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Abstract

We propose a novel method to estimate dynamic equilibriummodels with stochastic

volatility. First, we characterize the properties of the solution to this class of models.

Second, we take advantage of the results about the structure of the solution to build

a sequential Monte Carlo algorithm to evaluate the likelihood function of the model.

The approach, which exploits the profusion of shocks in stochastic volatility models, is

versatile and computationally tractable even in large-scale models, such as those often

employed by policy-making institutions. As an application, we use our algorithm and

Bayesian methods to estimate a business cycle model of the U.S. economy with both

stochastic volatility and parameter drifting in monetary policy. Our application shows

the importance of stochastic volatility in accounting for the dynamics of the data.

Keywords: Dynamic equilibrium models, Stochastic volatility, Parameter drifting,

Bayesian methods.

JEL classification numbers: E10, E30, C11.
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1. Introduction

Over the last few years, economists have uncovered the importance of time-varying volatility in

accounting for the dynamics of U.S. aggregate data. Stock and Watson (2002) and Sims and

Zha (2006) are some prominent examples of this line of research. As a response, a growing

literature has developed to investigate the origins and consequences of time-varying volatility. A

particularly successful branch of this literature uses dynamic equilibrium models to emphasize the

role of volatility shocks (also known as uncertainty shocks, but in any case specified as stochastic

volatility as in Shephard, 2008) in business cycle fluctuations. Among those we can highlight are

Bloom et al. (2007), Fernández-Villaverde and Rubio-Ramírez (2007), Justiniano and Primiceri

(2008), Bloom (2009), Fernández-Villaverde et al. (2010c), and Bloom et al. (2012). In these

models, there are two types of shocks: structural shocks (shock to productivity, to preferences,

to policy, etc.) and volatility shocks (shocks to the standard deviation of the innovations to the

structural shocks).

To fulfill the promise in this literature, it is crucial to have a set of tools to take these dynamic

equilibrium models with stochastic volatility to the data. Namely, we want to estimate, evaluate,

and compare these models using a likelihood-based approach. However, the task is complicated

by the inherent non-linearity that stochastic volatility generates. By construction, linearization is

ill-equipped to handle time-varying volatility models because it yields certainty-equivalent policy

functions. That is, volatility influences neither the agents’decision rules nor the laws of motion

of the aggregate variables. Hence, to consider how volatility affects those, it becomes imperative

to employ a non-linear solution method for the dynamics of the economy. Once we consider

non-linear solution methods we are forced to use simulation-based estimators of the likelihood.

In principle, and beyond the computational burden, this could seem a mild challenge. For

instance, one could be tempted to get around this problem by solving the model non-linearly with

a fast algorithm and employing, for estimation, a particle filter to get an unbiased simulation-

based estimator of the likelihood. The particle filter presented in Fernández-Villaverde and Rubio-

Ramírez (2007) would be a natural candidate for such an undertaking. Unfortunately, that version

of the particle filter relies, when estimating models with stochastic volatility, on the presence of lin-

ear measurement errors in observables. Otherwise, we would be forced to solve a large quadratic

system of equations with multiple solutions, an endeavor for which there are no suitable algo-

rithms. Although measurement errors are both plausible and empirically relevant, their presence
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complicates the interpretation of the results. Thus, it is desirable to consider a particle filter that

departs from requiring measurement errors.

To accomplish this goal, we show how to write a particle filter that allows us to evaluate

the likelihood of a dynamic equilibrium model with stochastic volatility by exploiting the struc-

ture of the second-order approximation to the decision rules that characterize the equilibrium

of the economy without the need of measurement errors. Second-order approximations capture

the implications of stochastic volatility and are convenient because they are accurate but not

computationally expensive.

We achieve the objective in two steps. First, we characterize the second-order approximation

to the decision rules of a rather general dynamic equilibrium model with stochastic volatility.1

Second, we demonstrate how we can use this characterization to handily simulate the likelihood

function of the model with a particle filter without measurement errors. The key is to show how

the decision rules characterization reduces the quadratic problem associated with the evaluation

of the approximated measurement density to a much simpler matrix inversion problem. This is a

novel extension of sequential Monte Carlo methods that can be useful for other applications. After

we have evaluated the likelihood, we can combine it with a prior and an Markov chain Monte

Carlo (McMc) algorithm to draw from the posterior distribution (Flury and Shephard, 2011).

Our characterization of the second-order approximation to the decision rules should be of

interest in itself even for researchers who are not evaluating the likelihood of their model but who

are keen to understand how the model works. Among others, the results are useful to analyze the

equilibrium of the model, to explore the shape of its impulse-response functions, or to calibrate

it.

More concretely, we prove that:

1. The first-order approximation to the decision rules of the agents (or any other equilibrium

object of interest) does not depend on volatility shocks and they are certainty equivalent.

2. The second-order approximation to the decision rules of the agents only depends on volatility

shocks on terms where volatility is multiplied by the innovation to its own structural shock.

For instance, if we have two structural shocks (a productivity and a preference shock) and

1These theorems generalize previous results derived by Schmitt-Grohé and Uribe (2004), for the homoscedastic
shocks case to the time-varying case.
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a volatility shock to each of them, the only non-zero term where the volatility shock to

productivity appears is the one where the volatility shock to productivity multiplies the

innovation to the productivity shock. Thus, of the terms in the second-order approximation

that complicate the evaluation of the likelihood function, only a few are non-zero.

3. The perturbation parameter will only appear in a non-zero term where it is raised to a

square. This term is a constant that corrects for precautionary behavior induced by risk.

As an application, we estimate a dynamic equilibrium model of the U.S. economy with stochas-

tic volatility using the particle filter and Bayesian methods. The model, an otherwise standard

business cycle model with nominal rigidities, incorporates not only stochastic volatility in the

shocks that drive its dynamics but also parameter drifting in the parameters that control mone-

tary policy. In that way, we include two of the main mechanisms that researchers have highlighted

to account for the time-varying volatility of U.S. data: heteroscedastic shocks and parameter drift-

ing. We include these together in the model because a “one-at-a-time” investigation is fraught

with peril. If we allow only one source of variation in the model, the likelihood may want to take

advantage of this extra degree of flexibility to fit the data better. For example, if the “true”model

is one with parameter drifting in monetary policy, an estimated model without drift but with sto-

chastic volatility in one of the structural shocks may interpret the “true”drift as time-varying

volatility in that shock. If, instead, we had time-varying volatility in technological shocks in the

data, an estimated model without stochastic volatility and only parameter drifting may conclude,

erroneously, that the parameters of monetary policy are changing. Lastly, we have a model that

is as rich as the models employed by policy-making institutions in real life. While solving and

estimating such a large model is a computational challenge, we wanted to demonstrate that our

procedure is of practical use and to make our application a blueprint for the estimation of other

dynamic equilibrium models.

Our main empirical findings are as follows. First, the posterior distribution of parameters

puts most of its mass in areas that denote a fair amount of stochastic volatility, yet another

proof of the importance of time-varying volatility in applied models. Second, a model comparison

exercise indicates that, even after controlling for stochastic volatility, the data clearly prefer a

specification where monetary policy changes over time. This finding should not be interpreted,

though, as implying that volatility shocks did not play a role of their own. It means, instead,
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that a successful model of the U.S. economy requires the presence of both stochastic volatility

and parameter drifting, a result that challenges the results of Sims and Zha (2006). Finally, we

document the evolution of the structural shocks, of stochastic volatility, and the parameters of

monetary policy. We emphasize the confluence, during the 1970s, of times of high volatility and

weak responses to inflation, and, during the 1990s, of positive structural shocks and low volatility

even if monetary policy was weaker than often argued. In the appendix, we thoroughly explore

the model, including the construction of counterfactual histories of the U.S. data by varying

some aspect of the model such as shutting down time-varying volatility or imposing alternative

monetary policies.

An alternative to our stochastic volatility framework would be to work with Markov regime-

switching models such as those of Bianchi (2009) or Farmer et al. (2009). This class of models

provides an extra degree of flexibility in modelling aggregate dynamics that is highly promising.

In fact, some of the fast changes in policy parameters that we document in our empirical sec-

tion suggest that discrete jumps could be a good representation of the data. However, current

technical limitations regarding the computation of the equilibria induced by regime switches force

researchers to focus on small models that are only stylized representations of an economy.

Finally, even if the motivation for our approach and the application belong to macroeconomics,

there is nothing specific about that field in the tools we present. One can think about the impor-

tance of estimating dynamic equilibrium models with stochastic volatility in many other fields,

from finance (Bansal and Yaron, 2004, would be a prominent example) to industrial organization

(for instance, an equilibrium model of industry dynamics where the demand and supply shocks

have time-varying volatility), international trade (where innovations to the real exchange rates or

to the country spreads are well known to have time-varying volatility, see Fernández-Villaverde et

al., 2010c), or many others.

The rest of the paper is organized as follows. Section 2 presents a generic dynamic equilibrium

model with stochastic volatility to fix notation and discuss how to solve it. Section 3 explains

the evaluation of the likelihood of the model. Section 4 introduces a business cycle model as

an application of our procedure, takes it to the U.S. data, and comments on the main findings.

Section 5 concludes. An extensive technical appendix includes details about the proofs of the

main results in the paper, the model, the computation, and additional empirical exercises.
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2. Dynamic Equilibrium Models with Stochastic Volatility

2.1. The Model

The set of equilibrium conditions of a wide class of dynamic equilibrium models can be written as

Etf (Yt+1,Yt,St+1,St,Zt+1,Zt; γ) = 0, (1)

where Et is the conditional expectation operator at time t, Yt = (Y1t,Y2t, . . . ,Ykt)′ is the k × 1

vector of observables at time t, St = (S1t,S2t, . . . ,Snt)′ is the n × 1 vector of endogenous states

at time t, Zt = (Z1t,Z2t, . . . ,Zmt)′ is the m × 1 vector of structural shocks at time t, f maps

R2(k+n+m) into Rk+n+m, and γ is the nγ × 1 vector of parameters that describe preferences and

technology. In the context of this paper, γ is also the vector of parameters to be estimated.

We will consider models where the structural shocks, Zit+1, follow a stochastic volatility process

of the form

Zit+1 = ρiZit + Λσiσit+1εit+1 (2)

for all i ∈ {1, . . . ,m}, where Λ is a perturbation parameter, σi is the mean volatility, and log σit+1,

the percentage deviation of the standard deviation of the innovations to the structural shocks with

respect to its mean, evolves as

log σit+1 = ϑi log σit + Λ
(
1− ϑ2

i

) 1
2 ηiuit+1 (3)

for all i ∈ {1, . . . ,m}. The combination of levels in (2) and logs in (3) ensures a positive σit+1.

We multiply the innovation in (3) by
(
1− ϑ2

i

) 1
2 to normalize its size by the persistence of σit. It

will be clear momentarily why we specify (2) and (3) in terms of the perturbation parameter Λ.

It is also convenient to write, for all i ∈ {1, . . . ,m}, the laws of motions for Zit and log σit

Zit = ρiZit−1 + σiσitεit (4)

and

log σit = ϑi log σit−1 +
(
1− ϑ2

i

) 1
2 ηiuit (5)

Note that the perturbation parameter Λ appears only in equations (2) and (3) but not in
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equations (4) and (5). This is because this parameter is used to eliminate, when we later determine

the point around which to perform a higher-order approximation to the equilibrium dynamics of

the model, any uncertainty about the future. Given the information set in equation (1), there

is uncertainty about both Zit+1 and log σit+1 for all i ∈ {1, . . . ,m}, but there is no uncertainty

about either Zit or log σit for any i ∈ {1, . . . ,m}.

Let Σt = (log σ1t, . . . , log σmt)
′ be the m× 1 vector of volatility shocks, Et = (ε1t, . . . , εmt)

′ the

m× 1 vector of innovations to the structural shocks, and Ut = (u1t, . . . , umt)
′ the m× 1 vector of

innovations to the volatility shocks. We assume that Et ∼ N (0, I) and Ut ∼ N (0, I), where 0 is

an m× 1 vector of zeros and I is an m×m identity matrix. To ease notation, we assume that:

1. All structural shocks face volatility shocks and that the volatility shocks are uncorrelated.

It is straightforward, yet cumbersome, to generalize the notation to other cases.

2. Et and Ut are normally distributed. As we will see below, to implement our particle filter,

we only need to be able to simulate Et and evaluate the density of Ut.

2.2. The Solution

Given equations (1)-(5), the solution to the model -if one exists- that embodies equilibrium dy-

namics (that is, agent’s optimization and market clearing conditions) is characterized by a policy

function describing the evolution of the endogenous state variables

St+1 = h (St,Zt−1,Σt−1, Et,Ut,Λ; γ) , (6)

and two policy functions describing the law of motion of the observables

Yt = g (St,Zt−1,Σt−1, Et,Ut,Λ; γ) (7)

and

Yt+1 = g (St+1,Zt,Σt,ΛEt+1,ΛUt+1,Λ; γ) , (8)

together with equations (4) and (5) describing the laws of motion of the structural and volatility

shocks. The policy functions h and g map Rn+4m+1 into Rn and Rk, respectively, and are indexed

by the vector of parameters γ.
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For our purposes, it is important to define the steady state of the model. Our assumptions

about the stochastic processes imply that, in the steady state, Z = 0 and Σ = 0. Given a vector

of parameters γ and equations (1)-(8), the steady state of the model is a k×1 vector of observables

Y = (Y1,Y2, . . . ,Yk)′ and an n× 1 vector of endogenous states S = (S1,S2, . . . ,Sn)′ such that

f (g (h (S,0,0,0,0, 0; γ) ,0,0,0,0, 0; γ) , g (S,0,0,0,0, 0; γ) , h (S,0,0,0,0, 0; γ) ,S,0,0; γ) = 0.

(9)

In addition, in the steady state, the following two relationships hold

S = h (S,0,0,0,0, 0; γ) , (10)

and

Y = g (S,0,0,0,0, 0; γ) . (11)

The perturbation parameter Λ plays a key role in defining our steady state. If Λ = 0, the

model is in the steady state, since we eliminate any uncertainty about the future. If Λ 6= 0, the

model is not in the steady state and conditions (9)-(11) do not hold. For instance, in general

S 6= h (S,0,0,0,0,Λ; γ) because of the precautionary behavior of agents.

2.3. The State-Space Representation

Given the solution to the model -the policy functions (6)-(8) together with equations (4) and (5)-

we can concisely characterize the equilibrium dynamics of the model by its state-space represen-

tation written in terms of the transition and the observation equations.

The transition equation uses the policy function (6), together with equations (4) and (5),

to describe the evolution of the states (endogenous states, structural shocks, volatility shocks,

and their innovations) as a function of lag states, the perturbation parameter, and the vector of

parameters

St+1 = h̃ (St,Λ; γ) + ΞWt+1 (12)

where St =
(
S ′t,Z ′t−1,Σ

′
t−1, E ′t,U ′t

)′
is the (n+ 4m)×1 vector of the states and h̃maps Rn+4m+1 into

Rn+4m. Also,Wt+1 =
(
W ′1t+1,W ′2t+1

)′
is a 2m×1 vector of random variables,W1t+1 andW2t+1 are

m×1 vectors with distributionsW1t+1 ∼ N (0, I) andW2t+1 ∼ N (0, I), and Ξ is a (n+ 4m)×2m

matrix with the the top n+ 2m rows equal to zero and the bottom 2m× 2m matrix equal to the
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identity matrix. Note that W1t+1 and W2t+1 share distributions with Et+1 and Ut+1 respectively.

