
WORKING PAPER NO. 15-16 
DO PHILLIPS CURVES CONDITIONALLY HELP TO 

FORECAST INFLATION? 

Michael Dotsey 
Federal Reserve Bank of Philadelphia 

Shigeru Fujita 
Federal Reserve Bank of Philadelphia 

Tom Stark 
Federal Reserve Bank of Philadelphia 

March 2015 



Do Phillips Curves Conditionally Help to Forecast

Inflation?

Michael Dotsey, Shigeru Fujita, and Tom Stark∗

This version: February 2015

Abstract

This paper reexamines the forecasting ability of Phillips curves from both an uncon-

ditional and conditional perspective by applying the method developed by Giacomini

and White (2006). We find that forecasts from our Phillips curve models tend to be

unconditionally inferior to those from our univariate forecasting models. We also find,

however, that conditioning on the state of the economy sometimes does improve the

performance of the Phillips curve model in a statistically significant manner. When

we do find improvement, it is asymmetric – Phillips curve forecasts tend to be more

accurate when the economy is weak and less accurate when the economy is strong.

Any improvement we find, however, vanished over the post-1984 period.
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1 Introduction

The Phillips curve has long been used as a foundation for forecasting inflation. Yet, nu-

merous studies indicate that, over the past 20 years or so, inflation forecasts based on the 
Phillips curve generally do not predict inflation any better than a naive forecast or a fore-

cast based on either an unobserved stochastic volatility model or an IMA (1,1) model. This 
point was forcefully made by Atkeson and Ohanian (2001) in regard to naive forecasts and 
has subsequently been explored in great depth by Stock and Watson (2007, 2008). Thus, a 
reasonable impression regarding the usefulness of Phillips curve models for forecasting infla-

tion is fairly bleak. Stock and Watson, however, pose an interesting hypothetical question: 
Despite the rich evidence against the usefulness of Phillips curve forecasts, would you change 
your forecast of inflation if you were told that the economy was going to enter a recession 
in the next quarter with the unemployment rate jumping by 2 percentage points? There 
is strong evidence that many forecasters and monetary policymakers would, in fact, change 
their forecasts. For example, the June 4, 2010, issue of Goldman and Sachs’ US Economics 
Analyst posits, “Under any reasonable economic scenario, this gap − estimated at 6.5% of 
GDP as of year-end 2009 by the Congressional Budget Office − will require years of above-

trend growth to eliminate. Accordingly, we expect the core consumer inflation measures ... to 
trend further, falling close to 0% by late 2011.” These sentiments were echoed in the April 27

−28, 2010, minutes of the Federal Open Market Committee: “In light of stable longer-term 
inflation expectations and the likely continuation of substantial resource slack, policymakers 
anticipated that both overall and core inflation would remain subdued through 2012.”

Although most studies that examine the comparative forecasting performance of Phillips

curve models place emphasis on the performance over entire sample periods and specific

subsamples, there has been little work that sheds light on the question posed by Stock and

Watson. Dotsey and Stark (2005) examine whether large decreases in capacity utilization add

any forecasting power to inflation forecasts and find that they do not. However, Stock and

Watson (2008) provide some rough evidence that large deviations of the unemployment gap

are associated with periods when Phillips curve-based forecasts are relatively good. Fuhrer

and Olivei (2010) also examine the Stock and Watson evidence and find that a threshold

model of the Phillips curve outperforms a naive model. This paper statistically investigates

the strength of the Stock and Watson observation along a number of dimensions and in great

depth.

We do so in a variety of ways using both real-time and final data and by formally compar-

ing forecast accuracy of our Phillips curve-based forecasts with those of various univariate

models using the methodology developed by Giacomini and White (2006). We use their pro-

2



cedure because (i) it can be used when comparing the forecasts from misspecified models,

(ii) it allows for both unconditional and conditional tests, and (iii) it is relevant for testing

both nested and nonnested models. To explore whether it is primarily large deviations of

the unemployment gap that are informative for inflation forecasting, we look at a threshold

model as well as use the conditional forecast comparison procedures developed by Giacomini

and White (2006).

Our basic results indicate that forecasts from our baseline Phillips curve model or the 
model augmented with a threshold unemployment gap are unconditionally inferior to those 
of our naive forecasting models, and the difference is sometimes statistically significant, 
especially over a post-1984 sample period. We generally also do not find that conditioning on 
various measures of the state of the economy improves the performance of the Phillips curve 
model relative to the IMA(1,1) model in a statistically significant way with an exception of 
the SPF (Survey of Professional Forecasters) recession downturn probabilities. With respect 
to a random walk forecast, conditioning on various states of the economy does improve the 
relative forecasting power of the Phillips curve model with more regularity, but the relative 
improvement is far from a universal outcome of the test. Of interest is that improvement is 
more likely to occur over the entire sample period 1969Q1−2014Q2, than occurs over the later 
sample 1984Q1−2014Q2. Further, we find little or no evidence that supports the conjecture in 
Stock and Watson (2008) that the size of the unemployment gap improves forecasts. 
Importantly, over the later sample, there are no conditioning variables that significantly 
help to improve the forecast of the Phillips curve model relative to the IMA(1,1) model, 
indicating that the answer to the Stock and Watson question is no.

Following a brief literature review, we lay out the various forecasting models. We then

discuss the procedures used for comparing forecasts. We follow this with the body of our

statistical analysis and then provide a brief summary and conclusion.

2 Literature Review

Our literature review is fairly focused, concentrating on those papers that help inform our

particular approach. An excellent and in-depth literature review on inflation forecasts can

be found in Stock and Watson (2008).1 A departure point for our inquiry is the work of

Atkeson and Ohanian (2001). In that paper, the authors compare the root-mean-square

error (RMSE) of out-of-sample forecasts of 12-month-ahead inflation generated by a Phillips

1On the methodological side, the literature on forecast comparisons was initiated by Diebold and Mariano
(1995). See, for example, Clark and McCracken (2013) for a review of this literature.
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curve model using either the unemployment rate or a monthly activity index developed at

the Federal Reserve Bank of Chicago with those of a naive model, which predicts that 12-

month-ahead inflation will be the same as current 12-month inflation. They examine the

relative RMSEs for forecasts over the period between Jan. 1984 and Nov. 1999 and find that

the forecasts generated by the Phillips curve models do not outperform those of the naive

model. Therefore, they conclude that the Phillips curve approach is not useful for forecasting

inflation. Stock and Watson (1999) look at two subsamples when comparing the relative

forecasting power of Phillips curve specifications with a naive forecast and one based on an

autoregressive specification of the inflation rate. Over the first subsample, 1970−1983, the

Phillips curve-based forecasts are superior, whereas over the second subsample 1984−1996,

the Phillips curve-based forecasts outperform the naive forecast but are no better than

forecasts based on lagged inflation only.

This is in stark contrast to Atkeson and Ohanian (2001), and as reported in Stock and 
Watson (2008), it is due to the different sample period. In particular, Phillips curve forecasts 
did not do well in the latter half of the 1990s. Further, over the 1984−1999 sample period, 
the naive forecast outperforms forecasts based on simple autoregressive specifications, which 
prompts Stock and Watson to adopt an unobserved components stochastic volatility model 
(UCSV) as their benchmark for comparison. They find that there is not much difference 
between the naive forecasts over the 1984−1999 subsample, but that subsequently the fore-

casts generated by the two methods diverge, at which point the UCSV forecasts are superior. 
Fisher et al. (2002) use rolling regressions with a 15-year window rather than recursive pro-

cedures. They also document that Phillips curve-based forecasts outperform naive forecasts 
over the period 1977−1984 and that, for a PCE-based inflation measure, the Phillips curve 
forecasts improved on naive forecasts over the period of 1993−2000. They also indicate that 
the 1993−2000 and 1985−1992 periods may represent different forecasting environments. 
Another intriguing result from Fisher et al. (2002) is that Phillips curve forecasts do better 
at two-year horizons, which is in stark contrast to the findings in Stock and Watson (2007), 
who find that Phillips curve forecasts tend to do better at horizons of less than one year. 
Ang et al. (2007), however, tend to confirm the Atkeson-Ohanian results that Phillips curve 
models offer no improvement over naive forecasts for the periods 1985−2002 and 1995−2002, 
a result that is consistent with those found in Stock and Watson (2008) when the latter use 
UCSV as the atheoretical benchmark.

Clark and McCracken (2006) reach a more cautious conclusion, pointing out that the out-

of-sample confidence bands for ratios of RMSEs are fairly wide and that rejecting Phillips

curve models based on ratios should be approached with care. However, some of the ratios
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found in studies such as Atkeson and Ohanian (2001) (AO), Stock and Watson (2007), and

Ang et al. (2007) are so large that they probably imply failure to reject the null of no forecast

improvement. However, many of the ratios reported in Fisher et al. (2002) are only slightly

greater than one, and most likely do not imply a rejection of the null hypothesis. From a

practical point of view, one can interpret much of the evidence in these papers as indicating

that activity gaps are not reliable predictors of inflation and that predictions of inflation are

not overly sensitive to whether or not a Phillips curve is relied upon.

