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Abstract

We study the distribution of economic activity, as proxied by lights at night, across 250,000 grid
cells of average area 560 square kilometers. We first document that nearly half of the variation in
lights across these cells can be explained by a parsimonious set of physical geography attributes,
which we divide into two categories: those primarily important for trade with the rest of the
world, and those primarily important for agriculture. A full set of country indicators only
explains a further 10%. We then show that the agriculture variables are relatively more powerful
in explaining the location of economic activity within developed countries that slowed their
population growth (and urbanized) earlier, while the trade variables have relatively more
explanatory power in developing countries whose population distribution was in flux later. We
interpret this in the context of a two-region model in which two technological shocks occur: one
increasing agricultural productivity, and the other decreasing transportation costs. Our results are
consistent with a world in which the biggest agricultural productivity increases occurred after the
onset of mechanized transport in the developing world, but before them (or concurrent with
them) in the developed world.
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1. Introduction

Three broad forces shape the spatial distribution of population as well as economic activity. The
first is the physical setting, often called “first nature.”’ Some places are simply more amenable to
human habitation and economic production than others. Overlaying these natural characteristics,
a second broad force results from the interplay of agglomeration and congestion. For many
economic activities, productivity is increased by being close to other people, through a
combination of reduced transaction costs, gains from trade, specialization, and spillovers. At the
same time, increased physical concentration of economic activity introduces congestion costs as
well as raising transport costs for commodities that are produced using land (e.g. food -- see
Gollin and Rogerson, 2014). The resulting system of cities represents a balance of these two
forces, in which regions of agglomeration are dispersed over space. The third important force is
historical persistence. Once established, agglomerations tend to persist, even if the forces that

created them are no longer in operation.

In this paper, we begin by examining the predictive power of first-nature characteristics for the
distribution of economic activity. Our primary dependent variable is information from satellite
observations of lights at night at the quarter degree (longitude/latitude) scale, for roughly
250,000 grid squares per year. Our measures of first nature include data on climate and
characteristics of the land surface, natural water bodies, and plant life (temperature, precipitation,
elevation and ruggedness, coasts, navigable rivers, natural ports, and biomes). We are
particularly interested in the relative importance of characteristics related to the possibility of
trade (such as being located near a natural harbor) versus those associated with agricultural

productivity.

We then turn our focus to understanding how the currently observed spatial distribution of

population and economic activity within countries reflects the historical arc of economic

% As far as we are aware, this terminology was introduced to the economics literature by Krugman (1991), based on
Cronon (1991).
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development. We present a simple theoretical model that incorporates the effects of the two most
important changes in the determinants of this spatial distribution: rising agricultural productivity
and declining transport costs. Rising agricultural productivity lowers the fraction of the
population that works producing food and so raises urbanization. Falling trade costs weaken the
link between city locations and regions of high agricultural productivity. The time pattern in
which these changes arrive will affect how first-nature characteristics are mapped into the
eventual distribution of economic activity. To test the model, we consider different ways of
splitting the countries in the world in samples of “early agglomeration” and “late agglomeration”
sub-samples. Specifically, we let the data choose the cutoff values of different variables
(education and urbanization in 1950) so that countries are sorted into one bin or another. We
show that in “early agglomeration” countries, first-nature characteristics related to food
production are more important in determining current settlement than are those associated with

trade, relative to the case of “late agglomeration” countries.

The effects of first-nature geography on economic activity and population density are typically
studied at the level of countries. Such an approach misses the obvious point that the average
value of a geographic characteristic in a country is not equal to the average value of that
characteristic in the places where people actually live and work. Furthermore, most existing
research takes a partial view of the processes described above. For example Davis and Weinstein
(2002), Bleakley and Lin (2012), and Michaels and Rauch (2013) all establish the importance of
persistence of city locations in specific historical settings. But these papers do not establish, for
example, how much of the overall variation in location of population observed today is explained
by history. Similarly, Mellinger, Gallup, and Sachs (2000) and Rappaport and Sachs (2003)
investigate the role of coasts, for both productive and amenity reasons; Nunn and Puga (2012)
look at the effect of terrain ruggedness; and Nordhaus (2006) and Nordhaus and Chen (2009)
look at a whole suite of geographic factors using coarse subnational data. But these latter papers

are generally silent on the role of history in determining the spatial patterns observed.’

? See also Gennaioli et al. (2013, 2014), who regress subnational income and growth on geographic factors along
with institutions, population and human capital measures, for a sample that covers much of the world but largely



Our work also has several similarities to Mesbah et al. (2014). They estimate the year in which a
given half-degree grid cell passed various urbanization rate thresholds. Their urban and rural
population data are gridded estimates for the past 2,000 years from Klein Goldenwijk et al.
(2011). Mesbah et al. regress the date of urbanization on a cultivation suitability index, distance
to coast, a river navigability proxy, frost, and elevation, finding significant predictive power for
all of these variables except elevation. We view their work as complementary to ours, in that
they examine the determinants of early urbanization and we examine the effect of early

urbanization, along with other factors, on outcomes today.
2. Data

In order to carry out this exercise, we need measures of economic activity and several

components of physical geography, all available on a global scale.

Our proxy for economic activity is night lights (Figure 1). Unlike Henderson, Storeygard and
Weil (2012) and nearly all quantitative work on lights, we use the radiance-calibrated version of
the data (Elvidge, et al. 1999; Ziskin et al. 2010). In normal operations, the light detection sensor
is very good at detecting low levels of light in small cities. However, the strong amplification
that enables this detection also saturates the sensor in the most brightly lit places, including the
centers of most of the largest 100 cities in the United States, so that their values are top coded.
The 2010 Global Radiance Calibrated Nighttime Lights dataset we use combines the high
magnification regime for low light places with a lower magnification regime for more brightly lit
places. Thus nearly all topcoding is removed, with minimal loss of information about low light
places. The lights data are distributed as a grid of pixels of dimension 0.5 arc-minute resolution

(1/120 of a degree of longitude/latitude, or approximately 1 square kilometer at the equator).4

excludes Africa. Related work in the trade literature (e.g. Allen and Arkolakis 2013) have used a more structural
approach and focused on the United States, where data on subnational trade flows are available.
4 Available at http://ngdc.noaa.gov/eog/dmsp.html.



Our other variables of interest are all reported at several different geographic scales, ranging
from 1/120 of a degree to 1/2 degree. For analysis, we convert them all to a grid of 0.25-degree
squares, with each square covering approximately 770 square kilometers at the equator,
decreasing with the cosine of latitude. This scale is a compromise between the fine detail
observed at the native resolution of several datasets and the computational practicality of coarser
cells. It also allows us to be less concerned about spatial autocorrelation than we would be at
finer scales, and to reduce true spillovers as well. At this resolution we already have well over

200,000 grid squares.

Variables originally reported at scales smaller than 0.25 degrees are aggregated with an
appropriate function. In the case of continuous variables, values for our grid squares represent
the mean or sum of all input cells falling within them, as appropriate. So for example, the night
lights measure for each quarter-degree grid square is the sum of the 900 component raw lights
pixels. In the case of categorical variables, we assign the modal value. For variables originally
reported at scales larger than 0.25 degrees, each 0.25-degree grid square receives the value of the

larger input cell into which it falls (i.e. the original value is autoreplicated).

We use lights as the measure of economic activity because it is measured consistently worldwide
at the same spatial scale. Alternatively, we could have considered population. There are two
main sources of global population data. Landscan® uses other geographic data to interpolate
population within census geographic units, which has the potential to bias our estimates. The
Gridded Population of the World (GPW)° uses population data exclusively, assuming uniform
population density within enumeration units larger than its native (2.5 arc-minute) grid
resolution. On average, this means that population estimates are more heavily smoothed in
poorer countries with lower statistical capacity, as well as in more sparsely populated regions.

This could also bias our results.

> http://web.ornl.gov/sci/landscan/
® http://sedac.ciesin.columbia.edu/



Apart from measurement issues, the lights data are conceptually different from population,
because they reflect intensity of economic activity, which is a combination of population and
income per capita. Assuming a reasonable degree of population mobility within countries in the
long run, in the presence of country fixed effects in our analysis below, lights variation will

mostly reflect variation in the spatial distribution of population.

To analyze the variation in economic activity across locations, we then define three sets of
variables, while acknowledging that the boundaries between the sets are somewhat permeable.
The general intent is to distinguish variables relating to agricultural productivity from those
relating to costs of trade. With that in mind, we first define a set of two variables, a malaria
index and ruggedness, which we didn’t put in either camp because they affect both. Malaria
affects human ability to live in an area regardless of the economic activities they perform, and
ruggedness increases the cost of both trade and agriculture. The index of the stability of malaria
transmission, based on species-specific measures of human biting rates and climate predictors of
mosquito survival, is from Kiszewski et al. (2004). Ruggedness is based on Nunn and Puga
(2012). We correct the Nunn and Puga measure to account for the fact that two east-west
neighboring cells at high latitudes are closer than two east-west neighboring cells at low

latitudes, biasing their measure downward at high latitudes.”

We consider six continuous agriculture variables, temperature, precipitation, length of growing
period, land suitability for agriculture, elevation, latitude, and a set of 14 biome indicators. The
temperature variable is a long run (1960-1990) average of UEA CRU et al. (2013) based on
Mitchell and Jones (2005) and precipitation is the Wilmott and Matsuura (2012) measure

averaged over the same period. Length of growing period, in days, is from FAO/IIASA (2011).

" Applying this corrected measure to the main regression in Nunn and Puga (2012) leads to virtually no change in
the point estimate of the variable of interest and an approximately 15% increase in its standard error. We also
area-weight the average to follow Nunn and Puga. In practice, area weighting has minimal impact within our small
units.



Land suitability is the predicted value of the propensity of a given parcel of land to be under

cultivation based on four measures of climate and soil, from Ramankutty et al. (2002).8

Elevation, in meters, from Isciences (2008). While high elevation locations often have poor
transport, we believe that once distance to various types of water transport (see below) and
ruggedness are controlled for, it is best interpreted as an agricultural variable. Furthermore, while
ruggedness and malaria had similar effects on economic activity across different sample splits
discussed below, elevation, like many trade and agricultural variables, did not. In practice, the
choice of whether to place elevation in the agriculture category or the “both” category is
inconsequential to the main results. Finally, we control for latitude which has affected agriculture
even net of climate, because the diffusion of domesticatable plant and animal species happens

more easily within narrow latitude bands.

