, the comparative statics of φ(gNP , bNP |B̂) and φ(gNP , bNP |Ĝ) are trivial: they all

equal zero. For the remainder of the proof, assume 1B = 1.

The expression φ(gNP , bNP |B̂) may be rewritten as,

φ(gNP , bNP |B̂) =
1

1 + ηB
, (A121)

where,

ηB =
α
(
gNPα+ bNP (1− α)

)

(1− α) (gNP (1− α) + bNPα)
. (A122)

Therefore, the comparative static of φ(gNP , bNP |B̂) with respect to bNP is,

∂φ(gNP , bNP |B̂)

∂bNP
= −

∂ηB/∂b
NP

(1 + ηB)2
. (A123)

The partial derivative of ηB with respect to bNP is given by,

∂ηB
∂bNP

=
α((1− 2α)gNP )

(1− α) (gNP (1− α) + bNPα)2
. (A124)

The sign on the preceding expression is determined by the sign on,

(1− 2α)gNP , (A125)
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which is negative because α > 1
2 . Therefore

∂ηB
∂bNP < 0 implying that,

∂φ(gNP , bNP |B̂)

∂bNP
≥ 0. (A126)

�

Lemma A10. Any equilibrium featuring a loser’s blessing, i.e., the project’s scale c is not in the

set S(F, gNP , bNP ), also features full investor participation.

Proof of Lemma A10:

An equilibrium featuring a loser’s blessing ensures an expected profit with no possible loss. Any

non-participating investor would not be acting optimally.

�

Lemma A11. Investors that observe F̂ = B̂ adhere to a deterministic strategy, bNP ∈ {0, 1}. If

there is not a loser’s blessing and

δ <
α

1− α
, (A127)

no investors observing F̂ = B̂ invest in the project.

Proof of Lemma A11: By Lemma A10 all investors participate if a loser’s blessing exists.

Consider the case in which a loser’s blessing does not exist, i.e., bad projects are funded with

probability one. All investors that observe F̂ = B̂ will invest if and only if,

0 ≤ (1− α)

(
(δ + 1)c − c

c

)

Mσ(G, 1, 1) − α
(c

c

)

Mσ(B, 1, 1). (A128)

The inequality simplifies to,

1 ≤ (δ + 1)
(1− α)σ(G, 1, 1)

(1 − α)σ(G, 1, 1) + ασ(B, 1, 1)
≡ (δ + 1)φ(1, 1|B̂). (A129)

If the preceding inequality holds with equality, then for any return marginally smaller than δ it

must be the case that not all investors participate. Furthermore, investors that observe B̂ cannot

employ a mixing strategy because,

φ(1, 1|B̂) > φ(1, bNP |B̂), (A130)

for any bNP < 1 by Lemma A9. Therefore, for any (δ + 1) smaller than 1/φ(1, 1|B), investors that
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observe F̂ = B̂ will not participate. Thus, the investors’ decision to participate is deterministic

when they observe F̂ = B̂.

The threshold return that compels the set of investors that observe F̂ = B̂ to invest is implicitly

defined by the following equality (using (A117) and (A119)),

(δ + 1)

(
c(1−α)

M
c(1−α)

M + cα
M

)

= 1, (A131)

which simplifies to,

(δ + 1)

(

1

1 + α
1−α

)

= 1. (A132)

Therefore, for all investors to participate (regardless of signal) the promised return needs to be

sufficiently large,

δ ≥
α

1− α
. (A133)

�

Lemma A12. If

1 ≤ δ <
α

1− α
, (A134)

and c ≤ M(1−α), then investors that observe F̂ = B̂ do not participate and a investor that observes

F̂ = Ĝ will invest with probability one, gNP = 1.

Proof of Lemma A12: By Lemma A10 all investors participate if a loser’s blessing exists.

