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Abstract

I extend the theory on factor models by incorporating local factors into the model. Local

factors only affect an unknown subset of the observed variables. This implies a continuum of

eigenvalues of the covariance matrix, as is commonly observed in applications. I derive which

factors are pervasive enough to be economically important and which factors are pervasive

enough to be estimable using the common principal component estimator. I then introduce

a new class of estimators to determine the number of those relevant factors. Unlike existing

estimators, my estimators use not only the eigenvalues of the covariance matrix, but also its

eigenvectors. I find strong evidence of local factors in a large panel of US macroeconomic

indicators.
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1 Introduction

Factor models allow for a large number of economic variables to be distilled into a small number of
reference variables, enabling the analysis of otherwise prohibitively complex datasets. This paper
generalizes standard factor models by introducing a novel theoretical framework incorporating
factors of varying strength. Here, the strength of a factor is defined by the number of outcomes it
affects.1 Instead of ruling out “local” factors that only affect a subset of the observed variables, as
is commonly done in the literature, I explicitly allow for such factors. I derive which factors are
strong enough to be economically important and which factors are estimable using the common
principal component estimator. I then introduce a new class of estimators to determine the number
of those relevant factors.

While there exists a multitude of estimators for the number of factors (e.g. Bai and Ng (2002),
Onatski (2010), Ahn and Horenstein (2013)), existing estimators are derived from the empirical
distribution of the eigenvalues. I argue that in a setting with local factors there is additional in-
formation in the eigenvectors and propose to exploit this additional information by incorporating
partial sums of the eigenvectors into the estimator.

While local factors have long been acknowledged, the current literature requires a clear dis-
tinction between “large” and “small” groups of affected variables, ruling out factors that drive a
decreasing fraction of the observables. For example, the handbook chapter of Connor and Kora-
jczyk (1995) distinguishes between factors affecting at most a fixed number of firms and factors
affecting at least a constant proportion of all firms.2 This paper proposes a more general model
that allows for groups of intermediate sizes. This generalization provides a better approximation
to the data under a given sample size.

Although the standard model implies a clearly visible separation of the eigenvalues of the co-
variance matrix into two groups (large eigenvalues representing factor-related variation and small
eigenvalues representing idiosyncratic variation), such a visible separation is typically not found
in practice. For example, a popular dataset in which factor models have been used is the “Stock
& Watson” dataset (Stock and Watson (2002a), De Mol et al. (2008)), consisting of a large panel
of US macroeconomic indicators. Figure 1 depicts the distribution of eigenvalues in an updated

1Note that this is different from the weak factor framework of Onatski (2012) and Kleibergen (2009).
2Specifically, Connor and Korajczyk (1995) state: “Suppose that there is a large number (n) of assets each rep-

resenting the common shares of one firm. Each firm belongs to one of a large number (m) of industries each with a
small number (h, with h approximately equal to n/m) of firms. Idiosyncratic returns are correlated within industries
but uncorrelated across industries. [. . .] Holding h constant and letting n and m increase, this series of covariance
matrices has bounded eigenvalues. [. . .] On the other hand, suppose that there is a small number, k, of sectors, each
containing n/k firms. All firms within sector j are subject to sector shock fj with unit betas (for simplicity). Firms in
sector j are unaffected by the shocks of other sectors. Given these assumptions, the sector shocks constitute pervasive
risk. Note the clear distinction between industries (a small proportion of the firms are in each industry) versus sectors
(a substantial proportion of the firms are in each sector).”
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Figure 1: 20 largest eigenvalues of the covariance matrix for a dataset of 94 macroeconomic indicators in
the US. Solid line indicates cutoff chosen according to Bai and Ng (2002) (with rmax = 15) to determine
the number of factors. A more detailed discussion of this application can be found in Section 6.

vintage of this data.3 The solid line indicates the cutoff between the two groups as chosen by a
criterion of Bai and Ng (2002). A model implying a continuum of eigenvalues represents the data
much better than such a classification into two groups. In finance, empirical studies on Arbitrage
Pricing Theory (Ross (1976)) similarly point to a continuum of factor strengths. For example, in a
cross section of asset returns Trzcinka (1986) finds that, while the first eigenvalue dominates, the
first 6 eigenvalues diverge at differing rates.

There are two kinds of weak factors that may induce a continuous decay in the distribution of
eigenvalues. Such a factor can either have a weak effect on all observables, or it can affect only a
subset of observables. This paper will largely focus on the latter scenario, although some results
extend to the former. Recently a number of empirical studies have also postulated a structure with
group-specific factors, sometimes called hierarchical factor models (e.g. Boivin and Ng (2006),
Moench et al. (2013), Dias et al. (2013)). The findings in De Mol et al. (2008) further provide
empirical evidence for such a structure (see the discussion in Freyaldenhoven (2019)). Ando and
Bai (2017) and Han (2017) also consider group-specific (or regional) factors, but require all group
sizes to be comparable to the overall cross-sectional dimension. Han and Caner (2017) consider a
model in which some factors may be less pervasive but treat all of those “local” factors as noise.
To the best of my knowledge, the only theoretical papers in the direction of local factors in the
sense of this paper are Wang (2008) and Choi et al. (2018). However, unlike those papers, I do not
require the group structure and factor strengths to be known to the practitioner a priori.

Onatski (2009, 2010, 2012) proposes a framework for weak factors through random matrix
theory, and a similar model to the one used in this paper has been considered in the large body

3I discuss the data in more detail in Section 6.
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of literature on sparse PCA (e.g. Paul and Johnstone (2012), Cai et al. (2013)). These papers
typically build on stronger assumptions on the error terms, assume bounded eigenvalues of the
covariance matrix, and remain largely agnostic about the factors themselves. By considering a
diverging eigenvalue regime and explicitly modeling the factors, we are able to impose less restric-
tive assumptions on the error structure. There is also a related literature on sparse factor models
under a Bayesian framework (e.g. Carvalho et al. (2008), Gao et al. (2013) and Pati et al. (2014)).
Finally, by considering a continuum of factor strengths, this paper is similar in spirit to the exten-
sive literature in econometrics on identification with varying convergence rates (e.g. Andrews and
Cheng (2012), Antoine and Renault (2012)).

Before I formally introduce the model, the following are some concrete examples of economic
models to which this paper applies.

Example 1. Arbitrage Pricing Theory.

Consider an unobserved common shock that affects only a subset of the population at the company

level, for example, a new law that affects only large firms. As the number of firms, n, increases, one

reasonable assumption is that the number of large firms increases at a rate slower than n (Chudik

et al. (2011)). Unlike traditional factor models, the framework of this paper allows for this and is

in line with the empirical finding indicating that the largest eigenvalues of the sample covariance

matrix of asset returns diverge at differing rates (e.g. Trzcinka (1986)) .

Empirical evidence on whether weaker factors are priced appears somewhat mixed (e.g. Shukla

and Trzcinka (1990)). In Section 3.2, I use the results in Green and Hollifield (1992) adapted to my

framework to derive theoretical bounds on the strength of factors that will be priced. I find that the

number of factors that are priced depends directly on the degree of diversification of the portfolios

on the efficient frontier. The better diversified these portfolios are, the smaller the number of factors

that have a non-zero factor premium.

Example 2. The origins of aggregate fluctuations.

There is an ongoing debate about the origins of fluctuations in the aggregate economy (see, e.g.

Foerster et al. (2011)). Long and Plosser (1983) suggest that sectoral shocks may account for

GDP fluctuations. With a fixed number of sectors, these sectoral shocks affect a fixed proportion of

firms and can be viewed as aggregate shocks themselves. In contrast, Horvath (1998) investigates

conditions under which an economy with n sectors can have a volatility that does not decay ac-

cording to 1√
n

. By modeling sectoral shocks as local factors affecting the corresponding subset of

firms, this can be mapped into the framework of this paper. I show in Section 3.2 that in an econ-

omy with n firms
√
n-convergence for the aggregate growth rate of the economy fails when there

are sectoral shocks affecting proportionally more than
√
n firms. I therefore find that aggregate

fluctuations can be attributed to sectors proportionally larger than
√
n firms.
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Example 3. Macroeconomic forecasting.

In a widely cited paper Boivin and Ng (2006) investigate the properties of the principal component

estimator in finite samples. Specifically, they document conditions under which adding more data

can be undesirable for factor estimation.

As a stylized model they consider macroeconomic panels with two factors. Some series are

driven by two factors, some are only affected by one factor, and others are not associated with

any factor. For example, the first n1 series (only affected by the first factor) might be output

and employment type series, the next n2 series might be prices (affected by the second factor),

the following n3 series represent interest rates and are affected by both, and variations in the

remaining series are purely idiosyncratic. If, for example, the cross section contains relatively few

series representing prices and interest rates, this fits the framework of this paper.

Boivin and Ng (2006) use a Monte Carlo study to establish that the performance of the princi-

pal component estimator deteriorates as more “noisy” series are added, effectively making factors

local in the sense of this paper. I provide an analytical framework, tying the convergence rate of a

factor estimate to the factor’s strength, that can help to explain their result.

2 A Model with Local Factors

To set up notation, define an n-dimensional process by Xt, t = 1, 2, ..., T . Let Fk, k = 1, 2, ..., r

denote the true factors. Λ = [λ·1λ·2 · · ·λ·r] = [λ1·λ2· · · ·λn·]′ denotes the matrix of factor loadings.
Throughout, I use the running indices s and t for the T observations, indices i, j for the n variables,
and k and l for the r factors. I assume that the data has a static factor structure4:

X(n)

(T×n)
= F (n)

(T×r)
Λ(n)′

(r×n)
+ e(n)

(T×n)
. (1)

I treat both Λ and F as parameters of the distribution of X . Throughout I denote the pth
largest eigenvalue of a matrix A by ψp(A) and the Frobenius norm of a matrix B by ‖B‖, such
that ‖B‖2 = tr(B′B) =

∑
ij b

2
ij . I further make extensive use of the notion that certain quantities

diverge at particular rates and write an � bn for two sequences an, bn if an = O(bn) and bn =

O(an). I write Yn = Ōp(n
γ) as shorthand for Yn = Op(min{1, nγ}). Finally let ιp denote a

vector with a 1 at entry p and zeros everywhere else, with the dimension varying, but obvious from
context.

4A more general setup would be the dynamic factor model of Forni et al. (2000), allowing for factor loadings that
are represented by possibly infinite lag polynomials. However, whenever the order of such lag polynomials is bounded,
the model can be rewritten in the static form with constant factor loadings, where the factors are augmented by a set
of their own lags (see, e.g. Stock and Watson (2006)).
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Assumption 1. There exist positive constants c,C and a diagonal matrixD(n)
r with diagonal entries

d
(n)
1 , d

(n)
2 , . . . , d

(n)
r , such that as n, T →∞:

(a) n/T → c

(b) Λ(n)′Λ(n) = D
(n)
r , d

(n)
1 > d

(n)
2 > . . . > d

(n)
r and |λik| < C ∀i

(c) 1
T
F (n)′F (n) = Ir and|Ftk| < C ∀ t.