Like ours, some studies use real-time data. Orphanides and van Norden (2005) find

that Phillips curve-based forecasts using an output gap measure of real activity outperform

an autoregressive benchmark prior to 1983 but offer no improvement over the 1984-2002

period. In addition, a number of studies have found that the Phillips curve specification

has been unstable over time. Stock and Watson (1999, 2007) find that the instability is

largely confined to the coefficients on lagged inflation, whereas Clark and McCracken (2006)

find instability in the coefficients on the output gap. Dotsey and Stark (2005) also find

instability in coefficients on capacity utilization, with those coefficients becoming smaller

and insignificant as they rolled their sample forward. Giacomini and Rossi (2009) find

evidence of forecast failure in real-time Phillips curve projections, caused by changes in

inflation volatility as well as changes in the monetary policy regime.

Finally, Stock and Watson (2008) present an interesting finding, which indicates that

although inflation forecasts based on the Phillips curve do not outperform forecasts based

on inflation alone, there are episodes when that is not the case. In particular, they notice that

the RMSEs from Phillips curve forecasts tend to be lower than those from an unconditional

stochastic volatility model when the unemployment gaps are larger than 1.5 in absolute

value. This finding motivates our interest in conditional forecasting tests.

3 Forecasting Models

To investigate what appears to be a particular type of nonlinearity associated with fore-

casting performance, we use standard Phillips curve models together with the conditional

forecast comparison methods of Giacomini and White (2006) to indicate whether Phillips

curve models provide better forecasts of inflation when conditional on the state of the econ-

omy. Because Stock and Watson (2008) indicate that the measure of real activity is of

secondary importance when evaluating forecast performance, we concentrate on unemploy-

ment rates and unemployment gaps. We also use real-time data on unemployment as our

benchmark data set but investigate whether the use of real-time data as opposed to final
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data affects our results. We also concentrate our forecasting exercise on headline PCE in-

flation and do so for two reasons. One is that PCE inflation is often considered to be the

most relevant measure of inflation for policy purposes. It is also less affected by commodity

price shocks than the CPI. Using the headline as opposed to the core allows us to extend

our sample period further back in time, and we can, therefore, include data from the 1969

and 1973 recessions.

3.1 The Benchmark Models

Our two benchmark models will be the naive forecasting model of Atkeson and Ohanian

(2001) and the rolling IMA(1,1) model of Stock and Watson (2007). Following Stock and

Watson (2008), the naive forecast is based on the following specification:

Et(π
h
t+h − π4

t−1) = 0, (1)

where πht = (400/h)[log(pt) − log(pt−h)] and pt is the PCE price index and h = 2, 4, 6, and

8. The IMA(1,1) specification for quarter-over-quarter inflation is given by

∆πt = εt + θεt−1. (2)

In estimating the model, we use only the real-time observations that would have been avail-

able at the date when the forecast was made.2

3.2 Phillips Curve Models

To investigate the benefits of a Phillips curve model for forecasting inflation, we examine a

simple autoregressive Phillips curve model given by:

πht+h − πt = ah(L)∆πt + bh(L)ũt + vht+h, (3)

where πht+h is the h-quarter-ahead forecast of an h-quarter-annualized average of inflation

and ũt is the unemployment gap. We will use time-varying estimates of NAIRU based on

real-time  measures that are constructed using  an HP filter where we pad future  observations

with forecasts from an AR(4) model for unemployment (see below). In addition, we shall

append the model with a threshold term. The threshold model is, therefore, an extension of

2Stock and Watson (2008) indicate that the IMA(1,1) model performs about as well as a more sophisti-
cated unobserved component model with stochastic volatility (UCSV model).
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the Phillips curve with a threshold effect on the unemployment gap. The threshold variable

is an absolute value of the unemployment gap:

πht+h − πt = αh(L)∆πt + 1(|ũt| > u)γ(L)ũt + 1(|ũt| ≤ u)δ(L)ũt + νt+h, (4)

where u is a threshold value and 1(|ũt| > u) takes the value of unity when |ũt| > u and

zero otherwise. Initially, we intended to use the TAR (Threshold Autoregressive) model of

Hansen (1997). However, there was insufficient variation in the data to identify the threshold

over any of our rolling windows. Therefore, we imposed a value of 1.2, which implied that

the absolute value of the unemployment gap exceeds the threshold one-third of the time,

by using the one standard deviation value of the real-time gap estimated using the latest

vintage unemployment over the period 1954Q1−2014Q2. Doing so provided us with enough

threshold measures to conduct our conditioning tests.

3.3 Forecast Comparison

Statistical forecast comparisons are made using the methods developed by Giacomini and

White (2006), whose procedure can be used for nested and nonnested models as well as

for constructing both unconditional and conditional tests of forecast accuracy. Using their

procedure requires limited memory estimators such as fixed windows. This allows them to

formulate test statistics that come from a chi-square distribution. Given the apparent insta-

bility in the Phillips curve, the rolling window methodology appears superior to a recursive

forecasting procedure. For unconditional tests, the null hypothesis is for equal predictability

of forecasting methods, which can be formerly stated as E(δt+h) = 0, where δt+h is the dif-

ference in the squared h-step-ahead forecast errors between any two forecasting methods.3

The relevant test statistic is as follows:

n
(
n−1

∑
t

δt+h

)
V̂ −1
h

(
n−1

∑
t

δt+h

)
d−→ χ2

1, (5)

where h denotes the forecast horizon, n is the size of the forecast sample, and V̂h is the HAC

variance of n−1
∑

t δt+h. Note that the HAC correction is necessary, since we are looking

at multiple-period-ahead forecast errors. We apply a uniform lag window with truncation

3To be precise, note that forecast error differences between the two methods could arise due to estimation
uncertainty as well as model differences, as discussed in Giacomini and White (2006).
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parameter set to h− 1.4 For conditional tests, we examine the test statistic:

n
(
n−1

∑
t

xtδt+h

)′
V̂ −1
h

(
n−1

∑
t

xtδt+h

)
d−→ χ2

k, (6)

where x is a k× 1 vector of conditioning variables and V̂h is the HAC-corrected estimator of

the variance of n−1
∑

t xtδt+h.

The unconditional test statistic tells us only if the forecasts are statistically different from

one another on average over the sample. To ascertain which of any two models is giving the

better forecast, we examine the sign of the coefficient in the regression:

δt+h = β0 + et+h. (7)

A negative coefficient indicates that model one, which we denote the reference model, pro-

duces the better forecast on average. We shall refer to model two as the alternative model.

When comparing the forecasts of our two Phillips curve models with the two benchmark 
models, we also examine when there are statistically significant differences conditional on (i) 
whether the economy is in recession, (ii) the probability of recession from the SPF data set,

(iii) our real-time estimate of the unemployment gap, (iv) the four-quarter change in the 
unemployment gap, (v) the absolute value of the real-time gap, and (vi) whether the gap 
is bigger than a specified threshold. It is important to note that the conditional GW test 
is a marginal test. It tells us whether conditioning on a certain value significantly improves 
one forecast relative to another, not whether the forecast is actually better. For example, if 
the IMA(1,1) model gave an unconditionally better forecast and we find that conditioning on 
a recession significantly improves the Phillips curve forecast relative to the IMA(1,1) forecast, 
our results do not indicate that the Phillips curve is conditionally providing a better forecast, 
only that conditioning significantly improves its forecast relative to that of the IMA(1,1) 
model. To infer which forecast is better, we need to look at the size and sign of the regression 
coefficient, β1, on the conditioning variable in the regression:

δt+h = β0 + β1xi,t + et+h, (8)

where xi is one of our conditioning variables. For the first four conditioning variables, when

the slope coefficient is statistically significant, we calculate the cut-off value that implies

that the alternative model’s forecast is better. It is important to note that, because we are

4When the uniform lag window produces a nonpositive definite variance, we use the Bartlett lag window
and increase the truncation lag to 2(h− 1).
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generally conditioning on variables that were known at the time of the forecasts, the fact that

relative forecast accuracy depends on this information implies that none of our models are

true data-generating mechanisms and that each is to some degree misspecified. Constructing

the true model is likely to be an extremely difficult exercise, and the conditioning tests

are a simple, straightforward alternative for analyzing whether the state of the economy

affects the relative usefulness of Phillips curve forecasting models. One could argue that

conditioning on whether the economy is in recession or not is conditioning on information

that forecasters are unlikely to possess in real time. That is true, strictly speaking, but the

SPF recession probabilities indicate forecasters are generally cognizant in real time as to

whether the economy is or is not in recession. Even if one were somewhat uncertain about

whether the economy was in recession, a policymaker with an asymmetric loss function might

want to condition on being in a recession if there was sufficient evidence indicating that the

economy might be in a recession.

