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ABSTRACT 

We employ a unique data set to examine the spatial clustering of private R&D labs, and, using 
patent citations data, we provide evidence of localized knowledge spillovers within these 
clusters. Jaffe, Trajtenberg, and Henderson (1993, hereafter JTH) provide an aggregate measure 
of the importance of knowledge spillovers at either the state or metropolitan area level. However, 
much information is lost regarding differences in the localization of knowledge spillovers in 
specific geographic areas. In this article, we show that such differences can be quite substantial. 
Instead of using fixed spatial boundaries, we develop a new procedure — the multiscale core-
cluster approach — for identifying the location and size of specific R&D clusters. This approach 
allows us to better capture the geographic extent of knowledge spillovers.  We examine the 
evidence for knowledge spillovers within R&D clusters in two regions: the Northeast Corridor 
and California.  In the former, we find that citations are from three to six times more likely to 
come from the same cluster as earlier patents than in comparable control samples. Our results are 
even stronger for labs located in California: Citations are roughly 10 to 12 times more likely to 
come from the same cluster.  Our tests reveal evidence of the attenuation of localization effects 
as distance increases:  The localization of knowledge spillovers is strongest at small spatial 
scales (5 miles or less) and diminishes rapidly with distance. At the smallest spatial scales, our 
localization statistics are generally much larger than JTH report for the metropolitan areas 
included in their tests.  
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1. INTRODUCTION

For many decades, researchers have argued that investments in research and development 

(R&D), and the resulting innovations, are a key component of long-run productivity growth. A 

theoretical basis is established in the models of endogenous growth developed by Romer (1990), 

Grossman and Helpman (1991), and Aghion and Howitt (1992). Similarly, there is a large 

empirical literature documenting the relationships between investment in R&D, productivity, and 

economic growth (see Akcay, 2011, for a recent survey of this literature). R&D is primarily an 

input. Its fertility depends on many factors, but surely an important one is the exchange of ideas. 

Even though we live in an era of global commerce and ubiquitous electronic communications 

networks, as shown in this paper, physical proximity is an important ingredient in the innovation 

process. 

Despite the central role knowledge spillovers play in innovation and growth, they are particularly 

hard to verify empirically.  Krugman (1991) noted that “knowledge flows are invisible; they 

leave no paper trail by which they may be measured and tracked.” But Jaffe, Trajtenberg, and 

Henderson (1993, hereafter JTH) point out “knowledge flows do sometimes leave a paper trail” 

in the form of patented inventions. Patents contain information about the location of inventors as 

well as citations to prior patents that are related to the claimed invention. As with citations to 

academic articles, patent citations often represent tangible evidence of knowledge spillovers. 

JTH document a pattern of spatial concentration (often described as localization) in patent 

citations. All else being equal, patents are several times more likely to cite earlier patents from 

inventors located within the same metropolitan area (or state) than ones obtained by inventors 

living farther away. Such a pattern is consistent with the hypothesis that at least some important 

knowledge spillovers decrease with distance. 

One concern with the JTH approach is that states, or even metropolitan areas, may not represent 

the spatial scale over which localized knowledge spillovers operate or, at least, where they are 

most powerful. There is mounting evidence from studies using alternative data that the 

transmission of knowledge begins to attenuate at distances ranging from a few blocks to just a 

few miles (e.g., Kerr and Kominers, 2014; Elvery and Sveikauskas, 2010; Arzaghi and 

Henderson, 2008; Agrawal, Kapur, and McHale, 2008; Keller, 2002; Rosenthal and Strange, 

2001; Adams and Jaffe, 1996; and Audretsch and Feldman, 1996). If that is the case, the 
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magnitude of the localized spillovers documented by JTH may be understated, and the exact 

geography that is driving the spillovers may not be well identified. The techniques developed in 

this paper shed light on both of these concerns. 

If knowledge spillovers are important for innovative activity, we would expect creative activity 

to be spatially concentrated to take advantage of these externalities. In this paper, we employ a 

unique data set to examine the spatial clustering of private R&D labs in two regions: the 

Northeast Corridor of the U.S. and the state of California. These two regions accounted for more 

than 55 percent of total private R&D in 1998 (the most recent year for which our data are 

available). Rather than using fixed geographic units, such as counties or metropolitan areas, we 

use continuous measures to identify the spatial structure of the concentrations of R&D labs.1 

Specifically, we use point pattern methods to analyze locational patterns over a range of selected 

spatial scales (within one-half mile, 1 mile, 5 miles, etc.). This approach allows us to consider 

the spatial extent of the agglomeration of R&D labs and to measure any attenuation of 

clustering with distance more accurately.  

Following Duranton and Overman (2005) — hereafter DO — we look for geographic clusters of 

labs that represent statistically significant departures from spatial randomness using simulation 

techniques. We do not assume that “randomness” implies a uniform distribution of R&D 

activity. Rather, we focus on statistically significant departures of R&D labs at each spatial scale 

from the distribution of manufacturing employment at that scale.2    

In the first phase of the analysis, we employ Ripley’s (1976) global K-function statistics to test 

for the presence of significant clustering over a range of spatial scales. We find strong evidence 

of spatial clustering at even very small spatial scales — distances as small as one-half mile. 

Clustering exists at these and much larger spatial scales. These results are consistent with 

evidence reported in both strands of the literature described above. Interestingly, the extent of 

clustering measured by our test statistics varies with distance in different ways in our tests of labs 

located on the East and West Coasts: There is clear evidence of attenuation with distance among 

1 As noted in Section 2, this approach avoids a measurement problem associated with relying on fixed boundaries. 
2 As a robustness check, we verify that we obtain qualitatively similar results using an alternative counterfactual 
based on the spatial distribution of manufacturing establishments. 
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labs in California. Among labs located along the Northeast Corridor, the clustering statistics have 

an inverse-U shape.  

We also use the global K-function technique to examine the relative concentration of R&D labs 

in specific two-digit SIC industries. By relative, we mean relative to the spatial concentration of 

R&D labs as a whole. This has two benefits. First, it sets a much higher bar in our tests of spatial 

concentration. Second, we can implement these tests with very high precision at even the 

smallest of spatial scales. Using this counterfactual, we find the strongest evidence for the spatial 

concentration of R&D labs occurring at very small spatial scales (such as within a two- to three-

block area). At this scale, R&D labs in 37 percent of the industries studied in the Northeast 

Corridor are significantly more concentrated than are labs overall, and none are significantly 

more dispersed. Tests for the labs in California show that one-half of the industries exhibit 

significantly more concentration, and none are significantly more dispersed. 

The second part of our analysis returns to the question of clustering at different scales but now 

focuses on the question of where such clustering occurs. To identify where clustering is 

occurring, we use a more refined procedure based on local K-functions. We call this procedure 

the multiscale core-cluster approach. Core clusters at each scale are identified in terms of those 

points with the most significant local clustering at that scale. By construction, core clusters at 

smaller scales tend to be nested in those at larger scales. Such core clusters generate a hierarchy 

that reveals the relative concentrations of R&D labs over a range of spatial scales. In particular, 

at scales of 5 and 10 miles, these core clusters reveal the presence of the major agglomerations 

visible on any map. As a consistency check, these results are replicated using the significance-

maximizing procedures developed by Besag and Newell (1991) and Kulldorff (1997).   

In the final part our analysis, we document that knowledge spillovers are indeed more highly 

localized within the clusters of R&D labs we identify than outside them. To do this, we construct 

treatment versus control tests for the localization of patent citations in the spirit of those found in 

JTH. In their study, JTH use cross-sectional analysis at either the state or metropolitan area 

levels to provide estimates of knowledge spillovers that are averaged over the metro areas or 

states. But, much information is lost regarding differences in the localization of knowledge 

spillovers in specific geographic areas. We show that such differences can be quite substantial.  
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For labs in the Northeast Corridor, we find that citations are three to six times more likely to 

come from the same cluster as earlier patents than one would predict using a (control) sample of 

otherwise similar patents. Our results are even stronger for labs located in California: Citations 

are roughly 10 to 12 times more likely to come from the same cluster as earlier patents than one 

would predict using the control sample. Thus, using samples of patents 15 to 20 years after those 

used by JTH — and after the Internet significantly reduced the cost of searching for prior art 

located anywhere — we confirm their main result. This is strong evidence that the geography 

and scale of the clusters we identify is related to the extent of localization of knowledge 

spillovers, at least as evidenced by patent citations. In addition, our tests reveal clear evidence of 

the attenuation of the localization effect as distance increases. In other words, the localization of 

knowledge spillovers appears strongest at small spatial scales (5 miles or less) and diminishes 

rapidly with distance. Finally, we show that at the smallest spatial scales, our localization 

statistics are on average much larger than JTH report for the metropolitan areas included in their 

tests.  

We also verify that our results for localized spillovers using patent citations are little affected 

when we use a variety of alternative approaches to identifying control patents suggested by the 

literature (e.g., Thompson and Fox-Kean, 2005 — hereafter TFK). JTH develop a matching rate 

analysis of the localization of patent citations in which they control for the preexisting spatial 

concentration of three-digit technological categories. Our main results are consistent with JTH 

and are based on three-digit controls. TFK argue that three-digit controls are too broad and may 

induce spurious evidence of localization. As a robustness check, we follow TFK and draw our 

potential controls more narrowly from patents that share the same patent class and subclass as 

the citing patent — six-digit controls. These results are found to be highly robust with respect to 

such controls, suggesting that they are not solely a consequence of technical aggregation.3  

The remainder of the paper is organized as follows. Section 2 provides a brief review of the 

literature on geographic concentration. Section 3 describes the data used in this paper. In Section 

4, we present the statistical methodology and test results for our global analyses of spatial 

clustering. In Section 5, we present our local analyses of clustering, and in Section 6, we 

3 Murata et al. (2014a) use a distance-based approach and find substantial evidence supporting the localization of 
patent citations even when six-digit technological classifications are used to select the control patents. 
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introduce a new approach (the multiscale core-cluster approach) for identifying explicit R&D 

clusters. Section 7 contains our analysis of the geographic concentration of patent citations, and 

we conclude in Section 8. The appendices document a number of robustness tests and provide 

additional information about the character and composition of research clusters identified in the 

paper. 

2. LITERATURE REVIEW

A number of papers have used a spatial Gini coefficient to measure the geographical 

concentration of economic activity. Audretsch and Feldman (1996) were among the first to use 

this measure to show that innovative activity at the state level tends to be considerably more 

concentrated than is manufacturing employment. Ellison and Glaeser (1997) — hereafter EG — 

extended the spatial Gini coefficient to condition not only on the location of manufacturing 

employment but also on industrial structure. A number of researchers used the EG index to 

measure the clustering of manufacturing employment at the zip code, county, MSA, and state 

levels (see, for example, Rosenthal and Strange, 2001; and Ellison, Glaeser, and Kerr, 2010).  

The EG index suffers from a number of important aggregation issues that result from using a 

fixed spatial scale. One aggregation issue is known as the modifiable area unit problem (MAUP). 

