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Immigration, Skill Mix, and the Choice of Technique  
 

Abstract 
 
Using detailed plant- level data from the 1988 and 1993 Surveys of Manufacturing Technology, 
this paper examines the impact of skill mix in U.S. local labor markets on the use and adoption 
of automation technologies in manufacturing. The level of automation differs widely across U.S. 
metropolitan areas.  In both 1988 and 1993, in markets with a higher relative availability of less-
skilled labor, comparable plants – even plants in the same narrow (4-digit SIC) industries – used 
systematically less automation.  Moreover, between 1988 and 1993 plants in areas experiencing 
faster less-skilled relative labor supply growth adopted automation technology more slowly, both 
overall and relative to expectations, and even de-adoption was not uncommon.  This relationship 
is stronger when examining an arguably exogenous component of local less-skilled labor supply 
derived from historical regional settlement patterns of immigrants from different parts of the 
world. 

These results have implications for two long-standing puzzles in economics.  First, they 
potentially explain why research has repeatedly found that immigration has little impact on the 
wages of competing native-born workers at the local level.  It might be that the technologies of 
local firms—rather than the wages that they offer—respond to changes in local skill mix 
associated with immigration.  A modified two-sector model demonstrates this theoretical 
possibility.  Second, the results raise doubts about the extent to which the spread of new 
technologies have raised demand for skills, one frequently forwarded hypothesis for the cause of 
rising wage inequality in the United States.  Causality appears to at least partly run in the 
opposite direction, where skill supply drives the spread of skill-complementary technology.  

 

JEL: J2, F1, O3 
Keywords: Technological change, immigration, local labor market 
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Much has been written about how advances in technology have raised the skill 

requirements in the U.S. labor market.  Evidence of “skill-biased technological change” has been 

found in the association between the use of technology and the relative employment and wages 

of skilled workers when looking across workers (e.g. Krueger (1993)), plants (e.g. Dunne et al. 

(2004)), and industries (e.g. Autor, Levy, and Murnane (2003)).  It is also argued that the supply 

of skills has not kept pace with demand, leading to a growing gap between the earnings of skilled 

and unskilled workers (e.g. Katz and Murphy (1994)). 

At the same time, however, the U.S. is in the midst of an immigration boom that has 

raised the proportion of workers who are less-skilled, particularly in certain parts of the U.S.  

Since 1970, immigrants have risen from 5 to 15 percent of the U.S. workforce.  Forty percent of 

immigrants have less than a high school education, compared to 10 percent of native-born 

Americans.  Furthermore, the impact of this boom has been geographically uneven: immigrants 

are highly concentrated in particular labor markets, and the proportion of the workforce that is 

less-skilled is higher in more immigrant-dense markets.  Yet study after study has found that the 

local labor market impact of immigration on the relative employment rates and wages of less-

skilled workers is almost zero.1  High- immigration markets have succeeded in productively 

employing large numbers of unskilled workers, despite the supposedly increased demand for 

skilled labor that the diffusion of new technologies has generated.  How is this possible? 

One way markets may be able to absorb less-skilled immigrants is by adopting less of the 

new high-skill technologies.2  The expectation that the local labor market impact of immigration 

                                                 
1 Borjas (1994) and Friedberg and Hunt (1995) provide reviews of this literature.  Note that this is also despite 
evidence in other contexts that labor supply has an impact on wages (Hamermesh (1993)), including evidence that 
immigration has an impact at the national level (Borjas (2003)). 
2 Another explanation, discussed further below, is that local markets in the U.S. are each a small part of a large and 
integrated national economy, so factor prices are insensitive to local factor mix.  Lewis (2004b) found specialization 
in 3-digit industries to be unimportant, absorbing at most 10 percent of immigrant-induced skill mix differences 
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ought to be large derives from a standard view that production technology is invariant to input 

availability.  Recent models of innovation (Acemoglu (1998)) and technology choice (Beaudry 

and Green (2000, 2003)) demonstrate that technology may adjust to skill mix, and that the 

adjustment of technology mitigates the usual effect of labor supply on wages.  Below I present a 

modified version of Beaudry and Green (2000) which shows how a local market can adapt to an 

influx of less-skilled workers by using less of a skill- intensive technique, allowing the new 

immigrants to be employed at existing less-skilled wages.  The idea that employers adapt 

technology to input availability is not new (see, e.g., Solow (1962), Johansen (1959), Habbakkuk 

(1962)) but it conflicts with the “conventional” view implied by recent studies that treat 

technology differences across plants or industries as exogenous in order to investigate the ir 

impact on wages or skill mix (Dunne et al. (2004), Autor, Levy, and Murnane (2003)).    

 This paper evaluates the extent to which producers adapt technology to local input 

supplies using detailed data from the 1988 and 1993 Surveys of Manufacturing Technology 

(SMTs) on the use of automation technologies introduced into manufacturing in the past few 

decades (see Table 1).  As with other recent technological advances, new plant automation 

techniques were projected to increase the relative employment of skilled workers, or as one study 

put it, “…jobs eliminated are semi-skilled or unskilled, while jobs created require significant 

technical background” (Hunt and Hunt (1983), p. xii).  Doms, Dunne, and Troske (1997) used 

the SMT data to show that more automated plants do indeed have a higher skilled employment 

share.  They also showed, however, that the same plants had a higher skill share well before they 

                                                                                                                                                             
across markets.  However, in light of recent indirect evidence that there may be quality specialization within narrow 
industries (Schott (2004)) this explanation remains a possibility. 
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adopted the new technology.3  Given this, it is appropriate to ask the extent to which causality 

runs from skills to technology, rather than the reverse.  Manufacturing automation is particularly 

suited to evaluating the impact of immigration because less-skilled workers in SMT-covered 

industries, especially immigrants, are concentrated in labor- intensive assembly, welding, and 

other tasks that these technologies replace (See Table 3).  

Technology data are supplemented with labor force data from Current Population 

Surveys and Censuses of Population.  The combined data show that, in two separate cross-

sections, the higher the relative number of workers who were high school dropouts in a 

metropolitan area, the less automated the plants in the area were.  In addition, between 1988 and 

1993, plants’ use of technology grew more slowly, both overall and relative to forecasts, where 

the relative number of dropouts in the local work force grew more quickly.  Instrumental 

variables estimates, based on historical less-skilled immigration patterns, show that, if anything, 

simple least-squares correlations understate the impact of skill supply on the use of technology.  

A typical estimate is that a 10-percentage-point (one standard deviation) increase in the less-

skilled relative supply reduces the technology use at a typical worker’s plant by roughly 0.5 

technologies on a base of 6 technologies.  So the impact of skill supply is substantial. 

These results provide a potential explanation for why the local labor market impact of 

immigration is small.  The modified version of Beaudry and Green (2000) I present below 

reduces essentially to a two-sector open-economy model, in which, as in the original, an increase 

in less-skilled relative supply does not affect relative wages in the long run.4  The difference 

from the original model is that the economy adjusts to the change in input mix not by changing 

                                                 
3 On top of this, Luque and Miranda (2005) have used a match of unemployment insurance records to the SMT data 
to show that the higher average wages paid to workers at technologically-intensive plants can be attributed to firm 
and worker unobservables rather than the effect of technology. 
4 Provided that the change is not so large as to move the economy outside its “cone of diversification.” 
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the mix of goods produced, but rather by changing the mix of technologies used to produce the 

same goods.  An alternative interpretation of the empirical results – that the observed response of 

“technology” to immigration is in fact due to a shift in industrial mix toward less-skilled 

intensive industries that also use less technology – cannot be completely ruled out.  Inconsistent 

with this alternative interpretation, however, controls for narrow (four-digit SIC) industry, and 

within those controls for product “quality” (similar to Schott (2004)), have little impact on the 

strength of the relationship. 

 

I. Theory 

The idea that plants adjust technology to input availability is not new.  This was a feature 

of “putty-clay” models (Solow (1962), Johansen (1959)) and was the core hypothesis of 

Habbakkuk’s (1962) investigation of why the U.S. mechanized production ahead of the British in 

the nineteenth century.  However, this idea fell out of favor until it recently re-emerged in 

models attempting to explain why recent technological advance in the U.S. is “skill-biased.”  

Models of directed technical change (Acemoglu (1998)) and endogenous technology choice 

(Beaudry and Green (2000,2003)) argue in essence that skill-complementary technologies have 

become more prevalent as a result of the rising skills of the U.S. workforce.  Acemoglu models 

innovation while Beaudry and Green model the choice among available technologies.  In 

Beaudry and Green’s model, firms choose between two technologies of high (“modern”) and low 

(“traditional”) skill- intensity.  An immigration shock which raises the relative less-skilled labor 

induces firms to adopt less modern technology. 

A version of Beaudry and Green’s model, modified to be appropriate for a local labor 

market, can be used to show how local labor markets might adapt to less-skilled immigration in a 
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way that affects technology but not relative wages.  The key change from their model is to make 

the supply of capital elastic.  Beaudry and Green model the supply of capital as fixed, an 

assumption that is potentially appropriate for a large national economy but seems unrealistic for 

a local labor market.5  As will be seen below, this change reduces the model to essentially a two-

sector Heckscher-Ohlin model, where the goods of different factor intensities have been 

relabeled as “technologies” of different factor intensities.  

To illustrate a simple case of the model, suppose that perfectly competitive producers 

have available to them modern and traditional technologies which can each be represented by a 

Cobb-Douglass production function:6 

 

( ) ( )( )JJJJJ
JJJJJ KHLAY βαβαα −−−= 111  

 

where J ∈ {T,M} indexes the “traditional” (T) and “modern” (M) technologies; LJ represents 

less-skilled labor, HJ represents skilled labor, KJ represents capital used in technology J; and αJ, 

βJ, and AJ are parameters with 0<αJ, βJ <1 ∀J.  Beaudry and Green’s assumptions can be 

represented as restrictions on αJ and βJ.  The only assumption critical for my purpose, however, 

is that the modern technology is relatively skill- intensive: 

 

( ) ( )
T

TT

M

MM

α
βα

α
βα −

>
− 11

 

                                                 
5 Theoretical investigations of the local labor market impact of immigration typically assume the supply of capital is 
elastic. 
6 A Cobb-Douglass technology implies an elasticity of substitution between skilled an unskilled labor (one) which is 
not that different than estimates (e.g. Hamermesh (1993)).  This choice of technology serves only the purpose of 
simple illustration, however.  The results hold for any constant returns to scale technology in which one technology 
is relatively skill intensive. 
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It is also important to emphasize that the outputs of the two technologies YT  and YM are perfect 

substitutes – there is only a single good.  The price of the good is normalized to 1. 