Biomes are mutually exclusive regions encoding the dominant natural vegetation is expected in
an area, based on research by biologists. The distribution of 14 biomes is from Olson et al
(2001). We combine “tropical and subtropical dry broadleaf forests” with “tropical and
subtropical coniferous forests”, and “tropical and subtropical grasslands and savannas and
shrublands” with “flooded grasslands and savannas” because each pair is broadly similar, and
because the second member of each pair contains less than 1% of cells globally. We exclude

areas covered by permanent ice.

Our five trade variables focus on access to water transport. We calculate Euclidean distances in

kilometers from cell centroids to the nearest coast, navigable river, and major lake using the

¥ Because several variables are only defined or reported for grid squares containing land, and different datasets have
different effective definitions of the land surface, as noted below, values for some variables are imputed (or
“grown”) as the mean (continuous) or mode (categorical) of their eight 0.25-degree grid square neighbors. This
process is repeated up to two times until nearly all cells containing land based on our coastline dataset have values
for all variables. Between the two iterations, interpolated values assigned to cells containing no land are dropped, so
that imputation cannot occur across large water bodies. The only land cells without data following this spatial
interpolation process are small islands. Land suitability, biomes, temperature and precipitation are grown twice, and
length of growing season is grown once.



Fuller isohedral map projection, and great circle distances to the nearest natural harbor.” Our
specifications include indicators for the presence of each of these 4 within 25 km of a cell
centroid, as well as a continuous measure of distance to the coast. In each case, we take a more
systematic approach to characterizing the universe of waterbodies than previous work. Vector
coastline data are from NOAA (2011; “low” resolution), based on Wessell and Smith (1996).
The same data are also gridded at 0.5 arc minutes in order to determine the fraction of these 0.5
minute cells in a quarter-degree grid square that fall on land. Our universe of rivers is those in
size categories 1-5 (on a scale of 1-7) of the river and lake centerline dataset from Natural Earth
(2012). We restrict to river segments that are navigable, having determined the navigability of
each river using a variety of text sources.'’ Lakes data are from the Global Lakes and Wetlands
Database produced by the World Wildlife Fund and the Center for Environmental Systems
Research, University of Kassel (Lehner and Déll 2004).11 We define 29 lakes as major based on
their their surface area is greater than 5000 square kilometers, having excluded four that were
wholly created by dams. Natural harbors data are port locations digitized from US Navy (1953),

restricting to ports defined there as natural harbors.

Table 1, columns 1 and 2 report summary statistics for all of these variables.
3. The measure of economic activity and initial results

3.1 The measure of economic activity and specification

% All available GIS software of which we are aware performs this calculation in the plane, and thus requires
choosing a projection (see Tobler (2002) for a critique). No projection preserves distance in general, and many,
including the Plate Carrée implicitly used in most economics research, can induce substantial error. Spherical
point-to-point distances, in contrast, can be calculated easily in many software packages. We use Fuller’s
icosahedral projection, which we believe is relatively well-suited for the task, and has not previously been used for
such quantitative purposes in any literature of which we are aware.

10 Full list available upon request

! http://www.worldwildlife.org/publications/global-lakes-and-wetlands-database-large-lake-polygons-level-1,
accessed 2014/8/14



http://www.worldwildlife.org/publications/global-lakes-and-wetlands-database-large-lake-polygons-level-1

As seen in Figure 1, the lights data convey a great deal of information about the location of
economic activity. At the country level, the cross-sectional correlation between emitted light and
GDP is 0.90. More importantly for our purposes, the lights map out the location of economic
activity within countries. Note that lights represent total economic activity, which is a
combination of the number of people and the activity level person. Lights are comparably bright
in northern India and the eastern United States, because while economic activity per person is

lower in India, population density is higher in many places.

The land area falling within each grid square varies, both because some are partially covered by
water or permanent ice, and because the surface distance between lines of longitude varies with
the cosine of latitude. To deal with the first problem, we normalize our lights measure by land
area, to yield the intensity of light emitted from each grid square, so we are looking ultimately at
the allocation of the intensity of economic activity. In particular we sum the lights in each grid
square. For grid squares that are only land, we are summing over 900 pixels. For cells with not
entirely land, we inflate the sum by the inverse of the fraction of the 900 pixel falling on land.

This is equivalent to averaging over land cells only.'?

One notable limitation of the lights data is that they are censored. 59% of our grid squares emit
too little light for the satellite to detect. Since nearly all grid squares contain population and thus
presumably emit some level of light, we consider this a censoring problem. Values as high as 1
or 2 are almost exclusively interpreted as noise and recoded to zero, in initial processing by
NOAA. The lowest non-zero value of the sum of lights adjusted by fraction of pixels over land is
3.05. We assign this value to all , to avoid any jumps in the data when we move from so called

zero to minimal readings. "

'2 While cell area varies with latitude, the light readings are densities.

'3 Alternatively, we could estimate a Tobit model, which is the traditional way to capture censoring. OLS avoids the
Tobit error structure and provides a more intuitive measure of goodness of fit, which is our focus. Estimated
coefficients for the analogous tobit models (with and without country fixed effects) are almost exclusively of the
same sign and are mostly larger in magnitude.



The base formulation for grid square i in country c¢ in time ¢ is thus
ln(lightict) = XictB+ gict lf lightict Z 305 (1)

=1.115 otherwise

900 ¥ light,,
j€i

where light,,, =
> land pixels

JEi
We also consider the intensive and extensive margins separately. Figure 2 plots the distribution

of the dependent variable excluding the bottom code.

We emphasize two further points about equation 1. First, it is a very simple functional form.
With such a large number of covariates, a 2™ order Taylor series has hundreds of terms, which
improves the fit but limits interpretation substantially. Second, we consider multiple error
structures. We show all results with and without country fixed effects. This distinction is critical:
the fixed effects regressions rely on within-country variation and account for the allocation of
activity within a country, in a context where we expect a higher variance across countries than
across grid cells within a country. Errors are clustered by 3-by-3 squares of cells to account for
spatial autocorrelation. Conley standard errors, used in alternative specifications below, tend to

be smaller.

3.2 Basic results

Columns 3 and 4 of Table 1 report the results of a regression of our lights variable on the full
suite of physical geography characteristics without and with country fixed effects. The
coefficients with and without fixed effects are generally of similar magnitudes and are of the
same sign for all covariates except the mangroves indicator, which applies to 0.4% of the sample.
Because of the high potential for co-linearity among the right hand side variables, it may be that
looking at the change in a particular coefficient in comparing the specification with country fixed
effects to the specification without them is not very informative. As an alternative, we created

fitted values from the specifications in columns (3) and (4), in the latter case suppressing the
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country fixed effects (i.e. setting all the country dummies to zero when forming fitted values).
The correlation of the fitted values is 0.860, suggesting that the two specifications provide very
similar predictions of which regions have high light density. In other words, the geographic
forces that drive the allocation of economic activity within and across countries are similar. In
Figures 3a and 3b we plot the fitted values of lights under the two specifications. The absolute
scales differ because when we omit the FEs themselves, the FE predictions are all relative to the
base country. Nonetheless, the relative variation in lights within continents and countries is

similar in the two figures.

In columns 3 and 4, coefficients on covariates are largely in the expected direction. Most biomes
have significantly more lights than deserts (the reference biome); only boreal forests, tundra, and
perhaps surprisingly, tropical grasslands, have significantly less. Being near the coast, lakes,
navigable rivers and natural harbors is associated with more lights, as is a longer growing season
and higher agricultural suitability. Net of growing season and land suitability and the biomes,
higher temperatures and lower precipitation are associated with more lights, perhaps because of
their residential consumer amenity value. In an alternative specifications excluding growing
season, land suitability, and the biomes (not shown), precipitation has a positive effects overall
as might be expected based on agricultural productivity. When entered in quadratic form (not
shown), both temperature and precipitation increase lights at a decreasing rate. In the base

formulation, net of ruggedness, higher elevation is associated with more lights.

As reported in Table A1, using column 3 as an example, Conley (2008) standard errors using a
kernel of radius 40 km (similar to clustering for immediate queen neighbors) are slightly larger
are smaller than the ones in column 3 by 10-15%. At longer cutoff distances such as 100 km,
Conley standard errors increase further, but most t-statistics are still very large. In any case, our
ultimate goal is not to establish precise marginal effects, and we believe that our cluster design,
which is substantially easier to compute for our many variants, yields reasonable estimates of

standard errors.
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The most important numbers for our exposition in Table 1, columns 3 and 4, are the R-squared
values. These 23 variables account for 46 percent of the variation in lights globally in column 3.
We consider it remarkable that such a parsimonious specification can account for so much of the
variation in global economic activity, without explicit regard to agglomeration or history. Of
course to the extent that grid cells with better characteristics have neighbors with better
characteristics (which we will see later is highly likely) and there are agglomeration forces, some
of the light intensity associated with more lights in better places represents agglomeration. And
of course there are within-grid square agglomeration forces. In short, these coefficients are
reduced form estimates, which in part capture forces of agglomeration (see Section 7). In column
4 we add country fixed effects. While on their own these account for 34 percent of light
variation, they only increase the column 4 R-squared by 11 percentage points relative to column
3. Country-level variation adds relatively little once physical geography factors are accounted
for. Conversely, the geographic factors add 23 percentage points in explaining variation, on top

of the fixed effects.

Table A2 reports OLS estimates of the effects of the same variables on the extensive and
intensive margin of lights. Sign patterns for covariates across margins and with and without FEs
are mostly the same but there are some distinct differences both across margins and FEs,
especially for the 3 tropical biomes measures and elevation. Higher elevation increases the

probability of being lit but is associated with lower light intensity, conditional on being lit.

Table 2 reports R-sq for a variety of specifications, exploring the role of different variable sets in
explaining variation in lights in more detail. Column 1 excludes country fixed effects and
column 2 includes them. The first row repeats the Rsq’s from Table 1. Rows 2 and 3, report the
extensive and intensive margin Rsq’s, respectively. Although the R-squared values are not
strictly comparable across margins, it is nonetheless striking that the extensive margin, a linear
probability model, has a relatively large R-squared value of 0.39 without fixed effects and 0.48

with them. As shown in rows 4 and 5, country fixed effects alone capture differing levels of
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economic development (and underlying cultural and institutional differences), explaining more

than 20 percent of both extensive and intensive margin variation.

In rows 6-8, we start to explore the relative role of trade and agricultural variables. Row 6 shows
that the two base controls on their own explain little and that FE’s explain a lot. In row 7,
agricultural variables on their own have high explanatory power, 0.44 without fixed effects, and
0.56 with them. Row 8 suggests that the short list of trade variables on their own explain much
less of lights variation and add little to the explanatory power of country fixed effects. However,
as we will show, these relative contributions vary importantly between early- and

late-developing countries.