Part (a) of Assumption 1 requires n and T to be comparable even asymptotically. This assump-
tion is common in the literature (e.g. Onatski (2012), Ahn and Horenstein (2013)) and plausible in
many applications of factor models. Part (b) of Assumption 1 is considerably weaker than the stan-
dard assumptions in the literature (e.g. Stock and Watson (2002a), Bai and Ng (2002), Bai (2003),
Ahn and Horenstein (2013)) in that the entries in D(n) are not assumed to diverge proportionally to
n, thus allowing for weaker factors. All entries in D(n) can have different rates. Thus, rather than
assuming pervasiveness of all factors, one can think of Assumptions 1(b)-(c) as identifying restric-
tions. I treat the factors in (1) as “primitive” exogenous forces. Because these forces are primitive,
they do not have common causes and it is natural to treat them as approximately uncorrelated. The
correlation between any two observables then of course arises because they are influenced by one
or more of the same factors (Bernanke (1986)).

To simplify notation, I will omit the superscript (n) on matrices X , Λ, F , D and e in what
follows.

Assumption 2. For each factor k, the entire set of indices i = 1, 2, . . . , n can be partitioned into

a set of indices Ak with cardinality |Ak| � nαk for some αk ∈ [0, 1] and its complement such that,

as n, T →∞ for all k:

(a)
∑

i∈Ak λ
2
ik � nαk

(b)
∑

i 6∈Ak λ
2
ik < C for some C <∞.

Assumption 2 allows for the loadings of any given factor k to be concentrated on an asymp-
totically vanishing fraction of variables. It states that any given factor fulfills the conventional
pervasiveness assumption only on an unknown subset of all outcomes (Ak), while the remaining
loadings are small in the sense that their squares are summable.

As a specific example, consider a cross section of n assets and an industry with a size propor-
tional to

√
n of the assets. Suppose there exists an industry-specific factor Fl that affects only those

assets: λil = 1 if i ∈ Al and λil = 0 if i 6∈ Al. Then,
∑

i∈Al λ
2
ik =

√
n and

∑
i 6∈Al λ

2
il = 0, such

that Assumption 2 holds for αl = 0.5. The standard assumptions in the literature correspond to
assuming αk = 1 for all factors, thus ruling out any such local factors.
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Assumption 3. There exist constants c > 0, C <∞ and a constant d ∈ (0, 1] (which may depend

on c), such that

(a) E(eti) = 0, E|eti|4 ≤ C

(b)
∑T

t=1 |E
(
e′set
n

)
| ≤ C ∀s and

∑n
j=1 |E

( e′iej
T

)
| ≤ C ∀i

(c) for every (t,s), E| 1√
n
[e′set − E(e′set)]|4 ≤ C

(d) E‖ 1√
nT

∑T
s=1 Fs[e

′
set − E(e′set)‖2 ≤ C ∀t

(e) ψ1

(
e′e
T

)
= Op(1) and P

(
ψ[dn]

(
e′e
T

)
≥ c

)
= 1 for some d > 0.

Assumption 4. For any k, l < r:

(a) Λ′.ket

n
1
2αk

= Op(1) ∀t

(b) Λ′.ke
′F.l

n
1
2αkT

1
2

= Op(1).

Assumptions 3 and 4 concern the possibly correlated noise. Assumption 3 rules out that there
is too much dependence in the error terms and is standard in the literature (Bai (2003), Bai and Ng
(2006)). More primitive conditions can be provided that imply part (e) (see Onatski (2015), Moon
and Weidner (2017)). Assumption 4 is weaker than one that requires a number of Central Limit
Theorems to hold. With αk = 1 for k = 1, ..., r, it is implied by Assumptions F2 and F3 in Bai
(2003).

Remark 1. Let r1 + r2 = r, αk > τ for k = 1, . . . , r1 and αk ≤ τ for k = r1 + 1, . . . , r for some

fixed value of τ ∈ [0, 1). In words: Let r1 be the number of factors affecting proportionally more

than nτ variables, while the remaining factors are less pervasive. We can then rewrite the factor

structure (1) as

X
(T×n)

= F
(T×r)

Λ′
(r×n)

+ e
(T×n)

= F s

(T×r1)
Λs′

(r1×n)
+ Fw

(T×r2)
Λw′

(r2×n)
+ e

(T×n)

= F s

(T×r1)
Λs′

(r1×n)
+ u

(T×n)
,

where the weakest r2 factors are incorporated into the error term u. Effectively this is a factor

model with r1 factors, where ψ1(uu′/n) is no longer bounded. We can therefore think of Assump-

tions 1-4 as a generalization of standard factor models in two ways: they allow for the presence of

weaker factors and they allow for stronger dependence in the error term.
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By including more (weaker) factors, a practitioner can choose how much of the correlation

among the observables she wishes to explicitly model. Note that one can generally always include

additional factors, even if the corresponding eigenvalue is bounded. Throughout this paper, one

can therefore think of r as an upper bound on the number of factors. However, this immediately

raises the question of how many factors a practitioner should keep in the model. We model this

choice of r1 through the complexity parameter τ . A practitioner chooses a threshold τ ∈ [0, 1] to

indicate a lower bound on the strength of the factors she wishes to keep in the model. I discuss this

choice in Sections 3.1-3.2.

Although I treat r as fixed, thus not allowing the number of factors to grow with the sample
size, conceptually, my framework would allow for this. Allowing the number of factors to grow
with the sample size is left as an interesting extension for future research.

All auxiliary lemmata for the proofs in the following sections are relegated to the Online Ap-
pendix.

3 Weak Asymptotics

I first show what the introduction of local factors implies for the empirical distribution of the
eigenvalues of the matrix X′X

T
. This is the quantity depicted in Figure 1 and often included in

applications to justify the use of a factor model. I start with the following lemma:

Lemma 1. Under Assumptions 1 and 2:

ψk(
ΛF ′FΛ′

T
)

� nαk , k = 1, 2, . . . , r

= 0 k > r.

Proof. If k ≤ r:

ψk(
ΛF ′FΛ′

T
) = ψk(ΛΛ′) = ψk(Λ

′Λ)

=
n∑
i=1

λ2
ik =

∑
i∈Ak

λ2
ik +

∑
i 6∈Ak

λ2
ik � nαk +O(1)

� nαk ,

where the equality in the second line follows from Assumption 2.
If k > r: the result immediately follows from the fact that rank(ΛF ′FΛ′) = r.

The properties of the eigenvalues of the matrix X′X
T

then follow:
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Theorem 1. For any given factor k (k = 1, 2, . . . , r), under Assumptions 1-3:

ψk

(
X ′X

T

)� nαk for k = 1, 2...r

= Op(1) for k = r + 1, . . . , n.

Proof. By the singular value version of Weyl’s inequalities (Horn and Johnson (2012)):

σk+l−1(A+B) ≤ σk(A) + σl(B) 1 ≤ k, l ≤ q, k + l ≤ q + 1,

where σk(A) denotes the kth largest singular value of a matrixA. Therefore, withA = FΛ′,B = e

and l = 1, for k = 1, 2, . . . , rmax:

σk(X) ≤ σk(FΛ′) + σ1(e).

Since σk(A) =
√
ψk(AA′) for any matrix A, it follows that√

ψk(XX ′) ≤
√
ψk(FΛ′ΛF ′) +

√
ψ1(ee′).

And I therefore conclude, using Lemma 1 and Assumption 3(e) respectively for the two eigenvalues
on the RHS:

ψk(
XX ′

T
) ≤ ψk(

FΛ′ΛF ′

T
) + ψ1(

ee′

T
) + 2

√
ψk(

FΛ′ΛF ′

T
)

√
ψ1(

ee′

T
)

≤ C1n
αk +Op(1) +Op(n

1
2
αk) ≤ C2n

αk .

Similarly, again by Weyl’s inequalities:

σk(X − e) ≤ σk(X) + σ1(−e)

⇒ σk(FΛ′) ≤ σk(X) + σ1(e)

⇒
√
ψk(

FΛ′ΛF ′

T
) ≤

√
ψk(

XX ′

T
) +

√
ψ1(

ee′

T
)

⇒
√
ψk(

XX ′

T
) ≥
√
c1nαk −Op(1)

and I therefore also conclude that ψk(XX
′

T
) ≥ c2n

αk .

Under a scenario with r strong factors (αk = 1 for all k = 1, 2, . . . , r), this reduces to the
standard result in the literature: the first r eigenvalues diverge at rate n (Connor and Korajczyk
(1993), Bai and Ng (2002), Hallin and Liska (2007)). I extend this result to allow for weaker
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factors with the slower divergence rates of Theorem 1 for factors that affect only a subset of the
observed variables.5

Theorem 1 provides a possible explanation for the continuum of eigenvalues often observed,
as in Figure 1. While conventional factor models imply a large gap in the eigenvalue distribution
after the rth eigenvalue, the eigenvalues corresponding to local factors will fall into this gap.

Recall the earlier distinction of factors into two groups: F = [F1, . . . , Fr1 , Fr1+1, . . . , Fr] =

[F s, Fw], such that r = r1 +r2, αk > τ for k = 1, 2.., r1 and αk ≤ τ for k = r1 +1, . . . , r for some
user specified threshold τ ∈ [0, 1]. To provide guidance on how to choose the tuning parameter τ
(the lower bound on the pervasiveness of factors one wishes to keep in the model), I next consider
the following two questions:

1. When is a factor strong enough to be estimated consistently?

2. When is a factor strong enough to be of interest in some common economic models?

3.1 The Principal Component Estimator

I will begin with the first question and consider the standard estimator in the literature: estimation
of both the factors and their loadings is achieved through the principal component estimator (see
Stock and Watson (2002a), Bai and Ng (2002), Bai (2003)). I obtain the following theorem:

Theorem 2. Let F̂k be defined as the standardized eigenvector corresponding to the kth largest

eigenvalue of XX
′

n
. Then, under Assumptions 1-4,

F̂tk − Ftk = Op(n
1−2αk) +Op(n

1
4
α1− 1

2
αk) +Op(n

1
2
−αk).

Proof. First define a matrix H as follows:

H = Λ′Λ
F ′F̂

T
D̂−1
K ,

where D̂K is a diagonal matrix with the K largest eigenvalues of X′X
T

on the main diagonal. By
Lemma 9: H·k = ιk +Op(n

1
4
α1− 1

2
αk) +Op(n

1
2
−αk).

5Note that we can replace Assumption 2 with the high level assumption
∑n
i=1 λ

2
ik � nαk and Theorem 1 still

holds. The result in Theorem 1 therefore extends to weak factors in general and does not need the sparsity pattern that
is imposed by Assumption 2.

9



Consequently, combining this with Lemma 10:

F̂tk − Ftk = (F̂tk −H ′k·Ft) + (H ′k· − ι′k)Ft
= Op(n

1−2αk) +Op(n
1
2
α1−αk) +Op(n

1
4
α1− 1

2
αk) +Op(n

1
2
−αk)

= Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk) +Op(n

1−2αk).

I note that this result may be of interest to a practitioner for two reasons. First, this establishes
a lower bound in terms of factor strength for which we are able to prove consistency of the prin-
cipal component estimator (αk > 1

2
). Further, even for factors that are estimated consistently, it

suggests that the estimation of a factor becomes worse as its strength decreases (as documented
in simulations in Boivin and Ng (2006)). The intuition is clear: as fewer cross sections carry a
signal about Fk, the precision of its estimate decreases. However, the fact that weaker factors tend
to be estimated with less precision seems to be largely unaccounted for in the current literature.6

In cases in which factor estimates are used that correspond to weaker factors, Theorem 2 at least
suggests to be cautious with respect to the standard errors of these estimates.