4 Data Definitions and Transformations

Our analysis uses real-time data on unemployment and PCE inflation constructed from

vintage data available to the public in the middle of the quarter.5 Thus, a regression run

at date t uses observations on unemployment and inflation, as they were known as of that

date. As regressions are rolled forward, updated data are used from the vintage that were

available as of the new date. The quarter-over-quarter inflation rate is defined as πt =

400 log(Pt/Pt−1), and the h quarter annual average inflation rate at time t is given by πht =

(400/h) log(Pt/Pt−h).

A key variable in our analysis is the unemployment gap, ũt, defined as the difference

between the unemployment rate and the HP estimate of trend unemployment. Specifically,

we use the smoothing parameter of 105 to identify the trend component.6 In constructing

trend unemployment, we use a HP filter with 20 quarters of forecast values beyond the sample

endpoint. The forecasts are from an AR model of unemployment where the maximum lag

length is four and the fixed window for the regression is 84 quarters. The lag length is

5Unlike the large revisions that occur for the real-time unemployment gap, which we document later, the 
revisions to the unemployment series are fairly small. They are due only to revisions in seasonals and rarely 
result in a revision of more than 0.1 percentage point.

6Stock and Watson (2007, 2008) use a high-pass filter that filters out frequencies of less than 60 quarters.
The value of the smoothing parameter (105) is often used in the recent labor search literature (see Shimer
(2005)). There is variation in the literature regarding what frequency should be used, and we recognize that
the properties of the unemployment gap are sensitive to the choice of the smoothing parameter. In general,
most studies use an unemployment gap that is constructed by including frequencies significantly lower than
those associated with the traditional business cycle frequencies as in this paper.
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Figure 1: Unemployment and Unemployment Gap Series: The unemployment gap is based on the

HP filter with smoothing parameter 105. The final estimate of the gap series uses the 2014Q3 vintage of

data. Shading indicates periods of the NBER recession.

selected separately each period using the SIC criteria. The unemployment gap is given by:

ũt = ut − uHPt , (9)

where uHPt is the HP trend, which we associate with a time-varying NAIRU. Orphanides

and van Norden (2005) and Orphanides and Williams (2005) indicate that there are signif-

icant differences between real-time and final estimates of the unemployment gap, and we

find similar results for our construct over our sample period. The final time estimates are

constructed by HP-filtering the unemployment rate over the entire sample.

As can be seen in Figure 1, revisions to the unemployment gap are significant. The solid

black line depicts the real-time estimates of the unemployment gap, and the dotted red line

shows the unemployment gap using the 2014Q3 vintage of data. The largest revisions do

not seem to follow any particular pattern. For example, in both the latter half of the 1970s

and the latter half of the 2000s, the unemployment gap is a good deal higher than the final

estimate, and these are periods of falling unemployment. The opposite is true of the 1990s,

however, when the real-time gap is lower than the final estimate and again unemployment

is falling.
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(b) Four-Quarter Average

55 57 60 62 65 67 70 72 75 77 80 82 85 87 90 92 95 97 00 02 05 07 10 12

A
nn

ua
liz

ed
 P

er
ce

nt
ag

e 
P

oi
nt

s

-2

0

2

4

6

8

10

12

Latest Data Available
Real Time Data

(c) Six-Quarter Average
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(d) Eight-Quarter Average
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Figure 2: Headline PCE Inflation Realizations: Shading indicates periods of NBER-dated recessions.

The dependent variable in the main body of our analysis is various averages of real-time 
headline PCE inflation, and these are depicted in Figure 2. When comparing Figure 1 and 
Figure 2, it is evident that the unemployment gap is a much more heavily revised series than is 
inflation.

5 The Usefulness of Phillips Curve Forecasts

In this section, we analyze how useful Phillips curve models are for forecasting inflation in

real time. Our motivation for emphasizing the use of real-time data is twofold. First, these

data are relevant for policy purposes. Second, the work of Orphanides and van Norden

(2005) on the output gap and our own analysis of real-time unemployment gaps make the

strong case for incorporating the measurement error associated with the real-time gap. Our

investigation focuses on whether unemployment gaps provide useful information in extreme

circumstances. The exploration of whether Phillips curve models estimated on final data
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Figure 3: IMA(1,1) Coefficient Estimates: Estimated on a fixed window of 60 quarters. Coefficient

estimates are aligned at sample endpoints.

generally help predict inflation has already been exhaustively explored in the literature.7 In

a subsequent section, we will analyze the role that using real-time data plays by comparing

our results with those using final data.

Here we compare the Phillips curve forecasts from (3) and (4) with our two benchmark 
models (1) and (2) where we use unemployment gaps based on the current real-time vintage 
as of period t. The lag length is reestimated each period using the SIC lag selection method, 
and lag lengths are allowed to vary across the variables. In statistically comparing forecasts, 
we use both the unconditional and conditional forecast tests developed in Giacomini and 
White (2006). We do this for four forecast horizons, namely two-, four-, six-, and eight-

quarter-ahead average forecasts of inflation. We also compare the forecasts over two sample 
periods: the entire sample period from 1969Q1 to 2014Q2 and a later sample period that 
includes forecasts from 1984Q1 through 2014Q2. The entire sample begins in 1969Q1 for the 
two-step horizon, as it is the earliest date that we can make a forecast based on a 60-quarter 
window. We break the sample at 1984 because that latter sample is associated with the Great 
Moderation and consistently low and less variable inflation.

5.1 An Analysis of Our Regression Results

Before turning to the forecast comparison tests, it is useful to examine some of the properties

of our forecasting models. First, we note that the estimates of the moving average coefficient,

θ, in the real-time fixed window IMA(1,1) model vary over time (Figure 3). Early in the

7For an excellent summary as well as an exhaustive set of experiments, see Stock and Watson (2008).
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(a) Two-Quarter Average Inflation
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(c) Six-Quarter Average Inflation
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(d) Eight-Quarter Average Inflation
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Figure 4: Coefficients on the Unemployment Gap in the Phillips Curve: Dashed lines indicate

the 90 percent confidence interval based on HAC standard errors.

sample (the mid to late 1970s), a 1 percentage point inflation shock is associated with a

long-run multiplier (1 + θ̂) on the level of inflation of roughly .90. The multiplier then

declines fairly consistently. At present, the long-run multiplier is about zero, implying that

the persistence of the inflation process has declined significantly over our sample period.

Over recent 60-quarter windows, inflation shocks have had only a negligible long-run effect

on the level of inflation. Thus, over our sample, the behavior of inflation changes from

something close to a random walk to a process that more closely resembles white noise.8

Importantly, we also find evidence of instability in the coefficient estimates on the gap in

the Phillips curve (Figure 4). In particular, the in-sample effect of the unemployment gap on

inflation varies over time and across forecast horizons. The Phillips curve literature suggests

8Our result is consistent with evidence in Stock and Watson (2007) and occurs because the volatility of
the permanent component of inflation has been decreasing over time.
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that a larger gap precedes lower inflation. The estimate of the sum-of-coefficients is typically

negative for inflation equations at all horizons and is significantly so for the four-quarter-

and six-quarter-ahead forecasts, but it becomes less negative and statistically insignificantly

different from zero around 2000 as we roll the regressions forward. Surprisingly, the coefficient

actually takes on the incorrect sign during the Great Recession. The falling significance may

in part be due to the more transitory nature of changes in inflation that we documented

previously along with the observation that the movements in the gap remain highly persistent

over the entire sample.

As mentioned, in recent 60-quarter windows, the sign of the sum of the coefficients turns

positive. In these latter samples, a larger gap is associated with higher, not lower, inflation.

This is significantly so for all but the two-quarter ahead forecasts. Graphically, we display

the coefficient instability at our four horizons. The instability we find in the coefficients in

both the univariate model and the Phillips curve are consistent with evidence presented in

Ang et al. (2007) and serves as justification for using a rolling windows methodology as is

also done in Fisher et al. (2002). Using more formal statistical techniques, Giacomini and

Rossi (2009) indicate that the Phillips curve relationship suffers from forecast breakdowns

due to instabilities in the data-generating process.

5.2 Forecast Comparisons

In this section, we compare both the unconditional and conditional forecasting performance

of our four models. We first take a general look at the forecasts and document the contri-

bution of unemployment gaps to these forecasts. Subsequently, we perform the statistical

forecast comparison exercise developed by Giacomini and White (2006).

5.2.1 An Initial Look at the Forecasts

An initial examination of the relative forecasting ability of the various models is shown in

Table 1. We see that the IMA(1,1) forecasts are preferred to those of AO model and both

Phillips curve specifications over both the full sample and the more recent sample. The

findings regarding the relative forecasting ability of our two benchmark models generally

agree with the analysis of Stock and Watson (2007).