Consider the case in which a loser’s blessing does not exist (and is not triggered when investors

observing B̂ do not participate — we consider that possibility in Lemma A14). Suppose δ < α
1−α

so investors’ observing F̂ = B̂ do not participate. Investors that observe F̂ = Ĝ will participate if

and only if,

0 ≤ α

(
(δ + 1)c − c

c

)

Mσ(G, 1, 0)1G − (1− α)
(c

c

)

Mσ(B, 1, 0)1B . (A135)

The inequality simplifies to,

1 ≤ (δ + 1)
ασ(G, 1, 0)

ασ(G, 1, 0) + (1− α)σ(B, 1, 0)1B
≡ (δ + 1)

1

2
. (A136)
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The preceding inequality holds with equality at δ = 1. Furthermore, the non-participation of

investors observing B̂ does not trigger a loser’s blessing as c ≤ M(1−α) and even a project of type

B is financed with certainty.

�

Lemma A13. If

δ < 1 (A137)

no investors participate.

Proof of Lemma A13:

The proof comes from Lemma A12.

�

Lemma A14. If

1 ≤ δ <
α

1− α
, (A138)

and c > M(1− α), then the only equilibrium is one in which no project is financed.

Proof of Lemma A14:

First, consider projects with scale c ∈ ((1− α)M,αM ]. According to Lemma A11, investors

observing B̂ will not participate if δ < α
1−α . And, by Lemma A12, all investors observing Ĝ will

participate if δ ∈
[

δ, α
1−α

)

. Therefore, a good project will attract αM units of capital and a bad

project will attract (1 − α)M units of capital. However, because financing is all-or-nothing, a

bad project will not raise sufficient capital because c > (1−α)M and the project will be canceled,

inducing a loser’s blessing. By Lemma A10, any equilibrium featuring a loser’s blessing includes full

investor participation, implying investors observing B̂ would be compelled to participate. However,

by participating, and because investors observing B̂ play deterministic strategies by Lemma A11,

participation by investors observing B̂ unravels the loser’s blessing and those investors will no

longer want to participate. As such, no equilibrium exists in which the project is financed and the

only equilibrium is one in which no project is financed.

Now, consider projects with scale c > αM . In this case, while investors observing Ĝ would like

to participate because δ ∈
[

1, α
1−α

)

, they lack sufficient capital to finance the project as they can

only raise αM for good projects. As such, no equilibrium exists in which the project is financed

and the only equilibrium is one in which no project is financed.

�
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Proof of Lemma 3:

If a loser’s blessing exists, i.e., 1B = 0, then investors’ payoffs from participating are strictly

positive. This implies that the unit measure of investors collectively provides M units of capital

regardless of the project’s type. Thus, if 1B = 0 it must be the case that 1G is also equal to zero

and that the project cannot be financed, i.e., c > M . Therefore, a loser’s blessing cannot exist in

equilibrium.

�

Proof of Lemma 4:

The proof closely resembles the proofs of Lemmas A10-A14 and is omitted for the sake of

brevity.

�

Proof of Lemma 5:

The proof closely resembles the proofs of Lemmas A10-A14 and is omitted for the sake of

brevity.

�

Proof of Proposition 2:

The proof is derived from the results of Lemma 4 and Lemma 5.

�
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Appendix B

Equations (20) and (21) give investors’ conditions for contributing capital to a project. In

equilibrium, all investors’ strategies must satisfy these conditions. To solve for the equilibrium, we

begin by formally defining the probabilities used in (20) and (21). Taking all investors’ strategies

as given, the probability of realizing state n if the project is good is (we suppress the superscripts

LC for the sake of exposition throughout this appendix):

Pr(n|G,~π,N, α) =
N∑

y=0

min(y,n)
∑

x=max(0,n−(N−y))



αy
∏

j∈X

gj
∏

j∈Y,j /∈X

(1− gj)



×



(1− α)N−y
∏

j∈K,j/∈Y

bj
∏

j /∈K,j /∈Y

(1− bj)





(
N

y

)(
y

x

)(
N − y

n− x

)

, (B1)

where K is the set of n investors who participate, Y is the set of investors who receive good signals

and X is the intersection of K and Y . In the summations, y indexes the size of Y and x indexes

the size of X. The three counting functions provide the number of unique ways one can select y

investors (out of N) who receive good signals, x investors (out of y) who receive good signals and

contribute, and n − x investors (out of the N − y investors who receive bad signals) who receive

bad signals and contribute. The probability of realizing state n if the project is bad is:

Pr(n|B,~π,N, α) =
N∑

y=0

min(y,n−1)
∑

x=max(0,n−(N−y))



(1− α)y
∏

j∈X,

gj
∏

j∈Y,j /∈X

(1− gj)



×



αN−y
∏

j∈K,j /∈Y

bj
∏

j /∈K,j /∈Y

(1− bj)





(
N

y

)(
y

x

)(
N − y

n− x

)

. (B2)

(B1) and (B2) only differ in the probabilities applied to investors’ receiving good or bad signals.

For good projects, investors are more likely to receive good signals (with probability α), while for

bad projects, investors are more likely to receive bad signals (also with probability α).

To calculate the probabilities for an individual investor (which are used in (20) and (21)), other

investors’ strategies, ~π−i, are used in place of all investors’ strategies, ~π, N − 1 is used in place of

64



N , and the sets K,Y and X exclude investor i. As a result, (B1) becomes:

Pr
i
(n|G,~π−i, N − 1, α) =

N−1∑

y=0

min(y,n)
∑

x=max(0,n−(N−1−y))



αy
∏

j∈X,j 6=i

gj
∏

j∈Y,j /∈X,j 6=i

(1− gj)



×



(1− α)N−1−y
∏

j∈K,j/∈Y,j 6=i

bj
∏

j /∈K,j /∈Y,j 6=i

(1− bj)



×

(
N − 1

y

)(
y

x

)(
N − 1− y

n− x

)

, (B3)

and (B2) becomes:

Pr
i
(n|B,~π−i, N − 1, α) =

N−1∑

y=0

min(y,n)
∑

x=max(0,n−(N−1−y))



(1− α)y
∏

j∈X,j 6=i

gj
∏

j∈Y,j /∈X,j 6=i

(1− gj)



×



αN−1−y
∏

j∈K,j/∈Y,j 6=i

bj
∏

j /∈K,j /∈Y,j 6=i

(1− bj)



×

(
N − 1

y

)(
y

x

)(
N − 1− y

n− x

)

. (B4)

To solve for the equilibrium strategies, we first develop two lemmas.

Lemma B1. For any internal mixing probability πF̂ ,i ∈ (0, 1) to be an equilibrium strategy, Πi(F̂ ) =

0. If πF̂ ,i = 0, then Πi(F̂ ) ≤ 0. If πF̂ ,i = 1, then Πi(F̂ ) ≥ 0.

Proof of Lemma B1:

Suppose not. Begin with the case in which πF̂ ,i ∈ (0, 1) and Πi(F̂ ) > 0. Because the investor

will always contribute after observing F̂ , the investor will deviate whenever the mixing probability

dictates not contributing. Similarly, if πF̂ ,i ∈ (0, 1) and Πi(F̂ ) < 0 the investor will never contribute

after observing F̂ , deviating whenever the mixing probability dictates to contribute. Next, consider

the case when πF̂ ,i = 0 and Πi(F̂ ) > 0. As before, the investor will always contribute after observing

F̂ , and thus will always deviate from the strategy of not contributing. Similarly, if πF̂ ,i = 1 and

Πi(F̂ ) < 0 the investor will never contribute after observing F̂ , and thus will always deviate from

the strategy of always contributing.

�

Lemma B1 follows from investors’ playing incentive compatible strategies. Because investors

will always invest if Πi(F̂ ) > 0 and will never invest when Πi(F̂ ) < 0, these behaviors can only be
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supported in equilibrium by the strategies πF̂ ,i = 1 and πF̂ ,i = 0, respectively. Similarly, to support

mixing in equilibrium, investors must be indifferent between investing and not investing, meaning

Πi(F̂ ) = 0. The requirement that strategies be incentive compatible leads to the following lemma.

Lemma B2. In any equilibrium of the financing game with a discrete number of investors, all

agents play identical strategies conditional on their signals, i.e. bi = bj and gi = gj ∀ i, j.