If we were to change distributions for either Et+1 or Ut+1 we would need to do the same withW1t+1

and W2t+1. Let us define ns = n + 4m. The linearity of the second term of the right-hand side

is a consequence of the autoregressive specification of the structural shocks and the evolution of

their volatilities. However, through the function h̃, we let those shocks and their volatilities affect

St+1 nonlinearly.

The measurement equation uses the policy function (7) to describe the relationship of the

observables with the states, the perturbation parameter, and the vector of parameters

Yt = g (St,Λ; γ) . (13)

2.4. Approximating the State-Space Representation

In general, when we deal with the class of dynamic equilibrium models with stochastic volatility,

we do not have access to a closed-form solution, that is, the policy functions h and g cannot be

found explicitly. Thus, we cannot build the state-space representation described by (12) and (13).

Instead, we will approximate numerically the solution of model and use the result to generate an

approximated state-space representation.

There are many different solution algorithms for dynamic equilibrium models. Among those,

the perturbation method has emerged as a popular way (see Judd and Guu, 1997, Schmitt-Grohé

and Uribe, 2004, and Aruoba et al., 2006 among others) to obtain higher-order Taylor series

approximations to the policy functions (6)-(7) together with equations (4) and (5) around the

steady state. It is key to note that we also get the Taylor expansion of (4) because it is a non-

linear function. Beyond being extremely fast for systems with a large number of state variables,

perturbation offers high levels of accuracy even relatively far away from the perturbation point

(Aruoba, et al., 2006, and, for cases with stochastic volatility, Caldara et al., 2012).

The perturbation method allows the researcher to approximate the solution to the model up

to any order. Since we want to analyze models with volatility shocks, we must go beyond a

first-order approximation. First-order approximations are certainty equivalent and hence, they

are silent about stochastic volatility. As we well see in section 3.1, volatility shocks only appear

starting in the second-order approximation. But since we want to evaluate the likelihood function,

we need to stop at a second-order approximation. Because of dimensionality issues, higher-order
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approximation would make the evaluation of the likelihood function exceedingly challenging for

current computers for models with a reasonable number of state variables.

Given a second-order approximation to the policy functions (6)-(7) together with equations (4)

and (5) around the steady state, the approximated state-space representation can be written in

terms of two equations: the approximated transition equation and the approximated measurement

equation. The approximated transition equation is

Ŝt+1 =


Ψ1
s,1Ŝt
...

Ψ1
s,nsŜt

+
1

2


Ŝ′tΨ2

s,1Ŝt
...

Ŝ′tΨ2
s,nsŜt

+
1

2


ΨΛ
s,1

...

ΨΛ
s,ns

+ ΞWt+1 (14)

where Ŝt = St−S is the ns× 1 vector of deviations of the states from their steady-state value and

S = (S ′,0′,0′,0′,0′)′. The approximated measurement equation is

Yt − Y =


Ψ1
y,1Ŝt
...

Ψ1
y,kŜt

+
1

2


Ŝ′tΨ2

y,1Ŝt
...

Ŝ′tΨ2
y,kŜt

+
1

2


ΨΛ
y,1

...

ΨΛ
y,k

 . (15)

where Y is the steady-state value of Yt.

In these equations, Ψ1
s,i is a 1 × ns vector and Ψ2

s,i is an ns × ns matrix for i = 1, . . . , ns.

The first term is the linear approximation to transition equation for the states, while the second

term is the quadratic component of the second-order approximation. Similarly, Ψ1
y,i is a 1 × ns

vector and Ψ2
y,i an ns× ns matrix for i = 1, . . . , k. The interpretation of each term is the same as

before: the first term is the linear component and the second one the quadratic component of the

approximation to the law of motion for the measurement equations. The term ΨΛ
s,i is the constant

that appears in the second-order perturbation and that is often interpreted as the correction for

risk in the evolution of state i = 1, . . . , ns. Similarly, the term ΨΛ
y,i is the constant correction

for risk of observable i = 1, . . . , k. All these vectors and matrices are non-linear functions of the

vector of parameters γ. It is important to emphasize that we are not assuming the presence of

any measurement error. We will return to this point in a few paragraphs.
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3. Stochastic Volatility and Evaluation of the Likelihood

In this section, we explain how to evaluate the likelihood function of our class of dynamic equi-

librium models with volatility shocks in equation (1) using the approximated transition and the

measurement equations (14) and (15). If we allow Yt to be the data counterpart of our observ-

ables Yt, Yt = (Y1, . . . ,Yt) (with Y0 = {∅}) to be their history up to time t, given a vector of

parameters γ, we can write the likelihood of YT as

T∏
t=1

p
(
Yt = Yt|Yt−1; γ

)
,

where

p
(
Yt = Yt|Yt−1; γ

)
=∫ ∫ ∫ ∫

p (Yt = Yt|St,Zt−1,Σt−1, Et; γ) p
(
St,Zt−1,Σt−1, Et|Yt−1; γ

)
dStdZt−1dΣt−1dEt (16)

for all t ∈ {2, . . . , T} and

p (Y1 = Y1; γ)

=

∫ ∫ ∫ ∫
p (Y1 = Y1|S1,Z0,Σ0, E1; γ) p (S1,Z0,Σ0, E1; γ) dS1dZ0dΣ0dE1. (17)

Note that the Ut’s do not show up in these two expressions. It will be momentarily clear why this

comes directly from our procedure below to evaluate the likelihood.

Computing this likelihood is a diffi cult problem. Since we do not have analytic forms for the

terms inside the integral, it cannot be evaluated exactly and deterministic numerical integration

algorithms are too slow for practical use (we have four integrals per period over large dimensions).

As a feasible alternative, we will show how to use a simple particle filter to obtain a simulation-

based estimate of (16) for the class of dynamic equilibrium models with volatility shocks we

described above. Künsch (2005) proves, under weak conditions, that the particle filter delivers a

consistent estimator of the likelihood function and that a central limit theorem applies. A particle

filter is a sequential simulation device for filtering of nonlinear and/or non-Gaussian space models

(Pitt and Shephard, 1999, and Doucet et al., 2001). In economics the particle filter has been used,

among others, by Fernández-Villaverde and Rubio-Ramírez (2007).
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As mentioned before, the particle filter has minimal requirements: the ability to evaluate the

approximated measurement density associated with the approximated measurement equation, to

simulate from the approximated dynamics of the state using the approximated transition equation,

and to draw from the unconditional density of the states implied by the approximated transition

equation. Usually, the first requirement is the hardest. These three requirements are formally

described in the following assumption.

Assumption 1. To implement the particle filter, we assume that:

1. We can evaluate the approximated measurement density

p (Yt = Yt|St,Zt−1,Σt−1, Et; γ) .

2. We can simulate from the approximated transition equation

(
S ′t+1,Z ′t,Σ′t, E ′t+1

)′ | (S ′t,Z ′t−1,Σ
′
t−1, E ′t

)′
,F
(
Yt
)

; γ

for all t ∈ {1, . . . , T}, where F (Yt) is the filtration of Yt.

3. We can draw from the unconditional distribution implied by the approximated transition

equation

p (St,Zt−1,Σt−1, Et; γ) .

The second requirement asks for the filtration of Yt, F (Yt), because we will need to evaluate

the volatility shocks (this will be clearer below). The last requirement can be easily implemented

using the results in Santos and Peralta-Alva (2005). Given our assumption about Et+1 and the

quadratic form of the approximated transition equation (14), the second requirement easily holds.

A key novelty of this paper is that we show how the class of dynamic equilibrium models with

volatility shocks considered here also satisfies the first requirement.

For our class of models, conditional on havingN draws of
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1
from the density

p (St,Zt−1,Σt−1, Et|Yt−1; γ), each integral (16) can be consistently approximated by

p
(
Yt = Yt|Yt−1; γ

)
' 1

N

N∑
i=1

p
(
Yt = Yt|sit, zit−1, σ

i
t−1, ε

i
t; γ
)

(18)
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for all t ∈ {2, . . . , T}. For t = 1, we need N draws from the density p (St,Zt−1,Σt−1, Et; γ), so

that the integral (17) can be consistently approximated by

p (Y1 = Y1; γ) ' 1

N

N∑
i=1

p
(
Y1 = Y1|si1, zi0, σi0, εi1; γ

)
. (19)

We know that we can make the draws because requirement 3 in assumption 1 holds.

In our framework, checking whether requirement 1 in assumption 1 holds means checking

whether we can evaluate the approximated measurement density

p
(
Yt = Yt|sit, zit−1, σ

i
t−1, ε

i
t; γ
)

(20)

for each draw in
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1
for all t ∈ {1, . . . , T}. This evaluation step is crucial, not only

because it is required to compute (18) and (19) but also because, as we will explain momentarily,

our particle filter needs to evaluate (20) to resample from p (St,Zt−1,Σt−1, Et|Yt−1; γ) and get

draws from p (St+1,Zt,Σt, Et+1|Yt; γ) in order to obtain
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1
for all t ∈ {2, . . . , T}

in a recursive way.

To check how we can evaluate the approximated measurement density (20), we rewrite (15)

in terms of draws
(
si′t , z

i′
t−1, σ

i′
t−1, ε

i′
t

)′
and Yt, instead of

(
S ′t,Z ′t−1,Σ

′
t−1, E ′t

)′
and Yt. Thus, the

approximated measurement equation (15) can be rewritten as

Yt − Y =


Ψ1
y,1Ŝit
...

Ψ1
y,kŜit

+
1

2


Ŝi′t Ψ2

y,1Ŝit
...

Ŝi′t Ψ2
y,kŜit

+
1

2


ΨΛ
y,1

...

ΨΛ
y,k

 (21)

where Ŝit = Sit−S and Sit =
(
si′t , z

i′
t−1, σ

i′
t−1, ε

i′
t ,U ′t

)′
. The new approximated measurement equation

(21) implies that evaluating the approximated measurement density (20) involves solving the

system of quadratic equations

Yt − Y −


Ψ1
y,1Ŝit
...

Ψ1
y,kŜit

− 1

2


Ŝi′t Ψ2

y,1Ŝit
...

Ŝi′t Ψ2
y,kŜit

− 1

2


ΨΛ
y,1

...

ΨΛ
y,k

 = 0 (22)

for Ut given Yt, sit, zit−1, σ
i
t−1, and ε

i
t.
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Solving this system is non-trivial. Since the system is quadratic, we may have either none or

several different solutions. In fact, it is even hard to know how many solutions there are. But

even if we knew the number of solutions, we are not aware of any accurate and effi cient method to

solve quadratic problems that finds all the solutions. This diffi culty seemingly prevents us from

achieving our goal of evaluating the likelihood function.

A solution would be to introduce, as Fernández-Villaverde and Rubio-Ramírez (2007) did, a

k×1 vector of linear measurement errors and solve for those instead of Ut. In this case the system

would have a unique, easy to find solution. However, there are three reasons, in increasing order

of importance, why this solution is not satisfactory:

1. Although measurement errors are both plausible and empirically relevant, their presence

complicates the interpretation of any empirical results. In particular, we are interested

in measuring how heteroscedastic structural shocks help in accounting for the data and

measurement errors can confound us.

2. The absence of measurement errors will help us to illustrate below how dynamic equilibrium

models with volatility shocks have a profusion of shocks that we can exploit in our estimation.

3. As we will also show below, volatility shocks would enter linearly (conditional on the draw)

in the system equations. Since, by definition, linear measurement errors would also enter in

the same fashion, it would be hard to identify one apart from the others.

Our alternative in this paper is to realize that considering stochastic volatility converts the

above-described quadratic system into a linear one. Hence, if a rank condition is satisfied, the

system (22) has only one solution and the solution can be found by simply inverting a matrix.

Thus, requirement 1 in assumption 1 holds and we can use the particle filter. The core of the

argument is to note that, when volatility shocks are considered, the policy functions share a

peculiar pattern that we can exploit.

3.1. Structure of the Solution

Our first step will characterize the first- and second-order derivatives of the policy functions

h and g evaluated at the steady state. Then, we will describe an interesting pattern in these

derivatives. The second step will take advantage of the pattern to show that, when the number
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of volatility shocks equals the number of observables, our quadratic system becomes a linear one.

This characterization is important both for estimation and, more generally, for the analysis of

perturbation solutions to dynamic equilibrium models with stochastic volatility.

3.1.1. First- and Second-order Derivatives of the Policy Functions

Let us begin with the characterization of the first- and second-order derivatives of the policy

functions. The following theorem shows that the first-order derivatives of h and g with respect to

any component of Ut and Σt−1 evaluated at the steady state are zero; that is, volatility shocks and

their innovations do not affect the linear component of the optimal decision rule of the agents.

The same occurs with the perturbation parameter Λ. A similar result has been established by

Schmitt-Grohé and Uribe (2004) for the homoscedastic shocks case.

Theorem 2. Let us denote [Υω]ij as the derivative of the i − th element of generic function Υ

with respect to the j − th element of generic variable ω evaluated at the non-stochastic steady

state (where we drop this index if ω is unidimensional). Then, for the dynamic equilibrium model

specified in equation (1), we have that
[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= [hUt ]
i1
j = [gUt ]

i2
j = [hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

Proof. See appendix 6.1.1.

The second theorem shows, among other things, that the second partial derivatives of h and g

with respect to either log σit or ui,t and any other variable but εi,t is also zero for any i ∈ {1, . . . ,m}.

Theorem 3. Furthermore, if we denote [Υωξ]
i
j1,j2

as the derivative of the i− th element of generic

function Υ with respect to the j1 − th element of generic variable ω and the j2 − th element of

generic variable ξ evaluated at the non-stochastic steady state (where again we drop the index for

unidimensional variables), we have that [hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0 for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k},

and j ∈ {1, . . . , n} ,

[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

=
[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= [hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = [hΛ,Ut ]

i1
j = [gΛ,Ut ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m},

[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= [hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0
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for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m} ,

[
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

=
[
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

and

[
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

=
[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= [hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and

[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= [hEt,Ut ]
i1
j1,j2

= [gEt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

Proof. See appendix 6.1.2.

Since the statement of theorem 3 is long and involved, we clarify it with a table in which we

characterize the second derivatives of the functions h and g with respect to the different variables

(St,Zt−1,Σt−1, Et,Ut,Λ). This pattern is both interesting and useful for our purposes.