In Figure 5, we show the forecasts for each horizon, along with actual inflation. The

largest disparities between the IMA(1,1) and the Phillips curve forecasts at all horizons

occur in the early 1980s and the entire Great Recession period and subsequent recovery

when the IMA(1,1) model indicates that inflation itself is white noise. During the most

recent period, the Phillips curve forecast is overpredicting inflation.
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(a) Two-Quarter Average Inflation
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(b) Four-Quarter Average Inflation
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(c) Six-Quarter Average Inflation
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(d) Eight-Quarter Average Inflation
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Figure 5: Inflation Projections: Shading indicates periods of NBER-dated recessions.

We next examine the unemployment gap’s contribution to the forecasts, which is de-

picted in Figure 6. Specifically, the contribution of the unemployment gap is given by∑n(h)
j=1 b̂

h
j ũt−(j−1), where the summation goes from one to the SIC minimizing lag length n(h),

calculated at each forecast horizon h, using the appropriate vintage of data. As shown in

Figure 6, the contribution of the gap (blue line) is similar across all forecast horizons, but

especially so for the four-, six-, and eight-quarter horizons. During the 1970s and early 1980s,

the unemployment gap makes a pronounced contribution to the Phillips curve projections

at all horizons. These periods are characterized by large unemployment gaps that pull down

the forecast of inflation. Also, following the 1991 recession, the gap is again high, and it con-

tributes negatively to forecasted inflation. This is true in the early 2000s as well. Recently,

the gap (red line) is also high, but it is contributing to higher than expected inflation due to

the perverse sign of the estimated coefficient, which, as shown in Figure 4, is now insignif-
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icantly positive. Further, Figure 6 points to the reason that the gap is becoming less of a

factor in forecasting inflation. Inflation has become much less volatile and less persistent,

while the gap has continued to fluctuate and these fluctuations are persistent. The relative

stability of inflation makes it less likely that other economic variables will have significant

explanatory power with respect to its behavior.

The results in Table 1 and Figures 4 and 5 are suggestive regarding the unconditional

test proposed by Giacomini and White (2006). The explanatory power of the gap seems not

to be that significant and appears to be becoming less so, and the forecasting differences

between the benchmark models and the Phillips curve models do not appear especially large.

These observations, however, are not overly informative about the conditional tests. We do

see a few periods where the gap is large, and its contribution to the inflation forecast is

helpful relative to benchmark (at least at the four- and six-quarter horizons), namely after

the 1970, 1973, 1980, and 1982 recessions. It remains to be seen if that help is statistically

significant.

6 Statistical Comparisons

We now examine the relative forecasting performance of the various models in a precise

statistical sense. To do this, we use the unconditional and conditional tests for comparing

forecast methods developed by Giacomini and White (2006).

6.1 Unconditional Comparison

First, we investigate whether the results concerning forecast accuracy presented in Table 1 
are statistically significant. The unconditional forecasting performance is shown in Table 2, 
where the left portion of the table refers to our entire sample and the right portion of the 
table refers to results over the more recent sample. Each row of the table corresponds to a 
particular benchmark model. For example, in the second row of each panel the IMA(1,1) 
model is the benchmark. The columns indicate the alternative model, so the second column 
indicates that the basic Phillips curve model is the alternative. Thus, the (2,2) element of 
the left half of panel (a) compares the IMA(1,1) model’s forecast with that of the Phillips 
curve. In comparing forecasts, we use both a 5% and 10% significance level. Over the entire 
sample, there is only one statistically significant difference in forecast ability between the 
naive models and the two Phillips curve specifications, and that occurs for significantly better 
forecast performance of the IMA(1,1) model at the two-quarter-ahead horizon. However, 
the constant in the second rows of Table 2 is generally negative. With regard to the more
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(a) Two-Quarter Average Inflation
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(b) Four-Quarter Average Inflation
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(c) Six-Quarter Average Inflation
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(d) Eight-Quarter Average Inflation
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Figure 6: Effect of Unemployment Gap on Phillips Curve Forecasts: The real-time unemployment

gap is aligned at the date when the forecast was made. The contribution term is plotted at the date forecasted.

Shading indicates periods of NBER-dated recessions.

recent sample, both the AO and IMA(1,1) specifications are preferred to the Phillips curve

specification, while AO is also preferred to the Phillips curve threshold specification as well.

Thus, from the unconditional tests, there is little to suggest the use of a Phillips curve

specification for forecasting headline PCE inflation.

6.2 Conditional Forecasting Tests

In light of the Stock and Watson (2008) findings, we first tried conditioning on the absolute

value of the unemployment gap. This is a symmetric test because it analyzes whether con-

ditioning on both large and small values of the gap affect the relative forecasting properties
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of two models. Similarly in spirit, we also condition on a threshold dummy that equals one

when the absolute value of the gap is greater than 1.20. Alternatively, it may be that the

unemployment gap affects the conditional forecasting properties asymmetrically. For exam-

ple, the forecasts of the Phillips curve model may improve conditional on the output gap

being large and positive. To test this type of hypothesis, we conditioned on two measures

of the unemployment gap: its level and its four-quarter change. Along these lines, we also

condition on recession dates and the estimated recession probabilities from the SPF. The

behavior of these conditioning variables is depicted in Figure 7.

The results of our conditional forecast comparison tests are given in Tables 3 through 8.

The tables are laid out as follows: The row refers to the reference model and the columns

refer to the alternative model. We report the p-values of the GW chi-square test statistic,

and we report the adjusted R2 and the estimates of the constant and slope coefficient on the

conditioning variable in equation (8). To help highlight the salient features of the exercise,

we use three different shadings. The darkest shading indicates that the slope coefficient on

the conditioning variable is positive and significant and the GW χ2 statistic is significant,

indicating that the two forecast methods are significantly different. The middle shading

includes cases in which the slope coefficient is positive and statistically significant but the

GW χ2 is not. The lightest shading is where the slope coefficient has a positive sign but is

not significant and where the GW χ2 statistic went from being significant unconditionally to

insignificant conditionally. When the conditioning variable is the lagged recession dummy,

a positive coefficient implies that the alternative model’s accuracy increases in recessions.

With respect to the probability of a recession, when the regression coefficient is positive, it

means that the higher the probability of recession, the better the Phillips curve forecasts are.

In terms of the conditioning variables using the unemployment gap, a positive coefficient

implies that high unemployment gaps improve the Phillips curve forecasts, but negative

unemployment gaps worsen the Phillips curve forecasts. When assessing the conditional

performance of the absolute value of the gap, a positive coefficient means that both high and

low gaps tend to improve the Phillips curve forecasts. For the three continuous conditioning

variables, we compute the cutoff value of the variable that implies that the alternative forecast

outperforms the reference model.

6.2.1 Basic Results

The first basic result is that conditioning on gap-type measures in a symmetric way does

not generally improve the forecast performance of Phillips curve models. Table 3 presents

the results when the absolute value of the unemployment gap is used as a conditioning

18



(a) Absolute Value of Real-Time Gap
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(f) Four-Quarter Change in Real-Time Gap
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Figure 7: Conditioning Information for Giacomini-White Tests: Each plot shows our GW con-

ditioning information. The data are aligned (using the timing conventions discussed in the paper) at the

forecast date (not the date forecasted). Shading shows periods of NBER-dated recessions.

variable. Over both the full sample and the more recent sample, we found no cases in which

conditioning on this variable improved Phillips curve forecasts relative to those of our two

benchmark models. Similarly, conditioning on the threshold dummy does not improve the

forecast performance of the Phillips curve models relative to the benchmark models (Table

4). In fact, the slope coefficient is generally negative, and sometimes significantly so. This

is especially true with regard to the IMA(1,1) benchmark and the Phillips curve model.
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The second basic result is that when the conditioning tends to be asymmetric, we find that, 
in recessions, over the full sample, there is a tendency for improvement in inflation forecasts 
from the Phillips curve models, especially with regard to the SPF downturn proba-bilities. 
There is, however, no evidence that these variables conditionally help Phillips-curve-type 
forecasts over the more recent sample period.

Using the real-time gap series u˜t−1, there is no evidence that it significantly improves 
Phillips-curve-based forecasts. The slope coefficient is generally of the wrong sign and sig-

nificantly so in the more recent sample. Table 8 presents the results when the four-quarter 
change in the real-time gap is used as a conditioning variable. These results indicate that 
with respect to the AO forecasts, the change in the gap generally significantly improves the 
relative conditional forecasting accuracy of the Phillips curve model, especially over the more 
recent sample period. There is, however, little indication that it does so when the reference 
model is the IMA(1,1) model.