The problem is that conclusions reached when the underlying data are aggregated to a particular 

set of boundaries (say, counties) may differ markedly from conclusions reached when the same 

underlying data are aggregated to a different set of boundaries (say, MSAs). And the MAUP is 

more severe as the level of aggregation increases. Another problem is that researchers sometimes 

construct indexes of localization but do not report any indication of the statistical significance of 

their results. Without further statistical analyses, it is not clear whether the concentrations 

reported are significantly different from ones that might result even if the locations of economic 

activity resulted from random draws.4 

To address these issues, DO used microdata to identify the postal codes for each manufacturing 

plant in the U.K., thus allowing these data to be geocoded. Geocoding is important since DO are 

not bound by a fixed geographical classification but base their approach on the actual distance 

4 Recently, Cassey and Smith (2014) developed a procedure to simulate confidence intervals for statistical tests of 
EG indices. 
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between firms. Rather than using a specific index to measure geographic concentration, DO take 

a nonparametric approach (based on kernel densities). Essentially, DO construct frequency 

distributions of the pair-wise distances between plants in a given industry. When the mass of the 

distribution is concentrated at short distances, this represents a spatial concentration of plants in 

the industry. If the mass of the distribution is concentrated at longer distances, this represents a 

more dispersed spatial pattern. DO consider whether the number of plants at a given distance is 

significantly different from the number that would result if their locations were randomly chosen.   

A few other studies have used continuous measures of concentration. Marcon and Puech (2003) 

use distance-based methods to evaluate the spatial concentration of French manufacturing firms 

and find that some industries are concentrated, while other industries are dispersed. Arbia, Espa, 

and Quah (2008) use a K-function approach to study the spatial distribution of patents in Italy 

during the 1990s. Kerr and Kominers (2014) develop a model where the costs of interaction 

among agents define the distance over which forces for agglomeration of activity operate. In one 

application, Kerr and Kominers (2014) use data on patent citations and show that technologies 

with short distances over which agents interact are characterized by smaller and denser 

concentrations relative to technologies allowing for interactions over longer distances.  

Our work differs from past studies in a number of ways. Unlike the papers mentioned previously, 

we use a new location-based data set that allows us to consider the spatial concentration of 

private R&D establishments. Rather than focusing on the overall concentration of R&D 

employment, we analyze the clustering of individual R&D labs. Our analytical approach permits 

such clustering to be identified at a range of scales in continuous space, rather than at a single 

predefined scale. While this multiple-scale approach is similar in spirit to that of DO, our test 

statistics are based on Ripley’s K-function rather than the “K-density” approach of DO.5 Our 

tests for the localization of R&D labs also control for industrial concentration and, in particular, 

the concentration of manufacturing employment.6  One advantage of K-functions is that they can 

5 Murata, et al. (2014b) show that the K-density approach can be subject to a downward bias due to edge effects. The 
simulation procedure we use to construct the distribution of counterfactual K-functions takes edge effects into 
account since the same edge effects are present in all counterfactuals.   
6 Duranton and Overman (2005) suggest five properties for a good index of concentration. The index should (1) be 
comparable across industries, (2) control for overall concentration of industry, (3) control for industrial 
concentration, (4) be unbiased with respect to scale and aggregation, and (5) test for the significance of the results.  
It can be shown that the index of concentration used in this study satisfies these conditions. 
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easily be disaggregated to yield information about the spatial locations of clusters of R&D labs 

at various scales.   

Finally, in Section 7, we employ a similar approach to JTH except that we replace 

states/metropolitan areas as the unit of analysis with the R&D clusters identified using the 

techniques developed in Section 6 of the paper. We show that patents from these clusters 

generate citations that are more localized than patent citations in general.  

As with our paper, Murata et al. (2014a) use continuous approaches to derive global measures of 

clustering at various spatial scales. But the implementation is quite different. In their paper, they 

document the clustering of patent citations at various spatial scales relative to the distribution of 

a suitably defined set of control patents. But their approach cannot reveal where in space this 

clustering of citations occurs. In this paper, we use a related statistical approach to construct 

global and local measures of the clustering of R&D labs relative to the more general pattern of 

economic activity. We then use the set of local clusters identified by our technique to test for the 

localization of citations to patents obtained by inventors living in those clusters.  

3. DATA

We introduce a novel data set in this paper, based on the 1998 vintage of the Directory of 

American Research and Technology, which profiles the research and development activities of 

public and private enterprises in the United States. The directory includes virtually all 

nongovernment facilities engaged in any commercially applicable basic and applied research. 

For this paper, our data set contains the R&D establishments (“labs”) associated with the top 

1,000 publicly traded firms ranked in terms of research and development expenditure in 

Compustat.7 These firms represent just under 95 percent of all R&D expenditures reported in the 

1999 vintage of Compustat for 1998. Thus, each lab in our data set is associated with its 

Compustat parent firm and information on its street address and a text description of its research 

7 We referenced several additional sources both to cross-check the information provided by this directory and to 
supplement it when we could not locate an entry for a Compustat listing. Dalton and Serapio (1995) provide a list of 
locations of U.S. labs of foreign-headquartered firms. In some cases, we found information about the location of a 
firm’s laboratories in the “Research and Development” section of the firm’s 10-K filings with the Securities and 
Exchange Commission. The following company databases were also used to supplement or confirm our main 
sources: Hoover’s Company Records database, MergentOnline, the Harris Selectory Online Database, and the 
American Business Directory (ABD). 
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specialization(s) to which we have assigned the corresponding four-digit SIC code(s). Using the 

address information for each private R&D establishment, we geocoded the locations of more 

than 3,000 labs (shown in Figure 1).   

In this paper, we analyze two major regions of the U.S.: the Northeast Corridor and the state of 

California.8  There are 1,035 R&D labs in 10 states comprising the Northeast Corridor of the 

United States (Connecticut, Delaware, Maryland, Massachusetts, New Hampshire, New Jersey, 

New York, Pennsylvania, Rhode Island, and Virginia, including the District of Columbia — the 

Washington, D.C., cluster). There are 645 R&D labs in California. The locations of these labs 

are shown in Figures 2a and 2b, respectively.9  

Even at the most aggregate level, it is easy to establish that R&D activity is relatively 

concentrated in these two regions. For example, in 1998, one-third of private R&D labs (and 29 

percent of private R&D expenditures) were located within the Northeast Corridor, as compared 

with 22 percent of total employment (21 percent of manufacturing employment) and 23 percent 

of the population. California itself accounted for almost 22 percent of all private R&D labs (and 

22 percent of private R&D expenditures) in 1998 as compared with 12 percent of total 

employment (11 percent of manufacturing employment) and 12 percent of the population.  

Together, these two regions accounted for the majority of all U.S. private R&D labs (and private 

R&D expenditures) in 1998.10 This concentration is consistent with Audretsch and Feldman 

(1996), who report that the top four states in terms of innovation in their data include California, 

Massachusetts, New Jersey, and New York. 

In our formal analysis below, we assess the concentration of R&D establishments relative to a 

baseline of economic activity as reflected by the amount of manufacturing employment in the zip 

code. The spatial patterns of employment levels for the Northeast Corridor and California are 

shown in Figures 3a and 3b, respectively (where zip code boundaries have been omitted to allow 

8 In a companion paper, we analyze similar patterns among 650 private R&D labs located in the Midwest. We find 
patterns of clustering comparable with those described in this paper. 
9 In some cases, a company reported multiple labs at the same address. For the analysis presented in this paper, we 
treated these cases as separate labs. As a robustness check, we also generated a map in which multiple labs owned 
by the same company and with a common street address were treated as a single lab. This reduces our lab count to 
951 in the Northeast corridor and to 651 in California. We repeated our analyses using this alternative map and 
found essentially the same results.   
10 Data for private R&D expenditures are from Table A.39 of NSF (2000). 
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levels in smaller zip code areas to be seen). These data were obtained from the 1998 vintage of 

Zip Code Business Patterns. Given that the vast majority of our R&D labs are owned by 

manufacturing firms, manufacturing employment represents a good benchmark. It is possible 

that owners of R&D labs locate these facilities using different factors than they use for locating 

manufacturing establishments. We address this concern in two ways: First, we use total 

employment data at the census block level for 2002 from the Longitudinal Employer-Household 

Dynamics (LEHD) survey to identify feasible lab locations within each zip code. Second, we 

also examine the concentration of labs conducting R&D in specific industries, as compared with 

the locations of all R&D labs.11  

Table 1 presents summary statistics for zip codes in the Northeast Corridor and in California for 

1998. The average zip code in the Northeast Corridor had about 29 square miles of land area 

with a radius of about 2.5 miles in 1998.  Since there were approximately 6,044 zip codes in the 

Northeast Corridor in 1998, there is, on average, one R&D facility for every six zip codes in this 

part of the country. The average zip code in the Northeast Corridor had about 4,300 jobs in 1998, 

13 percent of which were in manufacturing. In California, the average zip code consisted of 

about 96 square miles of land area with an average radius of just under 4 miles.  The average zip 

code in California had almost 6,000 jobs in 1998, of which 14 percent were in manufacturing. 

Table 1 also provides descriptive statistics for those zip codes containing one or more R&D labs. 

These zip codes are physically smaller (with a radius of about 2 miles in each region) and 

contain three to four times more employment. 

For the analysis in Section 7 of this paper, we use patent and citation data obtained from the 

NBER Patent Data Project.12 We use data for patents granted in the years 1996-2006. In 

particular, we are interested in the geographic distribution of citations to patents obtained by 

inventors living within one of the R&D clusters we identify in Section 6 of the paper. We use the 

zip code associated with the residential address of the first inventor on the patent to geolocate 

each patent.   

11 In our data, there are two significant nonmanufacturing industries with R&D labs. These are electronics 
wholesaling (which includes firms such as Apple computers) and software. In the Appendix A, we report results of 
our analyses using manufacturing establishments as an alternative benchmark.  
12 See https://sites.google.com/site/patentdataproject/. 
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4. GLOBAL CLUSTER ANALYSIS

A key question is whether the overall patterns of R&D locations in the two regions we examine 

exhibit more clustering than would be expected from the spatial concentration of manufacturing 

in those regions. However, since we are interested in possible clustering of R&D labs at scales 

below the average sizes of zip codes, it is necessary to refine this hypothesis. To address this 

question statistically, we start with the null hypothesis that R&D locations are mainly determined 

by the distribution of manufacturing employment.  

We obtained total employment data at the census block level for 2002 from the LEHD survey13 

and used this to identify feasible lab locations within each zip code area.14 Blocks with zero 

employment are clearly infeasible (such as public areas and residential zones), and blocks with 

higher levels of total employment are hypothesized to offer more location opportunities. It is also 

implicitly hypothesized that accessibility to manufacturing within a given zip code area is 

essentially the same at all locations within that zip code. So even in blocks where there is no 

manufacturing, locations are regarded as feasible as long as there is some type of employment 

present.15  

In summary, our basic null hypothesis, 0H , is that lab locations are influenced by the distribution 

of manufacturing employment at the zip code level, and by the distribution of total employment 

within each zip code area.  

Locations consistent with 0H  are then generated by a three-stage Monte Carlo procedure in 

which (i) zip code locations are randomly selected in proportion to manufacturing employment 

levels, (ii) census block locations within these zip codes are selected in proportion to total 

employment levels, and (iii) point locations within blocks are selected randomly. It should be 

13 More specifically, the LEHD offers publicly available Workplace Area Characteristic (WAC) data at the census 
block level as part of the larger LEHD Origin-Destination Employment Statistics (LODES) database. 
14 There are two exceptions that need to be mentioned. First, the state of Massachusetts currently provides no data to 
LEHD. So here we substituted 2011 ArcGIS Business Analyst Data for Massachusetts, which provides both 
geocoded locations and employment levels for more than 260,000 establishments in Massachusetts. These samples 
were aggregated to the census block level and used to approximate the LEHD data. While the time lag between 1998 
and 2011 is considerable, we believe that the zoning of commercial activities is reasonably stable over time. Similar 
problems arose with the District of Columbia, where only 2010 WAC data were available. 
15 An additional advantage of using total employment levels at scales as small as census blocks is that they are less 
subject to censoring than finer employment classifications. 
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mentioned that actual locations are almost always along streets and can, of course, not be random 

within blocks. But, as discussed further in Section 4.2 below, blocks themselves are sufficiently 

small to allow such random effects to be safely ignored at the scales of most relevance for our 

purposes.  