Table 3.1: Second Derivatives

StSt 6= 0 StZt−1 6= 0 StΣt−1 = 0 StEt 6= 0 StUt = 0 StΛ = 0

Zt−1Zt−1 6= 0 Zt−1Σt−1 = 0 Zt−1Et 6= 0 Zt−1Ut = 0 Zt−1Λ = 0

Σt−1Σt−1 = 0 Σt−1Et 6= 0∗ Σt−1Ut = 0 Σt−1Λ = 0

EtEt 6= 0 EtUt 6= 0∗ EtΛ = 0

UtUt = 0 UtΛ = 0

ΛΛ 6= 0

The way to read table 3.1 is as follows. Take an arbitrary entry, for instance, entry (1,2),

StZt−1 6= 0. In this entry, we state that the cross-derivatives of h and g with respect to St and

Zt−1 are different from zero (the table is upper triangular because, given the symmetry of second

derivatives, we do not need to report those entries). Similarly, entry (3,5), Σt−1Ut = 0 tells us that

the cross-derivatives of h and g with respect to Σt−1 and Ut are all zero.2 Entries (3,4) and (4,5)

2For ease of exposition, in table 3.1 we are not being explicit about the dimensions of the matrices: it is a purely
qualititive description of the relevant derivatives.
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have a “*”to denote that the only cross-derivatives of those entries that are different from zero

are those that correspond to the same index j (that is, the cross-derivatives of each innovation

to the structural shocks with respect to its own volatility shock and the cross-derivatives of the

innovation to the structural shocks to the innovation to its own volatility shock). The lower

triangular part of the table is empty because of the symmetry of second derivatives.

Table 3.1 tells us that, of the 21 possible sets of second derivatives, 12 are zero and 9 are not.

The implications for the decision rules of agents and for the equilibrium function are striking.

The perturbation parameter, Λ, will only have a coeffi cient different from zero in the term where

it appears in a square by itself. This term is a constant that corrects for precautionary behavior

induced by risk. Volatility shocks, Σt−1 , appear with coeffi cients different from zero only in the

term Σt−1Et where they are multiplied by the innovation to its own structural shock Et. Finally,

innovations to the volatility shocks, Ut, also appear with coeffi cients different from zero when they

show up with the innovation to their own structural shock Et. Hence, of the terms that complicate

the evaluation of the approximated measurement density, only the ones associated with [hEt,Ut ]
i1
j1,j1

and [gEt,Ut ]
i2
j1,j1

are non-zero.

3.1.2. Evaluating the Likelihood Using the Particle Filter

The second step is to use theorems 2 and 3 to show that the system (22) is linear and it has only

one solution. Corollary 4 shows that the pattern described in table 3.1. has an important, yet

rather direct implication for the structure of the approximated measurement equation (21).

Corollary 4. The approximated measurement equation (21) can be written as

Yt − Y =


Ψ̃1
y,1
˜̂Sit
...

Ψ̃1
y,k
˜̂Sit

+
1

2


˜̂Si′t Ψ̃2,1

y,1
˜̂Sit

...˜̂Si′t Ψ̃2,1
y,k
˜̂Sit

+
1

2


ΨΛ
y,1

...

ΨΛ
y,k

+


εi′t Ψ̃2,2

y,1

...

εi′t Ψ̃2,2
y,k

σit−1 +


εi′t Ψ̃2,3

y,1

...

εi′t Ψ̃2,3
y,k

Ut

where S̃it =
(
si′t , z

i′
t−1, ε

i′
t

)′
is the (n+ 2m)× 1 vector of the simulated states without the stochastic

volatility components (that is, endogenous states, structural shocks, and their innovations), S̃ =

(S ′,0′,0′)′ is its steady state, and ˜̂Sit = S̃it− S̃ is its deviation from the steady state. Let us define

ñs = n+ 2m. The matrix Ψ̃1
y,j is a 1× ñs vector that represents the first-order component of the

second-order approximation to the law of motion for the measurement equation as a function of
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˜̂St, where S̃t =
(
S ′t,Z ′t−1, E ′t

)′
and ˜̂St = S̃t − S̃, for j = 1, . . . , k. The matrix Ψ̃2,1

y,j is an ñs × ñs
matrix that represents the second-order component of the second-order approximation to the law

of motion for the measurement equation as a function of ˜̂St for j = 1, . . . , k. The matrix Ψ̃2,2
y,j is

an m×m matrix that represents the second-order component of the second-order approximation

to the law of motion for the measurement equation as a function of Et and Σt−1 for j = 1, . . . , k.

The matrix Ψ̃2,3
y,j is an m×m matrix that represents the second-order term of the approximated

law of motion for the measurement equation as a function of Et and Ut for j = 1, . . . , k.

We are now ready to show that the system (22) is linear, and if a rank condition is satisfied,

it has only one solution. Define

A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)

≡ Yt − Y−


Ψ̃1
y,1
˜̂Sit
...

Ψ̃1
y,k
˜̂Sit

−1

2


˜̂Si′t Ψ̃2,1

y,1
˜̂Sit

...˜̂Si′t Ψ̃2,1
y,k
˜̂Sit

−1

2


ΨΛ
y,1

...

ΨΛ
y,k

−


εi′t Ψ̃2,2
y,1

...

εi′t Ψ̃2,2
y,k

σit−1

and

B
(
εit; γ

)
≡
( (

εi′t Ψ̃2,3
y,1

)′
. . .

(
εi′t Ψ̃2,3

y,k

)′ )′
.

Let k = m, then B (εit; γ) is a k×k matrix. If B (εit; γ) is full rank, the solution to the system (22)

can be written as

Ut = B−1
(
εit; γ

)
A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)
.

The next theorem shows how to use this solution to evaluate the approximated measurement

density.

Theorem 5. Let k = m, then B (εit; γ) is a k×k matrix. If B (εit; γ) is full rank, the approximated

measurement density can be written as

p
(
Yt = Yt|sit, zit−1, σ

i
t−1, ε

i
t; γ
)

= detB−1
(
εit; γ

)
p
(
Ut = B−1

(
εit; γ

)
A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
))
(23)

for each draw in
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1
for all t ∈ {1, . . . , T}, which can be evaluated given that we

know B−1 (εit; γ), A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)
, and the distribution of Ut.

Proof. The theorem is a straightforward application of the change of variables theorem.
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Theorem 5 shows that requirement 1 in assumption 1 holds. Consequently, we can use a

variation of the particle filter adapted for our class of dynamic equilibrium models with volatility

shocks. We are requiring B (εit; γ) to be full rank. When can B (εit; γ) not be full rank? B (εit; γ)

would fail to have full rank when the impact of volatility innovations are identical across several

elements of Yt. This would mean that the observables lack enough information to tell volatility

shocks apart. If this is the case, a new set of observables would have to be chosen to estimate the

model.

Note also that theorem 5 assumes k = m. Given the notation in section 2.1, this means

that the number of structural shocks equals to the number of observables. This is not always

necessary. What the theorem needs is that the number of volatility shocks equals the number of

observables. Since, to simplify notation, we have assumed that all structural shocks face volatility

shocks, the number of structural shocks equals the number of observables. As mentioned in section

2.1, we could have structural shocks that do not face volatility shocks (this will be the case in

our application to follow). In that case, we could have more structural shocks than observables.

From the theorem, it is also clear that if we used Et rather than Ut to compute the approximated

measurement equation, we would have to solve a quadratic system, a challenging task.

An outline of the algorithm in pseudo-code is:

Step 0: Set t 1. Sample N values
{
sit, z

i
t−1, σ

i
t−1, ε

i
t

}N
i=1

from p (St,Zt−1,Σt−1, Et; γ).

Step 1: Compute

p
(
Yt = Yt|Yt−1; γ

)
' 1

N

N∑
i=1

detB−1
(
εit; γ

)
p
(
Ut = B−1

(
εit; γ

)
A
(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
))

using expression (23) and the importance weights for each draw

qit =
detB−1 (εit; γ) p

(
Ut = B−1 (εit; γ)A

(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
))∑N

i=1 detB−1 (εit; γ) p
(
Ut = B−1 (εit; γ)A

(
Yt, sit, zit−1, σ

i
t−1, ε

i
t; γ
)) .

Step 2: Sample N times with replacement from
{
sit|t−1, z

i
t−1|t−1, σ

i
t−1|t−1, ε

i
t|t−1

}N
i=1

and

probability {qit}
N
i=1. This delivers

{
sit|t, z

i
t−1|t, σ

i
t−1|t, ε

i
t|t

}N
i=1
.
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Step 3: Simulate
{
sit+1, z

i
t, σ

i
t, ε

i
t+1

}N
i=1

from the approximated transition equation

(
S ′t+1,Z ′t,Σ′t, E ′t+1

)′ | (si′t|t, zi′t−1|t, σ
i′
t−1|t, ε

i′
t|t
)′
,F
(
Yt
)

; γ.

Step 4: If t < T, set t t+ 1 and go to step 1. Otherwise stop.

Once we have evaluated the likelihood, we can nest this algorithm either with a McMc to

perform Bayesian inference (as done in our application; see Flury and Shephard, 2011, for technical

details) or with some optimization algorithm to undertake maximum likelihood estimation (as

done, in a model without volatility shocks, by Van Binsbergen et al., 2012). In this last case, care

must be taken to keep the random numbers used in the particle filter constant among iterations

to achieve equi-continuity and to use an optimization algorithm that does not rely on derivatives,

as the particle filter implies an evaluation of the likelihood function that is not differentiable.

4. An Application: A Business Cycle Model with Stochastic Volatility

As an illustration of our procedure, we estimate a business cycle model of the U.S. economy with

nominal rigidities and stochastic volatility. We will show: 1) how we can characterize posterior

distributions of the parameters of interest and 2) how we can recover and analyze the smoothed

structural and volatility shocks. Those are two of the most relevant exercises in terms of the

estimation of dynamic equilibrium models. Once the estimation has been undertaken, there are

many other exercises that can be done with the empirical results. For instance, in the appendix,

we include several of those such as: 1) finding the impulse response functions (IRFs) of the model;

2) evaluating the fit of the model in comparison with some alternatives; and 3) undertaking some

counterfactuals and run alternative histories of the evolution of the U.S. economy.

Before doing so, though, we need to motivate our choice of application. The model that we

present has many strengths but also important weaknesses. Suffi ce it to say here that since this

model is the base of much applied policy analysis by academics and policy-making institutions, it

is a natural example for this paper. Thus, given that the model is well known, our presentation

will be brief. We will depart only along two dimensions from the standard model: we will have

stochastic volatility in the shocks that drive the dynamics of the economy (the object of interest

in this paper) and parameter drifting in the monetary policy rule. In that way, the likelihood
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has the chance of picking between two of the alternatives that the literature has highlighted to

account for the well-documented time-varying volatility of the U.S. aggregate time series, either

a reduced volatility of the shocks that hit the economy (as in Sims and Zha, 2006) or a different

monetary policy (Clarida et al., 2000), which makes the application of interest in itself.

4.1. Households

The economy is populated by a continuum of households indexed by j and preferences:

E0

∞∑
t=0

βtdt

{
log (cjt − hcjt−1) + υ log

(
mjt

pt

)
− ϕtψ

l1+ϑ
jt

1 + ϑ

}
,

which are separable in consumption, cjt, real money balances, mjt/pt, and hours worked, ljt. In

our notation, E0 is the conditional expectations operator, β is the discount factor, h controls habit

persistence, ϑ is the inverse of the Frisch labor supply elasticity, dt is a shifter to intertemporal

preference that follows log dt = ρd log dt−1 +σdσdtεdt where εdt ∼ N (0, 1), and ϕt is a labor supply

shifter that evolves as logϕt = ρϕ logϕt−1 + σϕσϕtεϕt where εϕt ∼ N (0, 1). The two preference

shocks are common to all households.

The principal novelty of these preferences is that, for both shifters dt and ϕt, the standard

deviations, σdt and σϕt, of their innovations, εdt and εϕt, are indexed by time; that is, they

stochastically move according to:

log σdt = ρσd log σdt−1 +
(
1− ρ2

σd

) 1
2 ηdudt where udt ∼ N (0, 1)

and

log σϕt = ρσϕ log σϕt−1 +
(

1− ρ2
σϕ

) 1
2
ηϕuϕt where uϕt ∼ N (0, 1).

This parsimonious specification introduces only four new parameters, ρσd , ρσϕ, ηd, and ηϕ, while

being surprisingly powerful in capturing important features of the data (Shephard, 2008). All the

shocks and innovations throughout the model are observed by the agents when they are realized.

Agents have, as well, rational expectations about how they evolve over time.

We can interpret the shocks to preferences and to their volatility as reflecting the random

evolution of more complicated phenomena. For example, stochastic volatility may appear as the

consequence of changing demographics. An economy with older agents might be both less patient
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because of higher mortality risk (in our notation, a lower dt) and less prone to reallocations in the

labor force because of longer attachments to particular jobs (in our notation, a lower σϕt).

Although we assume complete financial markets, to ease notation we drop the Arrow securities

implied by that assumption from the budget constraints (they are in net zero supply at the

aggregate level anyway). Households also hold bjt government bonds that pay a nominal gross

interest rate of Rt−1. Therefore, the j − th household’s budget constraint is given by:

cjt + xjt +
mjt

pt
+
bjt+1

pt
= wjtljt +

(
rtujt − µ−1

t Φ [ujt]
)
kjt−1 +

mjt−1

pt
+Rt−1

bjt
pt

+ Tt +zt

where xt is investment, wjt is the real wage, rt is the real rental price of capital, ujt > 0 is the

rate of use of capital, µ−1
t Φ [ujt] is the cost of using capital at rate ujt in terms of the final good,

µt is an investment-specific technological level, Tt is a lump-sum transfer, and zt is firms’profits.

We specify that Φ [u] = Φ1 (u− 1) + Φ2

2
(u − 1)2, a form that satisfies that Φ [1] = 0, Φ′ [·] = 0,

and Φ′′ [·] > 0. This function carries the normalization that u = 1 in the balanced growth path of

the economy. Using the relevant first-order conditions, we can find Φ1 = Φ′ [1] = r̃ where r̃ is the

(rescaled) steady-state rental price of capital (determined by the other parameters in the model).

This leaves us with only one free parameter, Φ2.

The capital accumulated by household j at the end of period t is given by:

kjt = (1− δ) kjt−1 + µt

(
1− κ

2

(
xjt
xjt−1

− Λx

)2
)
xjt

where δ is the depreciation rate and κ is an investment adjustment cost parameter. This function is

written in deviations with respect to the balanced growth rate of investment, Λx. The investment-

specific technology level µt, follows a random walk in logs, log µt = Λµ + log µt−1 + σµσµtεµt with

εµt ∼ N (0, 1) and where Λµ is the drift of the process and εµt is the innovation to its growth rate.

The standard deviation σµt also evolves as:

log σµt = ρσµ log σµt−1 +
(

1− ρ2
σµ

) 1
2
ηµuµt where uµt ∼ N (0, 1).

Again, we can interpret this stochastic volatility as a stand-in for a more detailed explanation of

technological progress in capital production that we do not model explicitly.

Each household j supplies a different type of labor services ljt that are aggregated by a labor
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packer into homogeneous labor ldt with the production function l
d
t =

(∫ 1

0
l
η−1
η

jt dj

) η
η−1

that is rented

to intermediate good producers at wage wt. The labor packer is perfectly competitive and it takes

all wages as given. Households set their wages with a Calvo pricing mechanism. At the start of

every period, a randomly selected fraction 1−θw of households can reoptimize their wages (where,

by a law of large numbers, individual probabilities and aggregate fractions are equal). All other

households index their wages given past inflation with an indexation parameter χw ∈ [0, 1].