4. Model

As suggested in the introduction, the effect of physical geography is modulated by history.
Changes in productive technologies certainly have changed the importance (or relative prices) of
different first nature factors. We focus on two critical changes. Over the last two centuries, the
cost of transporting goods has fallen dramatically worldwide and even within countries. Within
low productivity agricultural developing countries, by say 1950 and often much earlier, transport
costs had fallen dramatically with the building of colonial rails and roads and the use of trucks.
Donaldson’s (2015) paper on rails in India under the Raj is instructive as well as work on rails in
Africa by Jedwab and Moradi (2014 and 2015). Second there was the agricultural revolution in
today’s developed countries inducing structural transformation with many models reviewed in
Desmet and Henderson (2015). That transformation released labor from agriculture to
agglomerate in cities. That transformation in today’s developing countries has been slower,
occurring in Latin America after 1950 and still on-going in most of Asia and Sub-Saharan Africa

today.

We develop a model in which the order in which these two changes occurred may influence the

possible spatial distributions of economic activity. Consider small- medium size countries which
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have say a coastal and a hinterland region.. As we will argue below, those countries which
experienced the agricultural revolution before much of the dramatic drop in transport costs had
local agglomerations in all regions develop early. Trade was still difficult allowing local
manufacturing to thrive in larger agricultural regions with population freed up to move into the
local city. We will argue that these agglomerations in large size agricultural regions regions then
persisted after the period of most dramatic drop in transport costs. In contrast, today’s developing
countries started with semi-autarkic regions, each with large agricultural populations and small
urban ones. When these countries experienced substantial drops in transport costs, before they
underwent structural transformation, that allowed these small urban populations to attain more
efficient scale by agglomerating into one major, say coastal city within the country. Lowered
transport costs allowed trade of manufactures across the regions (as opposed to just local
production). Then once structural transformation starts to occur, these large agglomerations

persist and grow, with little big city development in the hinterlands..

How do model this and how do we implement the ideas empirically? We start with the model.
4.1 Setup

We consider a country consisting of two regions, which we call coast (¢ ) and interior (i) for
exposition. Workers in each region potentially produce food (/') with decreasing returns and a
manufactured good (m ) with external economies of scale subject to congestion. In both sectors,
workers are paid their average product. We assume that (in the “long run”) workers are free to

move between regions and among sectors such that utility is equalized.

For either region » = ¢, i, in the food sector average product is Aij:,B and total production is
AfL}r_ P where Ay > 0 reflects productivity and Ly, is the amount of labor in the food sector in

the region. Food productivity is the same across regions. Decreasing marginal productivity of

labor in agriculture, due to a fixed supply of land, is reflected in the parameter > 0. Cities

14



produce manufacturing. Average product per unit of labor in the urban sector producing
manufactures is A,,{v+ Ly,) , where the v allows labor output by the marginal labor entrant as
Ly, — 0. We will allow manufacturing productivity to potentially differ across regions, so there
is comparative advantage. Each worker is endowed with one unit of time, to be used for labor
and commuting in the city as in classic urban models (see Duranton and Puga, 2004, for a
review), so labor supplied is (1 —¢L,,) , where 0 <7 << I represents unit-distance commuting
costs in the city. People live on fixed-size lots (with zero opportunity cost) in cities paying
differential rents according to distance and commuting from the city center. Rental income is
redistributed as an (equal) dividend to all city residents. Average product in the city is thus
Apr(v+ L) (1 — th,)He, and total production of the manufactured good is

Apr(v+ L) (1 — th,)H(Lmr .* The size of the manufacturing labor force that maximizes the
average product of labor in manufacturing is the solution to & = ¢L,,[1 +v(1 +¢)L,,.]. Since the
right hand side of this equation can be shown to be increasing in L, , it has a unique solution,

which can be shown to be a maximum.

Food, which is traded costlessly between regions as in the standard NEG model, is the numeraire
good. Preferences are such that each worker consumes a fixed amount of food v, and spends the
remainder of her value of net average product on the manufactured good. Welfare for any person
in region r is then is equivalent to consumption of the manufactured good, (w, —v)/p,,., Where

w; is the real income and p,,, is the price of the manufactured good in region .
A fixed national population of workers L is free to move between sectors and regions, so that

L.= Lfr-l-Lmr, r=c i (2a)

4 Following Duranton and Puga (2004), in a linear city, where each worker is endowed with 1 unit of time and
working time is /-4fu where u is distance from the city center and 4¢ unit commuting costs, it is easy to derive
expressions for city labor force (by integrating over the two halves of the city), for the city rent gradient (equating
rent plus commuting costs for a person at u with that of a person at the city edge where rents are 0, so they are
equally well off in equilibrium), and for total rents, each as a function of population. Any resident’s income based
on wages times working time after subtracting rents paid and giving their share in total urban rent income is given
by the expression in the text.

15



L=L.+L,. (2b)

Real income equalization across sectors within each region (assuming both sectors exist in the
region) implies:

AfLﬂ/:rB = PmrAmr(c+ Lny)(1 _thr)He, r=oci. 3)

Free migration equalizes per person welfare, or manufacturing consumption across regions

(assuming both regions are populated), so that:

A.fL/;cB_Y A,L;,B—y ) ( 4)

The model is closed by imposing equilibrium in goods markets. How that is done depends on
whether there is trade or not and whether regions absolutely specialize or not. There are three

different types of closure relating to three types of equilibria.
4.2 Autarkic equilibrium

If there is no trade between regions, clearing of the manufacturing good market in each regions

requires:

LA =) = P e+ L) (1 = tLin) " Lo, (52)
or alternatively, using the agricultural market

YL =AL,". (5b)

Given L, Az, Amr, B,€,7, 1, the eight equations implied in (2)-(4) and (5b) specify equilibrium in

the distribution of labor and the price of the manufactured good wherever it is produced (
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LmaLml'a Lfca Lfia LCa Lio pmcapmi )~]5
4.3 Trade equilibrium with both regions producing manufactures

If transport costs are sufficiently low, we can have trade with manufactures in both regions if the
regions have differential comparative advantage. If they are identical and have sufficient
manufacturing scale (say, beyond the point where average product is maximized) then there
would be no trade. We will generally allow one region to be slightly better at manufacturing, in
order to allow trade equilibria when trade costs are sufficiently low. We maintain the assumption
that food can move costlessly between regions, and further assume that there is an iceberg cost t
that applies to movement of the manufactured good between regions. Trade will occur when the
autarky price ratio of manufactured goods is outside the range (1 —1, I%T). When there is trade,
and no absolute specialization by any region, the two within-region goods market clearing
conditions are replaced by an inter-regional goods market clearing condition and an arbitrage

condition. We specify food market equilibrium and leave the manufactured good as a residual:
©

Given comparative advantage in the coastal region, our non-specialization equilibria have the
manufacturing export region being the coast, although we look for equilibria where the interior is
the exporting region. The price of the manufactured good on the coast is p,,., and it is related to

the interior price by an arbitrage condition:
-1
Pmi :pmc(l _T) > (8)

where t is an iceberg trade cost between the two regions. Given L,Af,Am, B,€,v,t,1, the eight

equations embedded in (2)-(4), (7) and (8) specify an equilibrium in the distribution of labor and

the price of the manufactured good.

15 To see that these represent eight equations, note that 2a, 3 and 5b each must be fulfilled for each region.
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4.4 Specialization equilibrium

Finally, there are equilibria where all manufactured goods are produced in one region, Since that
one region can be either the coast or the interior, we consider the two corresponding types of
specialized equilibria in the solution mechanism below. It can be defined by slightly adjusting
the trade equilibria without specialization above, setting manufacturing employment in one

region to zero and removing equation (3) for that region.

4.5 Solving the model

For any set of parameters and value of transport costs, we solve the model as follows. We have 4
types of possible equilibria: autarkic, trade without absolute specialization, and absolute
specialization by one region or by the other. We pick an allocation of population to the interior
region (with the coastal population being the reminder of national population and suspend
equation (4) (equalizing welfare across regions). We then use the remaining equations in each
type of equilibria to solve for all remaining variables. From these we calculate the consumption
per worker in each region (the LHS and RHS to (4)). Then, for each type of equilibria, for each
allocation of population between regions we plot these two regional consumptions. If they

intersect that is a potential equilibrium. Details of the actual algorithm used are in Appendix xx.

Actual equilibria are subject to two stability conditions. Type 1 stability is with respect to small
changes in regional population allocation, assuming within region labor markets and goods
markets always clear (“instantly”). Equilibria are stable as long as per person manufacturing
consumption in the interior [coast] is a declining [increasing] function of L; (i.e., there are overall
diseconomies to regional size). Type 2 stability is designed to deal with whether if we add a
small number of workers to a non-existent or small manufacturing sector in a region that induces
further agglomeration. For example, we take a small number of workers out of food production

in say the interior region and move them into manufacturing in the interior. We keep regional
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populations fixed, but have goods markets clear and have coastal labor markets clear. Equilibria
are unstable if interior manufacturing workers then have the highest consumption of any
workers in the country. They are stable if interior food workers then have the highest welfare
(manufacturing consumption) of workers anywhere and interior manufacturing workers the
lowest. Type 2 stability is crucial in determining if a region with no manufacturing would remain
that way if by chance a small number of workers started manufacturing there. [will need footnote

on whether the cases described for type 2 stability cover the outcomes we encounter]

Details of the solution method as applied in solving examples are given in the Appendix,
including stability implementation. In general, for any t there will either be an autarky or
non-specialization equilibrium but not both, with higher t having autarky. There may or may
not be specialization equilibrium in one or both regions, with the existence of stable

specialization equilibria enhances as 1 falls.

4.6 Analysis of possible equilibria

As in many of these models, closed form solutions and their properties are elusive. We illustrate
the basic issues with some examples. For these we start with

L =10,000,000; c= 0.5; €=0.08;/=7x10 " =0.25;y = 0.018;4,=1;4,,=1; Amc=1.01.
For these parameters average product in cities peaks at a city population of about 969,100.

