# Profit Sharing: A Contracting Solution to Harness the Wisdom of the Crowd

#### Jiasun Li

George Mason University School of Business

Sept 2017

#### Wisdom of the crowd

#### Wisdom of the crowd (Surowiecki (2005))

- the collective opinion of a group of individuals
- often found to dominate the judgment of a single expert

Why does it exist? How prevalent is it?

- individual judgments often contain idiosyncratic noises
  - ▷ averaging tends to cancel out these noises (law of large numbers)
- rooted in classic economic thoughts
  - ▷ Hayek (1944, 1945), Hellwig (1980), Diamond and Verrecchia (1981)
- useful for modern settings (e.g. earnings forecast, crowdfunding)
  - Da and Huang (2015), Brown and Davies (2015), Chemla and Tinn (2016), Xu (2016), etc.

This paper (assuming the existence of the wisdom of the crowd effect):

• how to best harness it? e.g. via "smart" contract design?

#### Wisdom of the crowd

Wisdom of the crowd (Surowiecki (2005))

- the collective opinion of a group of individuals
- often found to dominate the judgment of a single expert

Why does it exist? How prevalent is it?

- individual judgments often contain idiosyncratic noises
  - ▷ averaging tends to cancel out these noises (law of large numbers)
- rooted in classic economic thoughts

▷ Hayek (1944, 1945), Hellwig (1980), Diamond and Verrecchia (1981)

- useful for modern settings (e.g. earnings forecast, crowdfunding)
  - Da and Huang (2015), Brown and Davies (2015), Chemla and Tinn (2016), Xu (2016), etc.

This paper (assuming the existence of the wisdom of the crowd effect):

• how to best harness it? e.g. via "smart" contract design?

#### Wisdom of the crowd

Wisdom of the crowd (Surowiecki (2005))

- the collective opinion of a group of individuals
- often found to dominate the judgment of a single expert

Why does it exist? How prevalent is it?

- individual judgments often contain idiosyncratic noises
  - ▷ averaging tends to cancel out these noises (law of large numbers)
- rooted in classic economic thoughts

▷ Hayek (1944, 1945), Hellwig (1980), Diamond and Verrecchia (1981)

- useful for modern settings (e.g. earnings forecast, crowdfunding)
  - Da and Huang (2015), Brown and Davies (2015), Chemla and Tinn (2016), Xu (2016), etc.

This paper (assuming the existence of the wisdom of the crowd effect):

• how to best harness it? e.g. via "smart" contract design?

#### An illustrative example

Two investors, Alice & Bob, participate in funding a risky, scalable project

- independently decide how much money to commit to the project
  - based on their optimal return-risk trade-off
- deep pocketed; identically risk averse

Both investors use their private information to guide investment decisions

- each investor's private information contains idiosyncratic noises
- neither investor has access to the other's private information
- Q: How should Alice and Bob divide up any payoff from their investment?

The typical approach (common stock)

- rewards investors in proportion to their initial investment
- the more Alice has invested, the larger payoffs she will enjoy

#### But...is this really optimal?

- winner's curse: risk-aversion limits investment amount
- $\Rightarrow$  call for better risk sharing than common stocks
- What if, Alice and Bob equally divide up any net payoff?
  - i.e. profit sharing for harnessing the wisdom of the crowd!

The typical approach (common stock)

- rewards investors in proportion to their initial investment
- the more Alice has invested, the larger payoffs she will enjoy
- But...is this really optimal?
  - winner's curse: risk-aversion limits investment amount
  - $\Rightarrow$  call for better risk sharing than common stocks
- What if, Alice and Bob **equally** divide up any net payoff?
  - i.e. profit sharing for harnessing the wisdom of the crowd!

The typical approach (common stock)

- rewards investors in proportion to their initial investment
- the more Alice has invested, the larger payoffs she will enjoy
- But...is this really optimal?
  - winner's curse: risk-aversion limits investment amount
  - $\Rightarrow$  call for better risk sharing than common stocks
- What if, Alice and Bob **equally** divide up any net payoff?
  - i.e. profit sharing for harnessing the wisdom of the crowd!

The typical approach (common stock)

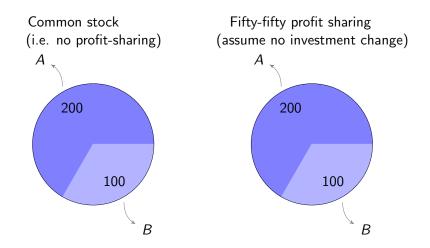
- rewards investors in proportion to their initial investment
- the more Alice has invested, the larger payoffs she will enjoy
- But...is this really optimal?
  - winner's curse: risk-aversion limits investment amount
  - $\Rightarrow$  call for better risk sharing than common stocks
- What if, Alice and Bob equally divide up any net payoff?
  - i.e. profit sharing for harnessing the wisdom of the crowd!