By repeating this procedure separately for the Northeast Corridor (with a set of 1, 035n  location 

choices) and for California (with n = 645 location choices), one generates a pattern, 

( ( , ) : 1,.., )i i iX x r s i n   , of potential R&D locations that is consistent with 0H , where 

( , )i ir s represents the latitude and longitude coordinates (in decimal degrees) at point i. This 

process is repeated many times for each R&D location in the data set. In this way, we can test 

whether the observed point pattern, 0 0 0 0( ( , ) : 1,.., )i i iX x r s i n   , of R&D locations is “more 

clustered” than would be expected if the pattern were generated randomly (i.e., randomly drawn 

from the manufacturing employment distribution).  

In the next section, we introduce the appropriate test statistics in terms of K-functions. In Section 

4.2 and Section 4.3, we summarize our test results for global clustering. In Section 4.4, we 

consider the relative concentration of labs conducting R&D in specific (two-digit SIC) industries 

as compared with the locations of all R&D labs. In other words, we investigate whether labs in 

some industries exhibit more clustering than R&D labs in general.  

4.1 K-Functions  

The most popular measure of clustering for point processes is Ripley’s (1976) K-function, ( )K d , 

which (for any given mean density of points) is essentially the expected number of additional 

points within distance d of any given point.16  In particular, if ( )K d  is higher than would be 

expected under 0H , then this may be taken to imply clustering of R&D locations relative to 

manufacturing at a spatial scale d.  For testing purposes, it is sufficient to consider sample 

estimates of ( ).K d  If for any given point i in pattern ( : 1,.., )iX x i n  , we denote the number 

16 The term “function” emphasizes the fact that values of ( )K d depend on distance, d. 
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(count) of additional points in X within distance d of i  by ( )iC d , then the desired sample 

estimate, ˆ ( )K d , is given simply by the average of these point counts, i.e., by 17   

1

1ˆ ( ) ( )
n

i
i

K d C d
n 

  .  (1)            

As described in the preceding section, we draw a set of N point patterns, 

( : 1,.., ) , 1,..,s s
iX x i n s N   , for each of a selection of radial distances, 1( ,.., )kD d d , and 

calculate the resulting sample K-functions, ˆ{ ( ) : }, 1,..,sK d d D s N  . For each spatial scale, 

d D , these values yield an approximate sampling distribution of ( )K d  under our null 

hypothesis, 0H .  

Hence, if the corresponding value, 0ˆ ( ),K d  for the observed point pattern, 0 ,X  of R&D locations 

is sufficiently large relative to this distribution, then this can be taken to imply significant 

clustering relative to manufacturing. More precisely, if the value 0ˆ ( )K d is treated as one 

additional sample under 0H , and if the number of these 1N   sample values at least as large as 

0ˆ ( )K d  is denoted by 0( )N d , then the fraction 

0 ( )
( )

1

N d
p d

N



(2) 

is a (maximum likelihood) estimate of the p-value for a one-sided test of hypothesis 0H .  

For example, if 999N   and 0( )N d  = 10 so that ( ) 0.01P d  , then under 0H , there is estimated 

to be only a one-in-a-hundred chance of observing a value as large as 0ˆ ( )K d . Thus, at spatial 

scale d, there is significant clustering of R&D locations at the 0.01 level of statistical 

significance.  

 4.2 Test Results for Global Clustering 

Our Monte Carlo test for clustering was carried out with 999N   simulations at radial distances, 

{0.25,0.5,0.75,1,2,...,99,100}d D  , i.e., at quarter-mile increments up to a mile and at one-

17 These average counts are usually normalized by the estimated mean density of points. But since this estimate is 
constant for all point patterns considered, it has no effect on testing results. 
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mile increments from 1 to 100 miles. Before discussing these results, it should be noted that 

quarter-mile distances are approximately the smallest scale at which meaningful clustering can 

be detected within our present spatial framework. Recall that since locations consistent with the 

null hypothesis are distributed randomly within each census block, they cannot reflect any 

locational constraints inside such blocks. For example, if all observed lab locations are street 

addresses, then at scales smaller than typical block sizes, these locations will tend to exhibit 

some degree of spurious clustering relative to random locations. If relevant block sizes are taken 

to be approximated by their associated (circle-equivalent) radii, then since the average radius of 

the LEHD blocks with positive employment is 0.15 miles in the Northeast Corridor (ignoring 

Massachusetts) and 0.13 miles in California, this suggests that 0.25 miles is a reasonable lower 

bound for tests of clustering. In fact, the smallest radius used in most of our subsequent analyses 

is taken to be 0.5 miles.18 

Given this range of possible spatial scales, our results show that clustering in the Northeast 

Corridor is so strong (relative to manufacturing employment) that the estimated p-values are 

0.001 for all scales considered. The results are the same for California up to about 60 miles, and 

they remain below 0.05 up to about 90 miles. Thus, our conjecture that private R&D activities 

exhibit significant agglomeration is well supported by this data.19  

4.3 Variations in Global Clustering by Spatial Scale   

Further analysis of these sampling distributions (both in terms of Shapiro-Wilk (1965) tests and 

normal quintile plots (not shown)) showed that they are well approximated by normal 

distributions for all the spatial scales tested. So to obtain a sharper discrimination between results 

at different spatial scales, we calculated the z-scores for each observed estimate, 0ˆ ( )K d , as given 

by 

18 Since mean values can sometimes be misleading, it is also worth noting that only 6.2 percent of all the LEHD 
block radii exceed 0.5 miles in the Northeast, and this percentage is reduced to about 4 percent for California. 
19 In addition, it should be noted that since 0.001 is the smallest possible p-value obtainable in our simulations (i.e., 
1 ( 1)N   with 999N  ), these results actually underestimate statistical significance in many cases. While N could, 

of course, be increased, this sample size appeared to be sufficiently large to obtain reliable estimates of sampling 

distributions under
0
.H  
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0ˆ ( )
( ) , {0.25,0.5,0.75,1,2,...,99,100}d

d

K d K
z d d

s


    (3) 

where dK  and ds  are the corresponding sample means and standard deviations for the 1N   

sample K-values.  

The z-scores for the Northeast Corridor are depicted in Figure 4a, and those for California are 

shown in Figure 4b. These high z-scores are consistent with the significance of the Monte Carlo 

results above but add more detailed information about the patterns of significance.20 Observe that 

in both figures, clustering is most significant at smaller scales but exhibits rapid attenuation as 

scales increase. This pattern is consistent with empirical research on human capital spillovers and 

agglomeration economies mentioned in the Introduction.  

Turning finally to clustering at larger scales, the most striking difference between these figures is 

that while the z-scores for California decrease over the full range of distances, those for the 

Northeast exhibit a strong local maximum at around 50 miles. Further insight can be gained by 

comparing the spatial relation of manufacturing employment with R&D labs in each case.  First, 

a visual comparison of Figures 2b and 3b for California shows that the main concentrations of 

both manufacturing employment and R&D labs are essentially the same, namely the San 

Francisco Bay Area together with the Los Angeles and San Diego areas. In fact, more than 81 

percent of all manufacturing employment is within 5 miles of R&D labs.21 This implies that as 

K-function scales increase, the differences between observed R&D locations and random 

locations (proportional to employment manufacturing) are systematically reduced. So the 

strongest clustering of R&D labs relative to manufacturing is seen only at smaller scales.  

By way of contrast, it can be seen from Figures 2a and 3a that there is much less agreement 

between concentrations of manufacturing employment and R&D labs in the Northeast Corridor. 

As is apparent from Figure 2a (and will be verified statistically below), R&D labs are mostly 

concentrated in the linear Corridor between Washington, D.C. and Boston. But Figure 3a shows 

that while this Corridor also contains most of the manufacturing employment, there are 

20 The benchmark value of 1.65z  , shown as a dashed line in both Figures 4a and 4b, corresponds to a p-value of 

0.05 for the one-sided tests of 0H in expression (2) above. 
21 More precisely, the centroids of zip code areas containing 81.4 percent of manufacturing employment are within 

5 miles of at least one R&D lab. 
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substantial concentrations elsewhere.22 More generally, the portion of manufacturing 

employment within 5 miles of R&D labs now drops to less than 65 percent. So unlike 

California, there is no simple monotone relation between clustering at different scales. As will 

be more evident below (see Figure 6a), the peak in significance at around 50 miles is largely 

attributable to the scale of clustering along the Washington-Boston corridor. Here, clusters are 

so close together that larger radii about their individual members tend to gain increasing 

numbers of labs from adjacent clusters up to a scale of about 50 miles.  

4.4 Relative Clustering of R&D Labs by Industry  

We believe that the distribution of manufacturing employment provides a reasonably objective 

basis for assessing patterns of clustering by private R&D facilities. Nevertheless, the reasons for 

establishing an R&D lab in a particular location may differ from those that determine the 

location of manufacturing establishments. For example, R&D labs may be drawn to areas with a 

more highly educated labor force than would be typical for most manufacturing establishments. 

Some R&D labs may colocate not because of the presence of spillovers but rather because of 

subsidies provided by state and local governments (as, for example, when technology parks are 

partially subsidized).  

To explore such differences, we begin by grouping all labs in terms of their primary industrial 

research areas at the two-digit SIC level.23 With respect to this grouping, our null hypothesis is 

simply that there are no relevant differences between the spatial patterns of labs in each group 

(i.e., that the spatial distribution of labs in any given industry is statistically indistinguishable 

from the distribution of all labs). The simplest formalization of this hypothesis is to treat each 

group of labs as a typical random sample from the distribution of all labs.  

More precisely, if n is the total number of labs (where 1,035n  for the Northeast Corridor and 

645n   for California), let jn  denote the number of these labs associated with industry j . Our 

22 It should be noted that some of the largest employment zip code areas (such as in Manhattan and Boston) are too 
small to be seen properly on this map of the entire Northeast. 
23 We assign labs to an industry based on information contained in the Directory of American Research and 
Technology. In the Northeast Corridor there are 19 industrial groupings corresponding to SICs 10, 13, 20, 22, 23, 
26-30, 32-39, and 73. In California, there are 16 industrial groupings corresponding to SICs 13, 16, 20, 26, 28-30, 
32-39, and 73. The industry names of these SICs are included in Tables 2a and 2b. 
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null hypothesis, 0
jH , for industry j  is that the spatial distribution of R&D labs in industry j  is 

not statistically distinguishable from that of a random sample of size jn  from all n labs.  

Such random samples are easily constructed by randomly permuting (reordering) the lab indices 

1,..,n  and choosing the first jn  of these (as is also done in DO). With respect to clustering, one 

can then compare ˆ ( )K d  values for the observed pattern of labs in industry j  with those for a set 

of N such randomly sampled patterns and derive both p-values, ( )jP d , and z-scores, ( )jz d , 

comparable with those in expressions (2) and (3), respectively. If ( )jP d  is sufficiently low (or 

( )jz d  is sufficiently high), then it can be concluded that there is significantly more clustering at 

scale d for labs in industry j  than would be expected under hypothesis 0
jH . 