The producer’s problem can be solved by computing the minimum cost of producing a 

unit of output with each technology, given factor prices.  Let wL, wH, and r represent factor 

prices for less-skilled labor, skilled labor, and capital, respectively.  The unit cost functions are: 

 

(1) ( ) ( ) ( )( )JJJJJ rwwcrwwC HLJHL
J βαβαα −−−= 111,,  for J∈{T,M} 

 

where ( )[ ] ( ) ( )( )[ ] ( )( )JJJJJ
JJJJJJJ Ac βαβαα βαβαα −−−−−−− −−−= 1111 111  for J∈{T,M}.  If both 

methods are in use (the economy is inside the “cone of diversification”), perfect competition 

implies CM(⋅) = CT(⋅) = 1, (zero profits – recall that the normalized output price is one).  In 

keeping with the elastic capital supply assumption, r is assumed to be exogenous.  Solving for wL 

and wH in terms of r: 

 

(2) 
( )

( ) ( )
( )

( ) ( )
( )( ) ( ) ( )[ ]

( ) ( ) ( )rwrccw LMTL
MMTTTM

MTTMTM

MMTTTM

TT

MMTTTM

MM

≡= −−−
−−−−−

−−−
−

−
−−−

−
βααβαα

ββββαα
βααβαα

βα
βααβαα
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1111
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1
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(3) ( ) ( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( )rwrccw HMTH
TTMMMT

MMTTTM

TTMMMT

T

TTMMMT

M

≡= −−−
−−−−−

−−−
−

−−− βααβαα
βααβαα

βααβαα
α

βααβαα
α

11
1111

1111  

 

(2) and (3) show that changes in the relative supply of skilled and unskilled labor have no effect 

on wages inside the cone of diversification: factor supplies do not appear in (2) and (3).  This is 

the usual “factor price insensitivity” result of the two-sector model (Leamer (1995)).  It is 

depicted graphically in Figure 1, which shows unit isoquants of the modern and traditional 
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methods in (H, L) space.  The modern isoquant is up and to the left of the traditional one, 

indicating its greater skill- intensity.  At any endowment point inside the cone delimited by the 

expansion paths of these two technologies – such as (H, L) shown in Figure 1 – relative wages 

are constant at the level implied by the tangent unit isocost line 1/wH(r) to 1/wL(r).  Full 

employment is achieved by producing with a linear combination of modern and traditional 

methods, as indicated by the vectors leading to (H, L). 

Figure 1 also shows that an increase in the relative supply of less-skilled labor reduces 

relative use of the modern method, i.e. the “Rybczynski theorem.”  An influx of less-skilled 

immigrants which moves the input endowment to (H, L’), for example, results in a decrease in 

the output of modern method and an increase in the output of the traditional method.  This can 

also be demonstrated mathematically by solving labor market clearing conditions.  Let H and L 

represent the exogenously determined supplies of high- and less-skilled labor.  By Shephard’s 

Lemma the vector of factor demands equals the gradient of the cost function, so from (1): 

 

( ) ( ) ( )( )

( )
LJJ

LHL
J

JJ

HLJJJHL
J

JJ

wY
wrwwCY

rwwcYrwwCYL JJJJJ

α
α

α βαβαα

=
=

== −−−−

,,

,, 1111
1

 

 

for J∈{T,M}, where the last step follows from zero profits.  Similarly: 

 

( ) HJJJJ wYH βα−= 1  

 

for J∈{T,M}.  Substituting these into labor market clearing conditions, H = HT  + HM and L = LT  

+ LM, produces, in matrix notation: 
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Let 







≡

HMHT

LMLT

dd
dd

D  denote the matrix above, whose elements are each positive.  Then, 

( )LdHdDY HTLTM −=
−1

 depends negatively on the relative supply of less-skilled labor so long 

as D >0.  But this is equivalent to the condition ( ) ( ) TTMMMT βααβαα −>− 11  which follows 

from the assumption that the modern technology is relatively skill- intensive.  Similarly, YT  

depends positively on the relative supply of less-skilled labor.  Thus the relative use of the 

modern method falls with an increase in less-skilled relative labor supply, as we wanted.  It also 

follows that the use of modern machinery, KM, falls as less-skilled relative supply increases, 

which is the implication tested below. 7  The inessentiality of the Cobb-Douglass functional form 

should also be evident.8 

 Though not necessary for the result above, an interesting and realistic case is one in 

which the modern method is also relatively capital- intensive: 

 

( )( ) ( )( )TTMM βαβα −−>−− 1111  

                                                 
7 A final loose end is to show that the cone of diversification exists, i.e,. that YM and YT can be both simultaneously 
greater than zero.  The required condition is: 
 

( ) ( ) MM

M
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T
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This outcome is feasible under the model’s assumption that the modern method is relatively skill-intensive. 
8 The assumption ( )

( )
( )
( )⋅
⋅

>
⋅
⋅

M

M

T

T

C
C

C
C

2

1

2

1  (for constant any constant returns to scale technology) is sufficient to obtain these 

results.  This is an assumption that Beaudry and Green (2000) make. 
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Under this assumption, an increase in less-skilled relative labor supply also causes the capital 

intensity of production to fall, providing another testable implication of the model. 9 

This model has the nice feature that it is consistent with the stylized fact that immigration 

has little impact on relative wages in local labor markets, and has an additional testable 

implication that immigration should reduce use of skill-complementary capital, and possibly 

reduce capital intensity generally.  It has the drawback that by simply relabeling the modern and 

traditional “methods” as modern and traditional “goods” (in a small, open economy) one obtains 

the same implications; that is, an apparent shift in the method of production might really be a 

shift in the mix of goods (say, from “low tech” metal fittings to “high tech” machine tools).  

However, one can distinguish the “methods” from the “goods” interpretation of the model by 

looking at how the technology used to produce the same goods varies with relative labor supply.  

For a given good, the “methods” interpretation says technology depends on relative labor supply, 

while the “goods” interpretation assumes technology is invariant to relative labor supply. 

 

 
II. Data 

Surveys of Manufacturing Technology 

The technology data used in this project come from the 1988 and 1993 Surveys of 

Manufacturing Technology (SMT).  Each polled a stratified random sample (described below) of 

around 10,000 manufacturing establishments with at least 20 employees in SIC industries 34-38 

on the use of, plans for use of, reasons for use of (or for not using) 17 categories of advanced 

                                                 
9 Beaudry and Green modeled the modern method as less capital intensive (more capital efficient), which is 
probably not accurate for the technologies being examined in this paper. 
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manufacturing technologies.10  The industries covered by the SMT – fabricated metal products, 

industrial machinery and equipment, electronic and other equipment, transportation equipment, 

instruments and related products – make up a large part of the manufacturing sector (43 percent 

of value added and employment in 1987, according to U.S. Bureau of the Census (1989)). 

The SMT technologies (described in Table 1) include processes used both in production 

and non-production activities, but most of the technologies are for use on the shop floor. Many 

also appear to replace raw labor, such as automated inspection (alternatively handled by 

semiskilled “production inspectors”), automated materials handling, and robots.  This intuitive 

assessment of the role of these technologies fits with research showing a positive association 

between the use of these technologies and the skills of workers at the plant (Doms, Dunne, and 

Troske (1997)) and by field work evaluating the impact of these technologies (Bartel et al. 

(2003)).  It is also supported by research showing a negative association between computer use 

and use of labor in repetitive tasks (Autor, Levy, Murnane (2003)).  

The SMT surveys also recorded other establishment characteristics, such as plant size, 

plant age, ownership, production type, military contractor status.  These are listed in Table 2.  

The responses were in categories.  Rather than drop observations that did not respond to one of 

these plant characteristics questions, I treated non-response as a separate category of “response” 

to each question. 

The strata used to create each of the SMT samples consisted of three-digit SIC industry 

by “class size” cells.  There were three class sizes, defined by employment: 20 to 99, 100 to 499, 

more than 500 employees.  (Plants with fewer than 20 employees were not in the survey.)  

Within each strata, a simple random sample was taken, and a weight was recorded equal to one 

                                                 
10 There was also a 1991 survey, not used in this analysis, which polled firms on the intensity of their use of these 
technologies in broad categories. 
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over the sampling rate for that strata.  (The average sampling rate was about one-fourth.)  

Though the SMT was in theory a random sample, it was also a small sample.  To ensure that the 

present analysis would be geographically representative, I constructed new sample weights to 

properly reflect the geographic distribution of plants in the SMT-universe.  I merged each plant 

in the SMT to the prior-year (1987 and 1992) Census of Manufactures.  I then constructed new 

strata – two-digit SIC industry by class size by metropolitan area.  The equivalent to the original 

SMT weights would be to construct, in each of my new strata, a weight equal to the number of 

plants in the Census of Manufactures universe divided by the number of plants in the SMT 

sample.  However, this is not what I did.  For the purpose of studying the impact on the labor 

force, I wanted weights that were representative of employment, not plants.  So instead, I created 

a weight equal to strata employment in the Census of Manufactures divided by the number of 

plants in the SMT.11 

 

III. Empirical Approach 

 The initial analysis will consist of cross-sectional regressions of technology use on the 

relative supply of less-skilled labor in the local work force, regressions of the form: 

 

(4) jcnjcncjjcn XLST εβθα +′++=   

 
where Tjcn represents the use of technology at plant n in industry j in city c; αj represents a vector 

of industry dummies; and LSc represents the relative supply of less-skilled labor in city-c.  Xjcn is 

a vector of plant characteristics.  The slope coefficient, θ , measures the impact of less-skilled 

                                                 
11 Merging the SMTs to the prior-year Census of Manufactures had another purpose:  it allowed me to merge in 
information about the plant not available in the SMT, such as employment (which is available only in categories in 
the SMT). 
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supply on the use of technology.  If the theoretical model presented above is correct, then θ  will 

be negative in sign; under the null that technology is the same in all locations it is zero. 

 The most important control variables in this regression are the industry dummies, αj.   

Industries vary in their use of technology and skill mix: electrical machinery, for example, uses 

both more technology and more skilled labor than the average SMT-covered industry.  Also, 

open-economy models predict differences in worker mix across markets are absorbed by 

differences in industry mix.  An immigration-induced increase in the share of workers who were 

unskilled, for example, according to trade theory raises the share of the economy’s output 

produced in unskilled-intensive sectors, which could show up as a lesser use of technology.  

Including industry dummies is equivalent to asking how much local skill ratios shift the method 

by which the same industries produce. 

 Plant size, measured by a continuous employment variable from the prior-year Census of 

Manufactures (1987 or 1992), will also be controlled for in some regressions.  Dunne (1994) 

showed that the relationship between the use of technology and plant size was strong, while the 

relationship with another factor one might suspect was important, plant age, was weak.  In the 

current context, it is nevertheless not entirely clear that a plant’s size should be controlled for.  