4.2. Firms

There is one final good producer that aggregates a continuum of intermediate goods according to

the production function:

yt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

(24)

where ε is the elasticity of substitution. The final good producer is perfectly competitive and

minimizes its costs subject to the production function (24) and taking as given all intermediate

goods prices pti and the final good price pt.

Each intermediate good is produced by a monopolistic competitor with technology yit =

Atk
α
it−1

(
ldit
)1−α

, where kit−1 is the capital rented by the firm, ldit is the amount of the “packed”

labor input rented by the firm, and At is neutral productivity. Productivity evolves as logAt =

ΛA + logAt−1 + σAσAtεAt where ΛA is the drift of the process and εAt ∼ N (0, 1) is the innovation

to its growth rate. The time-varying standard deviation of this innovation follows:

log σAt = ρσA log σAt−1 +
(
1− ρ2

σA

) 1
2 ηAuAt where uAt ∼ N (0, 1).

Intermediate good producers meet the quantity demanded by the final good producer by

renting ldit and kit−1 at prices wt and rt. Given their demand function, these producers set prices

to maximize profits. However, when they do so, they follow a Calvo pricing scheme. In each

period, a fraction 1 − θp of intermediate good producers reoptimize their prices. All other firms

partially index their prices by past inflation with an indexation parameter χ ∈ [0, 1].
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4.3. The Monetary Authority

The model is closed with a monetary authority that sets the nominal interest rates by following

a modified Taylor rule:

Rt

R
=

(
Rt−1

R

)γR ((Πt

Π

)γΠγΠ,t
(
ydt
ydt−1

/ exp
(
Λyd
))γyγy,t)1−γR

ξt. (25)

The first term on the right-hand side represents a desire for interest rate smoothing, expressed in

terms of R, the balanced growth path nominal interest rate. The second term, an “inflation gap,”

responds to the deviation of inflation from its balanced growth path level Π. The third term is

a “growth gap”: the ratio between the growth rate of the economy and Λyd , the balanced path

gross growth rate of ydt , where y
d
t is aggregate demand (defined precisely in appendix 6.2). The

last term is the monetary policy shock, where log ξt = σξσξ,tεξt with an innovation εξt ∼ N (0, 1)

and a time-varying standard deviation, σξ,t, that follows an autoregressive process

log σξt = ρσξ log σξt−1 +
(

1− ρ2
σξ

) 1
2
ηξuξ,t where uξ,t ∼ N (0, 1).

In this policy rule, we have two drifting parameters: the responses of the monetary authority

to the inflation gap and the growth gap. The parameters drift over time as:

log γΠt = ργΠ
log γΠt−1 + σπεπt and log γyt = ργy log γyt−1 + σyεyt where επt, εyt ∼ N (0, 1).

For simplicity, the volatility of the innovation to this processes is fixed over time. The agents

perfectly observe the changes in monetary policy parameters.

4.4. Equilibrium and Solution

We can characterize the equilibrium of the model in appendix 6.2. This equilibrium conditions

are non-stationary because we have two unit roots in the processes for technology. However, we

circumvent this problem by rescaling the model using the variable zt = A
1

1−α
t µ

α
1−α
t in the form:

k̃t = kt
ztµt
, c̃t = ct

zt
, x̃t = xt

zt
, ỹt = yt

zt
, w̃t = wt

zt
, r̃t = µtrt, Ãt = At

exp(ΛA)At−1
, and µ̃t = µt

exp(Λµ)µt−1
. In

the notation of section 2.1 we have that:
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1. The states of the (rescaled) economy are

St =
(

log k̃t−1, log c̃t−1, log x̃t−1, log ỹt−1, log υpt−1, log υwt−1, log w̃t−1, logRt−1, log Πt−1

)′
.

2. The structural shocks are Zt =
(

log dt, logϕt, log µ̃t, log Ãt, log ξt, log γΠt, log γyt

)′
. The pa-

rameter drifts are handled as structural shocks in the state-space representation.

3. The volatility shocks are Σt = (log σdt, log σϕt, log σµt, log σAt, log σξt)
′ , where the last two

zeros correspond to the processes for parameter drifting, which have constant volatilities (see

also in vector Ut below). Here, we can see that we do not need as many volatility shocks (5

of them) as structural shocks (7 of them).

4. The innovations to the structural and the volatility shocks are Et = (εdt, εϕt, εµt, εAt, εξt, επt, εyt)
′

and Ut = (udt, uϕt, uµt, uAt, uξt)
′, respectively.

We pick as observables the first difference of the log of the relative price of investment, the log

federal funds rate, log inflation, the first difference of log output, and the first difference of log real

wages, in our notation Yt = (−4 log µt, logRt, log Πt,4 log yt,4 logwt)
′ .We select these variables

because they bring us information about aggregate behavior (output), the stand of monetary policy

(the interest rate and inflation), and the different shocks (the relative price of investment about

investment-specific technological change, the other four variables about technology and preference

shocks) that we are concerned about. Note that we have the same number of observables as we

do of volatility shocks, as required by theorem 5.

We follow the steps in section 2.2 and employ a second-order perturbation around the rescaled

steady-state to approximate this equilibrium and build the associated state-space representation

(appendix 6.4 gives more details). The second-order approximation is even more relevant in our

application because, to complicate matters, a linearization would also imply that the parameter

drift in the Taylor rule would disappear as well from the equilibrium dynamics (see appendix 6.3).

4.5. Data and Estimation

We estimate our model using the five time series for the U.S. economy described above. Our

sample covers 1959.Q1 to 2007.Q1, with 192 observations. Because of space considerations, we

stop at 2007 to avoid having to deal with the recent financial crisis, which would make it diffi cult
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to appreciate the points we want to illustrate about how to econometrically deal with stochastic

volatility. This could be fixed at the cost of a lengthier discussion. Appendix 6.5 explains how we

construct the series.

Once we have evaluated the likelihood, we combine it with a prior. We pick flat priors on

a bounded support for all the parameters. The bounds are either natural economic restrictions

(for instance, the Calvo and indexation parameters lie between 0 and 1) or are so wide that

the likelihood assigns (numerically) zero probability to values outside them. Bounded flat priors

induce a proper posterior, a convenient feature for our exercises below.

We resort to flat priors for two reasons. First, to reduce the impact of presample information

and show that our results arise mainly from the shape of the likelihood and not from the prior

(although, of course, flat priors are not invariant to reparameterization). Thus, the reader who

wants to interpret our posterior modes as maximum likelihood point estimates can do so. Sec-

ond, because as we learned in Fernández-Villaverde et al. (2010c), eliciting priors for stochastic

volatility is diffi cult, since we deal with unfamiliar units, such as the variance of volatility shocks,

about which we do not have clear beliefs. Flat priors come, though, at a price: before proceeding

to the estimation, we have to fix several parameters to reduce the dimensionality of the problem.

Table 4.1: Fixed Parameters

β h ψ ϑ δ α κ ε η Φ2 ργΠ
ργy σy

0.99 0.9 8 1.17 0.025 0.21 9.5 10 10 0.001 0.95 0 0

Table 4.1 lists the fixed parameters. Our guiding criterion in selecting them was to pick conven-

tional values in the literature. The discount factor, β = 0.99, is a default choice, habit persistence,

h = 0.9, matches the observed sluggish response of consumption to shocks, the parameter con-

trolling the level of labor supply, ψ = 8, captures the average amount of hours in the data, and

the depreciation rate, δ = 0.025, induces the appropriate capital-output ratio. The elasticities of

substitution, ε = η = 10, deliver average mark-ups of around 10 percent, a common value in these

models. We set the cost of capital utilization, Φ2, to a small number to introduce some curvature

in this decision. Three parameter values are borrowed from the point estimates from a similar

model without stochastic volatility or parameter drifting presented in Fernández-Villaverde et al.

(2009). The first is the inverse of the Frisch labor elasticity, ϑ = 1.17. As argued by Chetty et

al. (2011), this aggregate elasticity is compatible with micro data, once we allow for intensive

and extensive margins on labor supply. The second is the coeffi cient of the intermediate goods
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production function, α = 0.21. This value is lower than the common calibration of Cobb-Douglas

production functions in real business cycle models because, in our environment, we have positive

profits that appear as capital income in the National Income and Product Accounts. Finally,

the adjustment cost, κ = 9.5, is in line with other estimates from similar models (κ would be

particularly hard to identify, since investment is not one of our observables).

The autoregressive parameter of the evolution of the response to inflation, ργΠ
, is set to 0.95.

In preliminary estimations, we discovered that the likelihood pushed this parameter to 1. When

this happened, the simulations became numerically unstable: after a series of positive innovations

to log γΠt, the reaction of nominal interest rates to inflation could be too tepid for too long. The

0.95 value seems to be the highest possible value of ργΠ
such that the problem does not appear.

The last two parameters, ργy and σy, are equal to zero because, also in exploratory estimations,

the likelihood favored values of σy ≈ 0. Thus, we decided to forget about them and make γy,t = 1.

To find the posterior, we proceed as follows. First, we define a grid of parameter values and

check for the regions of high posterior density by evaluating the likelihood function in each point

of the grid. This is a time-consuming procedure, but it ensures that we are searching in the right

zone of the parameter space. Once we have identified the global maximum in the grid, we initialize

a random-walk Metropolis-Hastings algorithm from this point. After an extensive fine-tuning of

the algorithm, we use 10,000 draws from the chain to compute posterior moments.

4.6. Results I: Parameter Estimates

Our first empirical result is the parameter estimates. To ease the discussion, we group them in

different tables, one for each set of parameters dealing with related aspects of the model. In all

cases, we report the mode of the posterior and the standard deviation in parenthesis below (in

the interest of space, we do not include the whole histograms of the posterior).

Table 4.2: Posterior, Parameters of Nominal Rigidities and Structural Shocks

θp χ θw χw ρd ρϕ Λµ ΛA

0.8139
(0.0143)

0.6186
(0.024)

0.6869
(0.0432)

0.6340
(0.0074)

0.1182
(0.0049)

0.9331
(0.0425)

0.0034
(6.6e−5)

0.0028
(4.1e−5)

Table 4.2 presents the results for the nominal rigidities and the stochastic processes for the

structural shocks parameters. Our estimates indicate an economy with substantial rigidities in

prices, which are reoptimized roughly once every five quarters, and in wages, which are reoptimized
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approximately every three quarters. Moreover, since the standard deviations are small, there is

enough information in the data about this result. At the same time, there is a fair amount of

indexation, between 0.62-0.63, which brings a strong persistence of inflation. While it is tempting

to compare our estimates with the micro evidence on the individual duration of prices, in our

model all prices and wages change every quarter. That is why, to a naive observer, our economy

would look like one displaying tremendous price flexibility.

We estimate a low persistence of the intertemporal preference shock and a high persistence of

the intratemporal one. The low estimate of ρd produces the quick variations in marginal utilities

of consumption that match output growth and inflation fluctuations. The intratemporal shock

is persistent to account for long-lived movements in hours worked. We estimate mean growth

rates of technology of 0.0034 (neutral) and 0.0028 (investment-specific). Those numbers give us

an average growth of the economy of 0.44 percent per quarter, or around 1.77 percent on an

annual basis (0.46 and 1.86 percent in the data, respectively). Technology shocks, in our model,

are deviations with respect to these drifts. Thus, we estimate that At falls in only 8 of the 192

quarters in our sample (which roughly corresponds to the percentage of quarters where measured

productivity falls in the data), even if we estimate negative innovations to neutral technology in

103 quarters.

Table 4.3: Posterior, Parameters of the Stochastic Processes for Volatility Shocks

log σd log σϕ log σµ log σA log σξ

−1.9834
(0.0726)

−2.4983
(0.0917)

−6.0283
(0.1278)

−3.9013
(0.0745)

−6.000
(0.1471)

ρσd ρσϕ ρσµ ρσa ρσξ

0.9506
(0.0298)

0.1275
(0.0032)

0.7508
(0.035)

0.2411
(0.005)

0.8550
(0.0231)

ηd ηϕ ηµ ηa ηξ

0.1007
(0.0083)

2.8316
(0.0669)

0.3115
(0.006)

0.7720
(0.013)

0.5723
(0.0185)

The results for the parameters of the stochastic volatility processes appear in table 4.3. In

all cases, the ρ’s and the η’s are far away from zero: the likelihood strongly favors values where

stochastic volatility plays an important role. The standard deviations of the innovations of the

intertemporal preference shock and of the monetary policy shock are the most persistent, while the

standard deviation of the innovation of the intratemporal preference shock is the least persistent.

The standard deviation of the innovations of the volatility shock to the intratemporal preference
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shock, ηϕ = 2.8316, is large: the model asks for fast changes in the size of movements in marginal

utilities of leisure to reproduce the hours data.

Table 4.4: Posterior, Policy Parameters

γR log γy Π log γΠ σπ

0.7855
(0.0162)

−1.4034
(0.0498)

1.0005
(0.0043)

0.0441
(0.0005)

0.145
(0.002)

In table 4.4., we have the estimates of the policy parameters. The autoregressive component

of the federal funds rate is high, 0.7855, although somewhat smaller than in estimations without

parameter drift. The value of γy (0.24 in levels) is similar to other results in the literature and

shows that the likelihood clearly likes parameter drifting, although with mild persistence. The

estimated value of Π plus the correction on equilibrium inflation implied by second-order effects

of the solution match the average inflation in the data.3 Finally, the estimated value of γΠ (1.045

in levels) guarantees local determinacy of the equilibrium even if γΠ,t is temporarily below 1 (see

appendix 6.6 for details).

In appendix 6.7 we plot the impulse response functions of the model implied by our estimates.

This exercise allows us to check that the estimates are sensible and that the behavior of the model

is consistent with the behavior of related models in the literature. In appendix 6.8 we compare our

model against an alternative version without parameter drifting but still with stochastic volatility.

That is, we ask whether, once we have included stochastic volatility, it is still important to allow

for changes in the monetary policy rule to account for the time-varying volatility of U.S. aggregate

data over the last several decades. The results show that, even after controlling for stochastic

volatility, the data strongly prefer a specification where the monetary policy rule has changed over

time. In appendix 6.9 we show, though, that this finding does not imply that volatility shocks did

not play an important role in the time-varying volatilities of U.S. aggregate time series. In other

words, both stochastic volatility and parameter drifting are key parts of a successful dynamic

equilibrium model of the U.S. economy.

3Also, these second-order effects enormously complicate the introduction of time-variation in Π. The likelihood
wants to match the moments of the ergodic distribution of inflation, not the level of Π, which is inflation along
the balanced growth path. When we have non-linearities, the mean of that ergodic distribution may be far from
Π. Thus, learning about Π is hard. Learning about a time-varying Π is even harder.
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4.7. Results II: Smoothed Shocks

Figure 4.1 reports the log-deviations with respect to their means for the smoothed intertemporal,

intratemporal, and monetary shocks and deviations of the growth rate of the investment and

technological shocks with respect to their means (±2 standard deviations). To ease reading of the

results, we color different vertical bars to represent each of the periods at the Federal Reserve:

the McChesney Martin years from the start of our sample in 1959 to the appointment of Burns in

February 1970 (white), the Burns-Miller era (light blue), the Volcker interlude from August 1979

to August 1987 (grey), the Greenspan times (orange), and Bernanke’s tenure from February 2006

(yellow).
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Figure 4.1: Smoothed intertemporal (log dt) shock, intratemporal ( logϕt) shock, investment-specific

(log µ̃t) shock, technology ( log Ãt) shock, and monetary policy (log ξt) shock +/- 2 s.d.