Note the regions are not precisely symmetrical, so that if trade is feasible, it will occur because
the coast has a slight comparative advantage in manufacturing production (with a higher 4,,).
We then look for all the specialization and non-specialization equilibria that exist and are stable
for different values of transport costs, T, starting at 0.9 and going to almost 0. There are two sets
of specialization equilibria: the coast only producing food and the interior only producing food.
For non-specialization, at high t these are regions are in autarky while at lower t, if equilibria

exist and are stable, they are trade equilibria.
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The key analysis looks at how these patterns vary between a situation of low agricultural

productivity which in this case has 4,= 1 and high agricultural productivity where we set
A4,= 1.5, for example. In the former case, at least with non-specialized manufacturing, there is

relatively little manufacturing employment to support a city of sufficient size to exploit scale
economies in any one region. In the second case, with much less labor needed to produce the

required food, there is a lot more manufacturing employment to spread around.

We start with 4,= 1. we show the solution method for the different types of equilibrium in
Figure 4. There, for one value of t = zz we plot the consumption per worker in each region (not
imposing equation (4)) as a function of interior population. Where the curves cross is a potential

equilibrium.

Then Figure 5 shows the specialization and non-specialization stable solutions for different costs
of trade, 1, as graphed against the population of the interior region for each solution. These are
so called pitchfork figures. As noted above there are two sets of specialization equilibria for the
outer prongs: one where the interior produces only food and one where it is the coast doing that.
For specialization equilibria there are none with this figure with low A4,= 1 at high costs of trade.
Say the interior produces no manufacturing. Then because trade costs are so high if we move a
small number of workers to start manufacturing in the interior that will be profitable despite the
limited scale. Such an equilibrium is type 2 unstable. As 1 falls, given limited scale effects in
any one city, the advantage for scale effects of having all manufacturing on the coast dominates,
so starting a small scale operation in the interior is not profitable for those workers. Note the
allocation of workers to manufacturing in the coast is less that the city size which maximizes
average product. Thus specialization equilibria start at lower values of 1, and then their
existence persists persists as t falls to 0. For the middle prong, at high t, the equilibria are
autarkic ones. We have no trade and limited manufacturing scale in each region., but trade is too
costly for it to be profitable to workers to enhance scale in one the two regions, so these

equilibria meet type 2 stability. As trade costs fall, it becomes potentially profitable to trade
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noting that the coast has a comparative advantage in manufacturing. The difficulty is that once it
is profitable to trade it is also profitable to enhance manufacturing scale in one region relative to
the other. Thus it turns out in this figure there are no stable trade equilibria at all and no autarkic

equilibrium at lower values of 1.

In Figure 6 we turn to our second case, post an “agricultural revolution” where rises to 4,=1.5.

Now there are lots of manufacturing workers to go around. We use the same 3 prong diagram.
As before specialization equilibria do not exist at the highest . However in this case at
intermediate and then lower values of 1 the large specialized city in one region or the other that
produces manufacturing very competitively relative to starting up at a small scale in the other
region. We note in these models urban scale economies vs commuting diseconomies play out so
that output per worker rises very quickly from low scale, the rise slows, then output per worker
peaks and then the decline is very slow past the peak (and there is always the option of having a

second city in one region or the other not explicitly introduced here).

What about the middle prong? Again at high costs of trade there is autarky. Then at some point
as trade costs fall, with comparative advantage slightly on the coast, it pays to have the coast
relatively specialized and exporting some of the interior’s manufacturing consumption to it, with
the interior exports food. These trade equilibria persist as t falls. Both region have a reasonable
manufacturing scale so that shifting a small number of manufacturing workers one way or

another is not profitable for workers, and stability holds.

Given these two figures, our story which we explore empirically in the next section, is as
follows. Our world starts in the 18th century with high trade costs and low agricultural
productivity. Regions are in autarky within countries, since as both figures suggest,
specialization equilibria cannot persist. Then in today’s developed world there is an agricultural
revolution. In these countries history starts with non-specialization in Figure 5 and with the

revolution both regions expand urban production to achieve reasonable urban scale as in Figure
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6. After this agricultural revolution then transport costs fall in the late 19th and early 20th
century everywhere. In today’s developed world, this simply moves along the country along the
middle prong in Figure 6, into a situation of inter-regional trade and relative specialization,
which allows the regions to exploit their comparative advantage. Note with scale effects, the
country benefits from both trade and factor movements; they are not perfect substitutes as in the
old 2x2x2 Heckscher-Ohlin trade models. But the interior with its agricultural comparative

advantage has an urban agglomeration as well as the coast.

For the developing world, it is different. There with persistent low agricultural productivity, in
Figure 5, transport costs fall. As they fall, at some point, non-specialization equilibria disappear,
because with low costs of trade and low urban scale, having industry in both regions is not an
equilibrium. One region or the other specializes in manufacturing and the other does only food
production. Since the coast has a modest comparative advantage, type 2 instability plays out for
it first, in which case one could argue it will be the coast region which contains manufacturing.
For these countries the agricultural revolution comes later (say post World War II). At this point
they start increased urbanization and the development of manufacturing as in Latin America and
parts of East Asia and then later the rest of Asia. Relatively small coastal cities become huge

urban agglomerations, while hinterland regions do not have large agglomerations.

In our data we will see this as inducing a stronger correlation between agricultural fundamentals
and lights concentration in the developed world than the less developed world, while the

opposite will be the case for transport costs.

5. Empirical specification

Operationalizing our model requires defining factors that affect trade and those that affect
agriculture, as well as defining the set of early-agglomerating countries and the set of
late-agglomerating countries. Above in the data section we discussed the variables that relate

primarily to trade and to agriculture.
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To categorize countries that agglomerated late and those that agglomerated early, we rely
primarily on human capital, which allowed farmers to take advantage of higher-yield
technologies. The basic issue is illustrated in Figure 7, which plots the UK (early advanced
technology) adult literacy rate against time compared to that for India. The UK had over 50%
literacy by the 17th century, and following a rapid rise after 1820, over 75% by 1870. Thus the
UK achieved a massive increase in human capital before the precipitous decline in the global
freight cost index of the late 19th and early 20th century. In 1951 India’s literacy rate was still
under 20% and only then started to rise quickly, achieving 50% in the 1990s. This is our theme.
There are a set of higher technology countries that urbanize and agglomerate earlier before the
radical decline in freight costs. And then there are a set where higher effective technology,
agglomeration, and urbanization are delayed until after 1950, well after the largest declines in

transport costs.

We operationalize our human capital measure using average national average years of schooling
in the adult population in 1950, the earliest year with comprehensive data, from Barro and Lee
(2010). Alternatively, we use an agglomeration outcome, the level of urbanization in 1950, again
the earliest year with comprehensive data, from United Nations (2014). Figure 8 shows the
cumulative distribution of these two measures in 1950 weighted by national populations. They
closely track each other and indeed the partitions we make and the regression results are similar

across the two measures.

Our theory provides no guidance on the precise distinction between early and late spatially
transforming countries. We thus follow Durlauf and Johnson (1995), letting the data tell us the
cutoff at which the overall unexplained variance, summed across the “early and “late” samples,
is minimized. We carry this out for four separate exercises, one with and one without country

fixed effects for each of our two proxies, education and urbanization.
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Figure 9a provides an illustration of the approach for the education proxy without fixed effects.
The vertical axis represents the sum of squared residuals (SSR) summed across two regressions
carried out with the same specification on two separate samples. The horizontal axis specifies the
cutoff level of education defining the early and late samples. SSR is minimized (and therefore
explained variance is maximized, at a cutoff level of 3.6 years of education in 1950. In the fixed
effects regressions in Figure 9b, explained variance is maximized at 3.0 years of education.
Figures 9c and 9d show the analogous information for the urbanization proxy. An urbanization
level of 44 percent is our cutoff without fixed effects; adding fixed effects reduces it slightly to

38 percent.

Regardless of the proxy we use, we end up with a similar split of the sample. Table 3
cross-tabulates the full sample and the lit sample using the two types of cutoffs, separately with
and without country fixed effects. The off-diagonal cells, those that are characterized as being in
early agglomeration countries using the urbanization criterion and late agglomeration countries
using the education criterion, or vice versa, represent less than 5 percent of the full sample and
less than 10% of the lit sample. It is also the case that the chosen cutoffs split the samples quite

evenly. The countries and their categorization in each of the four versions are listed in Table A3.

16

A related theory of differential spatial development might instead focus on the new world versus
the old world, because the new world’s economic geography was altered so radically by the
Columbian Exchange. Table 4 explores the various ways one might divide the sample. It reports

R-sq from regressions of the form

In(light;.,) = X,.B+D_split.+D_split.-X; . B;+ €. (11)

16 Because some countries lack a measure of urbanization in 1950, and several more lack an education measure, the
sample sizes in these two differential exercises are smaller by 0.13% and 6.27%, respectively, than those in Tables 1
and 2. However, the overall R-sq change by less than 1% with fixed effects, and 0.1% without fixed effects.
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where D _split. is a dummy variable (or a set of dummy variables) indicating, for example,
whether a country is in the high education category. From Table 2, the overall Rsq’s without

splits are 0.459 and 0.569 without and with FE’s, respectively.

The first three rows show splits by education, urbanization, and hemisphere, respectively

Each necessarily increases explanatory power, but the magnitudes of the gains are modest. In
rows 4 and 5, combining the hemisphere split with education and urbanization splits adds a little
more. However, as we note below, ultimately we focus on the education and urbanization splits
rather than hemispheres, because we find that the overall pattern across these splits hold within
both the old and new worlds. This suggests that the story in our model is not purely a distinction

between the old and new worlds.

6. Differential results

6.1 Explanatory power

Table 5 reports our main results, the contribution to lights variation within the early versus late
agglomeration samples of different blocks of variables, with and without country fixed effects.
We discuss results for the education split shown in the left half of the table. Results for the
urbanization split, on the right side, are very similar. We start the discussion by looking at three
sets of results at the top of the table: the top panel labelled “Both margins” and the next two
panels, labelled respectively “Differentials for both margins” and “Summary....”, all without
fixed effects. The top panel shows the contribution to Rsq’s for low and high education countries
for each block of variables on their own. To help sort the numbers, we net out the base variables
and then calculate a double difference. First in the panel, “Differentials for both margins”, we
show the explanatory power of the agricultural and trade variables net of the base variables. In
the high education countries, the additional explanatory power of the agricultural variables is
more than that of the trade variables. In the low education countries, it is the trade variables that

offer relatively more explanatory power. So, for example, in the education split without fixed
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effects, agriculture adds 0.54 to explanatory power relative to the base for high education
countries but only 0.27 for low education countries. In contrast, trade relative to the base adds
0.062 to explanatory power for high education countries but a higher 0.17 for low education
countries. This pattern holds for all such pairwise comparisons in that panel: for the education
split with FE’s and for urbanization split with and without FE’s. Finally in the “Summary” first
row, we double difference, to show the relative advantage of agriculture over trade variables in
explaining lights variation for high versus low education countries. The patterns are clear across
both education and urbanization splits. Agriculture is relatively more important for early relative
to later developing countries. Without fixed effects for both education and urbanization the
double differential is over 0.31 and for with fixed effects for both it is over 0.17. This pattern is

our basic result upon which we will build.