After all, a plant’s size may be endogenous, a channel through which local workforce skills 

affect the use of technology.  Therefore, the regression without size controls is also of interest. 

 The Surveys of Manufacturing Technology also contain several other plant characteristics 

variables (described in Table 2) which will be controlled for in some regression specifications.  

One characteristic of interest is product price.  Schott (2004) showed that even though there is 

little international specialization across four-digit industries, countries with a low relative supply 

of capital or skilled labor tend to specialize in lower quality products within four-digit industries.  
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Schott used unit values to measure product quality in his analysis.  To capture this possibility, I 

will include specifications that interact product price categories, indexed by p, with industry: 

 

(4’) jcpncjpjcpn LST εθα ++=   

 

where αjp represents a vector of industry x product price dummies.  Though there are only six 

price categories in the data, they allow further, albeit crude, disaggregation of the data to test 

whether the use of technology differs across plants producing similar quality products. 

 

Measuring Skill Mix 

 The primary measure of less-skilled relative labor supply used in this paper will be high 

school dropouts per high school “equivalent.”  The number of high school equivalents, defined 

here as the number of workers who are high school graduates plus one-half the number of 

workers with some college (one to three years college) education, is a commonly used skill 

aggregate in research on skill biased technological change (for example, Autor, Levy, and 

Murnane (2003), Katz and Murphy (1992)).12  Examining this skill margin – the very low 

educated relative to those with high school and vocational training – has two motiva tions.  First, 

it is the margin on which foreign- immigration to U.S. labor markets has the strongest influence, 

and a major goal of this paper is to understand how immigrants are absorbed into U.S. labor 

markets.  Second, it is a relevant skill margin to affect the use of the mostly production 

automation related technologies covered by the SMT.  Hunt and Hunt’s (1983) survey of the 

                                                 
12 In this formulation, those with some college education are thought of as supplying labor inputs “equivalent to” 
half a high school educated worker and half a four-year college graduate worker.  The qualitative results of this 
paper do not depend on the weight given to some college workers. 
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potential impact of robotics, for example, talks about the loss of less-skilled jobs in favor of 

mostly vocationally trained workers and some engineers.  Field work examining the impact of 

these technologies on job skill requirements also supports this view.  13  This margin also seems 

appropriate in light of the occupations of dropouts in SMT-covered industries, shown in Table 3 

(computed using 1990 Census of Population microdata).  Table 3 shows dropouts are highly 

concentrated in labor- intensive production occupations – assemblers, welders, and inspectors – 

which the automated technologies covered by the SMT might be reasonably argued to replace.  

Half of dropout workers’ hours are concentrated in ten occupations.  Immigrant dropouts also 

work in these same jobs, though they are more concentrated in assembly occupations.  In 

contrast, only 43 percent of high school educated workers’ hours and 26 percent of some college 

educated workers’ hours (and 7 percent of college-graduate workers’ hours) are in these same 

jobs – more educated workers have a greater presence in supervisory, managerial, and non-

production tasks.14  Also, in a given occupation, high school and some college educated workers 

are more skilled – their average wages are higher – and they are likely better equipped to operate 

newer machines. 

 I will also examine the impact of other relative skill supply measures on the use of these 

technologies.  In light of the association between the use of these technologies and college share 

at the plants in the SMT (Doms et al. (1997)), as well as Hunt and Hunt’s (1983) prediction that 

robotics would raise demand for engineers, one might be tempted to look also at the influence of 

college-educated relative supply.  It is worth remembering, however, that college graduates have 

little presence in production occupations and instead tend to work in high-skill white-collar jobs 

                                                 
13 Bartel et al. (2003) attempt to learn about the impact of new technologies on the skill requirements of production 
jobs through site visits to several plants in a variety of the same industries covered by the SMT.  They find that new 
technologies increasingly require “soft” skills – communication and problem-solving skills – in addition to math, 
literacy, and to some extent computer skills.  They argue these are skills which can be acquired in high school. 
14 Similar patterns also emerge in looking at a longer list of occupations – say, the top 20. 
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in management, engineering, computer programming, and sales and marketing.15  Nevertheless, 

the influence of college relative supply will also be examined. 

  

Identification 

 Some argue that the use of new technologies, including the ones covered by the SMT, 

raise relative demand for skilled labor.  Dunne and Schmitz (1995), for example, show plant-

level average wages rise with the use of SMT-technologies.  Doms et al. (1997) find this, too, 

but, in contrast, find little evidence that changes over time in the use of SMT technologies were 

associated with faster growing employment share of skilled workers.  Instead, Doms et al. find 

that plants that adopted more technology had more skilled workers prior to adoption.  

Nevertheless, if it is true that technology raises skill demand, one might be concerned about 

interpreting θ  from (4) as the causal impact of skill supply on technology use.  Less-skilled 

workers might seek out “low-tech” markets where the relative demand for less-skilled labor is 

higher, generating a spurious correlation between technology use and local skill ratios. 

To address this concern, I instrument for LSc.  The main instrument  I use can be 

described as the share of dropouts among “predicted” recent immigrants.  The instrument takes 

advantage of the strong tendency of new immigrants from different parts of the world to settle 

into U.S. labor markets where immigrants from the same part of the world are already settled (as 

Bartel (1989) observed) by assigning recent migrants to their historical “enclaves.”16  Validity of 

                                                 
15 The top ten occupations, by hours worked in 1990, of college graduates in SMT industries are: managers and 
administrators (18.9%), electrical engineers (9.0%), aerospace engineers (5.7%), sales representatives (4.8%), 
mechanical engineers (4.4%), computer systems analysts (4.4%), accountants and auditors (4.1%), marketing, 
advertising and PR managers (3.8%), computer programmers (3.5%), and production supervisors (3.3%).  
16 Bartel grouped immigrants into three broad world regions: “Asians,” “Hispanics,” and “Europeans.” 
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this instrument is argued to come from the fact that it captures patterns of migration driven by 

family and cultural concerns rather than by labor demand.17   

The instrument assigns newly arriving immigrants to the cities where their countrymen 

were settled in 1970.  The year 1970 is a low point in U.S. history for the presence of foreigners 

in the U.S. population, and largely precedes the modern wave of less-skilled immigration. Given 

the lag length, it is expected that immigration predicted on this basis is at most weakly related to 

local labor demand conditions.  Indirect evidence in support of this assertion will be shown 

below.  The main instrument, which is similar to one used in Card (2001), can be written as: 
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gtIMM  represents the count of all immigrants from g who arrived in the U.S. in the past five 

years (between years t and t-5), while 5−t
gtIMMDO  represents the immigrants from g who arrived 

in the U.S. in the past five years and who are high school dropouts; both counts are limited to 

those in the labor force and aged 16-65.  Meanwhile,  
1970,
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IMM

 represents the share of all 16 

to 75-year-old immigrants from g – regardless of labor force status or skill – living in city c in 

                                                 
17 Instruments of this nature are often referred to as capturing the “supply-push” part of immigration.  George 
Johnson pointed out in discussion of a related paper that this supply-push term misstates where the variation is 
coming from – the instrument does not actually make use of conditions in the sending country to predict migrant 
flows.  The instrument implicitly assumes that variation in the national volume of immigrant inflows is driven 
mainly by variation in conditions in the sending countries, rather than in the destination U.S. markets. 
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1970.18  Thus, 5

1970,

1970, −t
gt

g

gc IMMDO
IMM

IMM
 apportions recent high-school dropout immigrants from g 

to the cities where all immigrants from that region were living in 1970; it predicts number of 

dropouts from country g who recently settled in city c.  Summing across regions produces the 

numerator of (5), total five-year immigration of dropouts to c predicted on the basis of historical 

immigrant settlement patterns.  The denominator of (5), 5ˆ −t
gtM , apportions all recent immigrants 

in the same way.  Thus ⊥
ctDO  is the fraction of city c’s recent “predicted” immigrants who are 

dropouts. 

 Table 4 lists the 16 world regions used to construct the instrument, in other words the “g” 

index in equation (5).  It also shows the share of recent immigrants from each region in 1988 and 

1993 – the years of the SMT surveys – and the share of recent immigrants who were dropouts in 

those years, computed using 1990 and 2000 public-use microdata.19  The instrument apportions 

these recent immigrants from each part of the world according to the metropolitan area locations 

of immigrants from the same part of the world in 1970.20  Mexicans, three-quarters of whom are 

dropouts, are by far the largest group of recent immigrants in both 1988 and 1993.  The cities 

where Mexicans lived in 1970 (the top five were Los Angeles, 32 percent; Chicago, 7 percent; 

Houston, 4 percent; El Paso, 4 percent; and Anaheim, 4 percent) therefore have a large predicted 

                                                 
18 It might strengthen the first stage to include only workers in the computations of the 1970 shares, but the locations 
of workers is more likely to be endogenous. 
19  For 1988, “recent” immigrants are in fact defined as those who report having arrived 1980-86.  (This is the 
closest approximation to five years prior to 1988 that can obtained using the 1990 Census of Population).  For 1993, 
recent immigrants are defined as those who arrived 1988-93, measured using the 2000 Census of Population.   Only 
working age migrants with at least one year of potential work experience and in the labor force are included in the 
counts.  The population weights in each Census were used to compute the counts. 
20 The locations of immigrants in 1970 are measured using the 1970 Census of Population.  Metropolitan areas in the 
1970 Census were constructed using county groups, with a county group included in a metropolitan area’s definition 
if a majority of its population resided inside the 1990 boundaries of the metropolitan area.  1970 County population 
estimates were obtained from U.S. Dept. of Commerce, Bureau of the Census (1984).  The 1990 boundaries of the 
metropolitan areas appear at www.census.gov/population/www/estimates/pastmetro.html. In contrast with the recent 
immigrant counts, the 1970 locations are computed using all immigrants age 16-75, regardless of labor force status. 
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dropout share.  In contrast, eastern European or central Asian enclaves help predict a low 

dropout share. 

The instrument does a remarkable job of predicting differences in the dropouts/high 

school equivalents across markets.  The first and fourth columns of Table 5 show the relationship 

between the instrument and dropouts per high school equivalent in 1998 or 1993, measured using 

Current Population Survey merged outgoing rotation group files (MORGs).21  F-stats exceed 60.  

This strong relationship reveals both the influence that immigration has on local skill supply and 

the strength of immigrant enclaves in attracting continued migration from the same part of the 

world, even 20 years later. 

The surge in Mexican immigration is an important driver, but it alone does not drive the 

first-stage relationship.  Columns (2) and (5) of Table 5 show that the 1970 Mexican share enters 

significantly and separately into the first-stage regressions from the main instrument.  Finally, 

supporting the validity of the instrument, controls for employment growth during the period in 

which the immigrant flows are measured (roughly the five years prior), added in columns (3) and 

(6), do not significantly affect the first stage.22 

An advantage of this instrument is that similarly constructed instruments have been used 

in other research to demonstrate that local skill ratios have little impact on relative wages (Card 

(2001)) but nevertheless have a large impact on skill ratios in narrow industries (Lewis (2004b)).  