We see in the top left panel of figure 4.1 that the intertemporal shock, log dt, is particularly high

in the 1970s. This increases households’desire for current consumption (for instance, because of

the entrance of baby boomers into adulthood). A higher aggregate demand triggers, in the model,

the higher inflation observed in the data for those years. The shock has a dramatic drop in the

second quarter of 1980. This is precisely the quarter in which the Carter administration invoked

the Credit Control Act (March 14, 1980). Schreft (1990) documents that this measure caused

31



turmoil in financial markets and, most likely, distorted intertemporal choices of households, which

is reflected in the large negative innovation to log dt. The low values of log dt in the 1990s with

respect to the 1970s and 1980s eased the inflationary pressures in the economy.

The shock to the utility of leisure, logϕt, grows in the 1970s and falls in the 1980s to stabilize

at a very low value in the 1990s. The likelihood wants to track, in this way, the path of average

hours worked: low in the 1970s, increasing in the 1980s, and stabilizing in the 1990s. Higher hours

also lower the marginal cost of firms (wages fall relative to the technology level). The reduction

in marginal costs also helped to reduce inflation during Greenspan’s tenure.

The evolution of the investment-specific technology, log µ̃t, shows a sharp drop after 1973 (when

it is likely that energy-intensive capital goods suffered the consequences of the oil shocks in the form

of economic obsolescence) and large positive realizations in the late 1990s (our model interprets

the sustained boom of those years as the consequence of strong improvements in investment

technology). These positive realizations were an additional help to contain inflation during the

1990s. In comparison, the neutral-technology shocks, log Ãt, have been stable since 1959, with

only a few big shocks at the end of the sample.

The evolution of the monetary policy shock, log ξt, reveals large innovations in the early 1980s.

This is due both to the fast change in policy brought about by Volcker and to the fact that a Taylor

rule might not fully capture the dynamics of monetary policy during a period in which money

growth targeting was attempted. Sims and Zha (2006) also find that the Volcker period appears

to be one with large disturbances to the policy rule and argue that the Taylor rule formalism can

be a misleading perspective from which to view policy during that time. Our evidence from the

estimated intertemporal, intratemporal, and investment shocks suggests that monetary authorities

faced a more diffi cult environment in the 1970s and early 1980s than in the 1990s.

As a way to gauge the level of uncertainty of our smoothed estimates, we also plot in figure

4.1 the same shock (±2 standard deviations). The lesson to take away from this figure is that, in

all cases, the data are informative about the history we just narrated.
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Figure 4.2: Smoothed standard deviation shocks to the intertemporal (log σdt) shock, the intratemporal

(log σφt) shock, the investment-specific (log σµt) shock, the technology (log σAt) shock, and the

monetary policy (log σξt) shock +/- 2 s.d.

We move now, in figure 4.2, to plot the evolution of the volatility shocks, all of them in log-

deviations with respect to their estimated means (plus/minus two standard deviations). We see

in this figure that the standard deviation of the intertemporal shock was particularly high in the

1970s and only slowly went down during the 1980s and early 1990s. By the end of the sample,

the standard deviation of the intertemporal shock was roughly at the level where it started. In

comparison, the standard deviation of all the other shocks is relatively stable except, perhaps,

for a large drop in the standard deviation of the monetary policy shock in the early 1980s as

well as large changes in the standard deviation of the investment shock during the period of oil

price shocks. Hence, the 1970s and the 1980s were more volatile than the 1960s and the 1990s,

creating a tougher environment for monetary policy. This result also confirms Blanchard and

Simon’s (2001) and Nason and Smith’s (2008) observation that volatility had a downward trend

in the 20th century with an abrupt and temporal increase in the 1970s. Also, from the size of the

plus/minus two standard deviations, we conclude that the big movements in the different series

that we report can be ascertained with a reasonable degree of confidence.
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Figure 4.3: Smoothed path for the Taylor rule parameter on inflation +/- 2 standard deviations.

Finally, in figure 4.3, we plot the evolution of the response of monetary policy to inflation

plus/minus a two-standard-deviation interval. In particular, we graph γΠγΠt. This graph shows

us an intriguing narrative. The parameter started the sample around its estimated mean, slightly

over 1, and it grew more or less steadily during the 1960s until reaching a peak in early 1968.

After that year, it suffered a fast collapse that took it below 1 in 1971. To put this evolution

in perspective, it is useful to remember that Burns was appointed chairman in February 1970.

The parameter stayed below 1 for all of the 1970s. The arrival of Volcker is quickly picked up by

our smoothed estimates: it increases to over 2 after a few months and stays high during all the

years of Volcker’s tenure. Interestingly, our estimate captures well the observation by Goodfriend

and King (2007) that monetary policy tightened in the spring of 1980 as inflation and long-run

inflation expectations continued to grow. Its level stayed roughly constant at this high during

the remainder of Volcker’s tenure. But as quickly as it rose when Volcker arrived, it went down

again when he departed. Greenspan’s tenure at the Fed meant that, by 1990, the response of the

monetary authority to inflation was again below 1. Moreover, our estimates are relatively tight.

Fernández-Villaverde et al. (2010a) discuss how the results of the estimation relate to historical

evidence.
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5. Conclusion

In this paper, we have shown how to estimate dynamic equilibrium models with stochastic volatil-

ity. The key of the procedure is to realize that a second-order perturbation to the solution of this

class of models has a very particular structure that can be easily exploited to build an effi cient

particle filter. The recent boom in the literature on dynamic equilibrium models with stochastic

volatility suggests that this procedure may have many uses. Our characterization of the solution

might also be, on many occasions, of interest in itself to understand the dynamic properties of

the equilibrium even if the researcher does not want to estimate the model.

As an application to illustrate how the procedure works we have estimated a business cycle

model with both stochastic volatility in the structural shocks that drive the economy and para-

meter drifting in the monetary policy rule. Such a model is motivated by the need to have an

empirical framework where we can account for the time-varying volatility of U.S. aggregate time

series. In particular, we have explained how you get point estimates in such a model and how

to recover and analyze the smoothed structural and volatility shocks. Finally, through different

comments -even if brief and not exhaustive- we have discussed the different empirical lessons that

one can get from all those steps.
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6. Technical Appendix (Not for Publication)

This technical appendix is organized as follows. First, it presents the proofs of theorems 2 and 3.

Second, it describes the equilibrium of the model in more detail. Third, it shows how parameter

drifting in the monetary policy rule does not appear in the first-order approximation. Fourth, it

focuses on describing how we effi ciently compute the model. Fifth, it offers details on how we

elaborated the data. Sixth, it discusses the determinacy of the model. Finally, it includes some

additional empirical results not reported in the main text regarding the IRF of the model, the fit

of the model in comparison with some alternatives, and some counterfactuals.

6.1. Proofs

6.1.1. Theorem 2

We start by proving theorem 2. In this theorem, we characterize the first-order derivatives of

the policy functions h and g evaluated at the steady state. We first show that the first partial

derivatives of h and g with respect to any component of Σt−1, Ut, or Λ evaluated at the steady state

are zero (in other words, that the first-order approximation of the policy functions do not depend

on volatility shocks nor their innovations nor on the perturbation parameter). Before proceeding,

note that using (2), we can write Zt+1, in a compact manner, as a function of Zt,Σt, Et+1, Ut+1,

and Λ

Zt+1 = ς (Zt,Σt,ΛEt+1,ΛUt+1; γ) , (26)

that using (3) Σt+1 can be expressed as a function of Σt, Ut+1, and Λ

Σt+1 = ϑΣt + ηΛUt+1, (27)

that using (4) we can write Zt as a function of Zt−1,Σt−1, Et, and Ut

Zt = ς (Zt−1,Σt−1, Et,Ut; γ) , (28)

and that using (5) Σt can be expressed as

Σt = ϑΣt−1 + ηUt (29)
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where ϑ and η are both m × m diagonal matrices with diagonal elements equal to ϑi and(
1− ϑ2

i

) 1
2 ηi respectively. If we substitute the policy functions (6)-(8) and (26)-(29) into the

set of equilibrium conditions (1), we get that

F (St,Zt−1,Σt−1, Et,Ut,Λ) ≡

Etf


g (h (St,Zt−1,Σt−1, Et,Ut,Λ) , ς (Zt−1,Σt−1, Et,Ut) , ϑΣt−1 + ηUt,ΛEt+1,ΛUt+1,Λ) ,

g (St,Zt−1,Σt−1, Et,Ut,Λ) , h (St,Zt−1,Σt−1, Et,Ut,Λ) ,St,

ς (ς (Zt−1,Σt−1, Et,Ut) , ϑΣt−1 + ηUt,ΛEt+1,ΛUt+1) , ς (Zt−1,Σt−1, Et,Ut)

 = 0

where, to ease notation, we do not explicitly write that the functions above depend on γ.

Proof. We want to show that

[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= [hUt ]
i1
j = [gUt ]

i2
j = [hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

We show this result in three steps that basically repeat the same argument based on the

homogeneity of a system of linear equations:

1. We write the derivative of the i− th element of F with respect to the j− th element of Σt−1

as

[
FΣt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1

]i1
j

+
[
gΣt−1

]i2
j
ϑj

)
+[fYt ]

i
i2

[
gΣt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΣt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. This is a homogeneous system on
[
hΣt−1

]i1
j

and
[
gΣt−1

]i2
j
for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Thus

[
hΣt−1

]i1
j

=
[
gΣt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

2. We write the derivative of the i− th element of F with respect to the j − th element of Ut
as

[FUt ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hUt ]
i1
j +

[
gΣt−1

]i2
j

(
1− ϑ2

j

) 1
2 ηj

)
+ [fYt ]

i
i2

[gUt ]
i2
j +

[
fSt+1

]i
i1

[hUt ]
i1
j = 0
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for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since we have already shown that
[
gΣt−1

]i2
j

=

0 for i2 ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, this is a homogeneous system on [hUt ]
i1
j and [gUt ]

i2
j

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Thus

[hUt ]
i1
j = [gUt ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

3. Finally, we write the derivative of the i− th element of F with respect to Λ as

[FΛ]i =
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ]i1 + [gΛ]i2
)

+ [fYt ]
i
i2

[gΛ]i2 +
[
fSt+1

]i
i1

[hΛ]i1 = 0

for i ∈ {1, . . . , k + n+m}. Since this is a homogeneous system on [hΛ]i1 and [gΛ]i2 for

i1 ∈ {1, . . . , n} and i2 ∈ {1, . . . , k}, we have that

[hΛ]i1 = [gΛ]i2 = 0

for i1 ∈ {1, . . . , n} and i2 ∈ {1, . . . , k}.

6.1.2. Theorem 3

Let us now prove theorem 3. We show, among other things, that the second partial derivatives of

h and g with respect to either log σit or ui,t and any other variable but εi,t are also zero for any

i ∈ {1, . . . ,m}. We divide the proof into three parts.

Proof, part 1. The first part of the proof deals with the cross-derivatives of the policy

functions h and g with respect to Λ and any of St, Zt−1, Σt−1, Et, or Ut and it shows that all of

them are equal to zero. In particular, we want to show that

[hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n} and

[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

=
[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= [hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = [hΛ,Ut ]

i1
j = [gΛ,Ut ]

i2
j = 0
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for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

We show this result in five steps. We again exploit the homogeneity of a system of linear

equations.

1. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of St

[FΛ,St ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,St ]
i1
j + [gΛ,St ]

i2
i1

[hSt ]
i1
j

)
+ [fYt ]

i
i2

[gΛ,St ]
i2
j +

[
fSt+1

]i
i1

[hΛ,St ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . , n}. This is a homogeneous system on [hΛ,St ]
i1
j

and [gΛ,St ]
i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n}. Thus

[hΛ,St ]
i1
j = [gΛ,St ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . , n}.

2. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of Zt−1

[
FΛ,Zt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΛ,Zt−1

]i1
j

+ [gΛ,St ]
i2
i1

[
hZt−1

]i1
j

+
[
gΛ,Zt−1

]i2
j
ρj

)
+ [fYt ]

i
i2

[
gΛ,Zt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΛ,Zt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since [gΛ,St ]
i2
j = 0 for i2 ∈ {1, . . . , k} and

j ∈ {1, . . . , n}, this is a homogeneous system on
[
hΛ,Zt−1

]i1
j
and

[
gΛ,Zt−1

]i2
j
for i1 ∈ {1, . . . , n},

i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Hence

[
hΛ,Zt−1

]i1
j

=
[
gΛ,Zt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th
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element of Σt−1

[
FΛ,Σt−1

]i
j

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΛ,Σt−1

]i1
j

+
[
gΛ,Σt−1

]i2
j
ϑj

)
+ [fYt ]

i
i2

[
gΛ,Σt−1

]i2
j

+
[
fSt+1

]i
i1

[
hΛ,Σt−1

]i1
j

= 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. This is a homogeneous system on
[
hΛ,Σt−1

]i1
j

and
[
gΛ,Σt−1

]i2
j
for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Hence

[
hΛ,Σt−1

]i1
j

=
[
gΛ,Σt−1

]i2
j

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

4. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of Et

[FΛ,Et ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,Et ]
i1
j + [gΛ,St ]

i2
i1

[hEt ]
i1
j +

[
gΛ,Zt−1

]i2
j
σj expϑj log σj,t−1

)
+ [fYt ]

i
i2

[gΛ,Et ]
i2
j +

[
fSt+1

]i
i1

[hΛ,Et ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since
[
gΛ,Zt−1

]i2
j

= 0 for i2 ∈ {1, . . . , k} and

j ∈ {1, . . . ,m} and [gΛ,St ]
i2
j = 0 for i2 ∈ {1, . . . , k} and j ∈ {1, . . . , n}, this is a homogeneous

system on [hΛ,Et ]
i1
j and [gΛ,Et ]

i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Thus

[hΛ,Et ]
i1
j = [gΛ,Et ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

5. We consider the cross-derivative of the i− th element of F with respect to Λ and the j − th

element of Ut

[FΛ,Ut ]
i
j =

[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hΛ,Ut ]
i1
j +

[
gΛ,Σt−1

]i2
j

(
1− ϑ2

j

) 1
2 ηj

)
+ [fYt ]

i
i2

[gΛ,Ut ]
i2
j +

[
fSt+1

]i
i1

[hΛ,Ut ]
i1
j = 0

for i ∈ {1, . . . , k + n+m} and j ∈ {1, . . . ,m}. Since we have shown that
[
gΛ,Σt−1

]i2
j

= 0 for

42



i2 ∈ {1, . . . , k} and j ∈ {1, . . . ,m} , we have that the above system is a homogeneous system

on [hΛ,Ut ]
i1
j and [gΛ,Ut ]

i2
j for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}. Then

[hΛ,Ut ]
i1
j = [gΛ,Ut ]

i2
j = 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j ∈ {1, . . . ,m}.

Proof, part 2. The second part of the proof deals with the cross-derivatives of the policy

functions h and g with respect to Σt−1 and any of St, Zt−1, Σt−1, or Et and it shows that all of

them are equal to zero with one exception. In particular, we want to show that

[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m},

[
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

=
[
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and

[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

We show this result in four steps (and where we have already taken advantage of the terms

that we know to be equal to zero from previous derivations).

1. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of St and the j2 − th element of Σt−1

[
FSt,Σt−1

]i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hSt,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hSt ]
i1
j1
ϑj2

)
+ [fYt ]

i
i2

[
gSt,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hSt,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}. This is a homogeneous

system on
[
hSt,Σt−1

]i1
j1,j2

and
[
gSt,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n},
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and j2 ∈ {1, . . . ,m}. Therefore

[
hSt,Σt−1

]i1
j1,j2

=
[
gSt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}.

2. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Zt−1 and the j2 − th element of Σt−1

[
FZt−1,Σt−1

]i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hZt−1,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[
hZt−1

]i1
j1
ϑj2 +

[
gZt−1,Σt−1

]i2
j1,j2

ρj1ϑj2

)
+ [fYt ]

i
i2

[
gZt−1,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hZt−1,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since we just found that
[
gSt,Σt−1

]i2
j1,j2

=

0 for i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}, this is a homogeneous system

on
[
hZt−1,Σt−1

]i1
j1,j2

and
[
gZt−1,Σt−1

]i2
i2,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈

{1, . . . ,m}. Therefore [
hZt−1,Σt−1

]i1
j1,j2

=
[
gZt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Σt−1 and the j2 − th element of Σt−1

[
FΣt−1,Σt−1

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1,Σt−1

]i1
j1,j2

+
[
gΣt−1,Σt−1

]i2
j1,j2

ϑj1ϑj2

)
+ [fYt ]

i
i2

[
gΣt−1,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hΣt−1,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. This is a homogeneous system on[
hΣt−1,Σt−1

]i1
j1,j2

and
[
gΣt−1,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m},

therefore [
hΣt−1,Σt−1

]i1
j1,j2

=
[
gΣt−1,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.
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4. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Et and the j2 − th element of Σt−1 if j1 6= j2

[
FEt,Σt−1

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hEt,Σt−1

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hEt ]
i1
j1
ϑj2 +

[
gZt−1,Σt−1

]i2
j1,j2

σj1 expϑj1 log σj1,t−1 ϑj2

)
+ [fYt ]

i
i2

[
gEt,Σt−1

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hEt,Σt−1

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since we know that
[
gZt−1,Σt−1

]i2
j1,j2

=[
gSt,Σt−1

]i2
j,j2

= 0 for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a

homogeneous system on
[
hEt,Σt−1

]i1
j1,j2

and
[
gEt,Σt−1

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k},

and j1, j2 ∈ {1, . . . ,m} if j1 6= j2. Therefore

[
hEt,Σt−1

]i1
j1,j2

=
[
gEt,Σt−1

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.

Note that if j1 = j2, we have that

[
FEt,Σt−1

]i
j1,j1

=
[
fYt+1

]i
i2
∗

∗

 [gSt ]
i2
i1

[
hEt,Σt−1

]i1
j1,j1

+
[
gSt,Σt−1

]i2
i1,j1

[hEt ]
i1
j1
ϑj1+([

gZt−1,Σt−1

]i2
j1,j1

+
[
gZt−1

]i2
j1

)
σj1 expϑj1 log σj1,t−1 ϑj1


+ [fYt ]

i
i2

[
gEt,Σt−1

]i2
j1,j1

+
[
fSt+1

]i
i1

[
hEt,Σt−1

]i1
j1,j1

+
(

[fZt ]
i
j1

+
[
fZt+1

]i
j1
ρj1

)
σj1 expϑj1 log σj1,t−1 ϑj1 = 0

and since [fZt ]
i
j1
and

[
fZt+1

]i
j1
are different from zero in general for i ∈ {1, . . . , k + n+m}

and j1 ∈ {1, . . . ,m} , we have that this system is not homogeneous and

[
hEt,Σt−1

]i1
j1,j1

=
[
gEt,Σt−1

]i2
j1,j1
6= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1 ∈ {1, . . . ,m}.

Proof, part 3. The final part of the proof deals with the cross-derivatives of the policy
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functions h and g with respect to Ut and any of St, Zt−1, Σt−1, Et, or Ut and it shows that all of

them are equal to zero with one exception. In particular, we want to show that

[hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m},

[
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

=
[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= [hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, and

[hEt,Ut ]
i1
j1,j2

= [gEt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1, j2 ∈ {1, . . . ,m}, and j1 6= j2.

Again, we follow the same steps for each part of the result as before and use our previous

findings regarding which terms are zero.

1. We consider the cross derivative of the i−th element of F with respect to the j1−th element

of St and the j2 − th element of Ut

[FSt,Ut ]
i
j1,j2

=
[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[hSt,Ut ]
i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hSt ]
i1
j1

(
1− ϑ2

j2

) 1
2 ηj2

)
+ [fYt ]

i
i2

[gSt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hSt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}. Since
[
gSt,Σt−1

]i2
j1,j2

= 0

for i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}, this is a homogeneous system on

[hSt,Ut ]
i1
j1,j2

and [gSt,Ut ]
i2
j1,j2

.Therefore

[hSt,Ut ]
i1
j1,j2

= [gSt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1 ∈ {1, . . . , n}, and j2 ∈ {1, . . . ,m}.

2. We consider the cross-derivative of the i−th element of F with respect to the j1−th element
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of Zt−1 and the j2 − th element of Ut

[
FZt−1,Ut

]i
j1,j2

=

[
fYt+1

]i
i2

 [gSt ]
i2
i1

[
hZt−1,Ut

]i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hZt ]
i1
j1

(
1− ϑ2

j2

) 1
2 ηj2

+
[
gZt−1,Σt−1

]i2
j1,j2

ρj1
(
1− ϑ2

j2

) 1
2 ηj2


+ [fYt ]

i
i2

[
gZt−1,Ut

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hZt−1,Ut

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since
[
gZt−1,Σt−1

]i2
j1,j2

=
[
gSt,Σt−1

]i2
j,j2

= 0

for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on[
hZt−1,Ut

]i1
j1,j2

and
[
gZt−1,Ut

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

Therefore [
hZt−1,Ut

]i1
j1,j2

=
[
gZt−1,Ut

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

3. We consider the cross-derivative of the i−th element of F with respect to the j1−th element

of Σt−1 and the j2 − th element of Ut

[
FΣt−1,Ut

]i
j1,j2

=[
fYt+1

]i
i2

(
[gSt ]

i2
i1

[
hΣt−1,Ut

]i1
j1,j2

+
[
gΣt−1,Σt−1

]i2
j1,j2

ϑj1
(
1− ϑ2

j2

) 1
2 ηj2

)
+ [fYt ]

i
i2

[
gΣt−1,Ut

]i2
j1,j2

+
[
fSt+1

]i
i1

[
hΣt−1,Ut

]i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m}, and j1, j2 ∈ {1, . . . ,m}. Since
[
gΣt−1,Σt−1

]i2
j1,j2

= 0 for i2 ∈

{1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on
[
hΣt−1,Ut

]i1
j1,j2

and[
gΣt−1,Ut

]i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}. Therefore

[
hΣt−1,Ut

]i1
j1,j2

=
[
gΣt−1,Ut

]i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, j1, j2 ∈ {1, . . . ,m}.

4. We consider the cross-derivative of the i−th element of F with respect to the j1−th element
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of Ut and the j2 − th element of Ut

[FUt,Ut ]
i
j1,j2

=[
fYt+1

]i
i2

([
gΣt−1,Σt−1

]i2
j1,j2

(
1− ϑ2

j1

) 1
2 ηj1

(
1− ϑ2

j2

) 1
2 ηj2 + [gSt ]

i2
i1

[hUt,Ut ]
i1
j1,j2

)
+ [fYt ]

i
i2

[gUt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hUt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since
[
gΣt−1,Σt−1

]i2
j1,j2

= 0 for i1 ∈

{1, . . . , k} and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system on [hUt,Ut ]
i1
j1,j2

and [gUt,Ut ]
i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}. Therefore

[hUt,Ut ]
i1
j1,j2

= [gUt,Ut ]
i2
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m}.

5. Finally, consider the cross-derivative of the i− th element of F with respect to the j1 − th

element of Et and the j2 − th element of Ut if j1 6= j2

[FEt,Ut ]
i
j1,j2

=

[
fYt+1

]i
i2

 [gSt ]
i2
i1

[hEt,Ut ]
i1
j1,j2

+
[
gSt,Σt−1

]i2
i1,j2

[hEt ]
i1
j1

(
1− ϑ2

j2

) 1
2 ηj2

+
[
gZt−1,Σt−1

]i2
j1,j2

σj1 expϑj1 log σj1,t−1
(
1− ϑ2

j2

) 1
2 ηj2


+ [fYt ]

i
i2

[gEt,Ut ]
i2
j1,j2

+
[
fSt+1

]i
i1

[hEt,Ut ]
i1
j1,j2

= 0

for i ∈ {1, . . . , k + n+m} and j1, j2 ∈ {1, . . . ,m}. Since
[
gZt−1,Σt−1

]i2
j1,j2

=
[
gSt,Σt−1

]i2
j,j2

= 0

for i2 ∈ {1, . . . , k}, j ∈ {1, . . . , n}, and j1, j2 ∈ {1, . . . ,m}, this is a homogeneous system

on [hEt,Ut ]
i1
j1,j2

and [gEt,Ut ]
i2
j1,j2

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if

j1 6= j2. Therefore

[hEt,Ut ]
i2
j1,j2

= [gEt,Ut ]
i1
j1,j2

= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1, j2 ∈ {1, . . . ,m} if j1 6= j2.
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Note that if j1 = j2, we have that

[FEt,Ut ]
i
j1,j1

=

[
fYt+1

]i
i2

 ([
gZt−1,Σt−1

]i2
j1,j1

+
[
gZt−1

]i2
j1

)
σj1 expϑj1 log σj1,t−1

(
1− ϑ2

j1

) 1
2 ηj1

+
[
gSt,Σt−1

]i2
i1,j1

[hEt ]
i1
j1

(
1− ϑ2

j1

) 1
2 ηj1 + [gSt ]

i2
i1

[hEt,Ut ]
i1
j1,j1


+ [fYt ]

i
i2

[gEt,Ut ]
i2
j1,j1

+
[
fSt+1

]i
i1

[hEt,Ut ]
i1
j1,j1

+
(

[fZt ]
i
j1

+ ρj1
[
fZt+1

]i
j1

)
σj1 expϑj1 log σj1,t−1

(
1− ϑ2

j1

) 1
2 ηj1 = 0

and since [fZt ]
i
j1
and

[
fZt+1

]i
j1
are different from zero in general for i ∈ {1, . . . , k + n+m} and

j1 ∈ {1, . . . ,m} , we have that this system is not homogeneous and hence

[hEt,Ut ]
i2
j1,j1

= [gEt,Ut ]
i1
j1,j1
6= 0

for i1 ∈ {1, . . . , n}, i2 ∈ {1, . . . , k}, and j1 ∈ {1, . . . ,m}.

6.2. Equilibrium

In this section we describe the equilibrium conditions of the model. First, we introduce the ones

related to the household, then the ones related to the firm and the monetary authority, and finally

we present the market clearing and aggregation conditions.

6.2.1. Households

We can define two Lagrangian multipliers, λjt, the multiplier associated with the budget con-

straint, and qjt (the marginal Tobin’s Q), the multiplier associated with the investment adjust-

ment constraint normalized by λjt. Thus, the first-order conditions of the household problem with

respect to cjt, bjt, ujt, kjt, and xjt can be written as:

dt (cjt − hcjt−1)−1 − bβEtdt+1 (cjt+1 − hcjt)−1 = λjt, (30)

λjt = βEt{λjt+1
Rt

Πt+1

}, (31)

rt = µ−1
t Φ′ [ujt] , (32)
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qjt = βEt
{
λjt+1

λjt

(
(1− δ) qjt+1 + rt+1ujt+1 − µ−1

t+1Φ [ujt+1]
)}

, (33)

and

1 = qjtµt

(
1− V

[
xjt
xjt−1

]
− V ′

[
xjt
xjt−1

]
xjt
xjt−1

)
+ βEqjt+1µt+1

λjt+1

λjt
V ′
[
xjt+1

xjt

](
xjt+1

xjt

)2

. (34)

The first-order conditions of the “labor packer”imply a demand function for labor:

ljt =

(
wjt
wt

)−η
ldt ∀j

and, together with a zero profit condition wtldt =
∫ 1

0
wjtljtdj, an expression for the wage:

wt =

(∫ 1

0

w1−η
jt dj

) 1
1−η

.

Households follow a Calvo pricing mechanism when they set their wages. At the start of every

period, a randomly selected fraction 1 − θw of households can reoptimize their wages. All other

households simply index their nominal wages given past inflation with an indexation parameter

χw ∈ [0, 1].

Since we postulated in the main text both complete financial markets for the households

and separable utility in consumption, the marginal utilities of consumption are the same for all

households. Thus, in equilibrium, cjt = ct, ujt = ut, kjt−1 = kt, xjt = xt, qjt = qt, λjt = λt, and

w∗jt = w∗t .

The last two equalities are the most relevant to simplify our analysis: they tell us that the

shadow cost of consumption is equated across households and that all households that can reset

their wages optimally will do it at the same level w∗t . With these two results, and after several

steps of algebra, we find that the evolution of wages is described by two recursive equations:

ft =
η − 1

η
(w∗t )

1−η λtw
η
t l
d
t + βθwEt

(
Π
χw
t

Πt+1

)1−η (
w∗t+1

w∗t

)η−1

ft+1 (35)

and

ft = ψdtϕt

(
wt
w∗t

)η(1+ϑ) (
ldt
)1+ϑ

+ βθwEt
(

Π
χw
t

Πt+1

)−η(1+ϑ)(
w∗t+1

w∗t

)η(1+ϑ)

ft+1 (36)

on the auxiliary variable ft.
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Taking advantage of the expression for the wage and that, in every period, a fraction 1 − θw
of households set w∗t as their wage and the remaining fraction θw partially index their nominal

wage by past inflation, we can write the law of motion of real wage as:

w1−η
t = θw

(
Π
χw
t−1

Πt

)1−η

w1−η
t−1 + (1− θw)w∗1−ηt . (37)

6.2.2. Firms

The final good producer is perfectly competitive and minimizes its costs subject to the production

function (24) and taking as given all intermediate goods prices pti and the final good price pt.

The optimality conditions of this problem result in a demand function for each intermediate good

with the classic form:

yit =

(
pit
pt

)−ε
ydt ∀i

where ydt is the aggregate demand and a price for the final good:

pt =

(∫ 1

0

p1−ε
it di

) 1
1−ε

.

Each of the intermediate goods is produced by a monopolistic competitor. Intermediate good

producers produce the quantity demanded of the good by renting ldit and kit−1 at prices wt and rt.

Then, by minimization, we have a marginal cost of:

mct =

(
1

1− α

)1−α(
1

α

)α
w1−α
t rαt
At

(38)

The marginal cost is constant for all firms and all production levels given At, wt, and rt.

Given the demand function, the intermediate good producers set prices to maximize profits.