The bottom of Table 5 shows two further sets of results. First, we split overall effects into the
intensive and extensive margins. The distribution of effects between country sets and variable
sets are similar across the two margins. Finally in the last panel, we show the relative advantage
of agriculture over trade variables in explaining lights variation for high versus low education
countries, within new and old world countries. Patterns are similar to those for both worlds

combined.

6.2 Marginal effects

Table 5 emphasized the overall explanatory power of groups of trade and agricultural variables
in the two samples. We now consider their relative marginal effects. If marginal effects of trade
variables, relative to marginal effects of agricultural variables, are stronger in late agglomerator
countries than in early agglomerator countries, this is consistent with the explanatory power
results. We first estimate equation (11) in general form with a full set of interactions. Results,
shown in Table A4 and A5 for education and urbanization, respectively, generally show a pattern
analogous to the explanatory power results. The (uninteracted) marginal effects of the agriculture

variables are usually of the same sign as their interactions with the early agglomerator indicator,
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implying that they have a stronger effect in the early agglomerator countries. Conversely, the
(uninteracted) marginal effects of the trade variables are usually of the opposite sign as their
interactions with the early agglomerator indicator, implying that they have a weaker effect in the

early agglomerator countries.
To test this idea more formally, we consider the following variant of equation (11):
. _ B A T . A T
ln(llghtict) - XictBB +XictBA +/YictBT + D_Splltc(aXictBA + 'Y‘XvictBT) + Eict (12)

In (12), “B” refers to the 2 base covariates, “A” to agriculture, and “T” to trade. The common
(constrained) deviation of effects for early agglomerators are o and vy for the sets of agricultural
and trade variables, respectively. Table 6 reports non-linear least squares estimates of equation
(12). Across the board (education, urbanization, FE’s and no FE’s) patterns are similar. The
deviation recorded is for high education or high urbanization countries. a is positive and
significant, meaning that marginal effects of agricultural variables are larger in absolute value for
high education (urbanization) countries compared to low education (urbanization) countries. For
trade the opposite is the case. y is negative and significant, meaning that marginal effects of trade
variables are smaller in absolute value for high education (urbanization) countries compared to
low education (urbanization) countries. Thus not only is agriculture relatively more important
than trade in explaining lights variation for high compared to low education or urbanization
countries, but marginal effects of agriculture compared to trade variables are relatively stronger

for high versus low education or urbanization countries. .

In Figure 10, we perform an interesting counterfactual. We ask how much different areas of high
education countries gain or lose because they save high not low education coefficients.
Correspondingly we ask how areas of low education countries would change if they were given
high education coefficients rather than low. The analysis is based on the estimations of equation

(11) reported in Table A4, without and with FE’s. For both sets of countries, we do the same
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calculation. We first predict for each country’s grid squares what its outcome would be if it had
high education coefficients and then what it would be for low education coefficients. We then
calculate the difference between these two predictions, X, l-c,@, take the mean worldwide
difference and plot each grid square’s deviation from this mean. Figure 10 allows us visually to
compare low education sub-Saharan Africa (excluding South Africa) with high education
Europe. In Europe (agriculturally rich) interior areas are more populated than they would be with
low education coefficients, while coastal areas are less populated with high education
coefficients than they would be with low education ones. For Africa the quantitative results are
similar as they should be, but the interpretation is for the context. Africa interiors would be more
populated if they were given high education coefficients rather than low, while coastal areas
would be less populated with high education coefficients than under low education coefficients.
So the color patterns are the same for high and low education places, consistent with the model

and the experiment just carried out.
7. Spatial spillover and correlation issues

Both the lights and the physical geography characteristics predicting them are highly spatially
correlated. To the extent that this is manifested in spatially correlated errors, we have accounted
for this by clustering errors and, alternatively, calculating Conley standard errors. However,
direct agglomeration of lights and spillover effects of the X’s, such as a port on its hinterland, are
also possible. We have tried to minimize the extent to which these affect our results by
aggregating individual light pixels to much larger grid squares. While minimizing spillovers
across cells, this essentially internalizes the agglomeration externalities. The estimated
coefficients are thus reduced form, reflecting not just raw agricultural and trade effects but also
endogenous agglomeration. For example, a natural harbor may represent a natural trade
advantage, which induces clustering around it, but because of scale economies, the intensity of
lights in a cell containing a harbor reflects both the basic harbor advantage and the induced

agglomeration from scale economies focused on a harbor.
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Separating these three phenomena (correlated errors, spillovers, and agglomeration) is

notoriously difficult (e.g. Gibbons, Overman, and Patacchini 2015).

One solution is focus on the reduced form, where we add as covariates the trade and agriculture
determinants of neighbors’ lights which also accounts for spillovers from the covariates
themselves. One can also add in neighbors of neighbors in a spatially lagged construct. But one
may want to try to uncover the spillover effects from just lights themselves (pure agglomeration),
although it is hard to do counterfactuals with the results (exogenously vary an endogenous

variable).

One way to estimate these effects, common in the literature, is to add neighbors’ lights as a
covariate and instrument for it, using second order neighbors’ Xs. This method relies on

spillovers attenuating fully beyond immediate neighbors.

However, the physical geography characteristics we use are highly spatially correlated. The
simple correlation coefficient between cells and their neighbors for each variable are given in
Table 7, with neighbors defined on a rook basis (the N, S, E and W neighbors of a grid square
sharing a finite border) and on a queen basis, which adds the NE, NW, SE and SW neighbors
sharing a corner. In either case, fifteen of these have a spatial coefficient in excess of 0.958 and
several ones are over 0.99). Given these correlations, we cannot credibly separate own and

neighbor effects let alone instrument for them.

As an alternative, we impose the structure of the spatial autoregressive model

InLi=pWinL, +Xp +eg, (13)

where the weights matrix W, is 1 for queen neighbors and 0 for all other squares. Note in this we
assume neighbors’ X and ¢ have no effect on outcomes. We then estimate this model in the

traditional fashion where
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InL;=(~- pWi)_lXiB TE (14)

Results are in Appendix Table A6. The coefficient of interest is p, the effect of neighbor’s lights
on own lights. The estimates for the full sample in columns 1 and 2, 0.99 with rook contiguity
and 1.001 with queen, imply extreme spillovers. This is part a symptom of the huge patches of
contiguous unlit areas. However, when we run the same specification on lit areas, the coefficient
is still above 0.6, whereas the agglomeration literature suggests a value of 0.10 at most. Our
attempts at instrumenting yielded similar implausible results. We did not further pursue this line

of investigation.

7. Conclusion
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Appendix. Algorithm to solve the model

The algorithm begins by creating a vector of all possible interior populations and a

corresponding vector of all possible coastal populations based on L and L; such that:
L.=L-L,

To find equilibria, we cycle through these vectors in a loop. As a result, the following steps are

carried out for a fixed population allocation between the interior and coast.

First, we create another vector of all possible L; values, ranging from 0 (no agriculture in the

interior) to the entire interior population (everyone is employed in agriculture in the interior).

Then, a corresponding vector is created of Ly, values. This vector is calculated based on food
needs of the entire population, solving the following equation based on the text:

1B TF
_ (LV* ALy
Ap

c

Ly
We subsequently cycle through these vectors in another loop, nested within the previous one.
Consequently, the following steps are carried out for fixed regional agricultural labor forces and
regional population allocations.

Within these two loops, we begin to find equilibria. If L;. <L. and Lj; <L; (both regions
have some manufacturing labor force), then we calculate L,,. and L,,; using the following
equation:

L= Ly— Ly,

Now that we have L;, Lc, Ly, Ly, L,,;,and Ly, we calculate prices in each region based on
the average product of agriculture and manufacturing in each region (so that wages are equalized

across sectors within each region):

B
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Next, we determine which of the two regions is exporting manufactured goods. This can be
determined by checking which of the two regions produces less food than its population requires.
Then, we check if the inter-regional goods market clears by checking if prices in the exporting

region are equal to prices in the importing region, adjusted for the iceberg trade cost 1. For most
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allocations of L. and L this condition is not met, and the algorithm simply ends at this point
and starts at the next allocation of L, and L.

However, if this condition is met, manufacturing consumption per capita is calculated for each
region. In the exporting region, manufacturing consumption is calculated by subtracting the
quantity of manufactured goods that are exported from the total quantity of manufactured goods
produced in the region, divided by the region’s population. The quantity of exported
manufactured goods is determined utilizing the fact that the inter-regional goods market clears.
As a result, exported manufactured goods necessarily equals the quantity of imported food
divided by the price of manufactured goods in the region. The quantity of imported food is
determined by the gap in the region’s food needs and food production in the region.

In the importing region, manufacturing consumption per capita is equal to total manufactured
goods produced plus the quantity of imported manufactured good, divided by regional
population. Analogously to the previous case, the value of imported manufactured goods is
determined by the quantity of exported food divided by price of manufactured goods in that
region.

Manufacturing consumption in each region is not necessarily equal at this point. As such, this
data point is recorded as a “possible equilibrium,” where every equilibrium condition is met
except that manufacturing consumption is equal across regions. If manufacturing consumption is
also equal across regions, then this data point is recorded as an “equilibrium.”

If L, =Lcor L;=1L;,then we have a corner solution where one region has no

manufacturing labor force. In this case, L, and L,,; are calculated just like before. Prices in the
region that has a manufacturing labor force are calculated using the average products of
agriculture and manufacturing just like above. However, prices in the region that has no
manufacturing labor force are now determined solely by adjusting the other region’s prices by
the iceberg trade cost. Next, manufacturing consumption per capita is calculated for each region.
The region that has a manufacturing labor force obviously exports manufactured goods in this
case. Manufacturing consumption per capita in this region is equal to total manufactured goods

minus exported manufactured goods (determined just as before) divided by regional population.
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In the region with no manufacturing labor force, manufacturing consumption is just equal to
imported manufactured goods, divided by regional population.

This data point is recorded as a possible equilibrium. If manufacturing consumption is also equal
across regions, then this data point is recorded as an equilibrium. This ends the loop through

possible values of L. and L.