                                                 
21 1988 uses the average of the 1987-1989 MORGs, and 1993 uses  the average of the 1992-1994 MORGs .  Only 
those of working age (age 16-65) with at least one year of potential work experience who reported being in the labor 
force were included in the calculation.  CPS final person weights were used in the computations. 
22 Employment is total private non-farm employment and comes from County Business Patterns county summary 
files.  For the 1988 regression, employment growth is measured during 1980-86, the same years in which the 
immigrant flows are measured.  (This has a correlation of 0.7 with 1983-88 employment growth.)  Employment 
growth is measured 1988-93 for 1993.  Controls for the wages and employment rates of high school dropouts and 
graduates are also insignificant and have little effect on the first stage.  The 2SLS regressions below use first-stage 
specifications in columns (2) and (5), though results are robust to using the other specifications.  Interestingly, for 
example, employment growth enters significantly in the reduced form – faster growing places adopt more 
technology – but the influence of employment growth is orthogonal to that of skill share. 
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Using the same source of local labor mix variation to evaluate the impact on the use of 

technology allows these different results to be linked in a common model. 

 

Other Empirical Issues 

 In most of the regressions below, the dependent variable will be a simple count of the 

number of the 17 technologies in use by the plant.23  Although summarizing how “high tech” a 

plant is in this way potentially masks some interesting variation, this simple count turns out to 

capture nearly 40 percent of the variation in the individual technologies; factor analysis reveals it 

to be the principle component.24  A number of studies using these data (including Doms et al. 

(1997)) have summarized technology use in this way.  In any case, more disaggregate analysis 

does not find significant variation in the impact on different technologies.  (See Appendix Table 

A2.)  Probably a bigger issue is that it would be desirable to know not just how much the local 

skill supply affects whether a technology is used, but also how much of it is used.  This type of 

information is available for a limited number of the technologies in the 1993 survey, and will be 

used in some regressions.  In addition, I will evaluate whether the less-skilled labor supply 

influences a continuous measure of the capital intensity of plants. 

  In order to obtain the correct standard errors, the regressions were run in two steps: first, 

the number of technologies was regressed on plant characteristics and city dummies; second, the 

estimated city dummies – adjusted city level averages – were regressed on the city’s dropout 

share.  Regressions were weighted to be representative of employment; correctly interpreted, 

                                                 
23 I assume, as the Census Bureau did throughout most of the reports they published on the results of the SMT 
(1989, 1994), that non-response to any technology use question indicates that the plant is not using that technology. 
24 Beede and Yang (1998) illustrate the potential pitfall of this summary measure: they find that the effect on 
productivity, employment, and earnings vary by technology, and sometimes even differing in sign.   I also find some 
heterogeneity, but, in contrast, I cannot reject that the impact of dropouts on the use of these technologies is 
uniformly negative.   Given this, the effect on the number of technologies concisely sums up the total effect. 
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therefore, they measure the impact of citywide dropout share on the number of technologies at 

“the average employee’s plant,” but nevertheless they will frequently be described below as the 

impact at “the average plant.” 25  

 The regressions were run across 143 cities for which all the necessary data were 

available.26  Table 6 shows the means of the dependent variables used in the regressions.  In 

1988, the average employee in the SMT-universe in these cities was at a plant using six of these 

technologies; by 1993 this had risen only slightly, to 6.2 technologies.  Most of the technologies 

actually declined in use between 1988 and 1993; the growth in use is confined to computer-based 

technologies listed in categories I and V of Table 1.27  In both 1988 and 1993 there is also wide 

variation across plants in the use of technology.  More than 10 percent of this variation is 

accounted for by variation across labor markets, even when holding constant industry mix.28 

Before turning to the results, it is worth finding out how well metro area-wide dropout 

shares reflect the supply of labor available to manufacturing plants in SMT industries.  Figure 2 

plots dropouts per high school equivalent in SMT industries (SIC 34-38) against the dropouts per 

high school equivalent in the city’s labor force overall (for my sample of cities).  The 

relationship does not appear to deviate from the 45 degree line in either 1988 or 1993.  More 

generally, Lewis (2004b) finds an approximately one-for-one relationship between citywide 

dropout share and dropout share in narrow industries.  Figure 2 also demonstrates the 

tremendous variation across labor markets in the relative supply of less-skilled labor. 

 

                                                 
25 The employment weights are described in the data section. 
26 The biggest loss of metropolitan areas comes from the requirement that each area must be observable in the 1970 
Census of Population, which is used to construct the instrument.  Another restriction is that there be at least one 
plant in the both the 1993 and 1988 SMT surveys, which knocks out an additional 15 metropolitan areas. 
27 McGuckin et al. (1998) also found the 1988-93 increase in use was confined to these categories of technology. 
28 This figure is the amount by which the R2 increases in going from a plant-level technology regression without city 
dummies to one with city dummies. 
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IV. Cross-Sectional Results 

Table 7 presents estimates of (4). Columns (1) and (3) show OLS estimates for 1988 and 

1993, respectively.  The first row shows OLS estimates with no additional controls.  The 

coefficient -4.67 for 1988 says that when the relative supply of dropouts rises by 10 percentage 

points – slightly less than one standard deviation – the average plant in the city uses 0.467 fewer 

technologies.  A similar estimate is obtained in the 1993 data.  This relationship may partly 

reflect differences in industry mix across locations: areas with more unskilled labor may have 

more low-technology types of industries.  The second row therefore controls for detailed 

industry, dividing SMT plants into 161 four-digit industries.  This does not weaken the 

relationship!  Even within narrow industries, therefore, the use of these technologies varies 

strongly with the local skill share.  To further control for product quality within industry, the 

third row interacts four-digit industry with the product-price categories (inspired by Schott 

(2004)).  The influence of local skill supply is robust to controls for this proxy for product in 

both 1988 and 1993. 

 One might argue that what is really going on is that the use of technology influences the 

skill composition of the local workforce: low-skill workers are attracted to markets where, for 

some reason, the use of these (potentially) labor-replacing technologies is lower.  To find out if 

this is the case, we now turn to instrumental variables estimates, using the instrument ⊥
ctDO  

described in equation (5) and 1970 Mexican share.  Two-stage least squares estimates are 

presented in columns (2) and (4).  Note that these estimates are larger than the OLS estimates.  In 

other words, if anything dropouts differentially live in markets with higher technology use, 

biasing OLS estimates toward zero.  It may also be that immigration- induced less-skilled labor 
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supply has a larger impact on technology use than less-skilled labor supply generally, a point 

discussed further below. 

 The last three rows of Table 7 present specifications with other plant-level controls.  The 

fourth row shows a specification which controls also for plant employment, entered as a sixth-

order polynomial.29  Dunne (1994) showed plant size has a strong influence on the use of these 

technologies, though in this context, where plant size may be endogenous, it is not necessarily 

appropriate to use it as a control variable.  Nevertheless, conditional on plant size, one continues 

to find a significant, albeit reduced in magnitude, influence of local dropout shares on technology 

use.   The next row adds the first four plant- level controls listed in Table 2 – plant age, nature of 

manufacturing process, product price, and product market – entered as dummy variables for each 

category of response.  The coefficient on the skill supply variable remains significant in all four 

columns.  The next row adds military contractor variables (controls 5-7 in Table 2).  Military 

contractors generally use more of these technologies (U.S. Bureau of the Census (1989, 1994)), 

but regional differences in the presence of military contractors do not drive the relationship 

between technology and local skill supply. 

Other controls are available only in the 1993 SMT.  It asked about foreign ownership and 

how much of a plant’s production was exported to foreign countries; prior research has found 

both are associated with higher plant productivity (Bernard and Jensen (2002)) and technology 

use (U.S. Bureau of the Census (1994)).  These controls have little impact on the estimates.  Also 

available are controls on the nature and difficulty of worker training, and whether research and 

development occurs at the plant.  One might interpret these as proxies for “frictions” which may 

affect the adoption of new technology and be correlated with skill shares.  For example, 

managers at plants that do their own R&D may be more aware of new technologies; plants that 
                                                 
29 Terms beyond sixth order were never found to be significant and results are insensitive to their inclusion. 
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do their own training may be able to adapt more quickly to changing technology; both may be 

more prevalent in more-skilled locations.  The last row of the table, however, shows that these 

controls have little impact on the estimates. 

 A more continuous measure of the use of these technologies is available in the 1993 

survey.  For a limited number of technologies, the 1993 survey asked plants to report the 

“number of dedicated workstations (or items of equipment).”  The technologies covered by this 

question include computer aided design, engineering, and manufacturing; numerically controlled 

machines; materials working lasers; pick and place and other robots; programmable controllers; 

and computers used for control on the factory floor.30   These make up more than half of the 

technologies in use at the average worker’s plant in 1993.  Using this, I created a measure of 

technological intensiveness, “high tech machines per employee,” equal to, for each plant, the 

number of machines (summed across these technology categories) divided by plant 

employment.31    Table 6 shows that the average worker’s plant in 1993 used roughly one 

machine per nine employees.  Many plants used zero machines per employee.  Table 8 shows 

estimates of (4) with this dependent variable  for the same specifications as were used in Table 7.  

All of the estimates are negative and sizeable, though they are imprecisely estimated.  

Interestingly, controls for plant size do not reduce the coefficient in this case. 

Another dependent variable of interest is the overall capital intensity of the plant.  Studies 

generally find that capital complements skilled labor and substitutes for unskilled labor.  

(Hamermesh (1993) summarizes some of this evidence.)  Thus we may expect less-skilled labor 

supply to reduce the use of capital intensive methods generally.  To find out, Table 9 runs (4) 

using as the dependent variable the log of the (book) value of machinery per employee, 

                                                 
30 Or, in other words, technologies #1,2,5,6,7,8,16, and 17 in Table 1. 
31 Almost all of the variation in this aggregate comes from differences in the use of programmable controllers. 
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constructed from 1987 and 1992 Census of Manufactures data, but using the same sample of 

plants.32  This dependent variable averages about 10 (≈$20,000/employee) at the average 

employee’s plant.  (See Table 6.)  Table 9 shows that this is indeed strongly negatively 

associated with the local less-skilled labor supply, a relationship which the available controls do 

not eliminate.  The last row of Table 9 controls for the number of technologies in use (entered as 

dummies), which reduces the magnitude of the coefficient, though it remains marginally 

significant.  In addition to reduc ing the use of the particular technologies covered by the SMT, 

less-skilled labor supply reduces relative use of machinery generally.33 

 

Robustness 

These results are robust to other formulations of relative less-skilled labor supply.  