I also obtain a similar result for the factor loadings:

Theorem 3. Let Λ̂′ = F̂ ′X
T

, with F̂ defined as before. Then, under Assumptions 1-4:

λ̂ik − λik = Ōp(n
1
4
α1− 1

2
αk) + Ōp(n

1
2
−αk).

Proof.

λ̂ik =
F̂ ′kXi

T
=

1

T
F̂ ′kFλi +

1

T
F̂ ′kei

= λik + (
F̂ ′kF

T
− ι′k)λi +

1

T
(F̂k − Fk)′ei +

1

T
F ′ei

= λik + (
F̂ ′kF

T
− ι′k)λi +

1

T
(F̂k − FH.k)

′ei +
1

T
(H.k − ιk)′F ′ei +

1

T
F ′ei

= λik +Op(n
1
4
α1− 1

2
αk) +Op(n

1
2
−αk) +Op(n

1−2αk),

where the last equality follows from Lemmata 7, 9 and 11 as well as Assumption 4(b). Since also
F̂ ′kXi
T
≤ 1

T
‖F̂‖‖Xi‖ = Op(1), this completes the proof.

Thus, I obtain convergence of the principal component estimator for both the factors and the
loadings as long as αk > .5. The following table provides an empirical test to assess the adequacy

6The exception is Onatski (2012), but his setup is quite distinct from the framework in this paper.
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of these asymptotic results in approximating finite sample properties. Two factors were created,
one strong (α1 = 1) and one weak (α2 < 1). The strength of the weak factor is varied with
α2 ∈ [0.25, 0.5.0.75], and the correlation of the estimated factor F̂2 with its true counterpart is
depicted in Table 1. This correlation can be thought of as a measure of consistency of the PC
estimator for the kth factor (Bai (2003), Onatski (2012)). The exact DGP can be found in Online
Appendix A.1. The numbers in Table 1 are in line with my theoretical findings: Theorem 2 suggests
that the correlation between F2 and F̂2 will approach 1 when α2 > .5. This corresponds to the third
row in Table 1. Additionally, I observe that the estimation error seems to dominate the signal when
the factor strength is below this threshold.

n 81 256 625 1296

|A2| = n1/4 0.070 0.050 0.043 0.039
|A2| = n1/2 0.114 0.098 0.086 0.078
|A2| = n3/4 0.765 0.950 0.976 0.984

Table 1: Average correlation between estimate F̂2 and truth F2 for differing factor strengths of local factor
as sample size increases. Data has one global factor F1 that affects all outcomes. Table based on 1000
repetitions. Detailed description of DGP in Online Appendix A.1.

3.2 Which Factors Matter?

Aside from practical issues in estimating factors that only affect a subset of the cross sections, it is
also not clear which factors are of interest to a practitioner in the first place.

To this end I next present two theoretical arguments why factors affecting proportionally more
than
√
n of the cross sections (τ = .5) will be the natural target in many instances. One is derived

from the Arbitrage Pricing Theory of Ross (1976) and a second argument builds on the works
of Gabaix (2011) in the context of aggregate fluctuations in the economy. Note that for the two
examples that follow I treat the factors as random in line with the literature in those fields.

3.2.1 Arbitrage Pricing Theory

I assume that the n-vector of demeaned asset returns Rt − E(Rt) for a given t follows a factor
structure with potentially local factors as in the previous sections:

Ri − E(Ri) = λ′i
(1×r)

F
(r×1)

+ ei
(1×1)

= λK
′

i
(1×K)

FK

(K×1)

+ eKi , (2)

treating the factors as random and the errors as uncorrelated with the factors. Equation (2) empha-
sizes again that, in the framework of this paper, we can always choose to move some of the weaker
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factors into the error structure at the expense of more correlation in the error term. Denote the re-
turn of a portfolio by Rp =

∑n
i wiRi, with

∑n
i wi = 1. I formalize the term “well-diversified” by

imposing a bound on the sup-norm of the weights: |wi| ≤ Wn ∀i.7 Following Green and Hollifield
(1992), I say that exact APT pricing holds if the mean returns are in the span of the factor loadings
and a constant vector:

E(Rj) = (1−
K∑
k

λjk)E(R∗0) +
K∑
k

λjkE(R∗k),

where the portfolios R∗k, k = 0, . . . , K∗ are “factor-mimicking” portfolios. Their construction is
detailed in Online Appendix C.3 and conditions for their existence are given in Huberman et al.
(1987). Similarly, I define exact APT to hold in the limit, if, as n increases, there exist sequences
of feasible factor-mimicking portfolios R∗nk, such that for any fixed j

limn→∞E(Rj)− [(1−
K∑
k

λjk)E(R∗n0) +
K∑
k

λjkE(R∗nk)] = 0.

Finally denote by νn the return on the global minimum variance portfolio when there are n as-
sets and assume that the mean-variance frontier does not become vertical in the limit, such that
there remains a meaningful trade-off between mean and variance.8 I then obtain the following
proposition:

Proposition 1. Consider the sequence of efficient (minimum variance) portfolios for some mean

return µ 6= limn→∞νn. If

(i) Wn = o( 1
nγ

), γ > 1
2

for every such portfolio, and

(ii) limn→∞
∑n

i=1

∣∣Cov(ei, ej)
∣∣ = O(

√
n),

then exact APT pricing holds in the limit with respect to the strongestK factors, where K is defined

such that αk > γ for k = 1, 2, . . . , K and αk ≤ γ for k ≥ K + 1.

The proof can be found in Online Appendix C.3 and largely follows the proof of Theorem 3 in
Green and Hollifield (1992).

Proposition 1 states that exact APT holds in the limit if the efficient portfolios are well diversi-
fied. Further, the number of factors that are priced depends directly on the degree of diversification

7While Chamberlain (1983) defines portfolio diversification through the `2-norm, the norm that proves tractable
here is the sup-norm. Either definition formalizes the idea that the weights on individual assets get small as the universe
of assets expands.

8This is the equivalent of the “absence of arbitrage” assumption in the Hilbert space setting of Chamberlain and
Rothschild (1983).
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of the portfolios on the efficient frontier. The better diversified these portfolios are, the smaller the
number of factors that have a non-zero factor premium.

In particular, with Wn = o( 1√
n
) , which yields diversification in the sense of Chamberlain

and Rothschild (1983) and Chamberlain (1983), Proposition 1 establishes that exact APT pricing
holds in the limit with respect to the r1 factors affecting proportionally more than

√
n of the assets

(factors with αk > .5).
Proposition 1 holds under more general conditions than the approximate factor model of Cham-

berlain and Rothschild (1983). I do not require all eigenvalues of the error covariance matrix to be
bounded, but explicitly allow for additional, weaker factors. Instead of ruling out the existence of
such weaker factors, Proposition 1 establishes that they will not be priced.

3.2.2 Aggregate Fluctuations in the Economy

Consider a simple “Islands” economy with n firms as in Gabaix (2011). Firm i produces a quantity
Sit of the consumption good. Instead of modeling firm-evel growth rates as unrelated, I model
them as a combination of r mutually independent shocks that may affect several firms, on top of
the idiosyncratic shocks. Firm i thus experiences a growth rate equal to

∆Si,t+1

Sit
=
Si,t+1 − Sit

Sit
= λiFt+1 + σiεi,t+1, (3)

where σi is firm i’s volatility, and the εi,t+1 are uncorrelated random variables with mean zero and
variance 1. Firms’ growth rates may be correlated through the presence of the first component.
However, I do not impose the factors to be pervasive and likely λik = 0 for most firm-factor
combinations. Intuitively, these factors can correspond to economy wide shocks but also sector
shocks or the introduction of policies only affecting a subset of firms, including shocks that affect
as few as two firms. Thus (3) is quite general.

In this stylized model, GDP growth is given by:

∆Yt+1

Yt
=

1

Yt

n∑
i=1

∆Si,t+1 =
n∑
i=1

Sit
Yt

[λiFt+1 + εi,t+1]

=
n∑
i=1

Sit
Yt
λiFt+1 +

n∑
i=1

Sit
Yt
εi,t+1.

It follows that the variance of GDP growth at time (t + 1) conditional on time t information is
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equal to

V art

 n∑
i=1

Sit
Yt
λiFt+1 +

n∑
i=1

Sit
Yt
εi,t+1

 = V art

 n∑
i=1

Sit
Yt
λiFt+1

+ V art

 n∑
i=1

Sit
Yt
εi,t+1


= V art

 n∑
i=1

Sit
Yt

r∑
k=1

λikFk,t+1

+
n∑
i=1

(
Sit
Yt

)2

σ2
i .

For ease of notation, consider firms of equal size (Sit = Yt
n

) and identical standard deviation
(σi = σ), and normalize the factors such that V ar(Fkt) = 1. Further assume that, for a given k,
the factor loadings are 1 on a subset of size|Ak| � nαk and zero everywhere else9. Then:

V art

(
∆Yt+1

Yt

)
=

r∑
k=1

∑
i∈Ak

1

n

2

+
n∑
i=1

1

n2
σ2

�
r∑

k=1

n2αk−2 +
σ

n
. (4)

It immediately follows that, absent any factors (r = 0), σGDP =
√
V art(

∆Yt+1

Yt
) = σ√

n
, which

is the reason macroeconomists often appeal to aggregate shocks, since idiosyncratic fluctuations
disappear in the aggregate at rate

√
n. Next, consider an economy with r shocks, where r1 is the

number of factors with αk > .5:

V art

(
∆Yt+1

Yt

)
�

r1∑
k=1

n2αk−2 +
r∑

k=r1+1

n2αk−2 +
σ

n

=

r1∑
k=1

n2αk−2 +Op(
1

n
).

Equation (4) establishes that the important shocks are those with αk > 1
2

and that the standard
rate of convergence breaks down whenever shocks exist that affect more than

√
n firms.

This is in line with the granularity conditions derived in Gabaix (2011), who considers hetero-
geneous firm sizes that may grow with n. Intuitively, with the growth rate of the economy given by
the sum of both the idiosyncratic and factor shocks in my context, we can think of the sector shocks
as additional but larger firms. Then the economy consists of n + r components (with r << n).
Proposition 2 in Gabaix (2011) establishes that σGDP � 1√

n
only if the largest firm has a relative

weight of at most Wn = O( 1√
n
). This corresponds exactly to the limit on sector size stated above.

9Defining the loadings instead in a more general way as in Assumption 2 does not alter any conclusions.
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The key implication for the purposes of this paper is that, in order to understand the origins
of fluctuations, the important shocks are precisely those that affect proportionally more than

√
n

firms.