However, it is important to point out that these findings reflect the average forecast

behavior over the sample periods of the GW regressions. As we discussed with respect to

Figure 4, coefficients on the unemployment gap in the Phillips curve model are close to

zero and not statistically significant in recent years, which implies little statistical difference

in recent years between the Phillips curve forecasts and AO or IMA(1,1) forecasts. This

suggests that the presence of a large unemployment gap in recent years does not contribute

to the superior forecast performance of the Phillips curve models.

6.2.2 When Should One Rely on the Phillips Curve?

It is also important to go beyond a classification of statistical inference and examine when

the use of a Phillips curve model is preferred. For example, we saw over the entire sample,

the slope coefficient on the recession dummy is significant for the Phillips curve model at the

four-step-ahead, six-step-ahead, and eight-step-ahead forecast horizons when compared with

AO. Table 9 selects the cases from Table 5 in which both constant and slopes are statistically

significant and calculates the squared error difference conditional on the recession dummy

being zero or one. The implication is that in these cases, the reference model is preferred

when the dummy is turned off and the alternative model is preferred when the dummy is

turned on. Thus, with the exception of two-step-ahead horizon forecasts, the AO model

is preferred during expansions, while during recessions one is better off using the Phillips

curve models for forecasting inflation. However, it is again worth pointing out that these

results occur only for the full sample and that there is little persuasive evidence that this

has remained the case over the more recent sample period − the lone exception being the
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four-step-ahead horizon.

With regard to the SPF downturn probability, we find that the slope coefficient is signifi-

cant at the four-, six-, and eight-step-ahead horizon when comparing the forecasts from both 
the AO and IMA(1,1) models. Further, when a continuous conditioning variable is used in 
the regression, we can calculate the cutoff value for each conditioning variable that turns the 
squared error difference from negative to positive. Table 10 presents the cutoff values for the 
SPF downturn probabilities above which the Phillips curve models are producing lower 
forecast errors relative to both the AO and IMA(1,1) models. With respect to the threshold 
model, the calculation is only relevant for the two-step-ahead horizon, and indicates that 
recession probabilties greater than 24.4% improve the forecast of the Phillips curve thresh-

old model relative to the AO model. The analogous probability for the IMA(1,1) model is 
38.4%. Regarding the basic Phillips curve model, downturn probabilities that exceed 29.1%

imply that Phillips curve predictions of inflation should be carefully considered. Again, these 
numbers are relevant for the full sample results, and there is no indication that Phillips curve 
predictions are useful when basing the analysis on the most recent sample period.

Results from conditioning on the change in the real-time gap (Table 11) lend support to 
using Phillips curve forecasts as opposed to forecasts from the AO model in both the full 
and recent sample periods. Concentrating on the situation that is indicated by the darkest 
shading, i.e., the cases in which both the GW test statistic is significant at the 15% level and 
the slope coefficients are also significantly positive, we see that for the change in the real-time 
gap it pays to look at the Phillips curve forecasts over the full and later sample period at 
four-, six-, and eight-quarter-ahead horizons when compared with the AO model even when 
the change in the unemployment gap is only slightly negative over the full sample. Thus, 
although Phillips curve forecasts do not generally outperform the benchmark forecasts, there 
are a few situations when they prove useful. Unfortunately, for the advocates of the 
Phillips curve, these situations are much less prevalent over the most recent sample period.

6.2.3 Inspecting the Mechanism

We inspect the mechanism for these results in Figure 8, where we graph (i) the squared

forecast error differences for the AO and the two Phillips curves models (the two left panels)

and (ii) the IMA(1,1) model and the two Phillips curve models (the two right panels) at

the eight-quarter-ahead forecast horizon. Thus, positive values indicate that the Phillips

curve forecast was more accurate. The squared error differences are associated with the date

forecasted. Thus, the large positive spike that appears in 1977 in all the figures reflects that

the Phillips curve forecasts made in 1975 were more accurate than the forecasts made with
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(a) AO Minus Phillips Curve
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(b) IMA Minus Phillips Curve
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(c) AO Minus Threshold Phillips Curve

72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14
-20

-15

-10

-5

0

5

10

15

20

25

(d) IMA Minus Threshold Phillips Curve
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Figure 8: Squared Error Difference: Eight-quarter-ahead forecasts. Shading shows periods of NBER-

dated recessions. The squared error difference is aligned at the date forecasted.

either of the pure time series models. The greater forecasting accuracy of the Phillips curves 
models is also associated with the end of the 1982 recession. It also appears to help with 
the Great Recession, but recall the sign on the unemployment gap is perverse during this 
episode. There is no evidence that using a Phillips curve model helped in prediction for most 
of the post-1984 sample period. Further, as seen in Figure 6, since the Phillips curve term 
generally makes a significant contribution to the inflation forecasts around recessions in the 
early part of the sample period, it is not surprising that both SPF downturn probabilities 
and a large increase in the output gap conditionally improve forecast accuracy in the early 
part of the sample, but this is not the case in the more recent sample period when the 
unemployment gap generally contributes little to the forecast of inflation.
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7 Results Using Latest Vintage Data

In this section, we look at whether and to what extent the use of the latest vintage data

for the unemployment gap influences our conclusions. To do this, we reestimate the Phillips

curve using final estimates of the unemployment gap, compute new forecasts, and rerun our

forecast evaluation tests using the revised unemployment gaps to construct our conditioning

variables. We first characterize the relative unconditional forecasting ability of the two

benchmark specifications and the Phillips curve model. As shown in Table 12, using final

revised data does not change our perception regarding the accuracy of Phillips curve inflation

forecasts, and the changes are not large enough to overturn the relative ranking of the

forecasting models that were examined earlier in Table 1 using the real-time data. Note,

however, the forecast accuracy of the Phillips curve model does improve when using final

estimates of the unemployment gap.

We now examine GW tests comparing the forecasting performance of the AO, IMA(1,1),

and Phillips curve models using the latest vintage of unemployment gaps. The overall

message is the same as in the real-time results, but there are a few notable differences. The

results of the GW tests are given in Table 13. With regard to the unconditional forecast

evaluation presented in the first two columns of that table, there is only one qualitative

change in results: Namely, the Phillips curve specification is preferred at the eight-step-ahead

forecast horizon for the entire sample, but not significantly so. The IMA(1,1) specification

is still preferred over the later sample period at all forecast horizons.

When we examine the conditional forecast results with respect to the recession dummy,

there is now evidence that this variable conditionally improves Phillips curve forecasts with

respect to the IMA(1,1) model as well as continues to improve on the AO model as it did

when using real-time data. This change in results should imply that results based on the

latest vintage of unemployment gaps does not always reflect what is implied by real-time

analysis. On the other hand, there is qualitatively little change in forecast evaluation when

we condition on the SPF downturn probability. Lastly, with respect to the four-quarter

change in the gap, that variable no longer helps improve the conditional forecast of the

Phillips curve at the four-step-ahead horizon but continues to be of use at the six-step-ahead

and eight-step-ahead horizons. Thus, with the exception of the recession dummy, replacing

real-time data with the latest vintage data does not substantially alter any of the conclusions

drawn from our earlier analysis.
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8 Summary and Conclusion

In this paper, we explored in a formal statistical way the inflation forecasting properties of

Phillips curve models relative to the naive model of Atkeson and Ohanian (2001) and an

IMA(1,1) model. Our results comparing the forecasts support the preponderance of evidence

indicating that, if anything, Phillips curve models are not relatively good at forecasting

inflation on average. For the 1969Q1−2014Q2 sample, we find, as did Stock and Watson

(2007, 2008), that over the entire sample an IMA(1,1) model outperforms Phillips curve

models but not in a statistically significant way. For the 1984−2014 sample, the IMA(1,1)

model remains the preferred forecast model and significantly so at all forecast horizons with

respect to the basic Phillips curve specification. Using the latest revised output gaps as

opposed to final time output gaps does not appreciably change the general thrust of our

results.

Of note, however, is that conditional on variables that capture the state of the economy,

the Phillips curve model can prove useful for forecasting, but that conclusion is tied to

analysis regarding the entire sample. It is only with regard to the SPF downturn probabilities

that we find any conditional improvement in Phillips curve forecasts. Importantly, we find

that its usefulness is asymmetric in the sense that it helps improve the accuracy of inflation

forecasts when the economy is weak while it hurts the accuracy during expansionary periods.

The statistically significant improvement tends to be concentrated over the entire sample

period, which agrees with the general perception one obtains from the existing literature.