Proof of Lemma B2:

We first show that only one of (20) and (21) can hold with equality. Suppose not. Then (20)

becomes:

α

N−1∑

n=n−1

Pri(n|G,~π−i, N − 1, α)
V − c

n
= (1− α)

N−1∑

n=n−1

Pri(n|B,~π−i, N − 1, α)
c

n
, (B5)

and (21) becomes:

(1− α)
N−1∑

n=n−1

Pri(n|G,~π−i, N − 1, α)
V − c

n
= α

N−1∑

n=n−1

Pri(n|B,~π−i, N − 1, α)
c

n
. (B6)

Comparing the right-hand sides of (B5) and (B6), we must have

α
N−1∑

n=n−1

Pri(n|B,~π−i, N − 1, α)
c

n
> (1− α)

N−1∑

n=n−1

Pri(n|B,~π−i, N − 1, α)
c

n
, (B7)

because α ∈ (12 , 1]. This then implies the same ordering of the left-hand sides of (B5) and (B6), so

(1− α)

N−1∑

n=n−1

Pri(n|G,~π−i, N − 1, α)
V − c

n
> α

N−1∑

n=n−1

Pri(n|G,~π−i, N − 1, α)
V − c

n
. (B8)

However, this provides a contradiction because α > (1 − α), meaning only (20) or (21) can hold

with equality.

First, consider the case when (21) holds with equality. In this case, (20) is slack, so it is optimal

for investors to contribute after observing a good signal. Formally, by Lemma B1 gi = 1 ∀ i, so we

have that gi = gj ∀ i, j.

Now suppose, in equilibrium, some investors do not play identical strategies conditional on

receiving bad signals. Choose any equilibrium vector ~̃πB̂ in which ∃ i, j such that b̃i 6= b̃j. Without

loss of generality, assume b̃i > b̃j. From (B4), Pri(n|B, ~̃π−i, N − 1, α) 6= Prj(n|B, ~̃π−i, N − 1, α)
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because i incorporates b̃j into her probability, while j incorporates b̃i into his probability. However,

Pri(n|G, ~̃π−i, N − 1, α) = Prj(n|G, ~̃π−i, N − 1, α) since g̃i = g̃j for all investors. As a result, (21)

cannot hold with equality for either investor i or investor j (or both). By Lemma B1, either b̃i or

b̃j cannot be an equilibrium strategy, giving a contradiction.

Second, consider the case when (20) holds with equality. In this case, (21) cannot hold, so no

investors will invest after receiving a bad signal, so by Lemma B1 bi = 0 ∀ i, so we have that bi = bj

∀ i, j.

Now suppose, in equilibrium, some investors do not play identical strategies conditional on

receiving good signals. Choose any equilibrium vector ~̃πĜ in which ∃ i, j such that g̃i 6= g̃j . Without

loss of generality, assume g̃i > g̃j . From (B3), Pri(n|G, ~̃π−i, N − 1, α) 6= Prj(n|G, ~̃π−i, N − 1, α)

because i incorporates g̃j into her probability, while j incorporates g̃i into his probability. However,

Pri(n|B, ~̃π−i, N − 1, α) = Prj(n|B, ~̃π−i, N − 1, α) since b̃i = b̃j for all investors. As a result, (21)

cannot hold with equality for either investor i or investor j (or both). By Lemma B1, either g̃i or

g̃j cannot be an equilibrium strategy, giving a contradiction.

�

The intuition for the lemma is simple. For mixing strategies to form an equilibrium, it must be

the case that either (20) or (21) binds for all investors. However, if any investor plays a different

mixing strategy, the probability of realizing state n must be different for that investor relative to

all other investors because conditional probabilities are formed taking all other investors’ strategies

into consideration. As a result, the non-identical mixing strategy cannot be an equilibrium as either

(20) or (21) would not bind for some investor.

For a given {N,n}, we use Lemma B1 and Lemma B2 and numerically solving for the values g∗

and b∗ which satisfy (20) and (21). After solving for g∗ and b∗, we then calculate projects’ value-add

based on the probabilities of realizing each state n ∈ [n,N ] for both good and bad projects and the

associated costs and payoffs in each state.
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