Appendix table A1 shows the results for using dropouts per labor force, rather than per high 

school equivalent, as the independent variable.  Once one adjusts for the fact that the standard 

deviation of this variable is between half and three times as large as the independent variable 

used earlier, estimates are all of a similar order of magnitude. 

These results by definition imply that the relative supply of workers with at least a high 

school education is associated with greater use of these technologies.  In light of evidence that 

use of these technologies is higher at plants with relatively more college-educated workers 

(Doms et al. (1997)), one might also wish to examine more finely the impact of relative supply 

of these higher levels of education.  To this end I also run regressions of the number of 

                                                 
32 For a handful of plants in each year the book value of machinery is reported to be zero, which I took as a missing 
value in light of the nonzero employment and value added at the same plants.  I assigned these plants the mean value 
of machinery per employee in the plant’s metropolitan area (among plants in my sample with nonzero reported 
machinery).  Dropping these plants has  little effect on the results. 
33 It is also possible to do the reverse: control for machinery/employee in regressions where the dependent variable 
is the number of technologies in use.  This also reduces only slightly the estimates in Tables 7 and 8. 
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technologies on share of the labor force with only a high school degree (HSc), some college but 

no four-year degree (SCc), and a four-year college degree (GRc): 

 

(6) jcnjcncccjjcn XGRSCHST εβθθθα +′++++= 432  

 

Again I use the impact of historical immigration patterns to produce arguably exogenous 

variation in local skill shares.  I construct instruments in a manner similar to (5) but instead 

divide recent inflows of immigrants into these three education groups: 
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volume of recent immigrant arrivals of (labor force participants with) high school, some college, 

and (at least) four-year college graduate levels of education respectively.  These variables predict 

quite strongly the share of high-school and some college-educated workers in the metropolitan 

areas in the sample.  However, they can only weakly predict the college graduate share of an 

area’s labor force, rendering inference about the effect of four-year college graduate relative 

supply from these instruments impossible.34 

                                                 
34 A reason for this weak first stage is that the proportion college educated among immigrants and native-born 
Americans is very similar: there is no relative college graduate “supply shock” associated with immigration. 
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To alleviate this problem, I add to this list of instruments a dummy for whether or not the 

metropolitan area has a land-grant college.  Moretti (2004b) used this as an instrument for local 

college share. Land-grant colleges came into existence after 1862, when Congress passed the 

Morrill Act, giving states land that allowed them to fund the creation of university- level 

agricultural schools.  As Nervis ’s (1962) history describes, after these land-grant colleges were 

founded, they moved away from being strictly agricultural schools, and many developed into 

large universities (for example, the University of Minnesota, the University of California, and the 

University of Maryland).  These schools dramatically increased access to higher education: as 

Moretti (2004b) showed, areas with land-grant colleges even today tend to have a significantly 

higher college-educated share.  Given the long lag from the founding of these schools until now, 

and their original purpose of providing support for agriculture, it is not unreasonable to think that 

the location of these schools is unrelated to unobserved determinants of the skill composition of 

demand today.  The 22 cities in my sample that have land-grant colleges are quite regionally 

diverse.35 

First-stage regressions are shown in Table 10.  Each column in the table represents a 

separate regression for a different education share (in 1988 or 1993).  The relative supply of a 

particular education level in an area in 1988 or 1993 is positively associated with 1970 

concentrations of immigrants with a high relative supply of that education level.  Diagonal 

elements in the table are positive, while off-diagonals are generally negative or insignificant.  

The immigrant instruments, however, have little association with college-educated share.  The 

presence of a land-grant college is associated with a significantly (5 percentage point) higher 

                                                 
35 Boston, MA; Columbia, SC; Columbus, OH; Des Moines, IA; Greensboro, NC; Hartford, CT; Knoxville, TN; 
Lansing, MI; Lexington, KY; Lincoln, NE; Madison, WI; Minneapolis, MN; Nashville, TN; Providence, RI; 
Raleigh-Durham, NC; Richmond, VA; Riverside, CA; Sacramento, CA; San Francisco, CA; Tuscon, AZ; 
Washington, DC; Wilmington, DE. 
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college-educated share in an area and does not predict the high school or some college shares.  

Nevertheless, the first stage overall remains somewhat weak for college-educated workers. 

 OLS and IV estimates of (6) are shown in Table 11. OLS estimates in the upper panel and 

IV estimates in the lower panel of the table, and now each column, not row, represents a 

specification with different controls.  All regressions control for industry effects.  The 

coefficients on some college and high school shares are generally large and of similar magnitude, 

while the coefficient on college graduate share tends to be small and is frequently not 

distinguished from zero.  As before, controls for price categories within industry provide no 

systematic evidence that this relationship is driven by within- industry product heterogeneity.  

Size controls absorb a significant part of the relationship, and other plant- level controls have a 

lesser impact. 

The results of these regressions support the main specification of skill supply I used in 

this paper, which combined high school and some -ducated workers into high school equivalents.  

The small impact for college graduates is not unexpected in light of the fact that graduates have 

little presence in the production activities that these technologies are involved in.  It does contrast 

with the strong association between college graduate share and technology use at the plant level 

(Doms et al. (1997)), but it is consistent with the predictions of researchers in the early 1980s 

that robotics would increase only slightly demand for college-educated engineers and the like 

(Hunt and Hunt (1983)). 

 I have also examined alternative formulations of the technology-use variable.  While 

there are reasons to believe that the impact of less-skilled labor supply might affect some of the 

17 technologies more than others, the data do not support these sorts of predictions.  Appendix 

Table A2 shows estimates of the impact of less-skilled relative labor supply on the five 
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subcategories of technology listed in Table 1 in equivalent “per technology” terms.  All of the 

estimates in the table control for industry fixed effects, and for reference, the impact on the 

average technology’s use overall is shown at the top of the table (i.e., it just repeats the relevant 

estimates from Table 7 but divides by 17).  The coefficients are not statistically distinguishable 

from each other.36 

 

V. Do Changes in Skill Mix Affect Changes in Technology Use? 

 Another, perhaps stronger, test of whether local skill mix affects the use of technology is 

to ask whether, as a market’s mix of workers changes, the plants in that market adjust their use of 

technology.  This question could be answered by first differencing the data used to run the 

regressions in Table 7.  However, a nice feature of the SMTs is that some plants were sampled in 

both years, which allows us to first difference at the plant level using a balanced panel – that is, 

we examine how the same plants change their use of technology when the local skill supply 

changes.  An advantage of panel regressions is that they implicitly remove any unobserved 

(fixed) attributes of a plant (or city) which affect its use of technology.  By itself, however, this 

approach could still be biased by plant attributes whose influence is changing over time (say, if 

there were differential trends in technology adoption across industries).  Therefore, it still may be 

important to control for baseline plant characteristics.  A disadvantage is that requiring that 

plants appear in both datasets reduces the sample size considerably, and may produce a sample 

which overrepresents large plants (McGuckin et al. (1998)).  Sample weights will be adjusted to 

partially address this representation issue. 

                                                 
36 It is of course possible to disaggregate the data even further – down to the individual technology – which I have 
also done.  Again, one cannot reject that the impact of less-skilled relative labor supply is uniformly negative. 
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The panel approach also allows controls for baseline technology use.  This control has 

several interpretations.  First, it captures the “dynamics” of technological change : adoption of 

new technologies often follows an “S-shaped” pattern over time (e.g. Griliches (1957)) which 

can be captured by regressing changes on initial levels.  Baseline technology use has another 

useful interpretation in this case: it can roughly be construed as a lagged change in the use of 

technology, since adoption of most SMT-technologies occurred not long before 1988.  For 

example, according to a large, nationally representative survey of plants in SMT-industries, in 

1983 only 6 percent of manufacturing plants used any type of automated assembly, only 3 

percent of plants used any type of robotic machine tools, though at least one-quarter of plants 

were already using numerically-controlled machines (American Machinist (1983)).  Regressions 

which control for technology use in 1988 therefore roughly ask if local influxes of dropouts 

affect plants’ trend-adjusted technology adoption. 

 Another available control is plants’ initial plans for adding technology in the next five 

years, asked in the 1988 survey.  As is evident in Table 6, plants’ plans for adding technology 

considerably overstated how much they ended up adding – on average plants forecasted an 

increase of three technologies in 1988, but the average plant had only 0.2 more technologies in 

1993.  Nevertheless, plans correlate positively with realized changes in the use of technology: a 

regression of planned additions on actual has a slope coefficient of roughly 0.25.37  Controlling 

for plant’s plans allows us to find out if increases in the availability of unskilled labor cause 

firms to deviate from their initial plans for technological upgrading. 

 

                                                 
37 This coefficient alone is not an accurate test of how well firms forecast future technology-use plans.  A better test 
would be to look at the individual technologies plants said they planned to add.  In addition, the dependent variable 
in the regression is a net change in the number of technologies in use, while the control is only for technologies that 
firms planned to add:  firms were not asked about whether they planned to reduce the use of technology. 
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Results 

 OLS and IV regression results for a panel of 1,474 establishments which could be 

observed in both the 1988 and 1993 surveys are shown in Table 12.  In order to correct for the 

fact that the dropout share varies only across cities, errors are clustered at the city level.  In order 

to correct for the fact that the panel overrepresents large plants, the weights are adjusted to make 

the panel dataset representative of 1988 employment in the same two-digit industry by class size 

by metropolitan area cells used earlier.38  (See data section.)  Reweighting cannot completely fix 

the representation issue because many cells are “lost” – they have no observations in the panel 

sample – typically plants in the smallest class size (20-99 employees).  There does not appear to 

be any industry bias to the loss of sample. 

The first row of Table 12 shows OLS and IV estimates with no controls.  The IV 

estimates use the instrument ⊥
1993,cDO  which was used for the 1993 cross-section above.39  Both 

the OLS and 2SLS estimates are negative and similar to the cross-sectional estimates.  

Unfortunately, the standard errors are also quite large, a problem of working with such a small 

sample when you have a noisy dependent variable.  The second row adds in 17 dummies for 

plants’ 1988 use of technology, which absorbs one-quarter of the variation in technological 

change across plants and reduces the standard errors considerably.  The plants with more 

technology in 1988 saw slower growth in technology use 1988-93: there was convergence across 

plants in technology use.40  Adding this control raises the point estimate a bit, indicating that the 

less-skilled labor supply grew faster in places which, based on initial levels of technology use, 

                                                 
38 Using the cross-sectional weights used earlier produces larger and more imprecisely estimated IV estimates. 
39 The first stage regression coefficient is 0.23, with an F-stat of 25.  Share of Mexicans in 1970 does not enter 
significantly and is not used as an instrument here. 
40 If one runs the linear version, the coefficient on the lagged number of technologies is -0.44. 
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one would have expected to have had a relatively large amount of technology adoption – places 

that had low technology use initially. 