Next we address the endogenous no-trade equilibria where, as the name might imply,
there is no trade between the two regions. First we check if the current (fixed) population

allocation is feasible in that each region can feed itself without any trade. Then, we calculate L,
and L based on each region’s individual food needs, remembering that there is no trade between

regions. As a result:

Ly\TF
_ (LT
Lyi= Af)

Ly and L, are then calculated using regional population and agricultural labor force. Prices for
each region are also calculated based on the average product of agriculture and manufacturing so
that wages are equalized across sectors in a region. Next, we check if prices are in the “no-trade
band” where no amount of trade is profitable, or:
4> pye and £ >p
If this condition is met, then there is no incentive for trade between regions. We then calculate
manufacturing consumption per capita in each region as total manufactured goods divided by
regional population. Since the regional populations are still fixed (i.e. no mobility between
regions), manufacturing consumption is not necessarily equal across regions. This data point is
recorded as a possible equilibrium; every equilibrium condition is met except that manufacturing
consumption is equal across regions. If manufacturing consumption is also equal across regions,
then this data point is recorded as an equilibrium. This ends the loop through possible values of
L;.
This ends the procedure for calculating equilibria for a set of parameters. Next, we check
the stability of all “full equilibria,” where all markets clear and manufacturing consumption is
equal across regions. We define two types of stability. “Type 1 stability” occurs when there is no

incentive to move between regions. “Type 2 stability” occurs when there is no incentive to move

industries within regions (i.e. move from agriculture to manufacturing).
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To check type 1 stability, we take 100 people from the coast and move them to the interior. We
allow for all other markets to clear, but manufacturing consumption is not equal between regions
(i.e. calculate the resulting “partial equilibrium”). If the people who moved have lower
consumption than before, then the equilibrium passes the stability check.

To check type 2 stability, we take 100 people from agriculture and move them into
manufacturing in a single region, which puts the labor market in that particular region in
disequilibrium. We then calculate the agricultural labor force in the other region based on the
food needs of the entire population. We hold regional populations constant, so manufacturing
labor forces are determined by regional population minus agricultural labor force. Next, since we
still allow the labor market in the other region (where people did not initially change sectors) to
be in equilibrium, we calculate prices in that region using the average product of manufacturing
and agriculture like in earlier steps. Prices in the region where the labor market is in
disequilibrium are then determined by prices in the other region adjusted for the iceberg trade
cost. Wages in agriculture and manufacturing are finally calculated for that region. If
manufacturing consumption for manufacturing workers rises above that is agriculture and in the
other region, then the equilibrium fails the stability check. The stability test is passed if
manufacturing consumption of manufacturing wages in the interior is below all other workers
and that of food workers in the interior is above coastal workers. There are no type 2 stability

situations which do not meet one of these two criteria.
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Table 1: Summary Statistics and Baseline Regression Results

Summary Statistics

Baseline Regression Results

mean, (sd) min, max w/o country FEs  w/ country FEs
(1) (2) (3) (4)
In(light/ land ratio) 3.501 1.115
(3.176) 15.783
Base Covariates
ruggedness 2766.746 0 -8.70e-06*** -1.82e-05%**
(4838.898) 95814.383 (1.99¢-06) (1.68e-06)
malaria index 1.912 0 -0.0348*** -0.0486***
(5.279) 38.081 (0.00260) (0.00243)
Agricultural Covariates
tropical moist forest 0.116 0 -0.0406 -0.203%**
(0.321) 1 (0.0756) (0.0661)
tropical dry forest 0.022 0 0.936*** 0.228%***
(0.147) 1 (0.0943) (0.0804)
temperate broadleaf 0.104 0 1.771%%* 1.294%**
(0.305) 1 (0.0707) (0.0648)
temperate conifer 0.033 0 0.769*** 0.159**
(0.178) 1 (0.0822) (0.0776)
boreal forest 0.167 0 -0.442%** -1.246%**
(0.373) 1 (0.0769) (0.0812)
tropical grassland 0.12 0 -0.862%** -0.0548
(0.325) 1 (0.0561) (0.0487)
temperate grassland 0.077 0 0.710%*** 0.922%**
(0.267) 1 (0.0648) (0.0568)
montane grassland 0.033 0 0.631*** 0.762%***
(0.179) 1 (0.0806) (0.0721)
tundra 0.124 0 -0.874%** -1.438%**
(0.329) 1 (0.0863) (0.0895)
Mediterranean forest 0.024 0 0.837*** 1.373%***
(0.153) 1 (0.0926) (0.0877)
mangroves 0.004 0 0.418** -0.0312
(0.064) 1 (0.180) (0.154)
desert 0.176 0 (reference) (reference)
(0.381) 1
temperature 9.970 -22.286 0.174%** 0.124%**
(13.788) 30.366 (0.00337) (0.00387)
precipitation 60.678 0.387 -0.00896*** -0.0112%**
(59.29) 921.909 (0.000446) (0.000468)
growing days 139.306 0 0.00985*+* 0.00856***
(99.067) 366 (0.000284) (0.000283)
land suitability 0.273 0 2.6907%** 2.184%**
(0.319) 1 (0.0552) (0.0528)

Continued on next page



Table 1 — Continued from previous page

Summary Statistics

Baseline Regression Results

mean, (sd) min, max w/o country FEs  w/ country FEs
(1) (2) (3) (4)
abs(latitude) 38.34 0 0.114%% 0.0371%%*
(20.923) 75 (0.00251) (0.00336)
elevation 601.505 -187.341 0.000501*** 8.02e-05%**
(788.097) 6169.01 (2.41e-05) (2.58¢-05)
Trade Covariates
1 (coast) 0.098 0 0.421%%* 0.414%**
(0.297) 1 (0.0396) (0.0323)
distance to coast 485.226 0 -0.000665*** -0.000677***
(480.554) 2273.801 (2.81¢-05) (3.24e-05)
1 (harbor<25km) 0.027 0 1.625%** 1.414%%*
(0.163) 1 (0.0677) (0.0575)
1 (river<25km) 0.027 0 0.764%** 0.690%**
(0.163) 1 (0.0662) (0.0601)
1 (big lake<25km) 0.127 0 0.317%** 0.179%**
(0.333) 1 (0.0272) (0.0244)
Observations 243,985 243,985 243,985 243,985
Non-zero observations 98,941 98,941 98,941 98,941
R-squared 0.459 0.568

Notes: Clustered standard errors in parentheses in columns (3) and (4).

K p<0.01, ** p<0.05, * p<0.1.



Table 2: Summary of overall Rsq’s

(1)

No country FEs

(2)

With country FEs

1) All variables, both margins (N = 243,985)
2) All variables, extensive margin (LPM)
3) All variables, intensive margin (OLS)

4) Country fixed effects, extensive margin

6) Base variables (malaria, ruggedness)

(1)

(2)

(3)

(4)

(5) Country fixed effects, intensive margin

(6)

(7) Agriculture variables, both margins (plus base)
(8)

8) Trade variables, both margins (plus base)

0.459
0.385
0.262

0.020
0.437
0.072

0.568
0.475
0.359
0.269
0.219
0.350
0.554
0.367




Table 3: Cell counts in 4 way splits: Education vs. Urbanization

No country FEs With country FEs
(ed cutoff = 3.6; urban cutoff = 0.44) (ed cutoff = 3; urban cutoff = 0.38)

Whole Sample Whole Sample

high urban low urban high urban low urban
high educ 119,824 7,399 high educ 123,908 3,879
low educ 1,681 99,713 low educ 6,214 94,616
Lit Sample Lit Sample

high urban low urban high urban low urban
high educ 43,444 5,840 high educ 46,614 3,196
low educ 961 44,360 low educ 3,790 41,005




Table 4: Various splits; overall explanatory power
Rsq’s. Regression on all covariates, split indicator(s), split indicator(s)*all covariates

(1) (2)

Split indicator(s) No country FEs With country FEs
Low-high education 0.492 0.581
Low-high urbanization 0.483 0.579
New-old world 0.488 0.584
Low-high education, new-old world 0.516 0.596

Low-high urbanization, new-old world 0.502 0.593




Table 5: Explanatory differentials of trade and agriculture
for high /low education & urbanization countries

Rsq’s, Education Rsq’s, Urbanization
No FEs With FEs No FEs With FEs
High Low High Low High Low High Low
Both margins
Base 0.008 0.052 0.379 0.291 0.008 0.058 0.352 0.346
Agriculture plus base 0.546 0.326 0.638 0.445 0.529 0.356 0.611 0.489
Trade plus base 0.070 0.218 0.418 0.399 0.073 0.212 0.389 0.438
Differentials, for both margins
Agriculture minus base  0.538 0.274 0.259 0.154 0.521 0.298 0.259 0.143
Trade minus base 0.062 0.166 0.039 0.108 0.065 0.154 0.037 0.092

Summary, high|(agric-base)-(trade-base)] - low|(agric-base)-(trade-base)]

No FEs With FEs No FEs With FEs
0.368 0.174 0.312 0.171

Extensive margin LPM

Base 0.006 0.046 0.281 0.248 0.006 0.047 0.264 0.285

Agriculture plus base 0.489 0.268 0.555 0.371 0.475 0.280 0.533 0.401

Trade plus base 0.058 0.171 0.328 0.324 0.065 0.163 0.306 0.350
Intensive margin OLS

Base 0.011 0.050 0.253 0.171 0.008 0.063 0.240 0.214

Agriculture plus base 0.251 0.184 0.366 0.255 0.239 0.213 0.344 0.298

Trade plus base 0.082 0.163 0.281 0.262 0.078 0.166 0.271 0.297

New World - Old World High vs. Low Splits
Summary, high[(agric-base)-(trade-base)] - low[(agric-base)-(trade-base)]

New World 0Old World New World 0Old World
No FEs With FEs No FEs With FEs No FEs With FEs No FEs With FEs
0.329 0.279 0.377 0.097 0.342 0.237 0.285 0.113

Notes: Education cutoffs are 3.6 (no FEs) and 3 (with FEs), and urbanization cutoffs are 0.44 (no FEs) and 0.38 (with FEs).