# Common stock vs. profit sharing

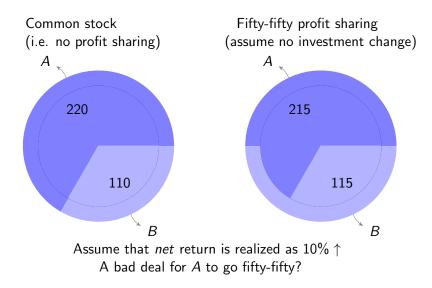
Assume that net return is realized as 10%  $\uparrow$ 

#### Common stock

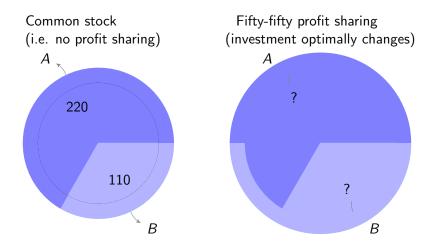
|   | Inv.Amt | Shr.G. | Gross payoff     | Individual payoff      |  |
|---|---------|--------|------------------|------------------------|--|
| A | \$200   | 2/3    | (\$200 + \$100)× | $330 \times 2/3 = 220$ |  |
| В | \$100   | 1/3    | (1+10%) = \$330  | $330 \times 1/3 = 110$ |  |


Fifty-fifty profit sharing (assume no changes in investment)

|   | Shr.N. | Inv.Amt | Net payoff       | Individual payoff           |
|---|--------|---------|------------------|-----------------------------|
| A | 1/2    | \$200   | (\$200 + \$100)× | $200 + 30 \times 1/2 = 215$ |
| В | 1/2    | \$100   | 10% = \$30       | $100 + 30 \times 1/2 = 115$ |


A bad deal for A? Optimal investment also changes under profit sharing...

• not necessarily a bad deal to get a smaller piece of a bigger pie!


Common stock vs. profit sharing: illustration



### Common stock vs. profit sharing: illustration



## Common stock vs. profit sharing: illustration



Not necessary...if A gets a smaller piece of a bigger pie!

# Formal analysis of the illustrative example

Two deep-pocketed, identically risk averse investors  $(i \in \{A, B\})$ • maximize constant absolute risk aversion utility:  $u(W) = -e^{-\rho W}$ The risky (scalable) prior with *net* return denoted as a random variable  $\tilde{r}$ • investor *i*'s private signal  $s_i = r + \epsilon_i$ where *r* is the realization of  $\tilde{r}$ ,  $\epsilon_i \sim \mathcal{N}(0, \tau_i^{-1})$ ,  $\epsilon_i \perp \tilde{r}$ ,  $\epsilon_A \perp \epsilon_B$ 

#### Optimal Investment under common stock

Investor *i*'s problem: invest  $x'_i$  given  $s_i$  s.t.

$$x_i'(s_i) = \operatorname{argmax}_x \mathbb{E}[-e^{-
ho \widetilde{r} x}|s_i]$$

Assume  $\tilde{r} \sim \mathcal{N}(\bar{r}, \tau_r^{-1})$  for ease of exposition, RHS leads to

$$\begin{aligned} x_i'(s_i) &= \operatorname{argmax}_x - e^{-\rho \mathbb{E}(\tilde{r}|s_i)x + \frac{1}{2}\operatorname{Var}(\tilde{r}|s_i)\rho^2 x^2} \\ &= \frac{1}{\rho}(\tau_r \bar{r} + \tau_i s_i) \end{aligned}$$

If A and B could exchange private information before making investing decisions...

Then investor *i* knew both  $s_i$  and  $s_{-i}$ , and

$$x'_i(s_i, s_{-i}) = \operatorname{argmax}_x \mathbb{E}[-e^{-
ho \tilde{r} x} | s_A, s_B]$$

RHS leads to

$$\begin{aligned} x_i'(s_A, s_B) &= \operatorname{argmax}_x - e^{-\rho \mathbb{E}(\tilde{r}|s_A, s_B)x + \frac{1}{2}\operatorname{Var}(\tilde{r}|s_A, s_B)\rho^2 x^2} \\ &= \frac{1}{\rho} (\tau_r \bar{r} + \tau_A s_A + \tau_B s_B) \end{aligned}$$

(full information benchmark)

# Optimal Investment if A and B agree to share profits equally

Investor *i*'s problem: invest  $x_i$  given  $s_i$  s.t.