Finally, we focused our analysis strictly on headline PCE inflation because it has a longer 
history than the core, and it allows us to look at real-time measures. We also confined our 
Phillips curve analysis to unemployment gaps, and it would be interesting to see if our results 
carry over to other gap measures. Our reading of the literature, in which many inflation and 
gap measures have been explored, leads us to believe our results will turn out to be general, 
but that conjecture awaits confirmation.
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Table 1: Real-Time Forecast Error Comparisons for the Inflation Rate
Forecast 1969Q1−2014Q2 1984Q1−2014Q2
horizon AO IMA PC PC-TAR AO IMA PC PC-TAR

(a) Mean Absolute Errors (MAEs)
2 1.193 1.136∗ 1.260 1.264 0.966 0.941∗ 1.111 1.152
4 1.212 1.089∗ 1.182 1.284 0.844 0.819∗ 0.972 1.123
6 1.286 1.150∗ 1.271 1.318 0.842 0.797∗ 0.982 1.086
8 1.323 1.183∗ 1.295 1.341 0.837 0.744∗ 0.972 1.048

(b) Root-Mean-Square Errors (RMSEs)
2 1.690 1.592∗ 1.748 1.757 1.378 1.342∗ 1.617 1.687
4 1.733 1.554∗ 1.648 1.795 1.158 1.119∗ 1.285 1.587
6 1.841 1.689∗ 1.771 1.844 1.099 1.073∗ 1.268 1.441
8 1.915 1.782∗ 1.811 1.883 1.141 1.066∗ 1.270 1.380

Notes: MAEs and RMSEs are calculated by estimating each model with a fixed window size of 60 quarters. The model
that gives the smallest MAE or RMSE is indicated by the asterisk.
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Table 2: GW Unconditional Test

1969Q1−2014Q2 1984Q1−2014Q2
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO
P-Value 0.245 0.607 0.633 0.630 0.021∗∗ 0.053∗

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.322 −0.197 −0.232 0.099 −0.714∗∗ −0.948∗

IMA
P-Value 0.091∗ 0.239 0.031∗∗ 0.097∗

R2 0.000 0.000 0.000 0.000
Const. −0.519∗ −0.554 −0.813∗∗ −1.047∗

PC
P-Value 0.907 0.547
R2 0.000 0.000

Const. −0.034 −0.234

(b) 4-Step-Ahead Forecast

AO
P-Value 0.075∗ 0.389 0.726 0.614 0.022∗∗ 0.081∗

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.587∗ 0.288 −0.220 0.088 −0.310∗∗ −1.178∗

IMA
P-Value 0.266 0.172 0.001∗∗ 0.109
R2 0.000 0.000 0.000 0.000

Const. −0.299 −0.807 −0.399∗∗ −1.266

PC
P-Value 0.315 0.218
R2 0.000 0.000

Const. −0.508 −0.867

(c) 6-Step-Ahead Forecast

AO
P-Value 0.038∗∗ 0.395 0.984 0.756 0.013∗∗ 0.064∗

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.537∗∗ 0.255 −0.011 0.056 −0.401∗∗ −0.870∗

IMA
P-Value 0.178 0.257 0.021∗∗ 0.135
R2 0.000 0.000 0.000 0.000

Const. −0.282 −0.547 −0.457∗∗ −0.926

PC
P-Value 0.532 0.358
R2 0.000 0.000

Const. −0.265 −0.469

(d) 8-Step-Ahead Forecast

AO
P-Value 0.075∗ 0.357 0.799 0.490 0.105 0.081∗

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.491∗ 0.387 0.120 0.165 −0.313 −0.604∗

IMA
P-Value 0.681 0.370 0.045∗∗ 0.116
R2 0.000 0.000 0.000 0.000

Const. −0.103 −0.370 −0.478∗∗ −0.769

PC
P-Value 0.333 0.275
R2 0.000 0.000

Const. −0.267 −0.291

Notes: Entries in each block present the p-value for the GW χ2 test statistic and, for the GW
regressions, the adjusted R2 and the coefficient estimate from the regression specified in (7). The
dependent variable is the time-t squared forecast error differential between the model listed in the row
and model listed in the column. * (**) indicate statistical significance at the 10% (5%) level. P-values
and test statistics use HAC standard errors.
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Table 3: GW Conditional Test: Absolute Value of Initial Unemployment Gap

1969Q1−2014Q2 1984Q1−2014Q2
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.421 0.459 0.312 0.539 0.055∗ 0.154
R2 0.007 −0.001 0.016 0.026 0.002 0.044

Const. −0.049 0.185 0.764 −0.311 −0.306 0.497
Slope 0.397 −0.409 −1.065 0.465 −0.463 −1.638∗∗

IMA

P-Value 0.182 0.235 0.094∗ 0.252
R2 0.024 0.038 0.036 0.063

Const. 0.234 0.813∗∗ 0.006 0.809
Slope −0.806∗∗ −1.462∗ −0.928∗∗ −2.104∗

PC

P-Value 0.203 0.285
R2 0.006 0.021

Const. 0.579 0.803
Slope −0.656 −1.175

(b) 4-Step-Ahead Forecast

AO

P-Value 0.197 0.690 0.631 0.510 0.027∗∗ 0.175
R2 0.009 0.001 0.004 0.003 −0.006 0.038

Const. 0.152 −0.031 0.493 −0.125 −0.193 0.425
Slope 0.464 0.340 −0.759 0.234 −0.129 −1.759∗∗

IMA

P-Value 0.153 0.390 0.003∗∗ 0.270
R2 −0.005 0.019 0.046 0.045

Const. −0.183 0.342 −0.068 0.550∗

Slope −0.124 −1.222∗ −0.363∗∗ −1.992∗∗

PC

P-Value 0.406 0.391
R2 0.015 0.027

Const. 0.525∗ 0.618∗∗

Slope −1.098∗ −1.629∗∗

(c) 6-Step-Ahead Forecast

AO

P-Value 0.111 0.610 0.778 0.695 0.016∗∗ 0.000∗∗

R2 0.021 0.000 0.002 0.005 −0.006 0.066
Const. −0.079 −0.085 0.516 −0.179 −0.275 0.410
Slope 0.654 0.361 −0.559 0.253 −0.136 −1.378∗∗

IMA

P-Value 0.338 0.523 0.039∗∗ 0.157
R2 −0.001 0.041 0.020 0.088

Const. −0.006 0.595 −0.096 0.589
Slope −0.293 −1.213 −0.388∗ −1.631∗∗

PC

P-Value 0.651 0.655
R2 0.021 0.046

Const. 0.601 0.685∗∗

Slope −0.920 −1.242

(d) 8-Step-Ahead Forecast

AO

P-Value 0.178 0.563 0.844 0.319 0.114 0.080∗

R2 0.030 0.004 −0.004 0.024 −0.005 0.023
Const. −0.232 −0.084 0.295 −0.270 −0.469∗∗ −0.038
Slope 0.768∗∗ 0.501 −0.185 0.463∗∗ 0.166 −0.602

IMA

P-Value 0.724 0.534 0.037∗∗ 0.102
R2 −0.001 0.044 0.009 0.094

Const. 0.148 0.527 −0.199 0.233
Slope −0.267 −0.952∗ −0.297 −1.065∗∗

PC

P-Value 0.453 0.548
R2 0.030 0.071

Const. 0.379 0.432∗

Slope −0.686∗ −0.768∗∗

Notes: Entries in each block present the p-value for the GW χ2 test statistic and, for the GW regressions, the
adjusted R2 and the coefficient estimates from the regression specified in (8). The dependent variable is the
time-t squared forecast error differential between the model listed in the row and model listed in the column.
*(**) indicate statistical significance at the 10% (5%) level. P-values and test statistics use HAC standard errors.
See Subsection 6.2 for explanations of the shading.
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Table 4: GW Conditional Test: Threshold Dummy

1969Q1−2014Q2 1984Q1−2014Q2
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.473 0.683 0.599 0.634 0.063∗ 0.124
R2 0.004 0.005 0.008 0.013 0.061 0.060

Const. 0.167 0.081 0.156 −0.050 −0.239 −0.196
Slope 0.620 −1.115 −1.551 0.719 −2.303∗ −3.638∗

IMA

P-Value 0.231 0.477 0.044 0.184
R2 0.034 0.023 0.114 0.072

Const. −0.086 −0.011 −0.189 −0.147
Slope −1.735 −2.171 −3.022∗ −4.357∗

PC

P-Value 0.803 0.742
R2 −0.004 0.002

Const. 0.075 0.042
Slope −0.436 −1.335

(b) 4-Step-Ahead Forecast

AO

P-Value 0.201 0.596 0.611 0.664 0.069∗ 0.000∗∗

R2 0.006 −0.001 0.004 0.001 0.003 0.055
Const. 0.397 0.163 0.139 −0.001 −0.189∗ −0.288∗∗

Slope 0.752 0.495 −1.421 0.399 −0.545 −3.985

IMA

P-Value 0.358 0.295 0.003 0.034
R2 −0.004 0.017 0.089 0.061

Const. −0.235 −0.258 −0.188∗∗ −0.288∗∗

Slope −0.257 −2.173 −0.944∗∗ −4.384

PC

P-Value 0.599 0.218
R2 0.013 0.034

Const. −0.023 −0.100
Slope −1.916 −3.440

(c) 6-Step-Ahead Forecast

AO

P-Value 0.115 0.513 0.922 0.936 0.018∗∗ 0.001∗∗

R2 0.009 −0.004 −0.004 −0.006 0.008 0.042
Const. 0.303 0.158 0.102 0.010 −0.228∗∗ −0.348∗∗