Table 6: Differential group marginal effects

Dependent variable: lrad2010land_ csd

Education Urbanization
No FEs With FEs No FEs With FEs
(1) (2) (3) (4)
ruggedness -9.44e-06*** -1.46e-05%** -9.53e-06*** -1.70e-05%**
(2.09¢-06) (1.78¢-06) (1.97¢-06) (1.69¢-06)
malaria index -0.0429%** -0.0443%** -0.0403%** -0.0436%**
(0.00261) (0.00262) (0.00252) (0.00235)
tropical moist forest -0.406%** -0.440%** -0.346%** -0.326%**
(0.0703) (0.0660) (0.0676) (0.0629)
tropical dry forest 0.757%** 0.140* 0.717%%* 0.182%*
(0.0890) (0.0815) (0.0882) (0.0777)
temperate broadleaf 1.253%%* 1.044%%* 1.359%%* 1.184%*#*
(0.0640) (0.0633) (0.0618) (0.0633)
temperate conifer 0.610%** 0.118 0.719%** 0.158**
(0.0703) (0.0722) (0.0697) (0.0731)
boreal forest -0.354%** -1.049%** -0.274%%* -1.061%**
(0.0684) (0.0826) (0.0664) (0.0846)
tropical grassland -0.760%** -0.103** -0.727%%* -0.0583
(0.0500) (0.0483) (0.0479) (0.0457)
temperate grassland 0.464*** 0.671%** 0.538%** 0.776%**
(0.0543) (0.0558) (0.0540) (0.0562)
montane grassland 0.562%** 0.737%** 0.502%** 0.714%**
(0.0756) (0.0757) (0.0730) (0.0721)
tundra -0.548%** -1.086%** -0.4627%** -1.139%**
(0.0745) (0.0891) (0.0723) (0.0922)
Mediterranean forest 0.548%** 1.086%** 0.655%** 1.195%#*
(0.0746) (0.0807) (0.0758) (0.0823)
mangroves -0.930%** -1.042%%* -0.327%* -0.532%%*
(0.180) (0.154) (0.166) (0.149)
temperature 0.139%** 0.113%** 0.135%** 0.117%**
(0.00338) (0.00411) (0.00306) (0.00411)
precipitation -0.00709*** -0.00996*** -0.00704*** -0.0101%**
(0.000370) (0.000437) (0.000356) (0.000436)

Continued on next page



Table 6 — Continued from previous page

Education Urbanization
No FEs With FEs No FEs With FEs
(1) (2) (3) (4)
growing days 0.009071*** 0.008217%** 0.00853%** 0.00810%**
(0.000263) (0.000289) (0.000251) (0.000284)
land suitability 2.348%** 1.955%%* 2.313%** 1.971%%*
(0.0501) (0.0559) (0.0485) (0.0532)
abs(latitude) 0.107%** 0.0380*** 0.101%** 0.0382%***
(0.00265) (0.00310) (0.00235) (0.00313)
elevation 0.000429%** 5.03e-05* 0.000380*** 8.67e-05%**
(2.34e-05) (2.57e-05) (2.14e-05) (2.53e-05)
1 (coast) 11274 1.109%+* 0.861%** 0.946%**
(0.0737) (0.0667) (0.0670) (0.0604)
distance to coast -0.00149%*** -0.00126*** -0.00133*** -0.00119***
(3.65e-05) (4.72¢-05) (3.37¢-05) (4.49¢-05)
1 (harbor<25km) 2.379%** 2.292%%* 2.160%** 2.088***
(0.115) (0.102) (0.104) (0.0901)
1 (river<25km) 1.244%** 1.172%** 1.218%** 1.051*#*
(0.109) (0.101) (0.103) (0.0968)
1 (big lake<25km) 0.454%** 0.377%** 0.501%** 0.314%**
(0.0495) (0.0441) (0.0459) (0.0405)
above cut -3.954%** -74.26%** -3.780%** 24.30%**
(0.142) (0.158) (0.134) (2.468)
Q@ 0.368%** 0.167*** 0.375%** 0.119%**
(0.0209) (0.0258) (0.0191) (0.0237)
~ -0.761%** -0.712%** -0.740%** -0.644%**
(0.0164) (0.0177) (0.0188) (0.0201)
Observations 228,690 228,690 243,661 243,661
R-squared 0.486 0.574 0.474 0.571

Notes: Above cut is an indicator, which equals 1 if average years of education is greater than or equal to 3.6 (column
1) or 3 (column 2), or the fraction of urban population is greater than or equal to 0.44 (column 3) or 0.38 (column 4).
Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table 7: Correlations with the average value of neighbors

as defined by rook or queen contiguity

(1) (2)
Rook Queen
mangroves 0.6336 0.6486
ruggedness 0.7550 0.7611
1 (harbor<25km) 0.8222 0.7843
1 (big lake<25km) 0.8815 0.8585
1 (river<25km) 0.8914 0.8735
1 (coast) 0.9050 0.8772
tropical dry forest 0.9057 0.9001
temperate conifer 0.9201 0.9120
montane grassland 0.9291 0.9235
tropical moist forest 0.9595 0.9586
Mediterranean forest 0.9674 0.9639
temperate grassland 0.9683 0.9635
tropical grassland 0.9721 0.9699
temperate broadleaf 0.9737 0.9699
tundra 0.9753 0.9701
boreal forest 0.9761 0.9709
malaria index 0.9876 0.9799
land suitability 0.9892 0.9818
elevation 0.9923 0.9895
precipitation 0.9943 0.9903
growing days 0.9989 0.9985
temperature 0.9994 0.9988

abs(latitude) 1 1

distance to coast 1 1




Figure 1. Global nighttime

lights in 2010
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Figure 2. Distribution of lights in lit areas
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Figure 3. Worldwide predicted lights

(a) Predicted lights (no country FEs)
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(b) Predicted lights (with country FEs)
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Figure 4. Model solution method



Interior Population

Figure 5. Equilibria with low agricultural productivity
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Figure 6. Equilibria with high agricultural productivity
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Figure 7. Timing of transport cost changes versus changes in effective technology
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Figure 8. Cumulative distribution of education and urbanization in 1950
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(c) Urbanization: Total S5R (no country FESs)
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Figure 10. Changes from having or being given high education coefficients
(over low education ones)
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Table Al: Conley Standard errors, kernel cutoff = 40 km

Dependent variable: lrad2010land_ csd

(1)

ruggedness

malaria index

tropical moist forest

tropical dry forest

temperate broadleaf

temperate conifer

boreal forest

tropical grassland

temperate grassland

montane grassland

tundra

Mediterranean forest

mangroves

temperature

precipitation

-8.70e-06++*
(2.19¢-06)
-.0348355% %+
(.0027154)
-.040639
(.0800286)
9364165%**
(.0994472)
1.771348%%*
(.0759276)
T689181%**
(.0899183)
- 441965+
(.0858767)
_.8617399%**
(.0591735)
71039235
(.0703476)
6306202
(.0867233)
- 8745064+
(.0970188)
8365996
(.0981427)
A176001%*
(.1943355)
1737878%*
(.00393)
-.0089633***
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1)
(.000473)
growing days .0098492%**
(.0003026)
land suitability 2.689555%**
(.059731)
abs(latitude) 1135415%+%*
(.0028149)
elevation 000501 1%***
(.0000267)
1 (coast) A4216031%**
(.0444975)
distance to coast -.0006645%**
(.0000306)
1 (harbor<25km) 1.6253 7%+
(.0786706)
1 (river<25km) 7637808*+*
(.0769342)
I (big lake<25km) 316677+
(.0324868)

Notes: *** p<0.01, ** p<0.05, * p<0.1



Table A2: Intensive and extensive margins

OLS LPM OLS LPM
No FEs No FEs With FEs With FEs
(1) (2) (3) (4)
ruggedness -2.53e-05*** 9.58e-07*** -3.31e-05*** -6.31e-07**
(2.14¢-06) (3.05¢-07) (1.94¢-06) (2.70e-07)
malaria index -0.0377F** -0.00499*** -0.0509%** -0.00640***
(0.00320) (0.000451) (0.00446) (0.000440)
tropical moist forest -0.430%** 0.0363*** -0.196%** -0.00467
(0.0571) (0.0109) (0.0551) (0.00988)
tropical dry forest -0.117* 0.172%%* -0.124%* 0.0581***
(0.0613) (0.0126) (0.0625) (0.0112)
temperate broadleaf 0.735%** 0.174%** 0.561%** 0.154%**
(0.0546) (0.00987) (0.0519) (0.00921)
temperate conifer 0.384%** 0.0985*** 0.110%* 0.0457***
(0.0631) (0.0120) (0.0610) (0.0117)
boreal forest -0.242%** -0.0777F** -0.370*** -0.176%**
(0.0681) (0.0118) (0.0689) (0.0121)
tropical grassland -0.917%** -0.0948*** -0.273%** 0.0149**
(0.0580) (0.00878) (0.0586) (0.00757)
temperate grassland -0.0446 0.148%** 0.0762 0.183%**
(0.0524) (0.00984) (0.0506) (0.00883)
montane grassland 0.0293 0.0776%** 0.396*** 0.0835%**
(0.0683) (0.0133) (0.0669) (0.0122)
tundra -0.261%** -0.177%F* -0.532%** -0.230%**
(0.0972) (0.0131) (0.106) (0.0134)
Mediterranean forest 0.247%** 0.0725%** 0.385%** 0.214%**
(0.0634) (0.0123) (0.0685) (0.0129)
mangroves -0.144 0.0676*** -0.0447 -0.0162
(0.122) (0.0230) (0.113) (0.0200)
temperature 0.0828*** 0.0262%** 0.0160*** 0.0236***
(0.00346) (0.000508) (0.00452) (0.000601)
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OLS LPM OLS LPM
No FEs No FEs With FEs With FEs
(1) (2) (3) (4)
precipitation -0.00327*** -0.00116*** -0.00519%*** -0.00157***
(0.000369) (6.50e-05) (0.000419) (7.20e-05)
growing days 0.00418%** 0.00132%** 0.00500%** 0.00110%**
(0.000217) (3.92-05) (0.000231) (4.08¢-05)
land suitability 0.697*** 0.417%%* 0.736%** 0.348%**
(0.0402) (0.00784) (0.0414) (0.00780)
abs(latitude) 0.0479%*** 0.0175%** 0.00240 0.00935%**
(0.00212) (0.000373) (0.00327) (0.000502)
elevation -1.36e-05 8.78e-05*** -0.000310*** 4.67e-05%**
(2.54e-05) (3.84e-06) (2.75e-05) (4.08e-06)
1 (coast) 0.916%** 0.0102* 0.898%** 0.0107**
(0.0352) (0.00528) (0.0322) (0.00452)
distance to coast -0.000389%*** -9.85e-05%*** -0.000309*** -9.88e-05%***
(2.92¢-05) (4.56-06) (3.31e-05) (5.21e-06)
1 (harbor<25km) 0.492%** 0.152%%* 0.568%** 0.138%**
(0.0449) (0.00824) (0.0403) (0.00752)
1 (river<25km) 0.320%** 0.118%%*%* 0.306%*** 0.106%***
(0.0548) (0.00895) (0.0485) (0.00843)
1 (big lake<25km) 0,246 0.0443%5 0,182+ 0.0259%#+
(0.0273) (0.00393) (0.0257) (0.00361)
Observations 98,941 243,985 98,940 243,974
R-squared 0.262 0.385 0.359 0.475