$$x_i(s_i) = \operatorname{argmax}_x \mathbb{E}[-e^{-
ho rac{1}{2} ilde{r}[x+ ilde{x}_{-i}(s_{-i})]}|s_i]$$

- $\therefore$  the RHS involves *i*'s belief of  $\tilde{x}_{-i}(s_{-i})$ 
  - solution constitutes a Nash equilibrium

#### Definition

A Nash Equilibrium under an equal division of profits consists of two investment strategy functions  $x_A(\cdot)$  and  $x_B(\cdot)$  such that

$$x_i(s_i) = \operatorname{argmax}_x \mathbb{E}[-e^{-
ho rac{1}{2} ilde{r}[x+ ilde{x}_{-i}(s_{-i})]}|s_i],$$

where  $i \in \{A, B\}$  and  $-i = \{A, B\} \setminus \{i\}$ .

# Solving the Nash equilibrium

Nash Equilibrium (from the Definition)

$$x_i(s_i) = \operatorname{argmax}_{x} \mathbb{E}[-e^{-\rho \frac{1}{2}\tilde{r}[x+\tilde{x}_{-i}(s_{-i})]}|s_i], \qquad (1)$$

Guess and verify a linear Nash equilibrium

$$\begin{aligned} x_i(s_i) &= \alpha + \beta_i s_i \\ (1) \Rightarrow \alpha + \beta_i s_i &= \operatorname{argmax}_{x} - \mathbb{E}[e^{\left[-\frac{1}{2}\rho\tilde{r}\right][x + \alpha + \beta_{-i}\tilde{s}_{-i}]}|s_i] \end{aligned} (2)$$

Both  $-\frac{1}{2}\rho\tilde{r}$  and  $x + \alpha + \beta_{-i}\tilde{s}_{-i}$  are normal r.v.-s conditional on  $s_i$  $\Rightarrow$  expectation in the RHS of (2): m.g.f of a (general)  $\chi^2$ -r.v.

a closed-form expression exists

#### Profit sharing harnesses crowd wisdom

Under fifty-fifty profit sharing:

$$\begin{cases} x_i = (\tau_r \bar{r} + 2\tau_i s_i)/\rho \\ x_{-i} = (\tau_r \bar{r} + 2\tau_{-i} s_{-i})/\rho \end{cases}$$
  
$$\Rightarrow i's \text{ payoff: } r(x_i + x_{-i})/2 = r(\tau_r \bar{r} + \tau_A s_A + \tau_B s_B)/\rho$$

If A and B exchange private information before investing

$$\begin{aligned} x_i'(s_i, s_i) &= x_{-i}'(s_i, s_i) = (\tau_r \bar{r} + \tau_A s_A + \tau_B s_B)/\rho \\ \Rightarrow i's \text{ payoff: } rx_i'(s_i, s_i) &= r(\tau_r \bar{r} + \tau_A s_A + \tau_B s_B)/\rho \end{aligned}$$

#### Theorem

 $\forall \{r, s_A, s_B\}$ , each investor's payoff under an equal division of profits always equals to that under a full information benchmark.

## Why does profit sharing harness crowd wisdom?

Compare optimal investor behaviors:

• under common stock:

$$\begin{cases} x'_i = (\tau_r \bar{r} + \tau_i s_i)/\rho \\ x'_{-i} = (\tau_r \bar{r} + \tau_{-i} s_{-i})/\rho \end{cases}$$

• under fifty-fifty profit sharing:

$$\begin{cases} x_i = (\tau_r \bar{r} + 2\tau_i s_i)/\rho \\ x_{-i} = (\tau_r \bar{r} + 2\tau_{-i} s_{-i})/\rho \end{cases}$$

# General case: optimal profit-sharing

Consider *n* investors each with risk-aversion  $\rho_i$  and receiving  $a_i$  of the profit

Theorem (equilibrium existence and structure)

Iff the pre-agreed profit ratio is proportional to risk tolerance, i.e.

$$a_i = \frac{1/\rho_i}{\sum_{i=1}^n 1/\rho_i},$$

a Nash equilibrium exists, under which each investor's payoff is equal to what is under a full information benchmark.

Optimal sharing rule is easy to implement (only requires risk-aversions)

• individuals also have strict incentives to truthfully report their  $\rho_i$ -s

### Implications for crowdfunding security design

In May 2016, the SEC further sanctioned investment crowdfunding

- under Title III of the Jumpstart Our Business Startups (JOBS) Act
- entrepreneurs directly solicit funding from a large number of investors
- contracts agreed to at the time of investment specify monetary payoffs
- Q1: What type of contract is optimal? Still an open question.
  - currently common stock, debt, or hybrids are all used in practice

Wisdom of the crowd: an acclaimed benefit of crowdfunding

- extensively discussed from the entrepreneur's perspective:
- aggregate investment provides useful information to the entrepreneur

Q2: Could the wisdom of the crowd also benefit investors themselves?