Slope 0.915 0.378 −0.440 0.190 −0.724 −2.178

IMA

P-Value 0.361 0.479 0.045∗∗ 0.018∗∗

R2 −0.001 0.011 0.034 0.047
Const. −0.144 −0.201 −0.238∗ −0.359∗∗

Slope −0.538 −1.356 −0.913∗ −2.368

PC

P-Value 0.813 0.104
R2 0.000 0.012

Const. −0.056 −0.121∗

Slope −0.818 −1.454

(d) 8-Step-Ahead Forecast

AO

P-Value 0.201 0.650 0.948 0.292 0.191 0.106
R2 0.015 −0.002 −0.006 0.020 −0.008 0.008

Const. 0.210 0.236 0.095 −0.041 −0.296∗ −0.398∗

Slope 1.087∗ 0.583 0.098 0.806∗ −0.065 −0.804

IMA

P-Value 0.772 0.666 0.076∗ 0.155
R2 0.000 0.010 0.033 0.058

Const. 0.027 −0.114 −0.255∗ −0.357
Slope −0.503 −0.989 −0.871 −1.610

PC

P-Value 0.605 0.439
R2 −0.001 0.012

Const. −0.141 −0.102
Slope −0.486 −0.739

Notes: See notes to Table 3. The threshold dummy takes 1 when the absolute value of real-time gap 
is larger than 1.2, and otherwise, it takes 0.
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Table 5: GW Conditional Test: Recession Dummy

1969Q1−2014Q2 1984Q1−2014Q2
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.407 0.707 0.685 0.468 0.034∗∗ 0.073∗

R2 0.021 −0.006 −0.005 0.017 0.083 0.047
Const. 0.129 −0.202 −0.268 −0.002 −0.376∗∗ −0.529∗

Slope 1.286 0.031 0.240 1.107 −3.725 −4.604

IMA

P-Value 0.067∗ 0.299 0.015∗∗ 0.178
R2 0.009 −0.001 0.150 0.061

Const. −0.331 −0.397 −0.374∗∗ −0.528
Slope −1.254 −1.045 −4.832 −5.711

PC

P-Value 0.954 0.813
R2 −0.005 −0.006

Const. −0.066 −0.154
Slope 0.209 −0.879

(b) 4-Step-Ahead Forecast

AO

P-Value 0.169 0.075∗ 0.925 0.542 0.015∗∗ 0.068∗

R2 0.016 0.085 −0.003 0.033 0.006 0.086
Const. 0.397 −0.133 −0.090 −0.023 −0.389∗∗ −0.538∗∗

Slope 1.251 2.775∗ −0.857 1.225 0.862∗ −7.034

IMA

P-Value 0.138 0.202 0.004∗∗ 0.162
R2 0.029 0.009 −0.002 0.108

Const. −0.531 −0.487 −0.366∗∗ −0.515
Slope 1.524 −2.108 −0.363 −8.259

PC

P-Value 0.526 0.455
R2 0.039 0.097

Const. 0.043 −0.150
Slope −3.632 −7.896

(c) 6-Step-Ahead Forecast

AO

P-Value 0.057∗ 0.187 0.982 0.952 0.045∗∗ 0.000∗∗

R2 0.005 0.071 −0.005 −0.007 0.010 0.020
Const. 0.391 −0.200 −0.046 0.031 −0.512∗∗ −0.627∗∗

Slope 0.947 2.960∗∗ 0.227 0.236 1.037 −2.261

IMA

P-Value 0.115 0.269 0.048∗∗ 0.045∗∗

R2 0.042 −0.002 0.009 0.024
Const. −0.591 −0.437 −0.543∗∗ −0.658∗∗

Slope 2.014 −0.720 0.800 −2.498

PC

P-Value 0.071∗ 0.253
R2 0.042 0.047

Const. 0.154 −0.115
Slope −2.734∗∗ −3.298

(d) 8-Step-Ahead Forecast

AO

P-Value 0.141 0.112 0.602 0.331 0.075∗ 0.050∗∗

R2 0.009 0.094 0.007 0.028 0.037 −0.003
Const. 0.322 −0.160 −0.078 0.015 −0.514∗∗ −0.680∗∗

Slope 1.087∗ 3.525∗∗ 1.278 1.212∗∗ 1.627 0.614

IMA

P-Value 0.011∗∗ 0.506 0.071∗ 0.162
R2 0.080 −0.005 −0.003 −0.003

Const. −0.482 −0.400 −0.530∗∗ −0.695∗

Slope 2.439 0.192 0.415 −0.598

PC

P-Value 0.258 0.514
R2 0.071 0.014

Const. 0.082 −0.165
Slope −2.247∗ −1.013∗

Notes: See notes to Table 3.
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Table 6: GW Conditional Test: SPF Downturn Probability

1969Q1−2014Q2 1984Q1−2014Q2
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.440 0.069∗ 0.064∗ 0.850 0.010∗∗ 0.049∗∗

R2 0.018 0.011 0.034 −0.007 0.029 −0.008
Const. −0.043 −0.700∗ −1.194∗∗ 0.033 −0.139 −1.050∗∗

Slope 0.019 0.026 0.049∗ 0.004 −0.036 0.006

IMA

P-Value 0.002∗∗ 0.045∗∗ 0.000∗∗ 0.078∗

R2 −0.004 0.010 0.039 −0.008
Const. −0.657∗∗ −1.151∗∗ −0.172 −1.083∗∗

Slope 0.007 0.030∗ −0.040 0.002

PC

P-Value 0.319 0.340
R2 0.007 0.014

Const. −0.494 −0.911
Slope 0.023∗ 0.043

(b) 4-Step-Ahead Forecast

AO

P-Value 0.203 0.106 0.217 0.800 0.024∗∗ 0.105
R2 0.014 0.114 0.007 0.001 −0.006 −0.002

Const. 0.222 −0.679∗∗ −0.822∗ −0.050 −0.395∗∗ −0.748
Slope 0.019 0.049∗ 0.031 0.009 0.005 −0.027

IMA

P-Value 0.074∗ 0.072∗ 0.004∗∗ 0.161
R2 0.054 −0.004 −0.006 0.001

Const. −0.901∗∗ −1.044∗∗ −0.345∗∗ −0.698
Slope 0.031∗ 0.012 −0.003 −0.036

PC

P-Value 0.480 0.448
R2 −0.001 −0.001

Const. −0.143 −0.353
Slope −0.019 −0.033

(c) 6-Step-Ahead Forecast

AO

P-Value 0.112 0.335 0.770 0.952 0.045∗∗ 0.071∗

R2 −0.001 0.060 0.001 −0.008 −0.006 −0.008
Const. 0.349 −0.575 −0.360 0.016 −0.502∗∗ −0.815∗∗

Slope 0.010 0.042∗ 0.018 0.003 0.006 −0.003

IMA

P-Value 0.033∗∗ 0.252 0.055∗ 0.140
R2 0.046 −0.004 −0.007 −0.008

Const. −0.923∗∗ −0.709 −0.518∗∗ −0.831∗

Slope 0.032∗∗ 0.008 0.004 −0.006

PC

P-Value 0.324 0.655
R2 0.010 −0.007

Const. 0.215 −0.313
Slope −0.024∗∗ −0.010

(d) 8-Step-Ahead Forecast

AO

P-Value 0.184 0.166 0.637 0.599 0.071∗ 0.054∗

R2 −0.003 0.060 0.005 0.001 0.005 −0.003
Const. 0.354 −0.486 −0.236 −0.011 −0.556∗∗ −0.780∗∗

Slope 0.007 0.044∗∗ 0.018 0.011 0.015 0.011

IMA

P-Value 0.010∗∗ 0.314 0.079∗ 0.150
R2 0.078 0.000 −0.007 −0.008

Const. −0.840∗∗ −0.590 −0.545∗∗ −0.769∗

Slope 0.037∗∗ 0.011 0.004 0.000

PC

P-Value 0.406 0.506
R2 0.038 −0.007

Const. 0.250 −0.223
Slope −0.026∗ −0.004

Notes: See notes to Table 3.
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Table 7: GW Conditional Test: Real-Time Gap

1969Q1−2014Q2 1984Q1−2014Q2
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.294 0.871 0.521 0.275 0.066∗ 0.143
R2 0.025 −0.005 0.006 0.053 0.008 0.051