4 Determining the Number of Factors

In many applications, the number of factors is of interest in itself, as illustrated in the last section.
For example, we may be interested in the number of fundamental shocks in the economy that con-
tribute to the surprisingly large standard deviation (more than 8 percentage points) of the Federal
Reserve Board’s Index of Industrial Production and Capacity Utilization(Foerster et al. (2011)). In
finance, this number can be interpreted as the number of sources of nondiversifiable risk. In other
cases the number of factors must be known to implement various estimation and forecasting pro-
cedures. For example, in factor-augmented VAR models, impulse responses based on an incorrect
number of factors may be misleading and result in bad policy suggestions (Bernanke et al. (2005),
Giannone et al. (2006)). Onatski (2015) discusses the consequences of a misspecified number of
factors for the squared error of the estimated common component. The implications of the number
of factors on the R2 of the common component in explaining movements in individual series are
discussed in Section 6.

The target of estimation in this section will be defined by a complexity parameter τ such that
r1 is the number of factors that affect proportionally more than nτ cross sections. For the reasons
outlined in the previous sections, the number of factors r1 that a practitioner is usually interested
in will be such that αk > .5 for k = 1, . . . , r1. This corresponds to complexity parameter τ = .5.

Estimating the number of factors in factor models has been a subject of interest for some time
now (e.g. Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013)). To the best of my
knowledge, all existing estimators are derived from the distribution of eigenvalues of the matrix
X′X
T

(or equivalently the singular values of X). For example, the information criteria introduced
in Bai and Ng (2002) effectively count the number of eigenvalues above a certain threshold, Ahn
and Horenstein (2013) consider the ratio of subsequent eigenvalues, and Onatski (2010) uses the
difference between subsequent eigenvalues to determine the number of factors.

While the first two methods explicitly require strong factors, “weak” factors are allowed for
in Onatski (2010). In the framework of Onatski (2010) some of the “large” eigenvalues do not
necessarily diverge to infinity. Essentially, Onatski’s proposed estimator counts the number of
eigenvalues that are too large to come from the idiosyncratic errors. While the work of Onatski
provides an insightful and novel framework allowing for weak factors, the required assumptions
on the error term are quite restrictive. Further, estimating the number of factors from the empirical
distribution of eigenvalues still rests on a separability between the two groups of eigenvalues.
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In conclusion, all existing methods to estimate the number of factors can be interpreted as
formalizing the heuristic approach based on a visual inspection of the scree plot, which dates
back to Cattell (1966). However, Theorem 1 established that, in the presence of local factors,
the eigenvalues can no longer easily be separated into two groups (large eigenvalues representing
factor-related variation and small eigenvalues representing idiosyncratic variation).

The novel insight here is that in scenarios with local factors, the eigenvectors of the matrix X′X
T

carry valuable information, which is discarded when solely considering the eigenvalue distribution.
Intuitively, the hope is to exploit this additional information to “tilt the eigenvalues” in order to
reintroduce a gap between those eigenvalues corresponding to factors with αk > τ and those
below this threshold.

In order to incorporate the eigenvectors into the inference on the number of factors, consider
the following quantity:

T̂ uzk ≡ ψk(
X ′X

T
)Ŝuzk ≡ ψk(

X ′X

T
)

(
1

z

z∑
i

λ̂2
ik√

1
n

∑n
i=1 λ̂

2
ik

)u
, (5)

where, with slight abuse of notation, λ̂2
ik are the squared entries of the kth eigenvector sorted in

decreasing order, such that I take a partial sum over the z largest entries in the second part. One
can think of T̂ uzk as combining the kth eigenvalue of the matrix X′X

T
(the first component) with a

measure of how concentrated the corresponding eigenvector is on a subset of the observables (the
second component). A factor that is highly influential on a subset of covariates but unrelated to the
majority of outcomes will be difficult to detect using solely the eigenvalue of the X′X

T
. However,

the second part of (5) will scale this eigenvalue up to enable a practitioner to detect its presence.
The power u plays the role of a tuning parameter that governs the relative weight on the eigenvalue
versus the eigenvector. With u = 0 the second part vanishes and T̂ uzk reduces to just the eigenvalue.
On the other hand, with u = 2, T̂ 2

zk only depends on the largest z entries in the kth eigenvector.
Figure 2 illustrates the behavior of T̂ uzk as a function of factor strength and the tuning parameter

u. Moving from right to left in Figure 2, the number of covariates affected by the factor increases,
with nαk outcomes influenced by the factor. On the right edge, only a fixed number of covariates is
affected (αk = 0), while the left edge of the figure corresponds to a scenario in which the factor is
relevant for all covariates (αk = 1). Moving from front to back, the value of the tuning parameter
u varies from 0 to 2.

The front edge of the plane, with u = 0, simply corresponds to the corresponding eigenvalue
ψk(

X′X
T

). With only a fixed number of covariates affected by Fk, this eigenvalue remains bounded
(front right corner). As the factor affects more covariates, the eigenvalue begins to diverge at an
increasing rate (see Theorem 1). One conventional estimator for the number of factors would count
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Figure 2: Theoretical divergence rate of T̂ uzk as a function of both factor strength (αk) and tuning parameter
u for z =

√
n
√
loglog(n) with n = 500. Note the steep region at αk =

√
n in the back of the picture.

the number of eigenvalues above a chosen threshold Kn. As argued earlier, an often appealing
choice for this threshold is Kn �

√
n, such that we aim to keep all factors in the model with

αk > 0.5. However, the relevant curve is rather flat around this cutoff. This suggests that such an
estimator would be very sensitive to the choice of the threshold in finite samples. In fact, this is
well known in the literature (e.g., Alessi et al. (2010)). Note that any estimator based on only the
eigenvalues will share this problem.

In contrast, on the back edge of Figure 2 the behavior of T̂ 2
zk is depicted.10 Exploiting the

information in the eigenvectors (by setting u > 0) induces a steep region in the statistic around
the desired minimum factor strength, thereby helping to discriminate between factors above and
below this threshold. The position of the steep increase can be chosen by a practitioner through
the second tuning parameter z.

To derive this result formally, I start by defining the following class of (infeasible) quantities
T uzk. For u ∈ [0, 2]:

T uzk = ψk

(
ΛF ′FΛ′

T

)
Suzk = ψk

(
ΛF ′FΛ′

T

)(
1

z

z∑
i

λ2
ik√

1
n

∑n
i=1 λ

2
ik

)u
,

where λ2
ik are sorted in decreasing order. Note that for u = 0, T 0

zk = ψk(
ΛF ′FΛ′

T
).

The behavior of T uzk is summarized in the following lemma:

10Setting u > 2 is possible and would result in a quantity that is even more peaked around the threshold parameter
τ . The equivalent of Figure 2 extending up to u = 3 is depicted in Online Appendix B. With u > 2, Tuzk is no longer
monotonically increasing in αk, the measure of factor strength. I will therefore restrict my analysis to u ∈ [0, 2] in the
remainder of this paper.
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Lemma 2. Under Assumptions 1-2, choose a threshold z = nτg(n), τ ∈ [0, 1], such that (i)

g(n)→∞ and (ii) g(n)/nε → 0 for any ε > 0 as n→∞. Then, for any given factor k ≤ r, with

u ∈ [0, 2]:

(a) If αk > τ : T uzk � n(1− 1
2
u)αk+ 1

2
u

(b) If αk ≤ τ : T uzk � n(1+ 1
2
u)αk+( 1

2
−τ)ug(n)−u.

Further, for k = r + 1, . . . , rmax: T uzk = 0.

Proof. Using Assumption 1 I can rewrite T uzk as follows:

T uzk = ψk

(
ΛF ′FΛ′

T

)
Suzk = ψk

(
ΛF ′FΛ′

T

)(
1

z

z∑
i

λ2
ik√

1
n

∑n
i=1 λ

2
ik

)u

= ψk
(
Λ′Λ

)
(
n∑
i=1

λ2
ik)
− 1

2
u
(n 1

2

z

z∑
i

λ2
ik

)u
= ψk

(
Λ′Λ

)1− 1
2
u
n

1
2
u
(1

z

z∑
i

λ2
ik

)u
. (6)

First consider scenario (a). With αk > τ , the last part of (6) is simply an average of the square of
the z largest loadings. Combining Assumption 2(a) with the fact that|λik| < C ∀i, we immediately
have T uzk � n(1− 1

2
u)αkn

1
2
u.

Next, for part (b), let αk ≤ τ : There are only |Ak| � nαk “large” loadings in the sum of
equation (6) and Assumption 2 implies that

1

z

z∑
i

λ2
ik =

1

z

∑
i∈Ak

λ2
ik +

1

z

∑
i 6∈Ak

λ2
ik �

nαk−τ

g(n)
,

and it follows that T uzk � n(1− 1
2
u)αkn

1
2
u n(αk−τ)u

g(n)u
.

For k > r, λik = 0 ∀i, and this completes the proof.

Since both Λ and F are unobserved, T uzk is infeasible to compute in practice. I will therefore
use the feasible alternative to T uzk, introduced in (5) and repeated below:

T̂ uzk ≡ ψk(
X ′X

T
)Ŝuzk ≡ ψk(

X ′X

T
)

(
1

z

z∑
i

λ̂2
ik√

1
n

∑n
i=1 λ̂

2
ik

)u
. (7)

Theorem 4. Under Assumptions 1-4, choose a threshold z = nτg(n), τ ∈ [0, 1], such that (i)

g(n) → ∞ and (ii) g(n)/nε → 0 for any ε > 0 as n → ∞. Then, for any given factor k ≤ rmax,

with u ∈ [0, 2]:
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(a) If αk > τ :

T̂ uzk � n
1
2
u+(1− 1

2
u)αk

(b) If max{1+τ
3
, α1+4τ

6
} < αk ≤ τ :

T̂ uzk � n(1+ 1
2
u)αk+( 1

2
−τ)ug(n)−u

(c) If 0 < αk ≤ max{1+τ
3
, α1+4τ

6
}:

T̂ uzk � nαk for u = 0

T̂ uzk = Op(n
(1+ 1

2
u)αk+( 1

2
−τ)ug(n)−u) for u > 0

(d) If αk = 0 or k > r:

T̂ uzk = Op(n
( 1
2
−τ)ug(n)−u).

The proof of Theorem 4 can be found in Online Appendix C.2
As T̂ uzk is the key quantity in what follows, I also present a corollary that simplifies the notation

and covers most cases before I further discuss Theorem 4 and its implications. I argued in Section
3 that the important factors are usually those that affect proportionally more than

√
n of the out-

comes, so that τ = .5 will often be the natural choice, and I will use this threshold going forward,
omitting the corresponding subscript z and writing simply T̂ uk to obtain the following corollary:

Corollary 1. Let z =
√
ng(n), such that (i) g(n) → ∞ and (ii) g(n)/nε → 0 for any ε > 0 as

n→∞. Then, under Assumptions 1-4, for any given factor k ≤ rmax and with u ∈ [0, 2]:

(a) If αk > 1
2
:

T̂ uk � n
1
2
u+(1− 1

2
u)αk

(b) If αk ≤ 1
2
:

T̂ uk � nαk for u = 0

T̂ uk = Op

(
n(1+ 1

2
u)αkg(n)−u

)
for u > 0
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(c) If αk = 0 or k > r:

T̂ uk = Op(g(n)−u).