Before reporting the results of these (random permutation) tests, it must be stressed that such 

results are only meaningful relative to the population of all R&D labs, and in particular, they 

allow us to say nothing about clustering of R&D labs in general. But the benefits of this 

approach are twofold. First, since the pattern of all R&D labs has already been shown to exhibit 

significant clustering relative to manufacturing employment (at all scales tested), the present 

results help to sharpen these general findings. Moreover, while this sharpening could in principle 

be accomplished by simply repeating the global tests above for each industry, the present 

approach avoids all issues of location feasibility at small scales. In particular, since the exact 

locations of all labs are known, we can use this information to compare relative clustering among 

industries at all scales.  

Turning now to the test results, the p-values for each of the 19 two-digit SIC industries in the 

Northeast Corridor are reported in Table 2a for selected distances. As stated above, here we are 

able to analyze relative clustering at all scales, regardless of how small. In particular, at the 

quarter-mile scale we find that seven of these 19 industries (37 percent) are significantly more 

localized (at the 0.05 percent level) than are R&D labs in general.24 Moreover, none are 

24 The seven industries are Textile Mill Products; Chemicals and Allied Products (this category includes drugs); 
Stone, Clay and Glass; Fabricated Metals; Instruments and Related Products; Miscellaneous Manufacturing 
Industries; and Business Services.  
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significantly more dispersed.25 Table 2b reports the p-values for each of the 16 two-digit SIC 

industries in California for selected distances.  We find that at a distance of a quarter-mile, eight 

of these 16 industries (50 percent) are significantly more localized (at the 0.05 percent level) than 

are R&D labs in general.  Again, none are significantly more dispersed.26 

A graphical representation of these results is presented in Figures 5a and 5b, where the z-scores 

for each of the seven industries in the Northeast Corridor with most significant clustering are 

shown in Figure 5a, and those for the seven (of eight) most significant California industries are 

shown in Figure 5b.27  Because we are especially interested in the attenuation of z-scores at small 

scales, these z-scores are calculated in increments of 0.25 miles up to 5 miles. For all but one of 

these industries in the Northeast Corridor, the clustering of R&D labs is by far most significant at 

very small spatial scales — a quarter-mile or less. The lone exception is Miscellaneous 

Manufacturing Industries (SIC 39), where the highest z-score occurs at a distance of just under 2 

miles. In California, the clustering of R&D labs is most significant at very small spatial scales for 

only four of the seven industries shown in Figure 5b.  Two of the other industries, Electronics 

and Business Services, have local peaks at one-half mile and one mile, respectively. 

In addition, Figure 5a shows rapid attenuation of z-scores at small scales for all seven industries 

in the Northeast Corridor. Moreover, for most of these industries, there is essentially a 

monotonic decline in z-scores at all scales shown. While degrees of significance at larger scales 

vary among industries, the relative clustering of labs in both the Chemicals and Business 

Services industries continues to be significant at all scales shown.  (For Business Services in 

particular, all but one of these labs are associated with firms engaged in computer programming 

or data processing.)  In California, Figure 5b shows rapid attenuation of z-scores at small scales 

for four of these seven industries.  The other three industries, Industrial and Commercial 

Machinery, Electronics, and Business Services (mostly in the subcategory Computers and Data 

25 With respect to dispersion, two of the 19 industries are found to be significantly more dispersed starting at a 
distance of 5 miles, and a third industry exhibits some degree of relative dispersion at 50 miles.  
26 The eight industries are Chemicals and Allied Products; Rubber Products; Primary Metal Products; Industrial and 
Commercial Machinery; Electronics; Transportation Equipment; Measuring, Analyzing, and Controlling Equipment; 
and Business Services. 
27 To conserve on space, the graph of the z-scores for Rubber Products is not shown in Figure 5b since the labs doing 
R&D in this industry accounted for less than 1 percent of all labs in California.  
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Processing) exhibit an opposite trend in which relative clusters become more significant at larger 

scales. 

Finally, note that three industries are among the most significantly clustered in both the 

Northeast Corridor and California: Chemicals, Business Services, and the Measuring, Analyzing, 

and Controlling Instruments. Here, the Chemical industry (SIC 28) merits some special attention, 

if for no other reason than this category includes labs engaged in pharmaceutical R&D, a very 

important segment of the U.S. economy. In our data, this category of labs accounts for about 40 

percent of all labs in the Northeast Corridor, a share more than twice as large as any other two-

digit SIC industry. In California, the Chemicals industry accounts for about 16 percent of the 

labs we study.  Thus, at least within the geographic area we study, this industry is seen to be a 

major contributor to the overall clustering pattern of R&D shown in Figures 4a and 4b. But it 

should be equally clear from Figures 5a and 5b that significant clustering occurs in many other 

industries as well. So, clustering of R&D labs is by no means specific to drugs and chemicals. 

5. LOCAL CLUSTER ANALYSIS

While the above global analysis can identify spatial scales at which clustering is most 

significant, it does not tell us where clustering occurs. In this section, we use a variation of our 

techniques to identify clustering in the neighborhood of specific R&D labs.  The main tool for 

accomplishing this is the local version of sample K-functions for individual pattern points (first 

introduced by Getis, 1984).28 This local version at each point i in the observed pattern is simply 

the count of all additional pattern points within distance d of i . In terms of the notation in 

expression (1) above, the local K-function, ˆ
iK , at point i  is given for each distance, d, by29

ˆ ( ) ( )i iK d C d . (4)   

28 The interpretation of the population local K-function, ( )
i

K d , for any given point i is simply the expected number 

of additional pattern points within distance d of point i. Hence, ˆ ( )
i

K d is basically a single-sample (maximum 

likelihood) estimate of ( )
i

K d .  For a range of alternative measures of local spatial association, see Anselin (1995). 

29 It should be noted that the original form proposed by Getis (1984) involves both an “edge correction” based on 
Ripley (1976) and a normalization based on stationarity assumptions for the underlying point process. However, in 
the present Monte Carlo framework, these refinements have little effect on tests for clustering. Hence, we choose to 
focus on the simpler and more easily interpreted “point count” version above.  
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Hence, the global K-function, K̂ , in expression (1) is simply the average of these local functions. 

5.1 Local Testing Procedure 

For the remainder of the paper, we use the same null hypothesis employed in Section 4.1 (R&D 

labs are distributed in a manner proportional to manufacturing employment at the zip code level 

and proportional to total employment at the block level). The only substantive difference from 

the procedure used in that section is that the location, ix , of point i  is held fixed. The appropriate 

simulated values, ˆ ( ), 1,..,s
iK d s N , under 0H  are obtained by generating point patterns, 

( : 1,.., 1) , 1,..,s s
jX x j n s N    ,  representing all 1n   points other than i . The resulting p-

values for a one-sided test of 0H  with respect to point i  then take the form, 

0 ( )
( ) , 1,..,

1
i

i

N d
P d i n

N
 


,  (5) 

where 0( )iN d  is again the number of these 1N   draws that produce values at least as large as 

0ˆ ( )iK d .  

An attractive feature of these local tests is that the resulting p-values for each point i  in the 

observed pattern can be mapped. This allows one to check visually for regions of significant 

clustering. In particular, groupings of very low p-values serve to indicate not only the location 

but also the approximate size of possible clusters. Such groupings based on p-values necessarily 

suffer from “multiple testing” problems, which we address in later sections and more 

systematically in Appendix B.   

5.2 Test Results for Local Clustering  

For our local cluster analyses, simulations were again performed using 999N   test patterns of 

size 1n   for each of the ( 1,035 in the Northeast corridor and 645 in California)n   R&D 

locations in the observed pattern, 0X . The set of radial distances (in miles) used for the local 

tests was {0.25,0.5,0.75,1,2,5,10,11,12..,100}D  .  But unlike the global analyses above in which 

clustering was significant at all scales, there is considerable variation in significance levels 

across labs located at different points in space. For example, it is not surprising to find that many 
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isolated R&D locations exhibit no local clustering whatsoever. Moreover, there is also 

considerable variation in significance at different spatial scales. At very large scales (say, 50 

miles), one tends to find a few large clusters associated with those mega regions containing most 

of the labs (within the Washington-Boston corridor or the San Francisco Bay Area). At very 

small scales (say 0.25 miles), one tends to find a wide scattering of small clusters, mostly 

associated with locations containing multiple labs (like industrial parks). In our present setting, 

the most meaningful patterns of clustering appear to be associated with intermediate scales 

between these two extremes.   

i

A visual inspection of the p-value maps generated by our test results showed that the clearest 

patterns of distinct clustering can be captured by the three representative distances, D  ={1,5,10}. 

Of these three, the single best distance for revealing the overall clustering pattern in the entire 

data set appears to be 5 miles, as illustrated for the Northeast Corridor and California in Figures 

6a and 6b, respectively.30  As seen in the legend, those R&D locations,i, exhibiting maximally 

significant clustering [ P(5)  =0.001] are shown in black, and those with p-values not exceeding 

0.005 are shown as dark gray. Here, it is evident that essentially all of the most significant 

locations occur in four distinct groups in the Northeast Corridor, which can be roughly described 

(from north to south) as the “Boston,” “New York City,” “Philadelphia,” and “Washington, 

D.C.,” agglomerations.31  In California, there are again three distinct groups, roughly described 

(from north to south) as “San Francisco Bay Area,” “Los Angeles area (mainly Irvine),” and 

“San Diego.”  While these patterns are visually compelling, it is important to establish such 

results more formally. 

6. IDENTIFYING SPATIAL CLUSTERS

The global cluster analysis in Section 4 identified the scales at which clustering is most 

significant (relative to manufacturing employment). The local cluster analysis in Section 5.1 

provided information about where clustering is most significant at each spatial scale. But neither 

of these methods formally identifies or defines specific “clusters” of labs.  In this section, we 

30 In the Appendix B, we report results for all distances in D as a robustness check.   
31 Two exceptions are the small but significant agglomerations identified in the analysis — one in Pittsburgh and 
one in Buffalo. 
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apply some additional techniques to identify clusters. In the process of doing so, we will address 

statistical issues that could potentially influence our present (and previous) results.  

6.1 The Multiple-Testing Problem 

Our method of identifying clusters is, by construction, a local cluster analysis. Because we are 

testing over multiple locations (some nearby) and multiple scales (some quite large), we must 

address certain aspects of the well-known “multiple testing” problem.32  

Suppose first that there was, in fact, no local clustering of R&D labs (so that the observed pattern 

0X of R&D locations could not be distinguished statistically from the patterns generated under 

our null hypothesis). Suppose also that all local K-function tests were statistically independent of 

one another. Then, by construction, we should expect 5 percent of our resulting test statistics to 

be statistically significant at the 0.05 percent level. So when many such tests are involved (there 

are 1,035 tests at each scale, d D , in the Northeast Corridor and 645 tests at each scale in 

California), one is bound to find some degree of  “significant clustering” using standard testing 

procedures. As is well known, this type of “false positive rate” can be mitigated by reducing the 

p-value threshold level deemed to be “significant.” That is one reason why we focus only on p-

values no greater than 0.005 in Figures 6a and 6b. 

But this adjustment alone is not sufficient in instances where the assumption of statistical 

independence is violated. This is quite likely when radial neighborhoods around different test 

points are large enough to intersect and, thus, contain common points (either observed or 

counterfactual). In such cases, the resulting p-values at these test points must necessarily exhibit 

positive spatial autocorrelation, much in the same way that kernel smoothing of spatial data 

induces autocorrelation.33  

As discussed in Appendix B, we have investigated two econometric approaches for resolving the 

multiple testing problem in a spatial setting, namely the Kulldorff (1997) SATSCAN procedure 

and the earlier Besag and Newell (1991) approach.  Both methods attempt to resolve the 

32 While global cluster analyses may also suffer from multiple testing over a range of spatial scales, this problem is 
particularly severe when conducting tests of local clustering that spatially overlap. See Appendix B for a discussion 
of the robustness of the local cluster analysis. 
33 For a full discussion of these issues in a spatial context, see, for example, Castro and Singer (2006). 
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multiple-testing problem by employing sequential testing procedures, where only single 

“maximally significant” clusters are identified in each step.  For appropriate choices of threshold 

parameters, both of these methods yield clusters that are qualitatively in close agreement with 

Figures 6a and 6b and help to confirm that our local clustering results are not heavily influenced 

by multiple-testing problems.  