However, when they do so, they follow the same Calvo pricing scheme as households. In each

period, a fraction 1 − θp of intermediate good producers reoptimize their prices. All other firms

partially index their prices by past inflation with an indexation parameter χ ∈ [0, 1].

The solution for the firm’s pricing problem has a recursive structure in two new auxiliary

variables g1
t and g

2
t that take the form:

g1
t = λtmcty

d
t + βθpEt

(
Πχ
t

Πt+1

)−ε
g1
t+1, (39)
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g2
t = λtΠ

∗
ty
d
t + βθpEt

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1, (40)

and

εg1
t = (ε− 1)g2

t (41)

where

Π∗t =
p∗t
pt

(42)

is the ratio between the optimal new price (common across all firms that can reset their prices)

and the price of the final good. With this structure, the price index follows:

p1−ε
t = θp

(
Πχ
t−1

)1−ε
p1−ε
t−1 + (1− θp) p∗1−εt

or, normalizing by p1−ε
t :

1 = θp

(
Πχ
t−1

Πt

)1−ε

+ (1− θp) Π∗1−εt . (43)

6.2.3. The Monetary Authority

The model is closed with a monetary authority that sets the nominal interest rates by a modified

Taylor rule described in (25).

6.2.4. Market Clearing and Aggregation

Aggregate demand is given by:

ydt = ct + xt + µ−1
t Φ [ut] kt−1. (44)

By relying on the observation that the capital-labor ratio is constant across firms, we can

derive that aggregate supply is:

yst =
At (utkt−1)α

(
ldt
)1−α − φzt

υpt
(45)

where:

υpt =

∫ 1

0

(
pit
pt

)−ε
di

is the aggregate loss of effi ciency induced by price dispersion of the intermediate goods.
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Market clearing requires that

yt = ydt = yst . (46)

By the properties of Calvo’s pricing:

υpt = θp

(
Πχ
t−1

Πt

)−ε
υpt−1 + (1− θp) Π∗−εt . (47)

Finally, demanded labor is given by:

ldt =
1

υwt

∫ 1

0

ljtdj = lt (48)

where:

υwt =

∫ 1

0

(
wjt
wt

)−η
dj.

is the aggregate loss of labor input induced by wage dispersion among differentiated types of labor.

Again, by Calvo’s pricing, this ineffi ciency evolves as:

υwt = θw

(
wt−1

wt

Π
χw
t−1

Πt

)−η
υwt−1 + (1− θw) (Πw∗

t )−η . (49)

Thus an equilibrium is characterized by equations (30)-(49), the Taylor rule (25), the law of

motion for the structural shocks (augmented with the parameter drifts), and the law of motion

for the volatility shocks.

6.3. Non-linearities in Parameter Drifting

We argued in the main text that, since we wanted to consider the effects of stochastic volatility

on our model, it was of the essence to deal with higher-order approximations. In this section

we argue that higher-order approximations are also key to dealing with parameter drifting in the

Taylor rule. The reason is that parameter drifting disappears from a linear solution. To see this,

take the Taylor rule defined in (25) (assuming only in this paragraph and to simplify notation

that γy = 0 and log σξt = 0) and let us rewrite it:

f
(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εξt

)
= expR̂t − expγRR̂t−1+(1−γR)γΠ exp

γ̂Π,t Π̂t+σξεξt = 0.
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where we have expressed each variable vart in terms of log deviation with respect to the steady

state, v̂art = log vart − log var. The log-linear approximation of f around the steady state is

f
(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εξt

)
' f1 (0) R̂t + f2 (0) R̂t−1 + f3 (0) Π̂t + f4 (0) γ̂Π,t + f5 (0) εξt.

where fi (0) is the first derivative of the function f evaluated at (0, 0, 0, 0, 0) with respect to the

variable i. Note that:

f4

(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εξt

)
= − (1− γR) γΠΠ̂t expγ̂Π,t expγRR̂t−1+(1−γR)γΠ exp

γ̂Π,t Π̂t+σξεξt .

Clearly, f4 (0) = 0 and γ̂Π,t does not play any role in this first-order approximation. This is

the consequence of one variable (Πt) being raised to another variable (γΠ,t). Thus, the log-linear

approximation of the Taylor rule is:

f
(
R̂t, R̂t−1, Π̂t, γ̂Π,t, εmt

)
' R̂t − γRR̂t−1 − (1− γR) γΠΠ̂t + σξεξt (50)

which does not depend on γΠ,t, but only on the steady state γΠ and it is exactly the same

expression as the one without parameter drifting. Hence, in order to capture parameter drifting

in the Taylor rule, we need, at least, to perform a second-order approximation.

6.4. Computation

In this section, we provide some more details regarding the computation of the paper. We generate

all the derivatives required by our second-order perturbation with Mathematica 6.0. In that

way, we do not need to recompute the derivatives, the most time-intensive step, for each set of

parameter values in our estimation. Once we have all the relevant derivatives, we export them

automatically into Fortran files. This whole process takes about 3 hours. Then, we compile the

resulting files with the Intel Fortran Compiler version 10.1.025 with IMSL. Previous versions

failed to compile our project because of the length of some of the expressions. Compilation takes

about 18 hours. The project has 1798 files and occupies 2.33 Gbytes of memory.

The next step is, for given parameter values, to compute the first- and second-order approxi-

mation to the decision rules around the deterministic steady state using the analytic derivatives

we found before. For this task, Fortran takes around 5 seconds. Once we have the solution, we
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approximate the likelihood using the particle filter with 10, 000 particles. This number delivered

a good compromise between accuracy and time to compute the likelihood. The evaluation of one

likelihood requires 22 seconds on a Dell server with 8 processors. Once we have the likelihood

evaluation, we guess new parameter values and we start again. This means that drawing 5,000

times from the posterior (even forgetting about the initial search over a grid of parameter values)

takes around 38 hours.

It is important to emphasize that the Mathematica and Fortran code were highly optimized

in order to 1) keep the size of the project within reasonable dimensions (otherwise, the compiler

cannot parse the files and, even when it can, it delivers code that is too ineffi cient) and 2) provide

a fast computation of the likelihood.

Perhaps the most important task in that optimization was the parallelization of the Fortran

code using OPENMP as well as the compilation options: OG (global optimizations) and Loop Unroll.

In addition, we tailored specialized code to perform the matrix multiplications required in the first-

and second-order terms of our model solution.

Implementing corollary 1 requires the solution of a linear system of equations and the com-

putation of a Jacobian. For our particular application, we found that the following sequence of

LAPACK operations delivered the fastest solution:

1. DGESV (computes the solution to a real system of linear equations A ∗ X = B).

2. DGETRI (computes the inverse of a matrix using the LU factorization from the previous line).

3. DGETRF (helps to compute the determinant of the inverse from the previous line).

Without the parallelization and our optimized code, the solution of the model and evaluation

of its likelihood take about 70 seconds.

With respect to the random-walk Metropolis-Hastings, we performed an intensive process of

fine-tuning of the chain, both in terms of initial conditions as well as in terms of getting the

right acceptance level. The only other important remark is to remember that as pointed out by

McFadden (1989) and Pakes and Pollard (1989), we must keep the random numbers used for

resampling in the particle filter constant across draws of the Markov chain. This is required to

achieve stochastic equi-continuity, and even if this condition is not strictly necessary in a Bayesian

framework, it reduces the numerical variance of the procedure, which was a serious concern for us

given the complexity of our problem.
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6.5. Construction of Data

When we estimate the model, we make the series provided by the National Income and Product

Accounts (NIPA) consistent with the definition of variables in the theory. The main adjustment

we undertake is to express both real output and real gross investment in consumption units. Our

model implies that there is a numeraire in terms of which all the other prices need to be quoted.

We pick consumption as the numeraire. The NIPA, in comparison, uses an index of all prices

to transform nominal GDP and investment into real values. In the presence of changing relative

prices, such as the ones we have seen in the U.S. over the last several decades with the fall in the

relative price of capital, NIPA’s procedure biases the valuation of different series in real terms.

We map theory into the data by computing our own series of real output and real investment.

To do so, we use the relative price of investment, defined as the ratio of an investment deflator

and a deflator for consumption. The denominator is easily derived from the deflators of non-

durable goods and services reported in the NIPA. It is more complicated to obtain the numerator

because, historically, NIPA investment deflators were poorly constructed. Instead, we rely on the

investment deflator computed by Fisher (2006). Since the series ends early in 2000.Q4, we have

extended it to 2007.Q1 by following Fisher’s methodology.

For the real output per capita series, we first define nominal output as nominal consumption

plus nominal gross investment. We define nominal consumption as the sum of personal consump-

tion expenditures on non-durable goods and services. We define nominal gross investment as

the sum of personal consumption expenditures on durable goods, private residential investment,

and non-residential fixed investment. Per capita nominal output is equal to the ratio between

our nominal output series and the civilian non-institutional population between 16 and 65. To

obtain per capita values, we divide the previous series by the civilian non-institutional population

between 16 and 65. Finally, real wages are defined as compensation per hour in the non-farm

business sector divided by the CPI deflator.

6.6. Determinacy of Equilibrium

We mentioned in the main text that the estimated value of γΠ (1.045 in levels) guarantees local

determinacy of the equilibrium. To see this note that, for local determinacy, the relevant part

of the solution of the model is only the linear, first-order component. This component depends

on γΠ, the mean policy response, and not on the current value of γΠt. The economic intuition is
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that local unicity survives even if γΠt temporarily violates the Taylor principle as long as there is

reversion to the mean in the policy response and, thus, the agents have the expectation that γΠt

will satisfy the Taylor principle on average. For a related result in models with Markov-switching

regime changes, see Davig and Leeper (2006). While we cannot find an analytical expression

for the determinacy region, numerical experiments show that, conditional on the other point

estimates, values of γΠ above 0.98 ensure uniqueness. Since the likelihood assigns zero probability

to values of γΠ lower than 1.01, well inside the determinacy region, multiplicity of local equilibria

is not an issue in our application.

6.7. Impulse Response Functions

As a check of our estimates, we plot the IRFs generated by the model to a monetary policy shock.

This exercise is an important test. If the IRFs match the shapes and sizes of those gathered

by time series methods such as SVARs, it will strengthen our belief in the rest of our results.

Otherwise, we should at least understand where the differences come from.

Auspiciously, the answer is positive: our model generates dynamic responses that are close to

the ones from SVARs (see, for instance, Sims and Zha, 2006). The left panel of figure 6.1 plots the

IRFs to a monetary shock of three variables commonly discussed in monetary models: the federal

funds rate, output growth, and inflation. Since we have a non-linear model, in all the figures in

this section, we report the generalized IRFs starting from the mean of the ergodic distribution

(Koop, Pesaran, and Potter, 1996). After a one-standard-deviation shock to the federal funds

rate, inflation goes down in a hump-shaped pattern for many quarters and output growth drops.

The right panel of figure 6.1 plots the IRFs after a one-standard-deviation innovation to the

monetary policy shock computed conditional on fixing γΠt to the estimated mean during the tenure

of each of three different chairmen of the Board of Governors: the combination Burns-Miller,

Volcker, and Greenspan. This exercise tells us how the variation on the systematic component

of monetary policy has affected the dynamics of aggregate variables. Furthermore, it allows a

comparison with numerous similar exercises done in the literature with SVARs where the IRFs

are estimated on different subsamples.

The most interesting difference is that the response of output growth under Volcker was the

mildest: the estimated average stance of monetary policy under his tenure reduces the volatility

of output. Inflation responds moderately as well since the agents have the expectation that future
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shocks will be smoothed out by the monetary authority. This finding also explains why the

IRFs of the interest rate are nearly on top of each other for all three periods: while we estimate

that monetary policy responded more during Volcker’s years for any given level of inflation than

under Burns-Miller or Greenspan, this policy lowers inflation deviations and hence moderates the

actual movement along the equilibrium path of the economy. Moreover, this second set of IRFs

already points out one important result of this paper: we estimate that monetary policy under

Burns-Miller and Greenspan was similar, while it was different under Volcker. This finding will

be reinforced by the results we present in the main body of the text.
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Figure 6.1: IRFs to a Monetary Policy Shock, Unconditional and Conditional

For completeness, we also plot, in figure 6.2, the IRFs to each of the other four shocks in

our model: the two preferences shocks (intertemporal and intratemporal) and the two technology

shocks (investment-specific and neutral). The behavior of the model is standard. A one-standard-

deviation intertemporal preference shock raises output growth and inflation because there is an

increase in the desire for consumption in the current period. The intratemporal shock lowers

output because labor becomes less attractive, driving up the marginal costs and, with it, prices.

The two supply shocks raise output growth and lower inflation by increasing productivity. All of

those IRFs show that the behavior of the model is standard.
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Figure 6.2: IRFs of inflation, output growth, and the federal funds rate to an intertemporal

demand (εdt) shock, an intratemporal demand (εϕt) shock, an investment-specific (εµt) shock,

and a neutral technology (εAt) shock. The responses are measured as log differences with respect

to the mean of the ergodic distribution.

6.8. Model Comparison

Another use of our procedure to evaluate the likelihood function is to compare our model against

alternative models -or alternative versions of the same model. For instance, a natural question

is to compare our benchmark model with stochastic volatility and parameter drifting with a

version without parameter drifting but with stochastic volatility. That is: once we have included

stochastic volatility, is it still important to allow for changes in monetary policy to account for

the time-varying volatility of aggregate data in the U.S.?

Given our Bayesian framework, a natural approach for model comparison is the computation

of log marginal data densities (log MDD) and log Bayes factors. Let us focus on the proposed

example of comparing the full model with stochastic volatility and parameter drifting (drift) with

a version without parameter drifting (no drift) but with stochastic volatility. In this second case,

we have two fewer parameters, ργΠ
and σπ (but we still have γΠ). To ease notation, we partition
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the parameter vector γ as γ =
(
γ̃, ργΠ

, σπ
)
, where γ̃ is the vector of all the other parameters,

common to the two versions of the model.

Given that our priors are 1) uniform, 2) independent of each other, and 3) cover all the areas

where the likelihood is (numerically) positive, and that 4) the priors on γ̃ are common across the

two specifications of the model, we can write

log p
(
YT= Ydata,T ; drift

)
= log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ + log p (γ̃) + log p

(
ργΠ

)
+ log p (σπ) ,

where log p (γ̃), log p
(
ργΠ

)
, and log p (σπ) are constants and

log p
(
YT= Ydata,T ;no drift

)
= log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃ + log p (γ̃) .

Thus

logBdrift, no drift = log p
(
YT= Ydata,T ; drift

)
− log p

(
YT= Ydata,T ;no drift

)
= log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ̃ − log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃

− log p
(
ργΠ

)
− log p (σπ) .

The difference

log

∫
p
(
YT= Ydata,T ; γ, drift

)
dγ − log

∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃

tells us how much better the version with parameter drift fits the data in comparison with the

version with no drift. The last two terms, log p
(
ργΠ

)
+ log p (σπ) , penalize for the presence of two

extra parameters.