The theoretical rates of Corollary 1 were illustrated graphically in Figure 2. To gain intuition,
suppose αk = 1 for k = 1, 2, ..., r, which corresponds to the standard setup in the literature. Then
T̂ uzk � n for k = 1, 2, . . . , r, regardless of the choice of u (see the left edge of Figure 2). For
k > r, T̂ 0

zk = Op(1) and T̂ uzk = Op(g(n)−u) if u > 0. This means that under the standard setup
with only strong factors, the behavior of T̂ uzk is invariant to the choice of u (in terms of its rate of
divergence) up to the very slowly diverging sequence g(n). In contrast, for all local factors with
αk ∈ (0, 1) the divergence properties of T̂ uzk depend on the power u. For example, let αk ∈ (.5, 1].
Then, T̂ 0

k � nαk , T̂ 1
k � n

1
2

+ 1
2
αk and T̂ 2

k � n. T̂ 2
k has the appealing property that it does not depend

on the factor strength for αk ∈ (.5, 1]. Thus it allows us to distinguish factors above the threshold
τ = .5 from idiosyncratic noise at the same rate as strong factors.

An ideal statistic would be discontinuous with a large jump at a user chosen threshold, thereby
making it straightforward to identify the number of factors above this threshold. While T̂ 2

k is
discontinuous at τ , the discontinuity is small. However, we do obtain a steeper slope leading up to
the threshold.11

4.1 Proposed Estimators

In this subsection, I derive consistency for several estimators for the number of factors r1 analogous
to those that have been proposed in the literature, but based on T̂ uk instead of the eigenvalues T̂ 0

k .
In particular, I focus on the case u = 2 and consider the following estimators:

1. An information criteria-like threshold (cf. Bai and Ng (2002), Kapetanios (2004))

2. The difference between two subsequent values (cf. Onatski (2010), Kapetanios (2010))

3. The ratio of two subsequent values (cf. Ahn and Horenstein (2013))
11The introduction of the slowly diverging sequence g(n) in the definition of z in Lemma 2 and Theorem 4 will be

useful in the construction of estimators based on T̂uk . Specifically, this additional term is responsible for the gap at
α = .5 and allows us to perfectly separate any factor Fk with factor strength αk = .5+ ε from a factor Fl with αl = .5
for any ε > 0. This relies on the fact that g(n) = o(nε) for any ε > 0. For most empirically relevant sample sizes, this
will only be a good approximation when g(n) diverges extremely slowly. Without the g(n) term, the results will still
hold generically, except at the singular point αk = .5, where threshold and divergence rate coincide.
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4.1.1 Thresholding Estimators

I start by considering the estimators introduced in Bai and Ng (2002). I will denote by PC the
number k that minimizes the criterion function

BN(k) = V (k) + kσ̂2

(
n+ T

nT

)
log

(
nT

n+ T

)
,

where

V (k) = min
Λ,Fk

(NT )−1

n∑
i=1

T∑
t=1

(Xti − λkiF k
t )2 =

1

nT

n∑
j=k+1

ψj(X
′X), (8)

and σ̂2 is an estimator of the unconditional variance of the idiosyncratic error. The second equality
in (8) follows from the fact that V (k) is the best approximation ofX of rank k. We can alternatively
represent σ̂2 as V (rmax) = 1

n

∑n
j=rmax

ψj

(
X′X
T

)
.12 Therefore, BN(k) is a function of only the

empirical distribution of the eigenvalues and will be equivalent to a thresholding procedure for the
aforementioned. Unifying notation in terms of the eigenvalues and using c = n/T , this can be
seen by rewriting their estimator as:

PC = arg min
k

V (k) + kσ̂2

(
n+ T

nT

)
log

(
nT

n+ T

)
= arg min

k

1

n

n∑
l=k+1

ψl

(
X ′X

T

)
+ kσ̂2

(
c+ 1

n

)
log

(
n

c+ 1

)
= max k s.t. ψk

(
X ′X

T

)
> σ̂2(c+ 1) log(

n

c+ 1
).13 (9)

Instead of deriving my estimator solely from the empirical distribution of the eigenvalues, I will
consider the following criterion for a fixed constant Q:

TC = max k s.t. T̂ 2
k > Q

n

h(n)
, (10)

where the function h(n) is such that (i) h(n)→∞ and (ii) h(n)/g(n)2 → 0 as n→∞, and g(n)

fulfills the conditions stated in Theorem 4. For example, h(n) = g(n) is a valid choice.

Theorem 5. Under Assumptions 1-4, TC is a consistent estimator for the number of factors r1

such that αk > 0.5 for k = 1, . . . , r1 and αk ≤ 0.5 for k > r1.
12Bai and Ng (2002) consider a total of 6 estimators that differ slightly in their penalty term that is added to V (k)

and include a version in logarithms. However, their performances are similar to the ones considered here, and the
corresponding results are therefore omitted.

13Similarly Kapetanios (2004) suggests simply using a cutoff value b = (1 +
√
n/T )2 + 1 and estimating the

number of factors as the number of empirical eigenvalues above this threshold.
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Proof. I first show that limn→∞ P (T̂ 2
k > c n

h(n)
) = 1 for k = 1, . . . , r1. In this case, αk > 0.5. By

Theorem 4, T̂ 2
k � n. Thus, n = Op(T̂

2
k ). Combining this with 1

h(n)
= op(1) I obtain n

h(n)
= op(T̂

2
k )

and thus

limn→∞P

∣∣∣∣∣
n

h(n)

T̂ 2
k

∣∣∣∣∣ ≥ ε

 = 0

for any ε > 0. Letting ε = 1 and rearranging, it follows that

limn→∞P

(
T̂ 2
k ≤

n

h(n)

)
= 0 for k = 1, . . . , r1.

Next, consider the case αk ≤ 0.5. Then T̂ 2
k = Op(

n2αk

g(n)2
) by Theorem 4. But Op(n

2αk/g(n)2) =

Op(n/g(n)2) = op(n/h(n)) by the definition of h(n) and thus, for any ε > 0,

limn→∞P

∣∣∣∣∣ T̂ 2
k
n

h(n)

∣∣∣∣∣ ≥ ε

 = 0.

Letting ε = 1, this gives

limn→∞P

(
T̂ 2
k ≥

n

h(n)

)
= 0 for k > r1,

completing the proof.

In practice I propose to incorporate an estimator of the variance into the model, letting h(n) =
g(n)
Q2σ̂2 such that TC becomes

TC = max k s.t. T̂ 2
k > Q1σ̂

2 n

g(n)

for some fixed constant Q1. This is justified because, by Theorem 1

σ̂2 =
1

n

n∑
j=rmax

ψj

(
X ′X

T

)
≤ ψrmax

(
X ′X

T

)
≤ C

and, similarly

σ̂2 =
1

n

n∑
j=rmax

ψj

(
X ′X

T

)
≥ 1

n

[dn]∑
j=rmax

ψj

(
X ′X

T

)
≥ c1ψ[dn]

(
X ′X

T

)
≥ c,
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where the last inequality uses Weyl’s inequalities in a similar way to Theorem 1 to establish that
ψ[dn]

(
X′X
T

)
is bounded away from zero, thereby guaranteeing that σ̂2 is bounded both above

and below. Therefore h(n) = Qg(n), where Q is a finite, positive constant and h(n) fulfills the
conditions stated below the definition of TC in (10).

While TC is therefore a consistent estimate for r1, I next derive the properties of the exist-
ing estimator PC in a setting with local factors. The implicit target of estimation using the PC
criterion of Bai and Ng (2002) will be different than the cutoff argued for in this paper. In fact,
(9) suggests that the PC criterion will estimate the number of factors affecting more than log(n)

outcomes, which is confirmed in the following corollary:

Corollary 2. Under Assumptions 1-4 PC is a consistent estimator for the number of factors r∗

such that αk > 0 for k = 1, . . . , r∗ and αk = 0 for k > r∗.

It is therefore clear that PC will not be a consistent estimator for r1, unless there exists no
factor k with 0 < αk ≤ 0.5, in which case r∗ and r1 coincide. However, we can also consider an
analogous estimator to PC designed to estimate the number of factors with αk > .5:

PC√n = max k s.t. ψk

(
X ′X

T

)
> σ̂2(c+ 1)

√
n

c+ 1
g(n). (11)

It is then easy to show that:

Corollary 3. Under Assumptions 1-4 PC√n is a consistent estimator for the number of factors r1

such that αk > 0.5 for k = 1, . . . , r1 and αk ≤ 0.5 for k > r1.

Given the equivalence established in (9), the proofs of Corollaries 2 and 3 follow the same
arguments as the proof of Theorem 5 and are therefore omitted. While this section establishes that
both PC√n and TC are consistent estimators for r1, recall the discussion surrounding Figure 2.
Based on the steeper slope of T̂ 2

k around the chosen threshold (
√
n), TC is expected to perform

better in finite samples.

4.1.2 Difference Estimators

Instead of choosing a cutoff value, Onatski (2010) establishes that the eigenvalues of the idiosyn-
cratic errors cluster together, while the r eigenvalues corresponding to factors will remain sepa-
rated. Based on this, one can construct an estimator based on the difference between two sub-
sequent eigenvalues. Starting from rmax and successively looking at the difference between two
subsequent eigenvalues in decreasing order, the estimator yields r̂ = ED, the first number at which
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this difference becomes larger than some constant threshold Q:14

ED = max{k ≤ rmax : ψk(
X ′X

T
)− ψk+1(

X ′X

T
) ≥ Q} = max{k ≤ rmax : T̂ 0

k − T̂ 0
k+1 ≥ Q}.

Of course, this method also has an analogue when using T̂ uk for u > 0. Onatski (2010) considers
any factors strong enough to be included in the model as soon as their cumulative effects grow with
the sample size: the target of estimation r∗ is defined as the number of factors with limn→∞‖Ak‖ =

∞. As discussed in previous sections, there are both theoretical and empirical reasons why a
practitioner may conclude that some of these factors are too weak to be included in the model. I
therefore focus on the case τ = .5 as before and define

TD = max{k ≤ rmax : T̂ 2
k − T̂ 2

k+1 ≥
n

h(n)
},

where h(n) is a function such that (i) h(n) → ∞ and (ii) h(n)/g(n)2 → 0 as n → ∞, and g(n)

fulfills the conditions stated in Theorem 4.

Theorem 6. Under Assumptions 1-4, TD is a consistent estimator for the number of factors r1

such that αk > 0.5 for k = 1, . . . , r1 and αk ≤ 0.5 for k > r1.

Proof. First note that, because T̂ 2
k = Op(n

2αk/g(n)2) = op(
n

h(n)
) for any k with αk ≤ 0.5, (T̂ 2

k −
T̂ 2
k+1) = op(

n
h(n)

) for k > r1.

Next consider k = r1. By Theorem 4, if αk > .5, limn→∞P
(
T̂ 2
r1
> Q1

n
h(n)

)
= 1 and, also by

Theorem 4, limn→∞P
(
T̂ 2
r1+1 < Q2

n
h(n)

)
= 1, for any finite constants Q1, Q2 > 0. Choosing Q1

and Q2 such that Q1 −Q2 = 1 gives

limn→∞P

(
(T̂ 2

r − T̂ 2
r+1) >

n

h(n)

)
= 1.