However, as discussed in Appendix B, the SATSCAN and the Besag and Newell testing 

procedures suffer from other limitations, namely the “shape” restrictions in defining feasible 

clusters for significance-maximization procedures and the “path-dependencies” created among 

successively generated clusters.   

6.2 A Multiscale Core-Cluster Approach  

Given these limitations of significance-maximizing approaches, it is useful to consider an 

alternative approach to cluster identification that explicitly uses the multiscale nature of local K-

functions. This clustering procedure starts with the results of the local point-wise clustering 

procedure in Section 5.1 and seeks to identify subsets of points that can serve as “core” cluster 

points at a given selection of relevant scales, d. Here we again focus on the three scales, 

{1,5,10}D  , used in Section 5.1. At each scale, d D , we define a core point to be a maximally 

significant R&D lab, i.e., with a local K-function p-value of 0.001 (using the 999 simulations of 

K at distance d in Section 5.1).  In order to exclude “isolated” points that simply happen to be in 

areas with little or no manufacturing, we also require that there be at least four other R&D labs 

within this d-mile radius. Finally, to identify distinct clusters of such points, we create a d-mile-

radius buffer around each core point (in ArcMap). We define the set of points (labs) in each 

connected component of these buffer zones as a core cluster of points at scale d. Hence, each 

such cluster contains a given set of “connected” core points along with all other points that 

contributed to their maximal statistical significance at scale d.  These concepts are best illustrated 

by examples. 

We begin with the single most striking example of multiscale clustering in our data set, namely 

the San Francisco Bay Area in California shown in Figure 7. Starting at the 10-mile level, we see 

that there are two core clusters (represented by dotted curves), which together essentially cover 

the entire Bay Area. The major core cluster essentially includes all of the Bay Area south of San 
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Francisco, and in particular, all of Silicon Valley. At the 5-mile level (represented by solid gray 

curves), the dominant core cluster is seen to be perfectly nested in its 10-mile counterpart, 

corresponding almost exactly to what is typically regarded as Silicon Valley. There is again a 

smaller secondary cluster of labs, approximately centered on the Lawrence Livermore National 

Laboratory complex. Finally, at the 1-mile level (represented by black curves), the heaviest 

concentration of core clusters essentially defines the traditional “heart” of Silicon Valley, 

stretching south from the Stanford Research Park area to San Jose. In short, this statistical 

hierarchy of clusters is in strong agreement with the most well-known R&D concentrations in the 

San Francisco Bay Area. 

A second example, from the Northeast Corridor, is provided by the hierarchical complex of R&D 

clusters in the Boston area, shown in Figure 8a. Here again, the entire Boston area is itself a 

single 10-mile cluster. Moreover, within this area, there is again a dominant 5-mile core cluster 

containing the five major 1-mile clusters in the Boston area. The largest of these is concentrated 

around the university complex in Cambridge, while the others are centered at points along Route 

128 surrounding Boston. This is seen more clearly in Figure 8b,34 which also shows that most 

R&D labs in the Boston area are located in close proximity to major transportation routes, 

including Interstate Routes 90, 93, 95, and 495.  

Note, finally, that while the clusters in both Figures 7 and 8a tend to be nested by scale, this is 

not always the case. For example, the 5-mile “Livermore Lab” cluster in Figure 7 is seen to be 

mostly outside the major 10-mile cluster. Here, there is a concentration of six R&D labs within 2 

miles of each other, though Livermore itself is relatively far from the Bay Area. So while this 

concentration is picked up at the 5-mile scale, it is too small by itself to be picked up at the 10-

mile scale. 

These examples illustrate the attractive features of the multiscale core-cluster approach. First and 

foremost, this approach adds a scale dimension not present in other clustering methods. In 

essence, it extends the multiscale feature of local K-functions from individual points to clusters 

of points. Moreover, this approach helps to overcome the particular limitations of significance-

maximizing approaches mentioned previously. First, the shapes of individual core clusters are 

seen to be more sensitive to the actual configuration of points than those found in significance-

34 For visual clarity, only core cluster points (and not their associated buffers) are shown in Figure 8b. 
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maximizing methods.35 In addition, since all core clusters are determined simultaneously, the 

problem of path dependencies among clusters does not arise. By way of summary, an overall 

depiction of core clusters for both the Northeast Corridor and California (at scales, 5,  10d  ) is 

shown in Figures 9a and 9b, respectively.  Figure 9a shows the four major clusters identified for 

the Northeast Corridor (one each in Boston, New York-Northern New Jersey, Philadelphia-

Wilmington, and Washington, D.C.), while Figure 9b shows the three major clusters in 

California (one each in the Bay Area, Los Angeles, and San Diego).   

Finally, it should be stressed that this multiscale approach is not a substitute for more standard 

approaches such as significance-maximizing. While it does yield a meaningful hierarchy of 

statistically significant clusters, it provides no explicit method for rank ordering clusters in terms 

of statistical significance. In particular, this approach by itself cannot be used to gauge the 

relative statistical significance of clusters (such as determining whether clustering in Boston is 

more significant than in New York). Moreover, such representational schemes presently offer no 

formal criteria for choosing the key parameter values by which they are defined (the d-scales to 

be represented, the p-value thresholds and d -neighbor thresholds for core points, and even the 

connected-buffer approach to identifying distinct clusters).36  

One objective of this procedure is to produce explicit representations of clusters that capture both 

their relative shapes and concentrations in a natural way. We can then test the economic 

relevance of these clusters, which is the objective of Section 7. Since there is no universally 

accepted definition of clusters, it seems prudent to analyze this problem from many viewpoints 

and look for areas of substantial agreement among them. 

7. CLUSTERING OF R&D LABS AND CLUSTERING OF PATENT CITATIONS

So far, we have established a body of evidence demonstrating that R&D labs are indeed 

clustered, and we have posited a method for identifying specific clusters in space. In this section, 

we test whether these clusters are related to knowledge spillovers that are potentially attenuated 

by distance. To do this, we study the relative geographic concentration of citations to patents 

35 This point is demonstrated in Appendix B. 
36 It should be noted that certain, more systematic procedures may be possible. For example, the selection of “best 
representative” d-scales could in principle be accomplished by versions of k-means procedures in which the within-
group versus between-group variations in patterns are minimized.  
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originating in our clusters. These citations are a concrete indication of the transmission of 

information from one inventor to another. 

We follow the general approach developed in JTH, but it is modified to reflect the geographic 

clustering of R&D labs we identify in this paper. As described in Section 2, JTH test for the 

“localization” of knowledge spillovers by constructing measures of geographic concentration of 

citations contained in two groups of patents — a treatment group and a control group. The 

treatment group represents a set of patents that cite a specific, earlier patent obtained by an 

inventor living in a particular geographic area (in the JTH study either a state or a metropolitan 

area). For each treatment patent, JTH use a process to select a potential control patent that is 

similar to the treatment patent but does not cite the earlier patent. For patents in the treatment and 

control groups, JTH calculate the proportion of those patents obtained by an inventor living in 

the same geographic area as the inventor of the earlier patent. The difference of these two 

proportions is a test statistic for the localization of knowledge spillovers. In their study, JTH 

found that, relative to the pattern reflected in the sample of control patents, patent citations were 

two times more likely to come from the same state and about two to six times more likely to 

come from the same metropolitan area. 

We construct a comparable test statistic, with several refinements, and we substitute the R&D 

clusters identified in Section 6.2 for the state and metropolitan area geography used by JTH. This 

provides us with an alternative way to test for possible localized knowledge spillovers at much 

smaller spatial scales than are found in much of the preceding literature. Recall that the 

boundaries of our clusters are determined by interrelationships among the R&D labs in our 

sample and therefore should more accurately reflect the appropriate boundaries in which 

knowledge spillovers are most likely to be at work. In that sense, the geography of our clusters 

should be better suited for studying knowledge spillovers than states, metropolitan areas, or other 

political or administrative boundaries.   

t
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7.1 Construction of the Citations Data Set

For this analysis, we use data obtained from the NBER Patent Data Project.37 The data span the 

years 1996-2006. We identify the inventors on a patent using data on inventor codes found in the 

Patent Network Dataverse (Lai, D’Amour, and Fleming, 2009).  Patents are assigned to 

locations based on the zip code associated with the residential address of the first inventor on the 

patent.38 We do not use the address of the assignee (typically the company that first owned the 

patent) because this may not reflect the location where the research was conducted (e.g., it may 

be the address of the corporate headquarters and not the R&D facility). As a robustness check, 

we repeated our main analysis using the zip code of the second inventor on the patent. While the 

sample size is smaller (not all patents list two or more inventors), the results were virtually the 

same as we report below. 39 

For our tests, we rely primarily on the boundaries identified by our 5-mile and 10-mile core 

clusters located in the Northeast Corridor and in California.40 For each core cluster at a given 

scale, we assemble four sets of patents. The first set, which we call originating patents, represent 

those patents granted in the years 1996-1997 by an inventor living in the cluster. We call the 

second set of patents citing patents. These consist of all subsequent patents that cite one or more 

of the originating patents, after excluding patents with the same inventor or that were initially 

assigned to the same company as the originating patent. We exclude these self-citations because 

these are unlikely to represent the knowledge spillovers we seek to identify.41  

For every citing patent, we attempt to match it to an appropriate control patent. When we are 

successful, we include the citing patent in a set we call treatment patents and the matched patent 

in a set we call control patents. We select control patents using the following approach. The set 

of potential control patents excludes patents where the residential address of the first inventor is 

located outside the U.S. For a given citing patent, the set of potential control patents must have 

an application date after the grant date of the originating patent that is cited. Potential control 

37 See https://sites.google.com/site/patentdataproject/. We use the files pat76_06_assg.dta and cite_7606.dta. 
38 We used the location information contained in the file inventors5s_9608.tab downloaded from 
http://dvn.iq.harvard.edu/dvn/dv/patent. Note that this approach implies our inventors are located at the centroid of 
the zip code where they live. 
39 Results are available from the authors upon request. 
40 In Section 7.4.1 below, we report comparable tests for larger and smaller clusters. 
41 We do this using the pdpass variable in the data set pat76_06_assg and the Invnum in the Consolidated Inventor 
Dataset. For details, see Lai, D’Amour, and Fleming (2009). 
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patents also cannot cite the originating patent. The application date of potential control patents 

must be within three years of the application date of the treatment patent. Finally, as was done by 

JTH, potential control patents must have the same three-digit primary patent class as the 

treatment patent.42 In this way, potential controls are drawn from patents in the same 

technological field. 

The set of potential control patents for a given treatment patent may overlap with the set of 

potential controls for other treatment patents. To rule out any possibility that this overlap may 

affect our tests we randomized the order in which treatment patents were matched to control 

patents, and we randomized the selection of a specific control patent when there was more than 

one potential control patent from which to choose.43 The main results reported below allow for 

the selection of control patents with replacement. In other words, a given control patent may be 

matched to more than one citing patent. As a robustness check, in Section 7.4.4, we repeat the 

analysis by sampling potential controls without replacement.44 In this case, a potential control 

patent can be matched with one citing patent at most.  As is shown later, while this significantly 

reduces the rate at which we can match control patents to citing patents, it does not materially 

affect the test statistics. 