The third row of the table adds four-digit industry controls, which reduces the OLS but 

not the IV estimate.  Even with these controls, one might still be concerned that the observed 

effect derives partly from the impact that changes in dropout share have on changes in industry 

mix (as simple open economy models predict).  As a safeguard against this possibility, estimates 

in the fourth row (and below) also include controls for four-digit industry in 1993; estimates are 

not lowered by their inclusion.41 

The fifth row adds a control for the number of technologies plants reported in 1988 that 

they planned to add in the next five years.  Adding it as a control does not reduce the coefficient 

on the change in dropout share.  Influxes of less-skilled workers caused firms to scale back from 

their initial plans for adding technology.  The subsequent rows of the table add in other baseline 

controls.   It is reassuring that these controls have little impact on the IV estimates (which 

supports the validity of the instrument). 

These estimates do not support concerns that the magnitude of the cross-sectional 

estimates was overstated because of the endogeneity: the panel estimates, in fact, are roughly 

double the cross-sectional estimates.  This occurred during a time when technology use at the 

average plant grew by a scant 0.2 technologies.  The magnitude of these estimates implies that 

where immigration actually raised less-skilled relative labor supply, some plants may have not 

only adopted less technology than they otherwise would have, but actually de-adopted 

technology.  McGuckin et al. (1998) found de-adoption to be not uncommon in these data –Table 

6 showed that average use fell for some categories, for example. The results of this paper suggest 

                                                 
41 Another way to hold constant industry mix is to restrict the sample to plants which do not change industries 
between 1988 and 1993.  Estimates for this subsample are larger in magnitude. 
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that the surge in less-skilled migration to the U.S. during the late 1980s may have been a force 

behind de-adoption. 

 

Specification Test 

Finally, as a specification check we regress plants’ plans to add technology in the next 

five years on the future change in dropout share.  The purpose of this is to test whether the 

negative relationship between technology use and dropout share found so far is driven by the 

endogenous differential migration of less-skilled workers to markets where technological change 

was expected to be slower.  Table 13 shows most of the specifications from Table 7 and uses the 

1988 cross-section sample and weights, except that the dependent variable is now the number of 

technologies plants reported in 1988 they would add by 1993.  The last row adds controls for the 

number of technologies in use in 1988, which was found above to be an important determinant of 

technology additions 1988-1993.  OLS estimates are in column (1).  All of them are positive, 

though not statistically significant.  IV estimates, which use the same instruments as the 1993 

cross-sectional regressions above, are shown in column (2).  These are also positive, of similar 

magnitude, and statistically insignificant.  This is a reassuring finding, supporting the idea that 

the direction of causality does indeed run from skill supply to technology use and not the other 

way around.  If anything, dropouts weakly favor future “high-tech” markets.  It is not clear why 

this would be the case, but it is consistent with a bias toward zero in the OLS estimates.42 

 

 

                                                 
42 Another feasible specification test is to take advantage of the fact that the IV regressions are overidentified – there 
are two instruments for one endogenous variable in the cross-section regressions.  Hausman overidentification tests 
do not reject the exogeneity assumption.  It is worth remembering, however, that this test conditions on at least one 
of the instruments being valid. 
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V. Discussion 

 In all of the analysis presented in this paper, a higher local relative supply of less-skilled 

labor was associated with lower use of manufacturing automation technologies at otherwise 

similar plants.  This was true in both cross section and in first differences.  The effect was larger 

when using variation in local skills supplies generated by arguably exogenous historical patterns 

of immigration.  There are a number of reasons why IV estimates might be larger than OLS 

estimates.  One is that immigrant less-skilled labor supply may have a greater impact on 

technology use than overall less-skilled labor supply.  Table 3 showed that immigrant dropouts 

were more likely to be in the assembly tasks which some of these technologies replace.  In 

addition, because new immigrants tend to follow previous waves of immigrants to the same 

destination, an increase in the presence of less-skilled migrants tends to raise the less-skilled 

labor supply not only now, but also in the future.  Producers may anticipate future flows of less-

skilled immigrants by adopting less technology.  43 

 The results of this paper suggest that plants use automation as a substitute for less-skilled 

labor, as one might suspect on a priori grounds.  This is similar to what Lewis (2004b) found for 

on-the-job use of computers and what Nestoriak (2004) found for computer investment.  Lewis 

(2004b) found computer use rose less rapidly where immigration induced faster growth in the 

local relative supply of less-skilled labor.  Nestoriak (2004) found computer investment was 

higher in counties with a relative employment of skilled labor.  Researchers have also argued for 

some time that computer-based technologies lower relative demand for less-skilled labor 

(Krueger (1993)).  This paper finds the “reverse” – the relative supply of less-skilled labor 

reduces demand for technology.  It is possible for both to be to some extent true: notably, the 

association between skills and technology across markets is considerably weaker than the plant-
                                                 
43 In addition, any attenuation of the OLS estimates due to measurement error is eliminated in the IV regressions. 
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level relationship examined in Doms et al. (1997) (though these authors do not argue that the 

association implies that technology use raises skill demand).  Nevertheless, the results of this and 

other papers which find evidence of input supply-driven technological change caution against 

interpreting observed associations between technology use and skills as evidence that 

technological advances have raised relative demand for skills. 

The results also potentially help to explain the why local labor market impact of 

immigration on native-born wages has be found consistently to be small (Borjas (1994), 

Friedberg and Hunt (1995)).  It may be that the technology employers use – rather than the 

relative wages they pay – adjusts to local labor mix.  The results of this paper are consistent with 

a Beaudry and Green (2000)-style model of endogenous technology choice, in which areas with 

a high relative supply of less-skilled labor make greater use of less-skilled intensive production 

methods.  In the version of the model used in this paper, less-skilled relative wages are 

insensitive to relative supply as a result of the adjustment of technology.  This model is therefore 

a strong candidate to explain how local labor markets adapt to immigration. 

The main caveat to these results is that what I interpret as differences in “technology” 

may also reflect systematic differences in product mix below the level of industry detail 

observable to me (four-digit SIC).  Among other things, the lesser use of technology in low-skill 

markets is partly mediated through the greater presence of small plants in those markets, which 

may indicate the production of more specialty or customized products in those markets.  Schott 

(2004) provides indirect cross-country evidence that product quality within narrow industries 

varies according the local skill and capital supply.  In order to clarify the interpretation of my 

results, I controlled for a crude measure of product quality within industry, and found that this 

had little effect on the results. While this does not rule out that more detailed data would reveal 
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that the results were driven by within industry differences in product quality, it is encouraging 

for the interpretation I give to the data.  In any case, shifts in product mix could also explain the 

insensitivity of relative wages to immigration (in light of standard open-economy models ).44 

 

VI. Conclusion 

 This paper has explored the impact of local skill supply on the use of automated 

technologies by manufacturing plants.  In the conventional view of recent empirical work on 

technological adoption, local skill supply has no impact on the use of technology.  In contrast, I 

find that the use of these technologies in both 1988 and 1993 was strongly decreasing in the local 

relative supply of less-skilled (high-school dropout) labor.  The result is robust to controls for 

detailed (four-digit SIC) industry and other plant characteristics, and if anything, the effect is 

greater when using arguably exogenous historical patterns of less-skilled immigration as an 

instrument.  Furthermore, when the share of workers who are dropouts in a plant’s local labor 

market rises, the plant reduces growth in the use of automated technology both overall and 

relative to its initial plans.   

 The results of this paper are consistent with a model which can explain why repeated 

studies have turned up little evidence that immigrant shocks to local skill ratios have an impact 

on relative wages.  Recent theoretical models of endogenous technological choice (Beaudry and 

Green (2000)) remind us of the theoretical possibility that employers may adapt to less-skilled 

immigration by altering the method of production, leaving relative wages insensitive to supply.  

The intuition is similar to a standard open economy model.  The facts so far fit this model – 

production methods (in narrow industries) are sensitive to local skill mix, while relative wages 

                                                 
44 Another alternative interpretation of the relationship between technology and skills across markets is that skilled 
labor is better able to implement new technologies (Bartel and Lichtenberg (1987)).  However, this explanation 
seems unhelpful for explaining why changes in technology are associated with changes in local skill supply. 
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are not, though some of the shift in methods could be due to unobservable shifts in the types of 

products being produced within narrow industries. 

Finally, the results of this paper are consistent with recent cross-country evidence that 

computer adoption responds to skill mix (Caselli and Coleman (2001)).  The response of this and 

other technologies to input supplies are claimed to be a potential explanation of the persistence 

of income differences across countries (Keller (2004)).  The finding that even within the U.S. 

there are major within- industry differences in the use of technology related to local skill shares 

provides strong support for this view. 
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Table 1.  Description of Technologies Covered in Surveys of Manufacturing Technology 
 

I. Design and Engineering 
1. Computer-Aided Design (CAD) and/or Computer-Aided Engineering – “Use of 

computers for drawing and designing parts or products and for analysis and 
testing of designed parts or products.” 

2. Computer-Aided Design (CAD)/Computer-Aided Manufacturing (CAM) – “Use 
of CAD output for controlling machines used to manufacture the part or product.” 

3. Digital Data Representation – “Use of digital representation of CAD output for 
controlling machines used in procurement activities.” 

 
II. Fabrication and Machining 

4. Flexible Manufacturing Cell (FMC)/Flexible Manufacturing System (FMS).  
FMC – “Two or more machines with automated material handling capabilities 
controlled by computers or programmable controllers, capable of single path 
acceptance of raw material and single path delivery of finished product.”   
FMS – “Two or more machines with automated material handling capabilities 
controlled by computers or programmable controllers, capable of multiple path 
acceptance of raw material and multiple path delivery of finished product.  A 
FMS may also be comprised of two or more FMC linked in series or parallel.” 
 

5. NC/CNC Machine – “A single machine either numerically controlled (NC) or 
computer numerically controlled (CNC) with or without automated material 
handling capabilities.  NC machines are controlled by numerical commands, 
punched on paper or plastic mylar tape while CNC machines are controlled 
electronically through a computer reading in the machine.” 

6. Materials Working Laser – “Laser technology used for welding, cutting, treating, 
scribing and marking.” 

7. Pick and Place Robots – “A simple robot, with one, two, or three degrees of 
freedom, which transfers items from place to place by means of point-to-point 
moves.  Little or no trajectory control is available.” 

8. Other Robots – “A reprogrammable, multifunctional manipulator designed to 
move materials, parts, tools or specialized devices through variable programmed 
motions for the performance of a variety of tasks.” 