4.1.3 Ratio Estimators

The most recent estimator that has been introduced to the literature and shown to perform well is
based on the ratio of two subsequent eigenvalues following Ahn and Horenstein (2013), defined as

ER = arg max
1≤k≤rmax

ψk(
X′X
T

)

ψk+1(X
′X
T

)
= arg max

1≤k≤rmax

T̂ 0
k

T̂ 0
k+1

.

14Under more restrictive assumptions on the error terms, Onatski (2010) proposes an appealing way to calibrate the
tuning parameter Q, exploiting the shape of the eigenvalue distribution of the idiosyncratic noise at their edge, that
unfortunately is no longer valid in the setup of this paper.
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Assumption 5. αk > 1
2

for k = 1, . . . , r1 and αk = 0 for k = r1, . . . , rmax.

Because the ratio estimator explicitly relies on a large gap in the eigenvalue distribution, I
require an additional assumption of such a gap in Assumption 5 to establish consistency of ratio-
based estimators below. Assumption 5 rules out any factors affecting an increasing number of
covariates unless the number of affected covariates increases at a rate faster than

√
n. This as-

sumption is somewhat restrictive, but still less restrictive than the setup of Ahn and Horenstein
(2013), who impose|Ak| � n for k = 1, . . . , r.

On the other hand, the ratio estimator has the significant advantage that it is less dependent on
any tuning parameter. It also tends to perform well in finite samples. In line with the ER estimator
above I suggest a similar estimator based on the quantity T̂ 2

k :

TR = arg max
1≤k≤rmax

T̂ 2
k

T̂ 2
k+1

.

Theorem 7. Under Assumptions 1-5, TR is a consistent estimator for the number of factors r1

such that αk > 0.5 for k = 1, . . . , r1 and αk ≤ 0.5 for k > r1.

Proof. First consider k = r1 + 1, . . . , rmax. By Theorem 4, T̂ 2
k = Op(

1
g(n)2

) and thus for every

c1 > 0, limn→∞P
(
T̂ 2
k ≥ c1

)
= 0. Further, by Lemma 13 there exists a constant c2 > 0, such that

limn→∞P
(
nT̂ 2

k∗ ≥ c2

)
= 1 for k∗ = r1 + 1, . . . , rmax. Then, for any k = r1 + 1, . . . , rmax, any

finite c > 0, setting c1 = c ∗ c2 yields

limn→∞P (
T̂ 2
k

T̂ 2
k+1

> cn) = limn→∞

[
P (

T̂ 2
k

T̂ 2
k+1

> cn|T̂ 2
k+1 <

c2

n
)P

(
T̂ 2
k+1 <

c2

n

)
+ P (

T̂ 2
k

T̂ 2
k+1

> cn|T̂ 2
k+1 ≥

c2

n
)P

(
T̂ 2
k+1 ≥

c2

n

)]
= limn→∞P (

T̂ 2
k

T̂ 2
k+1

> cn|T̂ 2
k+1 ≥

c2

n
) + 0 = limn→∞P (T̂ 2

k > cnT̂ 2
k+1)

≤ limn→∞P (T̂ 2
k > c ∗ c2) = limn→∞P (T̂ 2

k > c1) = 0.

Next, consider k = r1. By Assumption 5 αk > 0.5 and there exists a finite q1 > 0 such that
limn→∞P

(
T̂ 2
r1
> q1n

)
= 1. Using Assumption 5 again, T̂ 2

r1+1 = Op(
1

g(n)2
) and thus for every
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q2 > 0, P
(
T̂ 2
r1+1 ≥ q2

)
= 0. Then, for any q > 0 and setting q2 = q1/q:

limn→∞P

(
T̂ 2
r1

T̂ 2
r1+1

> qn

)
= limn→∞

[
P

(
T̂ 2
r1

T̂ 2
r1+1

> qn|T̂ 2
r1+1 < q2

)
P
(
T̂ 2
r1+1 < q2

)
+ P

(
T̂ 2
r1

T̂ 2
r1+1

> qn|T̂ 2
r1+1 ≥ q2

)
P
(
T̂ 2
r1+1 ≥ q2

)]

= limn→∞

P ( T̂ 2
r1

T̂ 2
r1+1

> qn|T̂ 2
r1+1 < q2

)
+ 0


≥ limn→∞P (T̂ 2

r1
> q2 ∗ qn) = limn→∞P (T̂ 2

r1
> q1n) = 1.

Finally, consider k = 1, . . . , r1 − 1. I note that in that case I already established that there exists
a finite q1 > 0 such that limn→∞P

(
T̂ 2
k+1 > q1n

)
= 1. It then immediately follows that, for any

c3 > 0,

limn→∞P

(
T̂ 2
k

T̂ 2
k+1

> c3n

)
= 0.

Corollary 4. Under Assumptions 1-5, ER is a consistent estimator for the number of factors r1.

The proof largely follows the same arguments as those in the proof of Theorem 7 and is there-
fore relegated to Online Appendix C.2.

It is perhaps surprising that both estimators require an equal degree of separation. One might
expect that the weak and strong factors need to be less well separated to obtain a consistent esti-
mator for higher values of u. To ensure this theoretically, a lower bound on T̂ 2

k for k > r1, which
in turn depends on the partial sum in S2, would be needed. I leave this for future research. On
an intuitive level however, the accompanied increase in slope around the targeted factor strength
when using T̂ uk for some u > 0 should again improve the performance of this estimator.

5 Simulations

I next present simulation evidence to assess the adequacy of the asymptotic approximations to the
finite sample results. In what follows, fix g(n) = 0.7

√
loglog(n).15

15Note that g(n) clearly fulfills the two criteria stated in Theorem 4: It grows with n, but at a very slow rate and is
dominated by nε for any ε > 0. Further, in practice, g(n) = 0.7

√
loglog(n) ≈ 1 for most relevant sample sizes.
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(a) Estimated T̂uz1 (b) Estimated Ŝuz1

Figure 3: Empirical behavior of key quantities in simple DGP. Depicted are T̂ uz1 and Ŝuz1 as a function of both
factor strength α and tuning parameter u. Data simulated with single factor of varying strength (|A| = nα),
z =
√
n
√
loglog(n), and n = 300, T = 500. Figure depicts averages based on 500 simulations.

I start by depicting the empirical analog to Figure 2 for a simple DGP in Figure 3. The sim-
ulated data has a single factor F1

i.i.d.∼ N(0, 1), with T = 500 and n = 300. All loadings are 1
on a random subset of covariates with cardinality |A| = nα and 0 everywhere else. Error terms
uit are i.i.d. from a standard normal distribution, and each variable Xi is centered and divided by
its standard deviation. In line with Figure 2, I then vary α from 0 to 1 and u from 0 to 2. Figure
3a depicts the average value of T̂ u1 across 500 simulations. Note the close resemblance in shape
to Figure 2. As u increases, a steep increase in T̂ u1 emerges around τ = .5. I take Figure 3a as
an encouraging sign that the finite sample behavior of T̂ u is well-approximated by the asymptotic
theory of Section 3 at least in this simple setting.

I also emphasize that of the two quantities depicted on the horizontal axes α is unknown to a
practitioner, while u is a tuning parameter that can be varied. Thus, for a given dataset, u can be
varied as an exploratory tool. If Fk is a local factor in the sense of this paper, the divergence rate
of T̂ uk changes as u increases. Although not explicitly in my model, it is clear that the same does
not hold if Fk is a weak but global factor with a small effect on all outcomes. The change in shape
associated with an increase in the tuning parameter u is therefore indicative of the underlying
structure and a practitioner might be interested in the behavior of T̂ uz when u increases. Since
Ŝuk = T̂ uk /T̂

0
k , this amounts to looking at Ŝuk (the “peakedness” of the eigenvector) directly. With

τ = 1
2

and u = 2 for simplicity, Ŝ2
k behaves as follows:

Ŝ2
k = T̂ 2

k /T̂
0
k �

n1−αk for αk ≥ 1
2

Op(n
αk/g(n)2) for αk < 1

2
.
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For the simple DGP introduced above, Ŝu1 is depicted in Figure 3b. It suggests that the finite sample
behavior of Ŝ2

k is also well-approximated by the asymptotic rates above. While the eigenvalue is
monotonically increasing in factor strength, Ŝ2

k takes its highest value at αk = .5.
I next consider more realistic settings as they might be observed in practice. I consider a panel

with
X

(500×300)
= F

(500×6)
Λ′

(6×300)

+ G
(500×3)

Λw′

(3×300)

+
√
θ e

(500×300)
,

where (T, n) = (500, 300) falls within the range of dimensions usually considered in the liter-
ature16 and will be varied later on. The variables exhibit a factor structure with 6 independent
factors Fk, k = 1, 2...., 6, drawn from a standard normal distribution. The 500 × 6 loading ma-
trix Λ is created by filling random subsets of its columns with (1 + ηik), where ηik is drawn
from a standard normal. These subsets will be of varying size and dictate which variables are
affected by the corresponding factor, with the sequence of group sizes given by {|Ak|}6

k=1 =

{n, n.85, n.75, n2/3, n2/3, n.6} rounded to the nearest integer for the 6 factors. All other entries
in Λ are zero. There are three additional factors G1, G2, G3 also drawn from a standard normal,
which I consider too weak to be pervasive. Their loading matrix Λw has entries (1 + ηi), where ηi
is drawn from a standard normal on random subsets of its columns with cardinalities n1/3, n1/4 and
log(n), again rounded to the nearest integer. All remaining entries are zero. For the idiosyncratic
part I allow for both cross-sectional and intertemporal correlation. I model the errors as

eti = ρet−1,i + (1− ρ2)1/2vti

vti = βvt,i−1 + (1− β2)1/2uti, uti
i.i.d.∼ N(0, 1),

with baseline parameter values of (ρ, β) = (0.3, 0.1) as in Onatski (2010). The parameter θ
varies the signal-to-noise ratio and I set θ = 1.5 in my baseline model. The factor structure
and signal-to-noise ratio of the baseline DGP are designed to closely reproduce the scree plot in
the macroeconomic application (see Figure 1 in the introduction).

Figure 4 depicts the behavior of both T̂ uk , u ∈ {0, 2} and Ŝ2
k in simulated data from the baseline

DGP. It is constructed from 1000 realizations, with the bold line depicting the average and the
dashed lines depicting the pointwise 5th and 95th percentile of the respective quantities. Note that
T̂ 0
k and T̂ 2

k in Figure 4a correspond to the front and back edge of Figure 2 respectively. I observe
an encouraging resemblance with a jump at r̂ = 6 when u = 2. This is due to the behavior of
Suk , depicted in Figure 4b. The eigenvectors corresponding to more local factors are indeed more
concentrated on a subset of its entries.

I next depict the ratios and differences of subsequent values of T̂ uk in Figure 5. Consider an

16For example Bai and Ng (2002) consider sample sizes in both dimensions between 40 and 8000.
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(a) Empirical distribution of T̂uk . (b) Empirical distribution of Ŝ2
k .