## Implications for crowdfunding security design

In May 2016, the SEC further sanctioned investment crowdfunding

- under Title III of the Jumpstart Our Business Startups (JOBS) Act
- entrepreneurs directly solicit funding from a large number of investors
- contracts agreed to at the time of investment specify monetary payoffs
- Q1: What type of contract is optimal? Still an open question.
- currently common stock, debt, or hybrids are all used in practice Wisdom of the crowd: an acclaimed benefit of crowdfunding
  - extensively discussed from the entrepreneur's perspective:
  - aggregate investment provides useful information to the entrepreneur
- Q2: Could the wisdom of the crowd also benefit investors themselves?

Investment crowdfunding platforms...



# **AngelList**

# crowdfunder





### How robust is our main result? I

Empirically, only a small number of entrepreneurial ventures take off while most others fail – returns may be skewed...

 $\Rightarrow$  our result is intact under skewed project returns

Theorem (Arbitrary distributions of project return)

 $\forall$  arbitrary distributions of project return  $\tilde{r}$  and an exponential family likelihood function of  $\tilde{r}$  given private signals  $s_i, i \in \{A, B\}$ , profit sharing gives the same payoff for both investors as in a full-information benchmark.

#### How robust is our main result? II

Sensible to assume endowed private information in crowdfunding

- how will results change if private information has be costly acquired?
- a free-riding problem (Holmström (1982)) in information acquisition?
- e.g. assume constant marginal cost in acquiring signal precision
- $\Rightarrow\,$  free-riding not large enough to cancel out the wisdom of the crowd

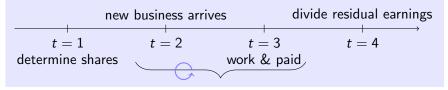
#### Theorem (Costly Information Acquisition)

With a constant marginal cost in acquiring private signal precision, investors strictly prefer more participants in profit sharing.

#### How robust is our main result? III

Sensible to assume constant return to scale for crowdfunding projects

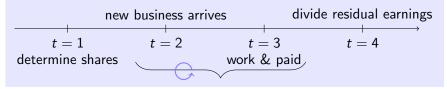
- how will results change for projects with (dis)economies of scale?
- e.g. assume total investment influences net return  $\tilde{r} \lambda(x_1 + x_2)$
- $\Rightarrow$  the profit-sharing contract derived above is still *first-best* optimal


#### Theorem (Projects with (dis)economy of scale)

The first-best allocation chosen by an omniscient and benevolent social planner could be sustained by a Nash equilibrium under profit sharing plus some cash transfers, even if the project features (dis)economy of scale.

A Second Welfare Theorem under externality and asymmetric information?

# A few further thoughts


Explain the structures of partnership firms?



Guide the design of Decentralized autonomous organizations (DAO)? Or alternative financing such as initial coin offering (ICO)?

# A few further thoughts

Explain the structures of partnership firms?



Guide the design of Decentralized autonomous organizations (DAO)? Or alternative financing such as initial coin offering (ICO)?



Jiasun Li (George Mason)

#### Reference

- Brown, David C, and Shaun William Davies, 2015, Equity crowdfunding: Harnessing the wisdom of the crowd, Available at SSRN.
- Chemla, Gilles, and Katrin Tinn, 2016, Learning through crowdfunding, CEPR Discussion Paper No. DP11363.
- Da, Zhi, and Xing Huang, 2015, Harnessing the wisdom of crowds, Available at SSRN 2731884.
- Diamond, Douglas W, and Robert E Verrecchia, 1981, Information aggregation in a noisy rational expectations economy, *Journal of Financial Economics* 9, 221–235.
- Hayek, Friedrich, 1944, *The Road to Serfdom* (University of Chicago Press and Routledge Press).
- Hayek, FA, 1945, The use of knowledge in society, American Economic Review 35, 519-30.
- Hellwig, Martin F, 1980, On the aggregation of information in competitive markets, *Journal of economic theory* 22, 477–498.
- Holmström, Bengt, 1982, Moral hazard in teams, *The Bell Journal of Economics* pp. 324–340. Surowiecki, James, 2005, *The wisdom of crowds* (Anchor).
- Xu, Ting, 2016, The informational role of crowdfunding, Available at SSRN 2637699.