7.2 The Test Statistics 

For any given cluster scale, d  ( 5,  10 ) , let o denote the number of originating patents indexed 

0{ : 1, , }io i    that were granted to inventors living in one of the core clusters at scale d  in the

years 1996-1997.45 Let i denote the number of subsequent citations { : 1, , }ij ic j    to io (after

removing self-citations) over the years 1996-2006. For each of these citing patents, ijc , 

42 We match on the variable class in the data set pat76_06_assg. This is the original primary classification of the 
patent. We feel it is important to use a “real time” classification because these are what other researchers might rely 
upon around the time a patent was issued. 
43 Two random numbers are assigned to each citing patent. The first is used to set the order in which citing patents 
are matched. The second is used, in conjunction with a random number assigned to every potential control patent, to 
select a patent associated with the minimum absolute difference between the two random numbers. In JTH, when 
multiple potential control patents exist, they select the one with a grant date that is nearest to the grant date of the 
treatment patent as the control the patent. 
44 Randomization of the order of matching control patents to citing patents should rule out any bias resulting from an 
unknown systematic pattern in the timing of patents being issued for specific technology fields. 
45 The following formulation of the proportions used for testing purposes is based largely on Murata et al. (2014a). 
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designated as treatment patents, we attempted to identify a unique control patent, ijc , with the 

same three-digit patent class and with an application date within three years of the treatment 

patent (see above). We are not always successful in doing so. Let ( )i i  denote the number of 

treatment patents, ijc , for which a control, ijc , was found.  

Among these i  treatment patents, we count the number of patents, im , for which the residential 

address of the first inventor on the citing patent is located in the same core cluster as the 

originating patent it cites. The fraction of all such patents at scale d, i.e., the treatment 

proportion, is given by46  
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Similarly, let im  denote the number of matched control patents, ijc , in which the residential 

address of the first inventor is located in the same cluster as the originating patent cited by the 

treatment patent. The control proportion is then given by 
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The resulting test statistic is simply the difference between these proportions, i.e., p p  .  Under 

the null hypothesis of “no localization of knowledge spillovers,” this difference of independent 

proportions is well known to be asymptotically normal with mean zero and thus provides a well-

defined test statistic.47 

7.3 Main Results 

Table 3a presents the results of our localization or matching rate tests among 5-mile clusters in 

the Northeast Corridor, while Table 3b shows the results for the 10-mile clusters. As the last row 

46 The dependency of fraction, p (and all other quantities in (6)) is taken to be implicit. 

47 In JTH, the standardized test statistic, ( ) / [ (1 ) (1 )] /p p p p p p n      , is asserted to be t distributed. In fact, 

the t distribution is not strictly accurate. However, for the present large sample size, 50, 000,n  this is of little 
consequence since the t and standard normal distributions are virtually identical. 
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of Table 3a shows, inventors living in the 5-mile clusters obtained 8,526 patents in 1996-1997 

(column A). Those patents subsequently received 76,737 citations from other patents during the 

sample period (column B). Our matching algorithm, with replacement, was able to match nearly 

all of the citing patents with an appropriate control patent (column H). Among the treatment 

patents, 3.7 percent (column G) had a first inventor living in the same cluster as the patent it 

cited — this is the treatment proportion. Among the control patents, only 0.60 percent (column J) 

had a first inventor living in the same cluster as the patent cited by the treatment patent — this is 

the control proportion. As shown in the next to last row of the table, on average, a given patent 

citing an earlier patent in a 5-mile cluster is a little over six times as likely to have a first inventor 

living in that cluster than would be expected by chance alone. This value is on the higher side of 

the range reported by JTH for their test of localization at the metropolitan area level. And given 

that the values of the localization differentials we find for California (see below) are 

considerably higher than those reported by JTH suggests that we find larger effects than those 

reported by JTH.  As the last row of the Table 3a shows, the difference between the treatment 

and control proportions is highly statistically significant (column L). In addition, the location 

differential — defined as the ratio of treatment and control proportions — is at least around 3.0.  

Table 3b presents the results of our localization tests among 10-mile clusters in the Northeast 

Corridor. At a somewhat larger spatial scale, we find there are more originating patents, more 

citing patents, and, thus, more treatment and control patents. Both the treatment and control 

proportions (columns G and J) are higher than was found among the 5-mile clusters. The t 

statistic associated with the difference in these proportions is even higher than was found for the 

smaller clusters. At the same time, the location differential is somewhat smaller. On average, a 

given patent citing an earlier patent in a 10-mile cluster is three times as likely to have a first 

inventor living in that cluster than would be expected by chance alone. This value is on the lower 

side of the range reported by JTH for their test of localization at the level of SMSAs/CMSAs. 

There are a number of specific clusters where this differential is substantially higher. For 

example, the location differential is more than twice the four cluster average in the Washington, 

D.C., and Philadelphia clusters, and almost twice the average in the Boston cluster.  

Tables 4a and 4b present the results of our localization tests among 5- and 10-mile clusters, 

respectively, in California. Compared with the Northeast Corridor, we find many more 
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originating patents, citing patents, and, therefore, treatment and control patents. The treatment 

proportions (column G) among the California clusters are much higher than those found in the 

Northeast Corridor. However, this is driven almost entirely by the cluster association with 

Silicon Valley. The control proportions (column J) are also larger than we found in the Northeast 

Corridor. The t-statistic for the difference in treatment and control proportions (column L) is 

highly significant for all the 5-mile and 10-mile clusters. The overall location differentials are 

generally higher than we found among clusters in the Northeast Corridor. On average, a given 

patent citing an earlier patent in a 5- or 10-mile cluster in California is almost 10 or 12 times as 

likely to have a first inventor living in that cluster than would be expected by chance alone.  

The results reported in JTH represent an average across the metropolitan areas in their study, 

including metro areas in California.  The fact that we get roughly comparable values for the 

locational differentials for the clusters in the Northeast Corridor as those JTH find for the 

average SMSA, coupled with our finding of much larger locational differentials in our California 

clusters, suggest that our locational differentials are much higher on average than those reported 

by JTH.  

To summarize, the clusters of R&D labs identified using our multicore approach appear to 

coincide with the geographic clustering of patent citations, an often-cited indicator of knowledge 

spillovers. The following section develops these results further and discusses a number of 

robustness checks. 

7.4 Additional Results and Robustness Checks 

7.4.1 The Relationship Between Citation Location Differentials and Spatial Scale 

The statistics in the preceding tables suggest that there may be a systematic relationship between 

the size of clusters we study and the magnitude of location differentials we find. To explore this 

further, we extended our analysis to consider clusters at spatial scales of 20 miles. We 

summarize the results in Tables 5a and 5b.  

A number of patterns is evident from the table. First, the increase in the number of originating 

patents associated with larger core clusters falls off because a number of clusters that are 

significant at smaller spatial scales are not significant at the larger spatial scales. The treatment 
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and control proportions tend to increase as we consider larger core clusters. The difference 

between these proportions becomes more and more statistically significant as the sample size 

rises. At the same time, the location differential falls monotonically as the geographic size of the 

clusters increases. These results suggest that the core clusters are picking up knowledge 

spillovers over a variety of spatial scales. Nevertheless, the localization effects appear to be 

largest at spatial scales of 5 miles and perhaps less. This is also consistent with what we found in 

the results of our Global K analysis described earlier. And as already noted, the attenuation in the 

localization differential as cluster size increases is a typical finding in studies examining 

localized knowledge spillovers. 

7.4.2 Evidence of Patent Quality 

In this section, we investigate whether patents obtained by inventors living within our core 

clusters are somehow more important than patents obtained outside of these clusters. We rely on 

a common metric of patent quality — the number of citations received.48 We develop a 

“counterfactual” region for each of the 10-mile core clusters identified in Section 6. For example, 

the New York cluster is compared with the region outside of that cluster contained in states of 

New York, Connecticut, and northern New Jersey. The Boston cluster is compared with the 

region outside of the cluster in the states of Massachusetts, New Hampshire, and Rhode Island. 

In Table 6, we report a simple difference in means test for the number of citations per patents 

received by patents located inside or outside our clusters. For all of our clusters, the average 

number of citations received by patents is greater inside the cluster compared with the average 

citations received outside the respective cluster; this difference in citations is statistically 

significant in all clusters except one (Philadelphia).  

These results, combined with the results for the localization of citations, suggest there is prima 

facie evidence that the inventions developed within our clusters are either more valuable or at 

least more influential than inventions developed outside a cluster but within the same region of 

the country. An alternative explanation, which we cannot entirely rule out, is that patents within 

a cluster receive more citations because they are often cited by inventors living nearby. 

According to this reasoning, the inventions may not necessarily be better, but they are better 

48 Hall et al. (2005) show that a one-citation increase in the number of patents in a firm’s portfolio increases its 
market value by 3 percent. For additional evidence, see Trajtenberg (1990). 
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known by researchers in the area. This interpretation only reinforces the evidence of localized 

knowledge spillovers in our clusters. 

7.4.3 Alternative Approaches to Identifying Control Patents 

As was mentioned in Section 2, there has been some debate in the literature as to the best way of 

implementing a technological similarity requirement based on patent classifications. JTH 

identify potential control patents within the same three-digit primary patent class as the treatment 

patent. TFK suggest that the potential controls should be drawn more narrowly from patents that 

share the same patent class and subclass as the citing patent. They find that tests using this 

alternative approach reduce the size and significance of the localization ratios, especially at 

smaller geographies. 

The results presented in Section 7.3 are based on the JTH approach of limiting potential control 

patents to ones that share the same three-digit primary class as the citing patent. As a robustness 

check, we implement one version of the matching requirements tested in TFK. We restrict 

potential control patents to ones that share the same primary class and subclass as the citing 

patent.49 Our methodology is otherwise the same as we describe in Section 7.2. We report the 

results of this alternative test for 5- and 10- mile clusters in the Northeast Corridor (Tables 7a 

and 7b) and in California (Tables 8a and 8b). Comparing these results with Tables 3a and 3b and 

4a and 4b, there are very small differences in the treatment and control proportions. The t-

statistics using the TFK approach are only slightly smaller than they are when using the JTH 

approach, but they are nevertheless very large. We conclude that our results do not appear to be 

sensitive to the choice of technology controls. 

7.4.4 Sampling Without Replacement 

To rule out the possibility that sampling control patents with replacement is somehow affecting 

our results, we repeated the exercise above sampling potential controls without replacement (see 

Tables 9 and 10). The ability to match a citing patent to a potential control is reduced when using 

this approach (to about 53 percent). Otherwise, the results are very comparable with what is 

reported in Tables 3 and 4 above. This suggests that regardless of the approach used, there is not 

49 This is analogous to the test reported in Table 3 column 6 in TFK. 
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a substantial difference between the treatment proportion and the share of all citing patents with 

a first inventor living in the same cluster as the first inventor of the originating patent. 

8. CONCLUDING REMARKS

In this article, we use a new data set on the location of R&D labs and U.S. Patent and Trademark 

Office patent data and find strong evidence of knowledge spillovers among labs in close 

geographic proximity. This is accomplished by using several distance-based econometric 

techniques to analyze the spatial concentration of the locations of over 1,700 R&D labs in 

California and in a 10-state area in the Northeast Corridor of the United States. Rather than using 

a fixed spatial scale, we attempt to describe the spatial concentration of labs more precisely, by 

examining spatial structure at different scales using Monte Carlo tests based on Ripley’s K-

function.  Geographic clusters at each scale are identified in terms of statistically significant 

departures from random locations reflecting the underlying distribution of manufacturing activity 

(employment).   