Figure 4: Illustration of key quantities in a simulated dataset. Solid line depicts average across 1000
realizations. Dashed lines illustrate 5th and 95th quantile. Data generated by baseline DGP, with (n, T ) =
(300, 500), (ρ, β) = (0.3, 0.1), r1 = 6, θ = 1.5. x-axis corresponds to first ten eigenvalues/eigenvectors of
the covariance matrix.

estimator constructed as the maximum of subsequent ratios of T̂ uk , which are depicted in Figure 5a.
In contrast to an estimator derived solely from the eigenvalues of X′X

T
(ER), which suggests the

presence of a single factor based on the average depicted here, incorporating the eigenvectors by
setting u = 2 (TR) clearly yields an estimate of r̂ = 6. For an estimator based on the differences
(Figure 5b) it is more difficult to gage what the estimator would select from the picture, but we
similarly observe a larger jump at k = 6 as the tuning parameter u increases.

I will next explore the performance of the various estimators from Section 4.1 for varying
amounts of correlation in the error terms, various values of the signal-to-noise ratio, and varying
sample sizes.

Figures 6 - 7 depict the performance of various estimators for the number of factors as the
correlation in the idiosyncratic noise increases. In these figures, I vary the dependence structure of
the error term along a two dimensional grid of (ρ, β), altering both the amount of autocorrelation
and cross-sectional dependence. Where applicable, I let h(n) = .1σ̂2

√
loglog(n).

Figure 6 depicts the percentage of simulations in which an estimator correctly estimates the
number of factors to be 6. Figure 7 depicts the average number of factors an estimator yields
across simulations. In both figures, panel (a) uses the thresholding estimator PC to estimate the
number of factors. The second panel (b) uses the thresholding estimator TC. Panel (c) uses the
maximum ratio of two subsequent values of T 0

k = ψk(
X′X
T

) and panel (d) uses the maximum ratio
of two subsequent values of T 2

k . Both panels (a) and (b), and (c) and (d) are therefore directly
comparable to each other: panels (a) and (c) depict the results of the existing estimators based
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(a) Ratio T̂uk /T̂
u
k+1, u ∈ {0, 1, 2} (b) Difference T̂uk − T̂uk+1, u ∈ {0, 1, 2}

Figure 5: Depicted are averages across 1000 replications in a simulated dataset. Data generated by baseline
DGP, with (n, T ) = (300, 500), (ρ, β) = (0.3, 0.1), θ = 1.5, r1 = 6. x-axis corresponds to first ten
eigenvalues/eigenvectors of the covariance matrix.

on the eigenvalues T 0
k , while panels (b) and (d) depict the corresponding estimators based on T 2

k .
Panel (e) depicts the estimated number r̂ using the ED estimator of Onatski (2010), while panel
(f) depicts the alternative thresholding estimator based on the eigenvalues in PC√n.

Figure 6 shows that, even under an exact factor structure, with (ρ, β) = (0, 0), only the two
estimators incorporating the additional information in the eigenvectors (Figures 6b and 6d) reliably
give an estimate of r̂ = 6. In fact, three of the six depicted estimators perform poorly across the
entire parameter space: PC, ER or PC√n correctly identify r = 6 in less than 80% of simulations
for all values of (ρ, β). The ED estimator selects a decreasing number of factors as the amount
of correlation in the error term increases, and performs well in a region of the parameter space
with modest correlation. The estimators based upon T 2 are more robust to the introduction of
dependence in the errors. They are on average correct in the simple case of no correlation in the
error terms and remain correct for modest levels of cross-sectional and intertemporal correlation.
In particular, when comparing panels (a) and (c) with panels (b) and (d), where the estimators are
directly comparable, we observe a clear benefit from setting u > 0. Based on Figures 6 and 7, I
conclude that the TR estimator, based on the ratio of subsequent values of T̂ 2

k , performs best across
the parameter space. Further, Onatski (2010) argues that the parameter pair (ρ, β) = (0.3, 0.1)

describes the data well in many financial applications. At those parameter values, the simulations
point to a significant gain in performance. Specifically, r̂TR = 5.83, and the best performing
existing estimator based on the eigenvalues yields r̂ED = 4.51 on average.

Fixing the correlation structure in the errors back to (ρ, β) = (0.3, 0.1), Figure 8 depicts the
sensitivity of the estimators to the amount of noise in the data by varying θ. Estimators using

30



(a) Information criterion from Bai and Ng (2002)
(PC) (b) Thresholding based on T 2 (TC)

(c) Maximum ratio of two subsequent eigenvalues as
in Ahn and Horenstein (2013) (ER)

(d) Maximum ratio of two subsequent values of T 2

(TR)

(e) Difference of two subsequent eigenvalues as in
Onatski (2010) (ED)

(f) Thresholding based on T 0 (PC√n)

Figure 6: Percentage of simulations correctly estimating the number of “relevant” factors r1 as both cross-
sectional and intertemporal correlation is varied along a grid of (ρ, β). Data generated by baseline DGP,
with (n, T ) = (300, 500), θ = 1.5, and r1 = 6. Figure based on 500 replications.
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(a) Information criterion from Bai and Ng (2002)
(PC) (b) Thresholding based on T 2 (TC)

(c) Maximum ratio of two subsequent eigenvalues as
in Ahn and Horenstein (2013) (ER)

(d) Maximum ratio of two subsequent values of T 2

(TR)

(e) Difference of two subsequent eigenvalues as in
Onatski (2010) (ED)

(f) Thresholding based on T 0 (PC√n)

Figure 7: Average estimate for number of factors as both cross-sectional and intertemporal correlation is
varied along a grid of (ρ, β). Data generated by baseline DGP, with (n, T ) = (300, 500), θ = 1.5, and
r1 = 6. Figure based on 500 replications.
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(a) Average estimate for number of factors according
to PC, TC, ER, TR, ED and PC√n

(b) % of simulations correctly estimating number of
factors r1 according to PC, TC, ER, TR, ED and
PC√n

Figure 8: Empirical behavior of estimators as the relative variance of idiosyncratic noise increases by
varying θ. Data generated by baseline DGP, with (n, T ) = (300, 500), (ρ, β) = (0.3, 0.1), and r1 = 6.
Figure based on 500 replications.

the information inherent in the eigenvectors remain correct for a considerably larger range of θ
compared to their counterparts derived solely from the empirical eigenvalues. The TR estimator
performs best in this dimension.

For the final set of simulations I vary both the cross-sectional dimension as the well as the time
horizon of the data. Table 2 depicts the results. Each entry in Table 2 consists of two numbers r̂/%,
where r̂ is the average number of estimated factors, and % is the percentage correctly classifying
r = 6. In small samples all estimators perform poorly. While the ratio- and difference-based
estimators tend to underestimate the true number of factors, both estimators based on thresholding
the eigenvalues tend to overestimate the number of factors in small samples. Again comparing
PC and ER directly with TC and TR, the previous pattern holds up: Setting u > 0 significantly
improves the performance of the estimator. The TR estimator tends to perform best across the
estimators considered.

In conclusion, I find that the TR estimator tends to perform best across most of the DGPs
considered here.

In Online Appendix A.2, I repeat the analysis of this section with an alternative DGP that
has a strong factor structure. In particular, I use the same baseline DGP as in this section but
set λik = 1 + ηik, ηi ∼ N(0, 1), for every entry in Λ and exclude the very weak factors G.
Thus αk = 1 for k = 1, . . . , 6 as is usually the case in the literature. I find that, under a strong
factor structure, estimators incorporating the partial sums in the eigenvector generally perform no
worse than existing estimators, although the ED estimator of Onatski (2010) tends to perform
particularly well in smaller samples. I therefore conclude that raising T̂ uk to a power u > 0 has
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n T ER TR PC PC√n TC ED

100 100 1.03 / 0.00 4.02 / 0.02 20 / 0.00 14.7 / 0.00 14.3 / 0.00 1.53 / 0.00
100 150 1.02 / 0.00 3.52 / 0.03 20 / 0.00 11.8 / 0.00 12.4 / 0.00 1.74 / 0.00
150 100 1.02 / 0.00 3.16 / 0.02 20 / 0.00 13.7 / 0.00 14.6 / 0.00 1.7 / 0.00
150 250 1.01 / 0.00 3.86 / 0.09 20 / 0.00 5.94 / 0.61 8.62 / 0.04 2.2 / 0.02
150 500 1.01 / 0.00 4.98 / 0.42 19.1 / 0.00 4.6 / 0.05 6.25 / 0.62 3.28 / 0.20
300 250 1 / 0.00 4.39 / 0.19 20 / 0.00 4.09 / 0.00 6.5 / 0.45 2.72 / 0.02
300 500 1 / 0.00 5.82 / 0.88 19.5 / 0.00 3.38 / 0.00 5.93 / 0.93 4.62 / 0.49
300 750 1 / 0.00 5.96 / 0.97 16.9 / 0.00 3.28 / 0.00 5.97 / 0.97 5.76 / 0.86
500 250 1 / 0.00 4.58 / 0.16 20 / 0.00 3.16 / 0.00 5.81 / 0.45 3.02 / 0.01
500 500 1 / 0.00 5.92 / 0.94 20 / 0.00 3.01 / 0.00 5.95 / 0.95 5.27 / 0.62
500 750 1 / 0.00 6 / 1.00 17.8 / 0.00 3 / 0.00 5.99 / 0.99 5.95 / 0.95

1000 1000 1 / 0.00 6 / 1.00 16.8 / 0.00 2.98 / 0.00 6 / 1.00 6 / 1.00

Table 2: Table depicts the performance of different estimators as the sample size is varied along a grid of
(n, T ). Data generated by baseline DGP, with (ρ, β) = (0.3, 0.1), θ = 1.5, and r1 = 6. Each entry depicts
a combination r̂/%, where r̂ is the average number of estimated factors, and % is the percentage correctly
classifying r1 = 6. In each row, the highest percentage is highlighted. Table based on 500 replications.

little implications if all factors are strong, but yields significant performance gains if local factors
are present in the data.

Based on these findings, my recommendation for estimating the number factors r1 is therefore
to use the TR estimator with its implementation outlined as follows:

1. Obtain preliminary estimates F̂ , Λ̂ using the first rmax principal components, where rmax is
large enough such that ψk(X

′X
T

) is bounded for k > rmax.

2. Let z = 0.7
√
log(log(n))

√
n, rounded to the nearest integer17, and compute

T̂ 2
zk ≡ ψk(

X ′X

T
)Ŝuzk ≡ ψk(

X ′X

T
)

(
1

z

z∑
i

λ̂2
ik√

1
n

∑n
i=1 λ̂

2
ik

)2

.

3. Set

r̂ = TR = arg max
1≤k≤rmax

T̂ 2
k

T̂ 2
k+1

.

17g(n) = .7
√
loglog(n) ≈ 1 for most relevant sample sizes, and this recommendation is therefore generic.
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6 A Factor Model with Local Factors of the US Economy

Two classic applications where factor models have proven particularly useful are macroeconomic
monitoring and forecasting (see Stock and Watson (2016) for a good review). This section de-
scribes the factor model estimated from a large panel of US macroeconomic indicators under the
weaker assumptions maintained in this paper and illustrates the implications of the presence of
local factors.