We estimate the log MDDs following Geweke’s (1998) harmonic mean method. This requires

us to generate a new draw of the posterior of the model for the specification with no parameter

drift to compute log
∫
p
(
YT= Ydata,T ; γ̃,no drift

)
dγ̃. After doing so, we find that

logBdrift, no drift = 126.1331 + log p
(
ργΠ

)
+ log p (σπ)

This expression shows a potential problem of Bayes factors: by picking uniform priors for

60



ργΠ
and σπ spread out over a suffi ciently large interval, we could overcome any difference in

fit. But the prior for ργΠ
is pinned down by our desire to keep that process stationary, which

imposes natural bounds in [−1, 1] and makes log p
(
ργΠ

)
= −0.6931. Thus, there is only one

degree of freedom left: our choice of log p (σπ). Any sensible prior for σπ will only put mass

in a relatively small interval: the point estimate is 0.1479, the standard deviation is 0.002, and

the likelihood is numerically zero for values bigger than 0.2. Hence, we can safely impose that

log p (σπ) > −1 (log p (σπ) = −1 would imply a uniform prior between 0 and 2.7183, a considerably

wider support than any evidence in the data), and conclude that logBdrift, no drift > 124.4400. This

is conventionally considered overwhelming evidence in favor of the model with parameter drift

(Jeffreys, 1961, for instance, suggests that differences bigger than 5 are decisive). Thus, even after

controlling for stochastic volatility, the data strongly prefer a specification where monetary policy

has changed over time. This finding, however, does not imply that volatility shocks did not play

an important role in the time-varying volatilities of U.S. aggregate time series. In fact, as we will

see in the next section of this appendix, they were a key mechanism in accounting for it.4

It has been noted that the estimation of log MDDs is dangerous because of numerical insta-

bilities in the evaluation of the integral log marginal data density (log MDD). This concern is

particularly relevant in our case, since we have a large model saddled with burdensome computa-

tion. Thus, as a robustness analysis, we also computed the Bayesian Information Criterion (BIC)

(Schwarz, 1978). The BIC, which avoids the need to handle the integral in the log MDD, can be

understood as an asymptotic approximation of the Bayes factor that also automatically penalizes

for extra parameters. The BIC of model i is defined:

BICi = −2 ln p
(
YT= Ydata,T ; γ̂, i

)
+ ki lnn

where γ̂ is the maximum likelihood estimator (or, given our flat priors, the mode of the posterior),

ki is the number of parameters, and n is the number of observations. Then, the BIC of the model

4A formal comparison with the case without stochastic volatility is more diffi cult, since we are taking advantage
of its presence to evaluate the likelihood. Fortunately, Justiniano and Primiceri (2008) and Fernández-Villaverde
and Rubio-Ramírez (2007) estimate models similar to ours with and without stochastic volatility (in the first case,
using only a first-order approximation to the decision rules of the agents and in the second with measurement
errors). Both papers find that the fit of the model improves substantially when we include stochastic volatility. Fi-
nally, Fernández-Villaverde and Rubio-Ramírez (2008) compare a model with parameter drifting and no stochastic
volatility with a model without parameter drifting and no stochastic volatility and report that parameter drifting
is also strongly preferred by the likelihood.
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with stochastic volatility and parameter drifting is BICdrift = −2 ∗ 3885 + 28 ∗ ln 192 = −7, 622.8.

If we eliminate parameter drifting and the parameters ργΠ
and σπ associated with it (and, of

course, with a new point estimate of the other parameters) BICno drift = −2∗3810.7+26∗ln 192 =

−7, 484.7. The difference is, therefore, of over 138 log points, which is again overwhelming evidence

in favor of the model with parameter drifting.

6.9. Historical Counterfactuals

One important additional exercise is to quantify how much of the observed changes in the volatil-

ity of aggregate U.S. variables can be accounted for by changes in the standard deviations of

shocks and how much by changes in policy. To accomplish this, we build a number of historical

counterfactuals. In these exercises, we remove one source of variation at a time and we measure

how aggregate variables would have behaved when hit only by the remaining shocks. Since our

model is structural in the sense of Hurwicz (1962) (it is invariant to interventions, including shocks

by nature such as the ones we are postulating), we will obtain an answer that is robust to the

Lucas critique.

In the next two subsections, we will always plot the same three basic variables that we used in

section 4 of the main text: inflation, output growth, and the federal funds rate. Counterfactual

histories of other variables could be built analogously. Also, we will have vertical bars for the

tenure of each chairman, following the same color scheme as in section 4.

6.9.1. Counterfactual I: Switching Chairmen

In our first counterfactual, we move one chairman from his mandate to an alternative time period.

For example, we appoint Greenspan as chairman during the Burns-Miller years. By that, we mean

that the Fed would have followed the policy rule dictated by the average γΠt estimated during

Greenspan’s time while starting from the same states as Burns-Miller and suffering the same

shocks (both structural and of volatility). We repeat this exercise with all the other possible

combinations: Volcker in the Burns-Miller decade, Burns-Miller in Volcker’s mandate, Greenspan

in Volcker’s time, Burns-Miller in the Greenspan years, and, finally, Volcker in Greenspan’s time.

It is important to be careful in interpreting this exercise. By appointing Greenspan at Volcker’s

time, we do not literally mean Greenspan as a person, but Greenspan as a convenient label for a

particular monetary policy response to shocks that according to our model were observed during
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his tenure. The real Greenspan could have behaved in a different way, for example, as a result of

some non-linearities in monetary policy that are not properly captured by a simple rule such as the

one postulated in section 3. The argument could be pushed one step further and we could think

about the appointment of Volcker as an endogenous response of the political-economic equilibrium

to high inflation. In our model agents have a probability distribution regarding possible changes in

monetary policy in the next periods, but those changes are uncorrelated with current conditions.

Therefore, our model cannot capture the endogeneity of policy selection.

Another issue that we sidelined is the evolution of expectations. In our model, agents have

rational expectations and observe the changes in monetary policy parameters. This hypothesis

may be a poor approximation of the agents’behavior in real life. It could be the case that γΠt was

high in 1984, even though inflation was already low by that time, because of the high inflationary

expectations that economic agents held during most of the 1980s (this point is also linked to issues

of commitment and credibility that our model does not address). While we see all these arguments

as interesting lines of research, we find it important to focus first on our basic counterfactual.

Moments In table 6.1, we report the mean and the standard deviation of inflation, output

growth, and the federal funds rate in the observed and in the sets of counterfactual data. Inflation

was high with Burns-Miller, fell with Volcker, and stayed low with Greenspan. Output growth

went down during the Volcker years to recover with Greenspan. The federal funds rate reached its

peak with Volcker. The standard deviation of output growth fell from 4.7 in Burns-Miller’s time

to 2.45 with Greenspan, a cut in half. Similarly, inflation volatility fell nearly 54 percent and the

federal funds rate volatility 5 percent.

But table 6.1 also tells us one important result: time-varying monetary policy significantly

affected average inflation. In particular, Volcker’s response to inflation was strong and switching

him to either Burns-Miller’s or Greenspan’s time would have reduced average inflation dramati-

cally. But it also tells us other things: contrary to the conventional wisdom, our estimates suggest

that the stance of monetary policy against inflation under Greenspan was not strong. In Burns-

Miller’s time, the monetary policy under Greenspan would have delivered slightly higher average

inflation, 6.83 versus the observed 6.23, accompanied by a lower federal funds rate and lower out-

put growth, 1.89 versus the observed 2.03. The difference is even bigger in Volcker’s time, during

which average inflation would have been nearly 1.4 percent higher, while output growth would
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have been virtually identical (1.34 versus 1.38). The key for this finding is in the behavior of the

federal funds rate, which would have increased only by 9 basis points, on average, if Greenspan

had been in charge of the Fed instead of Volcker. Given the higher inflation in the counterfactual,

the higher nominal interest rates would have meant much lower real rates. The counterfactual

of Burns-Miller in Greenspan’s and Volcker’s time casts doubt on the malignant reputations of

these two short-lived chairmen, at least when compared with Greenspan. Burns-Miller would have

brought even slightly lower inflation than Greenspan, thanks to a higher real federal funds rate

and a bit higher output growth. However, Burns-Miller would have delivered higher inflation than

Volcker.

Table 6.1: Switching Chairmen, Data versus Counterfactual Histories

Means Standard Deviations

Inflation Output Gr. FFR Inflation Output Gr. FFR

BM (data) 6.2333 2.0322 6.5764 2.7347 4.7010 2.2720

Greenspan to BM 6.8269 1.8881 6.5046 3.3732 4.6781 2.0103

Volcker to BM 4.3604 1.5010 7.6479 2.4620 4.6219 2.3470

Volcker (data) 5.3584 1.3846 10.3338 3.1811 4.4811 3.4995

BM to Volcker 6.4132 1.3560 10.4126 2.9728 4.4220 3.0648

Greenspan to Volcker 6.7284 1.3423 10.4235 2.9824 4.3730 2.8734

Greenspan (data) 2.9583 1.5177 4.7352 1.2675 2.4567 2.1887

BM to Greenspan 2.3355 1.5277 4.4529 1.5625 2.4684 2.4652

Volcker to Greenspan -0.4947 1.3751 3.6560 1.7700 2.4705 2.7619

This is an important empirical finding: according to our model, time-varying monetary pol-

icy significantly affected average inflation. While Volcker’s response to inflation was strong,

Greenspan’s response was milder and he seems to have behaved quite similarly to how Burns-

Miller would have behaved.

Counterfactual Paths An alternative way to analyze our results is to plot the whole coun-

terfactual histories summarized in table 6.1. We find it interesting to plot the whole history

because changes in the economy’s behavior in one period will propagate over time and we want

to understand, for example, how Greenspan’s legacy would have molded Volcker’s tenure. Also,
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plotting the whole history allows us to track the counterfactual response of monetary policy to

large economic events such as the oil shocks.

In figure 6.3, we move to Burns-Miller being reappointed in Greenspan’s time. This plot

suggests that the differences in monetary policy under Greenspan and Burns-Miller may have

been overstated by the literature.
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Figure 6.3: Burns-Miller during the Greenspan years

In figure 6.4, we plot the counterfactual of Burns-Miller extending their tenure to 1987. The

results are very similar to the case in which we move Greenspan to the same period: slower

disinflation and no improvement in output growth.
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Figure 6.4: Burns-Miller during the Volcker years

A particularly interesting exercise is to check what would have happened if Reagan had decided

to reappoint Volcker and not appoint Greenspan. We plot these results in figure 6.5. The quick

answer is: lower inflation and interest rates. Our estimates also suggest that Volcker would have

reduced price increases with little cost to output.
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Figure 6.5: Volcker during the Greenspan years
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Our final exercise is to plot, in figure 6.6, the counterfactual in which we move Volcker to the

time of Burns-Miller. The main finding is that inflation would have been rather lower, especially

because the effects of the second oil shock would have been much more muted. This counterfactual

is plausible: other countries, such as Germany, Switzerland, and Japan, that undertook a more

aggressive monetary policy during the late 1970s were able to keep inflation under control at levels

below 5 percent at an annual rate, while the U.S. had peaks of price increases over 10 percent.
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Figure 6.6: Volcker during the Burns-Miller years

6.9.2. Counterfactual II: No Volatility Changes

In our second historical counterfactual, we compute how the economy would have performed in

the absence of changes in the volatility of the shocks, that is, if the volatility of the innovation of

the structural shocks had been fixed at its historical mean. To do so, we back out the smoothed

structural shocks as we did in section 4.7 and we feed them to the model, given our parameter

point estimates and the historical mean of volatility, to generate series for inflation, output, and

the federal funds rate.

Moments Table 6.2 reports the moments of the data (in annualized terms) and the moments

from the counterfactual history (no s.v. in the table stands for “no stochastic volatility”). In both

cases, we include the moments for the whole sample and for the sample divided before and after
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1984.Q1, a conventional date for the start of the great moderation (McConnell and Pérez-Quirós,

2000). In the last two rows of the table, we compute the ratio of the moments after 1984.Q1 over

the moments before 1984.Q1. The benchmark model with stochastic volatility plus parameter

drifting replicates the data exactly.

Some of the numbers in table 6.2 are well known. For instance, after 1984, the standard

deviation of inflation falls by nearly 60 percent, the standard deviation of output growth falls by

44 percent, and the standard deviation of the federal funds rate falls by 39 percent. In terms of

means, after 1984, there is less inflation and the federal funds rate is lower, but output growth is

also 15 percent lower.

Table 6.2: No Volatility Changes, Data versus Counterfactual History

Means Standard Deviations

Inflation
Output

Growth
FFR Inflation

Output

Growth
FFR

Data 3.8170 1.8475 6.0021 2.6181 3.5879 3.3004

Data, pre 1984.1 4.6180 1.9943 6.7179 3.2260 4.3995 3.8665

Data, after 1984.1 2.9644 1.6911 5.2401 1.3113 2.4616 2.3560

No s.v. 2.5995 0.7169 6.9388 3.5534 3.1735 2.4128

No s.v., pre-1984.1 2.0515 0.9539 6.3076 3.7365 3.4120 2.7538

No s.v., after-1984.1 3.1828 0.4647 7.6106 3.2672 2.8954 1.7673

Data, post-1984.1/pre-1984.1 0.6419 0.8480 0.7800 0.4065 0.5595 0.6093

No s.v., post-1984.1/pre-1984.1 1.5515 0.4871 1.2066 0.8744 0.8486 0.6418

The table also reflects the fact that without volatility shocks, the reduction in volatility ob-

served after 1984 would have been noticeably smaller. The standard deviation of inflation would

have fallen by only 13 percent, the standard deviation of output growth would have fallen by 16

percent, and the standard deviation of the federal funds rate would have fallen by 35 percent, that

is, only 33, 20, and 87 percent, respectively, of how much they would have fallen otherwise. We

must resist here the temptation to undertake a standard variance decomposition exercise. Since

we have a second-order approximation to the policy function and its associated cross-product

terms, we cannot neatly divide total variance among the different shocks as we could do in the

linear case.
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Table 6.2 documents that, while time-varying policy is reflected in changes of average infla-

tion, volatility shocks affect the standard deviation of the observed series. Without time-varying

volatility the decrease in observed volatility would not have been nearly as big as we observed

in the data. Hence, while changes in the systematic component of monetary policy account for

changes in average inflation, volatility shocks account for changes in the standard deviation of

inflation, output growth and interest rates observed after 1984. Also, without stochastic volatility,

output growth would have been quite lower on average.

Counterfactual Paths Figure 6.7 compares the whole path of the counterfactual history (blue

line) with the observed one (red line). Figure 6.7 tells us that volatility shocks mattered throughout

the sample. The run-up in inflation would have been much slower in the late 1960s (inflation would

have actually been negative during the last years of Martin’s tenure) with small effects on output

growth or the federal funds rate (except at the very end of the sample). Inflation would not

have picked up nearly as much during the first oil shock, but output growth would have suffered.

During Volcker’s time, inflation would also have fallen faster with little cost to output growth.

These are indications that both Burns-Miller and Volcker suffered from large and volatile shocks

to the economy. In comparison, during the 1990s, inflation would have been more volatile, with a

big increase in the middle of the decade. Similarly, during those years, output growth would have

been much lower, with a long recession between 1994 and 1998, and the federal funds rate would

have been prominently higher. Confirming the results presented in section 4 of the paper, this is

another manifestation of how placid the 1990s were for policy makers.
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Figure 6.7: Counterfactual “No Changes in Volatility”.
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