We present robust evidence that private R&D labs are indeed highly concentrated over a wide 

range of spatial scales. We also find that R&D labs in some industries (e.g., chemicals, including 

drugs) are substantially more spatially concentrated than are R&D labs as a whole. This is 

especially the case when we focus on very small spatial scales (1 mile or less).   

We introduce a novel way to identify clusters, called the multiscale core-cluster approach.  The 

analysis identified four major clusters (one each in Boston, New York-Northern New Jersey, 

Philadelphia-Wilmington, and Washington, D.C.) in the Northeast Corridor and three major 

clusters in California (one each in the Bay Area, Los Angeles, and San Diego).   

In the final section of the paper, we verify that these local clusters are economically meaningful. 

We do so by applying tests developed by JTH to measure the degree to which patent citations are 

localized in these clusters — tangible evidence that knowledge spillovers are geographically 

mediated. For labs in the Northeast Corridor, we find, on average, that citations are three to six 

times more likely to come from the same cluster as earlier patents than one would predict using a 

(control) sample of otherwise similar patents. In California, citations are roughly 10 to 12 times 

more likely to come from the same cluster as earlier patents than one would predict using the 

control sample. These localization ratios are at least as large, and often much larger, than those 
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reported by JTH. In their study, JTH use cross-sectional analysis at either the state or 

metropolitan area levels. Thus, they provide estimates of localization of knowledge spillovers 

that are averaged over the metro areas or states used in their study.  But much information is lost 

regarding differences in the localization of knowledge spillovers in specific geographic areas. In 

this article, we show that such differences can be quite substantial. The results are robust to a 

number of alternative specifications for selecting control patents.   
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Variable Mean Std. Dev. Median Minimum Maximum

Land Area 29.10 37.61 16.87 0.01 468.16
Radius* 2.55 1.66 2.32 0.06 12.21
Total Employment 4,307.22 8,994.78 1,001.00 0.00 194,114.00
Manufacturing Employment 557.20 1,213.46 76.30 0.00 22,808.31
Total Establishments 250.36 370.76 97.00 1.00 6,962.00
Manufacturing Establishments 11.39 16.65 4.00 0.00 132.00
Labs 0.17 0.74 0.00 0.00 13.00

Land Area 20.95 29.46 12.04 0.06 361.79
Radius* 2.21 1.34 1.96 0.14 10.73
Total Employment 15,736.22 17,620.83 11,072.00 39.00 194,114.00
Manufacturing Employment 2,057.08 2,166.38 1,356.30 0.00 22,808.31
Total Establishments 697.51 574.58 568.50 6.00 6,962.00
Manufacturing Establishments 32.40 23.49 26.00 0.00 132.00
Labs 1.89 1.68 1.00 1.00 13.00

Variable Mean Std. Dev. Median Minimum Maximum

Land Area 95.56 256.33 17.34 0.01 3,806.05
Radius* 3.84 3.96 2.35 0.06 34.81
Total Employment 5,989.95 9,758.35 1,700.00 0.00 79,766.00
Manufacturing Employment 858.14 2,394.39 64.50 0.00 27,186.00
Total Establishments 467.19 555.17 262.50 0.00 3,527.00
Manufacturing Establishments 30.18 61.83 8.00 0.00 776.00
Labs 0.39 2.01 0.00 0.00 33.00

Land Area 18.78 37.75 8.19 0.07 385.98
Radius* 2.02 1.38 1.61 0.15 11.08
Total Employment 19,482.47 17,300.91 15,088.00 0.00 79,766.00
Manufacturing Employment 3,607.79 5,188.27 1,569.00 0.00 27,186.00
Total Establishments 1,173.13 677.45 1,065.50 0.00 3,527.00
Manufacturing Establishments 94.52 96.32 62.00 0.00 636.00
Labs 3.16 4.90 1.50 1.00 33.00

* Calculated assuming a zip code of a circular shape with an area as reported in the data

Zip Codes with 1 or more Labs (204)

Sources: Authors' calculations based on the 1998 editions of the Directory of American Research and Technology  and Zip 
Code Business Patterns

Northeast (10-State)

Table 1: Summary Statistics

All Zip Codes (6,044)

Zip Codes with 1 or more Labs (549)

California

All Zip Codes (1,646)
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Table 2a: Concentration of Labs by Industry Northeast Corridor (P-values)† 

Miles 

INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50 

Metal Mining 10 4 0.5021 0.5029 0.5044 0.5052 0.5277 0.1674 0.4149 

Oil and Gas Extraction 13 3 0.5011 0.5019 0.5026 0.5034 0.5337 0.0906 0.2286 

Food and Kindred Products 20 25 0.5825 0.6278 0.6750 0.7081 0.0984 0.2097 0.0480 

Textile Mill Products 22 14 0.0267 0.0465 0.0690 0.0859 0.3468 0.7839 0.6446 

Apparel 23 5 0.6029 0.6596 0.7103 0.7460 0.4685 0.2833 0.3058 

Paper and Allied Products 26 28 0.6029 0.6596 0.7103 0.7460 0.4685 0.2833 0.3058 

Printing and Publishing 27 3 0.5009 0.5012 0.5019 0.5024 0.5111 0.5837 0.0740 

Chemicals and Allied Products 28 420 0.0001 0.0001 0.0001 0.0001 0.0001 0.0020 0.0001 

Petroleum Refining 29 24 0.0844 0.1380 0.1980 0.2425 0.3012 0.0079 0.0358 

Rubber Products 30 38 0.6728 0.7493 0.8135 0.8544 0.5710 0.7974 0.9965

Stone, Clay, Glass, and Concrete Products 32 36 0.0002 0.0008 0.0032 0.0011 0.1041 0.7385 0.6886 

Primary Metal Industries 33 36 0.6555 0.7284 0.7921 0.8327 0.7848 0.2592 0.4881 

Fabricated Metal Products 34 44 0.0004 0.0026 0.0101 0.0200 0.0911 0.6985 0.8571 

Industrial and Commercial Machinery 35 140 0.6024 0.7659 0.4192 0.4052 0.9910 0.9898 0.9867 

Electrical and Electronic Equipment Except 
Computers 

36 242 0.1958 0.5789 0.5825 0.7329 0.7058 0.8030 0.7423 

Transportation Equipment 37 40 0.2277 0.3575 0.4867 0.5711 0.9594 0.9989 0.9744 

Instruments and Related Products 38 243 0.0334 0.1509 0.3838 0.3983 0.8171 0.8937 0.8778 

Miscellaneous Manufacturing Industries 39 18 0.0468 0.0789 0.1126 0.1380 0.0378 0.1672 0.1093 

Business Services 73 137 0.0004 0.0052 0.0166 0.0055 0.0004 0.0001 0.0022 
†Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated than overall 
labs at the 5 percent level of significance. Light gray shading indicates significantly more dispersed than overall labs at the 5 
percent level of significance. 

Source: Authors’ calculations using the Directory of Research and Technology (1998). 
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Table 2b: Concentration of Labs by Industry California (P-values)† 

Miles 

INDUSTRY SIC LABS 0.25 0.5 0.75 1 5 20 50 

Oil and Gas Extraction 13 2 0.5015 0.5025 0.5040 0.5060 0.5455 0.6275 0.7010 

Heavy Construction 16 2 0.5010 0.5015 0.5035 0.5055 0.5330 0.6210 0.1910 

Food and Kindred Products 20 3 0.5055 0.5100 0.5150 0.5185 0.5990 0.7700 0.4925 

Paper and Allied Products 26 2 0.5020 0.5035 0.5045 0.5080 0.5340 0.6175 0.1970 

Chemicals and Allied Products 28 129 0.0025 0.0100 0.0170 0.0705 0.9670 0.9920 0.9480 

Petroleum Refining 29 2 0.5005 0.5025 0.5040 0.5065 0.5385 0.6105 0.6875 

Rubber Products 30 8 0.0235 0.0535 0.0980 0.1320 0.4020 0.3660 0.1630 

Stone, Clay, Glass, and Concrete 
Products 

32 6 0.5125 0.5290 0.5515 0.5695 0.7950 0.7075 0.4215 

Primary Metal Industries 33 11 0.0435 0.1130 0.1780 0.2455 0.8770 0.7235 0.2865 

Fabricated Metal Products 34 16 0.5925 0.6840 0.7670 0.8235 0.9890 0.4555 0.1765 

Industrial and Commercial Machinery 35 99 0.0140 0.0100 0.0105 0.0120 0.0020 0.0010 0.0205 

Electrical and Electronic Equipment 
Except Computers 

36 211 0.0450 0.0030 0.0075 0.0030 0.0010 0.0030 0.1040 

Transportation Equipment 37 36 0.0010 0.0030 0.0030 0.0030 0.4635 0.2635 0.1570 

Instruments and Related Products 38 134 0.0010 0.0480 0.2165 0.4610 0.8845 0.9960 1.0000 

Miscellaneous Manufacturing Industries 39 8 0.5285 0.5620 0.5980 0.6280 0.9000 0.7310 0.7205 

Business Services 73 147 0.0300 0.0150 0.0105 0.0045 0.0020 0.0010 0.0010 
†Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated 
than overall labs at the 5 percent level of significance. Light gray shading indicates significantly more dispersed than 
overall labs at the 5 percent level of significance. 

Source: Authors’ calculations using the Directory of Research and Technology (1998). 
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Source: Directory of American Research and Technology and authors’ calculations 

Each dot on the map represents the location of a single R&D lab. In areas with a dense cluster of 
labs, the dots tend to sit on top of one another, representing a spatial cluster of labs. 

Figure 1: Location of R&D Labs 
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Figure 4a: Z-scores for Northeast Corridor 

Dotted line Z = 1.65 

Figure 4b: Z-scores for California 

Dotted line Z = 1.65 
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Figure 5a:  Northeast Corridor Industry Z-scores 

Solid line Z = 1.65 
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Figure 7:  Multiscale Core Clusters in the San Francisco Bay Area 
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Figure 9a: Northeast Corridor Core Clusters  
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Figure 9b: California Core Clusters 
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Appendix A: Robustness of Global K-Cluster Results 

For completeness, we have analyzed R&D clustering with respect to Manufacturing 
Establishments as well as Manufacturing Employment. To do so, the number of manufacturing 
employees in each zip code area was simply replaced with the number of manufacturing 
establishments. In both the Northeast Corridor and California, the only substantive differences in 
global clustering with respect to these two reference distributions was due to certain anomalies 
arising from clusters of small establishments in industries not closely related to R&D activity.  

The single most dramatic example is for the Northeast Corridor, where the Garment District in 
South Manhattan is so strongly concentrated (more than 2,000 establishments in two adjacent zip 
codes: 10018 and 10001) that it far outweighs the clustering of establishments in all other 
Northeast manufacturing industries combined. Figure A1 shows the comparison between a 
typical counterfactual lab patterns in South Manhattan generated by the manufacturing 
establishment distribution on the left, with the manufacturing employment distribution on the 
right (where zip codes 10018 and 10001 are the darkest pair in the left panel). So while 
manufacturing employment is seen to be quite concentrated in this area, it is clear that 
manufacturing establishments are relatively far more concentrated. Because this area constitutes 
such an extreme outlier in our data, we have run the simulation analyses both with and without 
South Manhattan (where the latter excludes the 20 R&D labs in South Manhattan as well), and 
the resulting global Z-scores are shown in Figures A2 and A3 respectively.  