I employ one of the standard datasets in the factor model literature in macroeconomics (see,
e.g. Stock and Watson (2005) and De Mol et al. (2008)). The data contains quarterly observations
of 207 macroeconomic variables, primarily for the US economy. In particular, I use the vintage
of the dataset used in the handbook chapter of Stock and Watson (2016). It includes real activity
variables, prices, productivity and earnings, interest rates and spreads, money and credit, asset
and wealth variables, oil market variables, and indicators representing international activity. The
data ranges from 1959Q1-2014Q4. All variables have been transformed to achieve approximate
stationarity and a small number of outliers were removed. I follow the same transformations as
Stock and Watson (2016) and also follow their practice in removing low-frequency trends in the
data using a biweight low-pass filter, with a bandwidth of 100 quarters, as in Stock and Watson
(2012)18.

The dataset consists of series at multiple levels of aggregation. I only use the disaggregated
time series in my estimation of the factor structure and disregard the aggregates (Boivin and Ng
(2006), Stock and Watson (2016)). This elimination leaves 139 variables in the data. Only 94
of those series are available for the entire sample and I will restrict my analysis to those 94 time
series. This allows for a straightforward implementation of the principal component estimator.19

I start by depicting some of the key quantities introduced in this paper and provide some in-
tuitive discussion of those. Figure 9 depicts the behavior of both T̂ uk , u ∈ {0, 1, 2} and Ŝ2

k in the
data (setting u = 0 reproduces Figure 1 from the introduction). If T̂ uk corresponds to a local factor
with a strong effect on a subset of outcomes, it will be scaled up if u > 0. On the other hand, this
does not hold for an eigenvalue corresponding to a factor that weakly affects all outcomes. This
is illustrated in Figure 9b. In particular, with τ = 0.5, I find that the 3rd, 5th, and 6th eigenvector
are particularly concentrated on its largest loadings. As a consequence, a visual inspection of Fig-
ure 9a indicates a drop-off at k = 3 and k = 6, suggesting the presence of either 3 or 6 factors,
depending on the minimum strength of the factors a practitioner would like to keep in her model.

18Data are available at http://www.princeton.edu/˜mwatson/publi.html. For a full description of
the data, as well as a more detailed description of the transformations to the raw data, I refer the reader to Stock and
Watson (2016).

19Alternatively one could analyze the full sample of 139 disaggregated variables using the EM algorithm of Stock
and Watson (2002b) to handle missing observations.

35

http://www.princeton.edu/~mwatson/publi.html


(a) Empirical distribution of T̂uk for u ∈ {0, 1, 2} (b) Empirical distribution of Ŝ2
k

Figure 9: Illustration of key quantities for τ = 0.5 in a dataset of US macroeconomic indicators

I next summarize the results of the 6 estimators considered throughout this paper in Table 3.
While both estimators derived from T̂ 2

k suggest the presence of 6 factors in the data, the three exist-
ing estimators from the literature (ER, PC, ED) find evidence for 1, 8, and 3 factors respectively.

To address the problem that the estimated number of factors is sensitive to the choice of cutoff
under existing thresholding estimators, Alessi et al. (2010) suggests to vary this threshold and ex-
plore how the estimated number of factors changes. The result is depicted in Figure 10a. It depicts
the estimated number of factors based on PC and TC as a function of the tuning parameter c,
which multiplies the thresholds in Theorem 5 and Corollary 2. Figure 10a confirms that incorpo-
rating the eigenvector makes the estimator less dependent on the choice of the tuning parameter.
Using T̂ 0

k yields significantly more ambiguous results than an equivalent procedure based on T̂ 2
k .

Decreasing the threshold for the eigenvalues leads to a gradual increase in the number of estimated
factors, indicated by the absence of a prolonged flat region. Using a thresholding rule based on T̂ 2

k

instead, we observe two flat regions in the graph at r̂ = 3 and r̂ = 6 respectively.
Alternatively, a practitioner could vary τ and observe how the estimated number of factors

changes. Recall that we may think of τ as a complexity parameter, because varying τ shifts the
steep region of Figure 2. I demonstrate this in Figure 10b, which depicts the value of the TR esti-
mator as a function of the complexity parameter τ . Figure 10b suggests that there is one “global”

Estimator ER TR PC PC√n TC ED

Estimated number of factors 1 6 8 3 6 3

Table 3: Estimated number of factors in macroeconomic panel for the six estimators considered throughout
this paper.
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(a) Estimate r̂1 from thresholding based on T̂ 0
k (PC) and

T̂ 2
k (TC) as a function of constant c, which multiplies

cutoffs from Theorem 5 and Corollary 2.

(b) TR, the maximum of T̂ 2
k /T̂

2
k+1, k ∈ {2, 3, . . . , 10}

for varying tuning parameter τ ∈ [.375, 1].

Figure 10: Illustration of estimators in dataset of US macroeconomic indicators for varying tuning param-
eters

factor in the data and that the second most important factor is significantly weaker than the first
one, as indicated by the first flat region of the graph. Next, the 7th factor appears to be signifi-
cantly weaker than the 6th, as indicated by the second flat region in Figure 10b. Thus, Figure 10
suggests that the choice of r̂ = 6 is quite robust when incorporating the additional information in
the eigenvectors.

Figure 9b also suggests a more nuanced interpretation of the factors, with factors 3, 5 and 6
appearing more “local”. This is further illustrated in Figure 11a. For each factor, all associated
loadings were ordered (in absolute value). Figure 11a then depicts how the largest 25 loadings
decay for factors 2-7. The three factors identified as “local” above can easily be distinguished.
They exhibit some large loadings, combined with a steeper subsequent drop-off.

Related, 11b illustrates the importance of the factors for each series by considering the R2 of
the common component in explaining movements each series. For a given series in the panel, this
measures the variation in the series due to contemporaneous variation in the factors.

Figure 11b depicts how the addition of weaker factors affects the individual R2 of the 94 series
in the panel. Sorted from highest to lowest, it illustrates how the local factors 5 and 6 are extremely
important for a subset of the outcomes. For example, for the most impacted series of the panel, fac-
tors 5 and 6 explain around 70 percent of the variation in that series. While this subset of outcomes
is very well explained by factors 5 and 6, associated with large jumps in the corresponding R2,
factors 7 and 8 do not have such a strong effect on a subset of outcomes. The 10 largest increments
in the model R2 are on average 0.39 and 0.18 for factors 5+6 and 7+8 respectively.20

20Note that the smooth nature of the scree plot implies that the 7th and 8th factors are not significantly weaker than
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(a) Absolute value of 25 largest loadings for factors 2-7.
Each line corresponds to the largest 25 loadings (in ab-
solute value) for a specific factor. Solid lines correspond
to factors identified earlier as “local.”

(b) Incremental R2 of the common component for each
series, ordered from largest to smallest, for adding fac-
tors 5 and 6 (solid blue line), and factors 7 and 8 (dotted
red line) to the model.

Figure 11: Both panels visualize how some factors in this dataset are more “local” than others.

Factor 3 Factor 5 Factor 6

PPI: Int. Material: Supplies & Components Nonfarm: Unit Nonlabor Payments tb6m-tb3m
PPI: Industrial Commodities Nonfarm: Unit Labor Cost GS1-Tb3m

PPI: Finished Consumer Goods Nonfarm: Real Compensation Per Hour GS10-Tb3m
PPI: Crude Petroleum Defl by PCE(LFE) BS: Real Compensation Per Hour S&P’S STOCK PRICE INDEX

Gasoline and other energy goods PPI: Finished Consumer Foods DOW JONES IA
BS: Real Compensation Per Hour Food & beverages for off-premises consump Consumer Loans, All Commercial Banks

Nonfarm: Real Compensation Per Hour Nonfarm: Output Per Hour of All Persons BAA-GS10 Spread
BS: Implicit Price Deflator PPI: Finished Consumer Goods

ISM Manufacturing: Prices Paid Index

Table 4: Variables corresponding to largest loadings for actors 3, 5 and 6, the most local factors. Red
coloring indicates a negative loading, while black indicates a positive loading.

Further, by treating factors as local, the resulting factors may be easier to interpret as they only
correspond to a small subset of the observables, contrasting with conventional factors, which are
often hard to interpret. Table 4 shows which economic indicators correspond to the largest loadings
(in absolute value) associated with the three local factors. Variables with a negative loading are
shown in red. For factor 3, I note that six of the nine variables, printed in bold, represent price
indices as classified in the handbook chapter of Stock and Watson (2016). Additionally the fourth
entry, while classified as an “Oil market variable,” also represents a price index. The remaining
two variables are both classified as “Productivity and Earnings” and it is worth noting that they
have the opposite sign. Next, of the five series classified as “Productivity and Earnings” in the
data, all five of these are associated with factor 5, emphasized in bold. Further, the remaining three
entries are all price indices. I also note that the 6th factor is highly concentrated on a number of

factors 5 and 6. Adding factors 5 and 6 to the model increases the R2 of the common component by 0.06 on average,
while adding factors 7 and 8 to the model increases the R2 of the common component by 0.05.
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financial variables, specifically spreads and stock market indicators (again emphasized in bold).
Further, this factor is associated with a negative return on the stock market and an increase in the
interest rate spread.

This aids in the interpretation of the factors. For example, based on the discussion above, the
6th factor could be interpreted as indicating a flight from stocks into safe assets, such as bonds.

The previous discussion illustrates the advantage of taking the eigenvectors into account when
selecting the number of factors as proposed in this paper. Without this additional information,
factors 5 and 6 are missed by two of the three existing estimators in the literature (cf. Table 3). But
these factors are highly influential on a subset of outcomes (e.g. Table 11). Failure to include them
in the model would thus result in a model that does poorly in explaining this part of the economy.

7 Concluding Remarks

This paper develops a framework for factor models that allows for local factors that only affect
an unknown subset of the observables. In many economic models I find that factors affecting
proportionally more than

√
n of the n observed variables are of economic interest. Under standard

assumptions on the error terms, this coincides with the number of factors that can be estimated
consistently using the principal component estimator. I further show that existing estimators for
the number of factors in general do not yield a consistent estimate for this number of “relevant”
factors. To estimate the number of economically important and estimable factors consistently, I
argue that there is additional information in the eigenvectors that has not been exploited in the
past. I demonstrate how one can easily incorporate this information into some of the prominent
estimators commonly used. Monte Carlo evidence suggests significant finite sample gains over
existing estimators.

In cases in which there is no clear gap in the distribution of eigenvalues, the theory developed
in this paper provides a viable framework. It further provides a theoretical foundation that justifies
the use of both factor models and the principal component estimator in datasets with no such clear
gap.

In addition, the methods of this paper provide a novel insight into the structure of the data.
There are two potential reasons subsequent factors may appear “weak” in a given dataset - either
a weaker factor can have a weak effect on all observables, or it can have a strong impact on only a
subset of observables (which I call a “local” factor in this paper). By using only the eigenvalues of
X′X
T

, these two kinds of factors will be treated equally. However, depending on the economic model
or context, a researcher may be more interested in one or the other. By incorporating information
from the eigenvectors, I allow a practitioner to distinguish between the two cases.

I implement my methods in one of the canonical datasets used in the factor model literature
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and find strong evidence that there are indeed local factors present in the data.
The analysis in this paper suggests a number of promising topics for future research. Perhaps

most interestingly, I conjecture that the principal component estimator considered in this paper can
be substantially improved upon (at least in finite samples) using the sparsity assumptions of the
model for the estimation of the factors. A regularized estimation approach suggests itself and is
currently investigated in a separate project (Freyaldenhoven (2019)).
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