Const. 0.215 −0.164 −0.098 0.098 −0.713∗∗ −0.945∗∗

Slope 0.406 −0.126 −0.505 0.417∗ −0.387∗ −1.160∗∗

IMA

P-Value 0.229 0.260 0.067∗ 0.252
R2 0.023 0.033 0.066 0.082

Const. −0.379 −0.313 −0.811∗∗ −1.043∗

Slope −0.532∗ −0.911∗ −0.804∗∗ −1.577∗

PC

P-Value 0.171 0.245
R2 0.003 0.020

Const. 0.066 −0.232
Slope −0.379 −0.773

(b) 4-Step-Ahead Forecast

AO

P-Value 0.181 0.415 0.855 0.228 0.072∗ 0.070∗

R2 0.034 0.019 −0.001 0.018 −0.008 0.050
Const. 0.455 0.176 −0.128 0.081 −0.310∗∗ −1.137∗∗

Slope 0.505 0.426 −0.351 0.233∗∗ 0.004 −1.301∗∗

IMA

P-Value 0.436 0.392 0.001∗∗ 0.229
R2 −0.005 0.021 0.041 0.064

Const. −0.279 −0.583 −0.391∗∗ −1.217∗∗

Slope −0.079 −0.856∗ −0.229∗∗ −1.534∗∗

PC

P-Value 0.318 0.305
R2 0.018 0.043

Const. −0.304 −0.826
Slope −0.777 −1.305∗∗

(c) 6-Step-Ahead Forecast

AO

P-Value 0.097∗ 0.611 0.976 0.422 0.019∗∗ 0.000∗∗

R2 0.042 0.010 −0.005 0.014 −0.005 0.058
Const. 0.388∗∗ 0.152 0.013 0.045 −0.395∗∗ −0.828∗∗

Slope 0.580∗∗ 0.399 −0.094 0.219 −0.119 −0.862∗

IMA

P-Value 0.394 0.504 0.024∗∗ 0.082∗∗

R2 −0.001 0.027 0.041 0.089
Const. −0.236 −0.375 −0.440∗∗ −0.873∗

Slope −0.181 −0.674 −0.338∗∗ −1.081∗

PC

P-Value 0.711 0.611
R2 0.012 0.036

Const. −0.139 −0.433
Slope −0.493 −0.743

(d) 8-Step-Ahead Forecast

AO

P-Value 0.121 0.330 0.966 0.144 0.061∗ 0.057∗

R2 0.048 0.019 −0.005 0.041 −0.008 0.028
Const. 0.336∗ 0.259 0.098 0.142 −0.316∗ −0.578∗∗

Slope 0.623∗∗ 0.516 0.091 0.375∗∗ 0.046 −0.424

IMA

P-Value 0.902 0.620 0.025∗∗ 0.141
R2 −0.004 0.029 0.040 0.125

Const. −0.077 −0.238 −0.458∗∗ −0.720∗∗

Slope −0.107 −0.532 −0.329∗∗ −0.799∗∗

PC

P-Value 0.470 0.550
R2 0.025 0.060

Const. −0.161 −0.262
Slope −0.425∗ −0.47∗

Notes: See notes to Table 3.
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Table 8: GW Conditional Test: Four-Quarter Change in Real-Time Gap

1969Q1−2014Q2 1984Q1−2014Q2
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.352 0.871 0.891 0.459 0.041∗∗ 0.077∗

R2 0.043 −0.001 −0.002 0.080 0.075 0.052
Const. 0.275 −0.175 −0.207 0.148 −0.80∗∗ −1.063∗∗

Slope 2.316 −1.132 −1.235 2.469∗ −4.273∗ −5.773

IMA

P-Value 0.187 0.466 0.015∗∗ 0.162
R2 0.054 0.023 0.206 0.092

Const. −0.450∗ −0.482 −0.948∗∗ −1.211∗

Slope −3.448 −3.551 −6.742∗∗ −8.242

PC

P-Value 0.993 0.831
R2 −0.006 −0.004

Const. −0.032 −0.263
Slope −0.102 −1.500

(b) 4-Step-Ahead Forecast

AO

P-Value 0.189 0.143 0.940 0.381 0.015∗∗ 0.052∗

R2 0.047 0.082 0.001 0.044 0.012 0.106
Const. 0.529∗ 0.207 −0.177 0.110 −0.294∗∗ −1.298∗∗

Slope 2.614 3.649∗∗ −1.926 1.638∗∗ 1.238∗ −9.189∗

IMA

P-Value 0.447 0.285 0.004∗ 0.142
R2 0.003 0.032 −0.003 0.133

Const. −0.322 −0.706 −0.404∗∗ −1.408∗∗

Slope 1.035 −4.540 −0.400 −10.827∗

PC

P-Value 0.578 0.459
R2 0.054 0.121

Const. −0.384 −1.004∗∗

Slope −5.575 −10.427∗

(c) 6-Step-Ahead Forecast

AO

P-Value 0.111 0.206 0.985 0.430 0.030∗∗ 0.000∗∗

R2 0.049 0.090 −0.005 0.021 0.058 0.058
Const. 0.467∗∗ 0.146 0.001 0.057 −0.398∗∗ −0.875∗∗

Slope 2.822 4.417∗∗ −0.497 1.234 2.468∗∗ −4.259

IMA

P-Value 0.276 0.425 0.045∗∗ 0.003∗∗

R2 0.011 0.033 0.018 0.095
Const. −0.321 −0.466 −0.456∗∗ −0.932∗

Slope 1.595 −3.318 1.234 −5.493

PC

P-Value 0.226 0.379
R2 0.079 0.141

Const. −0.144 −0.477
Slope −4.913∗ −6.727∗∗

(d) 8-Step-Ahead Forecast

AO

P-Value 0.183 0.113 0.708 0.343 0.041∗∗ 0.065∗

R2 0.062 0.101 0.012 0.066 0.114 0.000
Const. 0.401∗ 0.249 0.064 0.143 −0.347∗ −0.614∗

Slope 3.181∗∗ 4.920∗∗ 2.033 2.265∗∗ 3.498∗∗ 1.022

IMA

P-Value 0.292 0.669 0.069∗ 0.140
R2 0.018 0.002 0.020 0.005

Const. −0.152 −0.338 −0.490∗ −0.757∗

Slope 1.739 −1.148 1.233 −1.242

PC

P-Value 0.207 0.485
R2 0.064 0.070

Const. −0.186 −0.267
Slope −2.886∗∗ −2.475∗∗

Notes: See notes to Table 3.
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Table 9: Squared Forecast Error Differences Conditional on the Recession Dummy

Reference Alternative Forecast
Sample

Squared Error Diff.
Model Model Horizon D = 0 D = 1

AO PC 4 Full −0.133 2.642
AO PC 4 Post 84 −0.389 0.473
AO PC 6 Full −0.200 2.760
AO PC 8 Full −0.160 3.365

Notes: This table considers the cases with dark and middle shadings in Table 5 within the

comparisons between each of the two Phillips curve models and either the AO or IMA models.

The last two columns calculate the squared error difference when the recession dummy is zero

and one, respectively.

Table 10: Cutoff Value of the SPF Recession Probability

Reference Alternative Forecast
Sample

Cutoff Values
Model Model Horizon (%)

AO PC-TAR 2 Full 24.4
IMA PC-TAR 2 Full 38.4
AO PC 4 Full 13.9
IMA PC 4 Full 29.1
AO PC 6 Full 13.7
IMA PC 6 Full 28.8
AO PC 8 Full 11.0
IMA PC 8 Full 22.7

Notes: The last column reports the cutoff value of the SPF recession probability above

(below) which the alternative (reference) model gives the smaller forecast error. This

table includes only the cases with the dark and middle shadings in Table 6 within the

comparisons between each of the two Phillips curve models and either the AO or IMA

models.
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Table 11: Cutoff Values of the Four-Quarter Change in Real-Time Unemployment Gap

Reference Alternative Forecast
Sample Cut off Value

Model Model Horizon
AO PC 4 Full −0.057
AO PC 4 Post 84 0.237
AO PC 6 Full −0.033
AO PC 6 Post 84 0.161
AO PC 8 Full −0.051
AO PC 8 Post 84 0.099

Notes: The last column reports the cutoff value of the real-time unemployment gap

above (below) which the alternative (reference) model gives the smaller forecast error.

This table includes only the cases with dark and middle shadings in Table 8 within

the comparisons between each of the two Phillips curve models and either the AO

or IMA models. The cutoff values are in the units of the four-quarter change in the

unemployment gap (expressed in percentage points).

Table 12: Phillips Curve Forecast Using Real-Time and Final Unemployment Gaps

Forecast 1969Q1−2014Q2 1984Q1−2014Q2
horizon Real Time Final Real-Time Final

(a) Mean Absolute Errors
2 1.260 1.226 1.111 1.107
4 1.182 1.140 0.972 0.966
6 1.271 1.224 0.982 0.974
8 1.295 1.255 0.972 0.971

(b) Root-Mean-Square Errors
2 1.748 1.712 1.617 1.628
4 1.648 1.588 1.285 1.282
6 1.771 1.707 1.268 1.259
8 1.811 1.740 1.270 1.257
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