Notice first that the overall shape of the curve in Figure A2 is qualitatively very similar to that 
for manufacturing employment in Figure 4a of the text. But the values of the curve in Figure A2 
are drastically lower and fail to yield significant clustering for essentially all scales less than 20 
miles. But in Figure A3, it is seen that by removing only the small area of South Manhattan in 
Figure A1, the patterns of clustering significance for both manufacturing establishments and 
employment are now qualitatively similar, and indeed clustering at small scales is more 
significant with respect to the distribution of establishments. So the influence of the garment 
industry is seen to be quite dramatic. Moreover, since it is reasonable to assume that the location 
of manufacturing R&D is relatively insensitive to this particular industry, the removal of this 
outlier seems reasonable.  

Turning next to California, a similar anomaly was found with respect to the Jewelry District in 
Central Los Angeles, which again represents a strong clustering of small manufacturers not 
closely related to R&D. But because the effect of this cluster is much smaller in scope, we 
present only the full set of results for all manufacturing establishments in Figure A4 below. Here 
it is evident that except for small scales up to about 3 miles, the shape and levels of significance 
for both manufacturing establishments and manufacturing employment in Figure 4b of the text 
are remarkably similar. 

Finally, it should be mentioned that a similar analysis was done using Total Employment as the 
reference distribution. Clustering anomalies for this distribution were even more severe than for 
Manufacturing Establishments, and the anomalies appear to have little relation to manufacturing 
R&D. So, results for this distribution are deemed to have little relevance for the present analysis 
and are not reported. 
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Appendix B: Robustness of Local K-Cluster Results 

For completeness, we compare our local K-cluster results with two alternative econometric 
approaches that have been developed for resolving multiple testing problems in spatial 
applications, namely, the seminal approach of Besag and Newell (1991) and the more recent 
refinement of this approach by Kulldorff (1997). Both approaches resolve the multiple-testing 
problem by conducting only a single test.   

In the present setting, one focuses on zip code areas (cells) and replaces individual locations with 
counts of R&D labs in each area (cell counts). Using centroid distance between cells, candidate 
clusters are then defined as unions of m-nearest neighbors to given “seed” cells, and a test 
statistic is constructed to determine the single most significant cluster.  In both of these 
significance-maximizing procedures, the notion of “significance” is defined with respect to tests 
that are based essentially on the original hypothesis, 0H , namely, that R&D labs are distributed in 

a manner proportional to manufacturing employment. One key difference is that counterfactual 
locations are implicitly assumed to be randomly distributed inside each zip code (i.e., are 
distributed proportional to area rather than total employment at the block level). To determine a 
second most significant cluster, the zip code areas in the most significant cluster are removed, 
and the same procedure is then applied to the remaining zip code areas.  This procedure is 
typically repeated until some significance threshold (such as a p-value exceeding 0.05) is 
reached.   

While this repeated series of tests might appear to reintroduce multiple testing, such tests are by 
construction defined over successively smaller spatial domains and, hence, are not directly 
comparable. Notice also that at each step of this procedure, the cluster identified has an explicit 
form, namely, a seed zip code area together with its current nearest neighbors. So both the 
multiple-testing and cluster-identification problems raised for the K-function analyses above are 
at least partially resolved by this significance-maximizing approach.  

We applied both the Besag-Newell procedure and Kulldorff’s SATSCAN procedure to our data 
and found them to be in remarkable agreement with each other. Thus, we present only the results 
of the (more popular) SATSCAN procedure. In this setting, we ran the maximum of 10 iterations 
allowed by the SATSCAN software, and the results from the union of these 10 clusters are 
plotted in Figure B1 for labs located in the Northeast Corridor and Figure B2 for labs in 
California.  By comparing these results with Figures 6a and 6b in the text, it is evident that both 
procedures are identifying essentially the same areas. This comparison thus serves as one type of 
robustness check on our local K-cluster results. 

However, there are certain differences between these results. Notice first that the SATSCAN 
clusters appear to be more circular in form than the corresponding core clusters. This is 
particularly evident in the Northeast Corridor, where isolated clusters such as Boston, 
Philadelphia, and Washington D.C., appear to be very circular. As previously mentioned, this 
particular SATSCAN procedure only considers circular (nearest-neighbor) clusters when 
identifying a “most significant” one. While it is possible to extend this restriction to certain 
classes of elliptical clusters, the key point is that prior restrictions must be placed on the set of 
“potential clusters” in order to keep search times within reasonable bounds. By way of contrast, 
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our present core-cluster approach involves no prior restrictions on cluster shapes, and in this 
sense it is much more flexible in nature.  

A second limitation of these significance-maximizing approaches, which is less evident by visual 
inspection, is the path-dependent nature of cluster formation. As previously mentioned, the zip 
code areas defining clusters created at each step of the procedure are removed before considering 
each new cluster. When clusters are very distinct (such as Boston, Philadelphia, and Washington, 
D.C. in Figure B1), this removal process creates no difficulties. But when subsequent clusters are 
in the same area as previous clusters (such as the New York area in Figure B1 and the Bay Area 
in Figure B2), the formation of early clusters modifies the neighborhood relations among the 
remaining zip codes at later stages. So, at a minimum, these modifications require careful 
“conditional” interpretations of all clusters beyond the first cluster.  Thus, a second advantage of 
the present core-cluster approach is the simultaneous formation of all clusters, which naturally 
avoids any type of sequential constraints. 

Appendix C:  Description of the Major Areas of Agglomeration50  

C.1 Northeast Corridor 

Of the 1,035 R&D labs in the Northeast Corridor, 34 percent conduct research in chemicals; 17 
percent conduct research in electronic equipment, except computer equipment; 16 percent do 
research in measuring, analyzing, and control equipment; 9 percent conduct research in computer 
programming and data processing; and another 9 percent do research in industrial, commercial 
machinery, and computer equipment.   

The Boston Agglomeration 

There are 182 R&D labs within Boston’s single 10-mile cluster, as shown in Figure 8a.51  Most 
of these labs conduct R&D in five three-digit SIC code industries — computer programming and 
data processing, drugs, lab apparatus and analytical equipment, communications equipment, and 
electronic equipment.  The largest 5-mile cluster shown in Figure 8a contains 109 labs, which 
account for 60 percent of all labs in the larger 10-mile cluster.  At the 1-mile scale, Boston has 
five clusters, all of which are centered in the largest 5-mile cluster. The largest of these 1-mile 
clusters contains 27 labs, half of which conduct research on drugs.   

The New York City Agglomeration 

The single largest cluster identified within our 10-state study area is the 10-mile cluster above 
New York City (shown in Figure C1) that stretches from Connecticut to New Jersey. This cluster 
contains a total of 287 R&D labs.  There are 134 (47 percent) labs in this cluster that conduct 
research on chemicals and allied products, 62 of which focus on drugs. Labs in this cluster also 
conduct research based on electrical equipment and industrial machinery.  Within this highly 
elongated 10-mile cluster, four distinct 5-mile clusters were identified. Most of the concentration 
is seen to occur in the two clusters west of New York City, which, in particular, contain five of 

50 In addition to the four major areas of agglomeration discussed below, there are two smaller agglomerations: one in 
Pittsburgh and another in Buffalo.  
51 The map legend in Figure 7 in the text applies to all map figures in this section. 
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the nine 1-mile clusters identified. Among these 1-mile clusters, the largest is the “Central Park” 
cluster shown in Figure A1.  About two-thirds of the 17 labs in this cluster are conducting 
research on drugs, perfumes, and cosmetics, or computer programming and data processing. 

The Philadelphia Agglomeration 

As seen in Figure C2, there is a large 10-mile cluster mostly to the west of Philadelphia (the city 
of Philadelphia is shown in darker gray), where there are a total of 44 labs.  Of these 44 labs, 16 
conduct research on drugs, and another 15 labs conduct research in the areas of computers, 
electronics, and instruments and related products. This cluster in turn contains a 5-mile cluster 
centered in the King of Prussia area directly west of Philadelphia and contains 29 labs, with 40 
percent doing research on drugs. There is a second 5-mile cluster, containing 17 labs, centered in 
the city of Wilmington to the southwest.  Here, 88 percent of the labs are doing research on 
chemicals and allied products.   

The Washington, D.C. Agglomeration  

The final area of concentration in the Northeast Corridor is the 10-mile cluster around 
Washington, D.C., which contains 74 R&D labs as shown in Figure C3 (with the city of 
Washington, DC, in darker gray), where one 5-mile cluster can also be seen. About one-quarter 
of the labs in the 10-mile cluster do research in the areas of computer programming and data 
processing. Furthermore, another 20 percent of the labs conduct research on communications 
equipment. In turn, this cluster contains two 1-mile clusters, the largest of which (to the north) 
contains 16 labs with one-half conducting research on drugs.   

C.2 California 

Turning to California, 27 percent of 645 private R&D labs in the state conduct research in 
electronic equipment, except computers; 18 percent do research in computer and data processing 
services; another 18 percent carry out research in chemicals, and 16 percent perform R&D in 
measuring, analyzing, and controlling equipment. 

California’s Bay Area 

Of the 645 labs in California, 340, slightly more than 50 percent, are located in the single 10-
mile cluster in the Bay Area. This cluster stretches from Novato in the north to San Jose in the 
south and from Dublin-Pleasanton in the east to the Pacific Ocean in the west (Figure 7).  
Research in these labs is concentrated in three SIC industries: electronic equipment, except 
computers; computer and data processing services; and chemicals and allied products. The Bay 
Area has two 5-mile clusters, the most prominent of which is in the Palo Alto–San Jose area, 
consisting of 282 labs.  The 10-mile cluster also contains seven 1-mile clusters.  The most 
prominent 1-mile cluster is in Silicon Valley and consists of 138 labs (accounting for 41 percent 
of all labs in the Bay Area), with 30 percent conducting research in computer and data 
processing services. 

San Diego 

The largest five-mile cluster in Southern California consists of 56 labs found in San Diego.  Of 
these 56 labs, 20 conduct research on chemicals; 11 perform research in the computer and data 
processing service; and 10 do research in measuring equipment. This cluster in turn contains a 5-
mile cluster consisting of 44 labs, and within it is a 1-mile cluster consisting of 33 labs.  
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The Los Angeles Area 

The most prominent cluster of labs in the Los Angeles area consists of 51 labs located in the 
Irvine-Santa Ana-Newport Beach area. Within this 5-mile cluster, there are two separate 1-mile 
clusters, one comprising 20 labs, and the other consisting of 10 labs.  Electronic equipment, 
except computers, is the main area of research for these labs, followed by measuring, analyzing, 
and controlling equipment; and transportation equipment.  In addition, there are two separate 1-
mile clusters to the north of the 10-mile cluster. One of the clusters is in Torrance with nine labs, 
and the other in Santa Monica has seven labs.  
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Figure A2:  Z-scores Relative to Manufacturing Establishments for 
the Northeast Corridor Including South Manhattan

Figure A1. Manufacturing Establishment Counterfactuals (left panel) and 
Manufacturing Employment Counterfactuals (right panel) 
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Figure A3:  Z-scores Relative to Manufacturing Establishments for 
the Northeast Corridor Excluding South Manhattan 

Figure A4:  Z-scores Relative to Manufacturing 
Establishments for California 
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Figure B2: SATSCAN Clusters for 
California 

Figure B1: SATSCAN Clusters for 
the Northeast corridor  
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Figure C1: New York Core Clusters 
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Figure C2: Philadelphia Core Clusters 
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Figure C3: Washington, D.C.  Core 
Clusters 