 
III. Automated Materials Handling 

9. Automated Storage and Retrieval Systems (AR/RS) – “Computer controlled 
equipment providing for the automatic handling and storage of materials, parts, 
subassemblies, or finished products.” 

10. Automatic Guided Vehicle Systems (AGVS) – “Vehicles equipped with 
automatic guidance devices programmed to follow a path that interfaces with 
work stations for automated or manual loading and unloading of materials, tools, 
parts or products.” 

 
(Continued) 
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Table 1. (Continued) 
IV.  Automated Inspection and Quality Control 

Automated Sensor Based Inspection And/Or Testing Equipment – “Includes 
automated sensor based inspection and/or testing performed on incoming or in-
process materials, or performed on the final product.” 
11. Performed on Incoming Materials 
12. Performed on Final Product 

 
V. Communications and Control 

13. Technical Data Network – “Use of local area network (LAN) technology to 
exchange technical data with design and engineering documents.” 

14. Factory Network – “Use of local area network (LAN) technology to link 
information between different points on the factory floor.” 

15. Intercompany Computer Network – “Use of network technology to link 
subcontractors, suppliers and/or customers with the plant.” 

16. Programmable Controllers – “A solid state industrial control devise that has 
programmable memory for storage of instructions, which performs functions 
equivalent to a relay panel or wired solid state logic control system.” 

17. Computers Used for Control on the Factory Floor – “Exclude computers 
imbedded within machines, or computers used solely for data acquisitions or 
monitoring.  Include computers that may be dedicated to control but are capable 
of being programmed for other functions.” 

 
 
Source: US Bureau of the Census (1989), US Bureau of the Census (1994).
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Table 2.  Plant Characteristics Variables in the Surveys of Manufacturing Technology 
 

Available in Both 1988 and 1993 
1. Plant Age.  “How Many Years Has this Establishment Manufactured Products at this 

Location?” (A) Less than 5 years; (B) 5-15 Years; (C) 16-30 Years; (D) Over 30 Years. 
2. Nature of Manufacturing. (A) Fabrication/Machining; (B) Assembly; (C) 

Fabrication/Machining and Assembly; (D) Neither Fabrication/Machining nor Assembly. 
3. Product Price.  “What is the average market price for MOST products of this plant?” (A) 

Less than $5; (B) $5-$100; (C) $101-$1,000; (D) $1,001-$2000; (E) $2,001 to $10,000; 
(F) Over $10,000. 

4. Market.  “What is the market for MOST of the products of this plant?” (A) Consumer 
(personal use by household); (B) Commercial (e.g., offices, hospitals, services, etc.) (C) 
Industrial (manufacturing, mining, construction, and utilities); (D) Transportation; (E) 
Government; (F) Other in 1993 and (F) Can’t Specify in 1988. 

5. Any Military.  “Are any of the products produced in this plant manufactured to military 
specifications?”  (A) Yes; (B) No; (C) Don’t know. 

6. Percent Shipped to Federal Defense Agencies.  (A) 1-25%; (B) 26-75%; (C) Over 75%; 
(D) None; (E) Don’t Know. 

7. Percent Shipped to Prime Contractors of Federal Defense Agencies.  (A) 1-25%; (B) 26-
75%; (C) Over 75%; (D) None; (E) Don’t Know. 

 
Available in 1993 Only 
8. Exporter.  “What percent of this plant’s total value of shipments are exported for direct 

sale? Include shipments to foreign subsidiaries.” (A) None; (B) Less than 10%; (C) 10 to 
19%; (D) 20 to 49%; (E) 50% or more 

9. R&D.  “Where is most of the research and development work for this plant done?” (A) 
Outside the firm; (B) In this plant; (C) Elsewhere in the firm; (D) No research and 
development done. 

10. Training – location.  “Where is most of the formal training for staff of this plant 
conducted?” (A) In this plant; (B) Elsewhere in the firm; (C) Outside the firm; (D) No 
formal training for staff – skip to 13. 

11. Training – personnel. “Who conducts most of the formal training for staff of this plant?” 
(A) Staff from this plant; (B) Staff from elsewhere in the firm; (C) Trainers from outside 
the firm. 

12. Hiring Difficulty.  “How difficult has it been to hire skilled personnel to work with the 
technologies used in this plant?” (A) Not difficult; (B) Some problems; (C) Very 
difficult. 

13. Foreign Ownership.  “Does a foreign entity (company, individual, government, etc.) own, 
directly or indirectly, 10 percent or more of the voting stock or other equity rights in this 
plant?” (A) Yes; (B) No; (C) Don’t know. 

 
 
Source: US Bureau of the Census (1989), US Bureau of the Census (1994). 
 



All Dropouts
Immigrant 
Dropouts

Assemblers 13.8 15.0
Electrical Equip. Assemblers 5.5 9.3
Welders and Cutters 5.3 4.6
Machine Operators, Not Spec. 5.1 7.4
Supervisors, Production Occs 5.0 4.3
Machinists 5.0 5.1
Miscellaneous Machine Ops 3.4 5.3
Production Inspectors 3.1 2.9
Laborers 2.6 2.7
Janitors and Cleaners 2.1 1.8

Top 10 Occupations 50.9 58.5

Table 3.  Top Occupations of High School 
Dropouts by Percent of Hours Worked

SMT industries, 1990

Data Source: 1990 Census of Population public-use microdata.  Among those working 
in industries covered by the SMT, figures show the percent of hours worked by 
members of the group identified (e.g. immigrant high school dropouts) employed in the 
given occupation. 



Origin Region
1988 1993 1988 1993
(1) (2) (3) (4)

Mexico 0.257 0.298 0.756 0.670
Caribbean 0.082 0.077 0.423 0.334
Central America 0.101 0.086 0.602 0.591
China, HK, Singapore 0.060 0.062 0.239 0.188
South America 0.072 0.063 0.283 0.226
SE Asia/Pac. Island 0.075 0.066 0.373 0.351
Korea & Japan 0.044 0.031 0.140 0.086
Philippines 0.063 0.052 0.114 0.094
Canada, Aust/NZ/UK etc. 0.038 0.037 0.103 0.064
India, Pakistan, Centr Asia 0.048 0.055 0.126 0.103
Russia & Eastern Europe 0.034 0.075 0.177 0.100
Southwestern Europe 0.016 0.011 0.439 0.256
Northern Europe & Israel 0.021 0.024 0.086 0.086
Turkey, N. Africa, Mid. East 0.032 0.025 0.119 0.129
Other Africa 0.026 0.029 0.097 0.120
Cuba 0.030 0.011 0.535 0.381

Rec. Imm Shr. 
DropoutShr. of Recent Imms

Table 4.  Origin Mix and Skills of Recent Immigrants in 1988 
and 1993

Data Source: 1990 and 2000 public-use Census of Population.  Columns (1) and (3) show 
statistics on the 3,118,709 immigrants who reported arriving in the U.S. between 1980-86 
according to the 1990 Census while column (2) and (4) show the same statistics on the 
3,631,347 immigrants who reported arriving between 1988 and 1993, according to the 2000 
Census.  Only working-age immigrants (age 16-65 and old enough to have completed reported 
years of school) not living in group quarters, with at least one year of work experience, and who 
report being in the labor force are included in the calculations for columns (1)-(4).



Variable (1) (2) (3) (4) (5) (6)

Dropout Share of 0.50 0.23 0.22 0.66 0.40 0.41
  "Predicted" Imms (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

1970 Share of 0.76 0.77 0.84 0.84
  Mexican Imms (0.08) (0.09) (0.10) (0.11)

"5-year" prior em- 0.02 -0.01
  ployment growth* (0.05) (0.09)

R2 0.31 0.56 0.56 0.42 0.62 0.62
F-Stat, Instruments 62.1 89.3 88.7 103.0 112.8 108.6

1988 1993

Table 5.  First Stage Regressions, 1988 and 1993

*Measured 1980-86 for 1988 regression (the years in which immigrant inflows were measured).  See text for details of 
data sources and sample.  Regressions weighted by employment in SMT industries, measured using 1988 or 1993 
County Business Patterns county summary files.



Range
1988 1993 1988 1993

Number of Technologies in Use 6.01 6.20 4.68 4.45 0-17

  I. Computer aided design 1.25 1.44 1.06 1.01 0-3
  II. Fabrication & machining 1.57 1.48 1.52 1.38 0-5
  III. Automated material handling 0.30 0.27 0.61 0.56 0-2
  IV. Automated Inspection 0.61 0.59 0.84 0.82 0-2
  V. Communication and control 2.27 2.42 1.81 1.84 0-5

Workstations/Employee 0.11 0.28
Log machinery/employee 10.0 10.3 0.89 0.95
No. of techs plan to add in 5yrs 2.85 2.90 0-17

Mean Standard Deviation

Table 6.  Descriptive Statistics for Dependent Variables

Variables in first six rows represent counts of the number of technologies in use in a given category.  See Table 1 for description 
of technologies.  Descriptive statistics are computed for the subsample of plants used in the analysis, which includes 6,571 
plants in 1988 and 4,757 plants in 1993.  See text for details.



Controls OLS IV OLS IV
(1) (2) (3) (4)

No Controls -4.67 -4.96 -3.83 -3.22
(1.29) (1.69) (1.01) (1.27)

4-digit-industry -4.17 -6.51 -4.36 -5.27
(1.17) (1.55) (0.90) (1.13)

4-digit-industry -4.42 -6.22 -3.59 -4.32
  x product price* (1.14) (1.51) (0.75) (0.93)

4-digit industry, -2.06 -3.10 -2.80 -3.55
  plant sz polynm** (0.82) (1.07) (0.71) (0.89)

Previous + other*** -1.93 -2.60 -1.34 -2.12
  controls. (0.67) (0.87) (0.52) (0.65)

Previous + Military -1.95 -2.82 -1.36 -2.18
  Contractor Controls (0.68) (0.89) (0.52) (0.65)

Previous + Exporter, -1.48 -2.30
   Foreign Ownership (0.52) (0.65)

Previous + Training -1.28 -2.01
  and R&D (0.49) (0.62)

  

Table 7. The Impact of Citywide Dropout/High School Equivalents 
on # of Technologies in Use

1988 1993
N=6,571 N=4,757

* Seven categories of "prices charged for most products"  (including "no response" category) fully 
interacted w/four digit industry.  See Table 2.  ** 6th order polynomial in plant employment.  *** Controls 
1-4 in Table 2.  Columns (2) uses as the instrumental variable high school dropout share among 
"predicted" (from 1970 locations of immigrants from 16 world regions) immigrants who arrived 1980-86 
and 1970 Mexican share.  Columns (4) uses as the instrumental variable high school dropout share 
among "predicted" immigrants who arrived 1988-93 and 1970 Mexican share.  Standard errors robust to 
clustering within metropolitan area.  See text for details.



Controls OLS IV
(1) (2)

No Controls -0.09 -0.10
(0.03) (0.04)

4-digit-industry -0.05 -0.09
(0.03) (0.04)

4-digit-industry -0.03 -0.06
  x product price* (0.02) (0.03)

4-digit industry, -0.07 -0.09
  plant sz polynm** (0.03) (0.04)

Previous + other*** -0.04 -0.06
  controls. (0.03) (0.04)

Previous + Military -0.04 -0.06
  Contractor Controls (0.03) (0.04)

Previous + Exporter, -0.04 -0.07
   Foreign Ownership (0.03) (0.04)

Previous + Training -0.04 -0.06
  and R&D (0.03) (0.04)

  

Table 8. Impact on Number of "High-
Tech" Machines Per Employee, 1993

1993
N=4,757

Dependent variable is a count of "high tech" machines per employee, 
where machines include CAD/CAM/CAE, numerically controlled 
machines, marterials working lasers, pick and place robots, other 
robots, programmable controllers and computers used for control on 
factory floor.  *, **, *** See Table 7.   Standard errors robust to clustering 
within metropolitan area.  See text for details.



Controls OLS IV OLS IV
(1) (2) (3) (4)

No Controls -0.73 -1.12 -0.63 -0.60
(0.22) (0.29) (0.18) (0.22)

4-digit-industry -0.48 -0.71 -0.51 -0.61
(0.16) (0.21) (0.15) (0.18)

4-digit-industry -0.52 -0.74 -0.47 -0.52
  x product price* (0.15) (0.20) (0.15) (0.18)

4-digit industry, -0.34 -0.47 -0.33 -0.44
  plant sz polynm** (0.16) (0.21) (0.13) (0.17)

Previous + other*** -0.31 -0.44 -0.28 -0.39
  controls. (0.15) (0.20) (0.13) (0.17)

Previous + Military -0.34 -0.49 -0.31 -0.42
  Contractor Controls (0.15) (0.20) (0.13) (0.17)

Previous + No. of -0.26 -0.39 -0.23 -0.31
  technologies in use (0.14) (0.19) (0.13) (0.17)

Previous + Training
  and R&D

  

Table 9. Impact on Log Book Value of Machinery Per Employee, 
1987 and 1992

1987
N=6,571

1992
N=4,757

Dependent variable is the book value of machinery per employee constructed using the 1987 and 1992 
Census of Manufactures.  *, **, *** See Table 7.  Standard errors robust to clustering within metropolitan 
area.  See text for details.



High Some Four-Year High Some Four-Year
School College College School College College

High School Shr, 1.28 -1.24 -0.22 1.77 -2.58 0.43
  "Predicted" Imms (0.40) (0.20) (0.44) (0.67) (0.42) (0.75)

Some College Shr, -0.30 0.44 0.32 -0.44 0.85 -0.04
  "Predicted" Imms (0.35) (0.17) (0.38) (0.38) (0.23) (0.42)

4-Year College Shr 0.43 -0.18 -0.19 0.54 -0.42 0.04
  "Predicted" Imms (0.12) (0.06) (0.13) (0.14) (0.09) (0.16)

Land-Grant College -0.02 -0.01 0.05 -0.02 -0.01 0.05
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

R2 0.36 0.39 0.11 0.33 0.30 0.11
F-Stat 19.5 22.5 4.1 17.1 14.5 4.1

1988 Education Shares 1993 Education Shares

Table 10.  First Stage Regressions for Alternative Skill Groups

Regressions weighted by employment in SMT industries, measured using 1988 or 1993 County Business Patterns county summary 
files.



(1) (2) (3) (4) (5) (6) (7) (8) (9)

High School Share 13.07 14.82 6.56 6.31 14.36 11.48 9.77 4.73 4.35
(3.36) (3.17) (2.37) (1.96) (2.70) (2.25) (2.10) (1.55) (1.49)

Some College Share 11.52 16.84 4.66 6.29 14.20 11.42 7.58 3.40 3.34
(5.02) (4.74) (3.54) (2.93) (3.83) (3.20) (2.98) (2.21) (2.11)

4 Yr. College Grad Share 4.20 3.31 2.04 1.92 6.79 6.51 3.58 1.63 1.82
(3.08) (2.91) (2.17) (1.79) (2.63) (2.20) (2.05) (1.52) (1.45)

High School Share 22.23 33.09 10.40 10.63 24.05 18.14 14.62 9.57 8.29
(8.88) (9.30) (6.13) (5.11) (5.31) (4.06) (3.87) (2.99) (2.77)

Some College Share 21.22 45.99 7.18 11.45 40.39 26.90 23.98 15.66 13.12
(15.68) (16.41) (10.81) (9.01) (10.15) (7.76) (7.41) (5.72) (5.30)

4 Yr. College Grad Share 7.04 17.83 3.73 6.07 9.65 12.81 8.23 10.06 8.98
(10.01) (10.48) (6.90) (5.75) (7.84) (6.00) (5.72) (4.42) (4.09)

Four-Digit Industry Yes Yes Yes Yes Yes Yes Yes Yes Yes
Four-Digit Ind. x Price No Yes No No No Yes No No No
Size Polynomial* No No Yes Yes No No Yes Yes Yes
+Other 88 SMT Controls** No No No Yes No No No Yes Yes
+Other 93 SMT Controls*** No No No No No No No No Yes

IV Regressions

1988 1993

Table 11.  The Impact of Highly Educated Relative Labor Supply of Number of Technologies

OLS Regressions

*6th order polynomial in plant size.  **Controls 1-7 in Table 2.  ***All controls in Table 2.  First stage regression for IV specifications shown in Table 10.  Standard errors robust to 
clustering within metropolitan area.  See text for details.



Controls OLS IV
(1) (2)

No Controls -2.93 -3.93
(3.79) (7.45)

# of Technologies in -4.77 -5.55
  Use, 1988 (2.75) (4.45)

+4-digit Industry, -2.48 -8.52
   1988 (2.76) (5.32)

+4-digit Industry, -3.67 -9.97
   1988 and 1993 (2.37) (5.02)

Previous + #Techs -4.48 -11.08
  planned, 1988 (2.54) (5.27)

Previous + Plant Size -3.96 -10.46
  Polynomial* (2.33) (4.71)

Previous + Other -3.00 -10.59
  Baseline Controls (2.22) (4.87)

Table 12.  Impact of Change in 
Dropout/HS Eqivalent on Change in 
Number of Technologies, 1988-93

(N=1,474)

* 6th order polynomial in 1988 plant employment.  Instrument is 
predicted high school share dropout among immigrants who arrived in 
the U.S. 1988-93, predicted with 1970 metro area locations of 
immigrants from 16 world regions.  Standard errors robust to clustering 
within metropolitan area.  See text for details.  



Controls OLS IV
(1) (2)

No Controls 1.19 0.99
(1.21) (2.32)

4-digit-industry 1.39 1.09
(1.18) (2.27)

4-digit-industry 1.13 1.08
  x product price* (1.25) (2.40)

4-digit industry, 1.12 0.93
  plant sz polynom** (1.22) (2.33)

Previous + other 0.83 1.24
  baseline controls*** (1.18) (2.26)

Previous + 1988 no. of 0.65 0.49
  technologies in use (1.17) (2.24)

Table 13.  Specification Check: Are 
Future  Changes in Dropouts/HS 

Equivalents Associated with Plans to 
Add Technology?

1988

Dependent variable is the number of technologies a firm plans to add 
in the next 5 years.  *, ** See Table 7.  ***Controls 1-7 in Table 2.  
Columns (2) uses as  instrumental variables high school dropout share 
among "predicted" immigrants who arrived 1988-93 and 1970 Mexican 
share.  Standard errors robust to clustering within metropolitan area.  
See text for details.



Figure 1.  Graphical Depiction of the Model
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Figure 2.  Dropouts/High School Equivalent in SMT industries vs. Labor Force
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Controls OLS IV OLS IV
(1) (2) (3) (4)

No Controls -10.30 -13.09 -9.92 -8.04
(3.40) (7.65) (2.78) (4.57)

4-digit-industry -7.14 -25.63 -10.45 -15.13
(3.10) (7.81) (2.52) (4.18)

4-digit-industry -7.17 -24.49 -8.92 -13.63
  x product price* (3.05) (7.61) (2.07) (3.45)

4-digit industry, -3.52 -14.37 -6.45 -9.86
  plant sz polynm** (2.15) (5.24) (1.96) (3.25)

Previous + other -3.45 -9.68 -2.96 -6.60
  baseline controls*** (1.75) (4.12) (1.42) (2.38)

Previous + Exporter,
   Foreign Ownership

  

Appendix Table A1. Impact of Overall Dropout Share on the 
Number of Technologies in Use, 1988 and 1993

1988 1993
N=6,571 N=4,757

*, ** See Table 7.  ***Controls 1-7 in Table 2.  Columns (2) uses as the instrumental variable high school 
dropout share among "predicted" (from 1970 locations of immigrants from 16 world regions) immigrants who 
arrived 1980-86.  Columns (4) uses as the instrumental variable high school dropout share among 
"predicted" immigrants who arrived 1988-93.  Standard errors robust to clustering within metropolitan area.  
See text for details.



Technology Class OLS IV OLS IV
(1) (2) (3) (4)

All Technologies -0.25 -0.38 -0.26 -0.31
(0.07) (0.09) (0.05) (0.07)

  I. Computer aided design -0.21 -0.35 -0.23 -0.25
(0.07) (0.10) (0.06) (0.08)

  II. Fabrication & machining -0.23 -0.40 -0.22 -0.28
(0.08) (0.11) (0.06) (0.07)

  III. Automated material handling -0.25 -0.44 -0.19 -0.25
(0.08) (0.10) (0.07) (0.09)

  IV. Automated Inspection -0.26 -0.30 -0.30 -0.37
(0.10) (0.13) (0.08) (0.10)

  V. Communication and control -0.28 -0.39 -0.33 -0.37
(0.08) (0.10) (0.07) (0.09)

  

Appendix Table A2. The "Per Technology" Impact of Citywide Dropout/High 
School Equivalent on Subgroups of Technologies

1988 1993
N=6,571 N=4,757

Dependent variable is #of technologies in use in that category divided by #of technologies in that category (See Table 6).  
Columns (2) uses as the instrumental variable high school dropout share among "predicted" (from 1970 locations of 
immigrants from 16 world regions) immigrants who arrived 1980-86 and 1970 Mexican share.  Columns (4) uses as the 
instrumental variable high school dropout share among "predicted" immigrants who arrived 1988-93 and 1970 Mexican 
share.  All regressions control for four digit industry effects.  Standard errors robust to clustering within metropolitan area.  
See text for details.