Notes: Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table A3: List of high/ low education vs. high/ low urbanization countries

Country name

Education level

Urbanization level

High/ low, educ

High/ low, urban

No FEs With FEs No FEs With FEs
New Zealand 9.19 0.725 high high high high
Switzerland 8.84 0.444 high high high high
United States of America 8.4 0.642 high high high high
Slovakia 8.13 0.300 high high low low
Czech Republic 8.10 0.542 high high high high
Australia 8.04 0.770 high high high high
Canada 7.60 0.609 high high high high
Norway 7.40 0.505 high high high high
Israel 7.30 0.710 high high high high
Belize 7.23 0.553 high high high high
Armenia 7.22 0.403 high high low high
Hungary 7.13 0.530 high high high high
Germany 6.80 0.681 high high high high
Belgium 6.75 0.915 high high high high
Sweden 6.75 0.657 high high high high
Japan 6.73 0.534 high high high high
United Kingdom 6.39 0.790 high high high high
Ireland 6.23 0.401 high high low high
Estonia 6.13 0.497 high high high high
Netherlands 6.08 0.561 high high high high
Austria 5.97 0.636 high high high high
Slovenia 5.86 0.199 high high low low
Iceland 5.70 0.728 high high high high
Croatia 5.66 0.223 high high low low
Denmark 5.51 0.680 high high high high
Poland 5.40 0.383 high high low high
Trinidad and Tobago 5.00 0.214 high high low low
Argentina 4.85 0.653 high high high high
Chile 4.81 0.584 high high high high
Republic of Korea 4.50 0.214 high high low low
Romania 4.38 0.256 high high low low
Ukraine 4.37 0.355 high high low low
China, Hong Kong SAR 4.36 0.852 high high high high
Uruguay 4.34 0.779 high high high high
France 4.33 0.552 high high high high
Guyana 4.24 0.280 high high low low
Italy 4.21 0.541 high high high high
Greece 4.14 0.522 high high high high
Tajikistan 4.13 0.294 high high low low
Kyrgyzstan 4.04 0.265 high high low low
South Africa 4.03 0.422 high high low high
Finland 3.86 0.430 high high low high
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Country name Education level ~ Urbanization level High/ low, educ High,/ low, urban
No FEs With FEs No FEs With FEs

Latvia 3.84 0.464 high high high high
Russian Federation 3.83 0.441 high high high high
Spain 3.83 0.519 high high high high
Bulgaria 3.82 0.276 high high low low
Panama 3.76 0.358 high high low low
Lithuania 3.71 0.288 high high low low
Fiji 3.62 0.244 high high low low
Jamaica 3.59 0.241 low high low low
Cyprus 3.56 0.284 low high low low
Costa Rica 3.55 0.335 low high low low
Cuba 3.49 0.565 low high high high
Sri Lanka 3.40 0.153 low high low low
Luxembourg 3.39 0.672 low high high high
Republic of Moldova 3.28 0.185 low high low low
Taiwan 3.03 . low high high high
Réunion 2.85 0.235 low low low low
Peru 2.83 0.410 low low low high
Singapore 2.71 0.994 low low high high
Paraguay 2.69 0.346 low low low low
Albania 2.60 0.205 low low low low
Kazakhstan 2.59 0.364 low low low low
Ecuador 2.55 0.283 low low low low
Dominican Republic 2.52 0.237 low low low low
Mauritius 2.51 0.293 low low low low
Viet Nam 2.47 0.116 low low low low
Lesotho 2.47 0.018 low low low low
Namibia 2.40 0.134 low low low low
Colombia 2.33 0.327 low low low low
Bolivia (Plurinational 2.32 0.338 low low low low
State of)

Saudi Arabia 2.31 0.213 low low low low
Philippines 2.21 0.271 low low low low
Mexico 2.19 0.427 low low low high
Malaysia 2.08 0.204 low low low low
Brazil 2.08 0.362 low low low low
Thailand 2.04 0.165 low low low low
Brunei Darussalam 2.02 0.268 low low low low
Portugal 1.90 0.312 low low low low
Zambia 1.77 0.115 low low low low
Senegal 1.76 0.172 low low low low
Honduras 1.64 0.176 low low low low

Venezuela (Bolivarian

Republic of) 1.63 0.473 low low high high
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Country name Education level ~ Urbanization level High/ low, educ High,/ low, urban
No FEs With FEs No FEs With FEs
Qatar 1.63 0.805 low low high high
Mongolia 1.61 0.200 low low low low
Zimbabwe 1.58 0.106 low low low low
China 1.58 0.118 low low low low
Nicaragua 1.55 0.352 low low low low
El Salvador 1.53 0.365 low low low low
Kuwait 1.48 0.615 low low high high
Botswana 1.38 0.027 low low low low
Jordan 1.33 0.370 low low low low
Guatemala 1.31 0.251 low low low low
Mauritania 1.27 0.031 low low low low
Lao People’s Democratic 1.25 0.072 low low low low
Republic
Swaziland 1.23 0.020 low low low low
United Republic of 1.21 0.035 low low low low
Tanzania
Kenya 1.16 0.056 low low low low
Myanmar 1.15 0.162 low low low low
Turkey 1.11 0.248 low low low low
Indonesia 1.09 0.124 low low low low
Bahrain 1.00 0.644 low low high high
Pakistan 0.99 0.175 low low low low
India 0.99 0.170 low low low low
Malawi 0.96 0.035 low low low low
Bangladesh 0.93 0.043 low low low low
Uganda 0.89 0.028 low low low low
Algeria 0.85 0.222 low low low low
Syrian Arab Republic 0.85 0.327 low low low low
Cote d’Ivoire 0.84 0.100 low low low low
United Arab Emirates 0.79 0.545 low low high high
Congo 0.79 0.249 low low low low
Cameroon 0.70 0.093 low low low low
Ghana 0.68 0.154 low low low low
Tunisia 0.65 0.323 low low low low
Haiti 0.59 0.122 low low low low
Democratic Republic of 0.58 0.191 low low low low
the Congo
Liberia 0.57 0.130 low low low low
Iran (Islamic Republic of) 0.54 0.275 low low low low
Egypt 0.52 0.319 low low low low
Papua New Guinea 0.51 0.017 low low low low
Mozambique 0.49 0.035 low low low low
Gabon 0.47 0.114 low low low low
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Country name Education level ~ Urbanization level High/ low, educ High,/ low, urban
No FEs With FEs No FEs With FEs
Libya 0.44 0.195 low low low low
Benin 0.44 0.050 low low low low
Cambodia 0.42 0.102 low low low low
Burundi 0.42 0.017 low low low low
Sierra Leone 0.41 0.126 low low low low
Gambia 0.40 0.103 low low low low
Central African Republic 0.39 0.144 low low low low
Togo 0.34 0.044 low low low low
Rwanda 0.32 0.021 low low low low
Sudan 0.32 0.068 low low low low
Niger 0.32 0.049 low low low low
Morocco 0.28 0.262 low low low low
Afghanistan 0.27 0.058 low low low low
Iraq 0.24 0.351 low low low low
Mali 0.15 0.085 low low low low
Nepal 0.11 0.027 low low low low
Yemen 0.02 0.058 low low low low
Gibraltar . 1.000 . . high high
Monaco . 1.000 . . high high
French Guiana . 0.537 . . high high
Isle of Man . 0.529 . . high high
Bahamas . 0.521 . . high high
Falkland Islands ) )
(Malvinas) 0.510 . . high high
Greenland . 0.490 . . high high
Suriname . 0.469 . . high high
Azerbaijan . 0.457 . . high high
Turkmenistan . 0.450 . . high high
Puerto Rico . 0.406 . . low high
Djibouti . 0.398 . . low high
Andorra . 0.388 . . low high
Georgia . 0.369 . . low low
Guadeloupe . 0.358 . . low low
Lebanon . 0.320 . . low low
Dem. People’s Republic 0.310 . . low low
of Korea
Uzbekistan . 0.289 . . low low
Belarus . 0.262 . . low low
New Caledonia . 0.246 . . low low
Montserrat . 0.158 . . low low
Equatorial Guinea . 0.155 . . low low
Cabo Verde . 0.142 . . low low
Bosnia and Herzegovina . 0.137 . . low low
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Country name Education level ~ Urbanization level High/ low, educ High,/ low, urban
No FEs With FEs No FEs With FEs
Sao Tome and Principe . 0.135 . . low low
Samoa, . 0.129 . . low low
Somalia, . 0.127 . . low low
Guinea-Bissau . 0.100 . . low low
Timor-Leste . 0.099 . . low low
Vanuatu . 0.088 . . low low
Oman . 0.086 . . low low
Nigeria . 0.078 . . low low
Madagascar . 0.078 . . low low
Angola . 0.076 . . low low
Eritrea . 0.071 . . low low
Guinea . 0.067 . . low low
Comoros . 0.066 . . low low
Ethiopia . 0.046 . . low low
Chad . 0.045 . . low low
Burkina Faso . 0.038 . . low low
Solomon Islands . 0.038 . . low low
Bhutan . 0.021 . . low low

Notes: Education cutoffs are 3.6 (no FEs) and 3 (with FEs), and urbanization cutoffs are 0.44 (no FEs) and 0.38
(with FEs).



Table A4: High education differentials

Dependent variable: lrad2010land_ csd

(1) (2) (3) (4)
Variable Interaction Variable Interaction
constant -2.790%** -1.371
(0.330) (395.7)
ruggedness -1.39e-05%*** 4.50e-06 -1.69e-05*** 5.55e-06
(3.10e-06) (4.20e-06) (2.79¢-06) (3.62¢-06)
malaria index -0.0419%** 0.00893 -0.0274%** -0.0610%**
(0.00282) (0.0127) (0.00280) (0.00875)
tropical moist forest -0.0213 -0.947%** -0.0737 0.870%**
(0.0934) (0.250) (0.0812) (0.246)
tropical dry forest 1.037%** 0.758 0.350%** 0.341
(0.102) (0.503) (0.0922) (0.345)
temperate broadleaf 1.595%#* -0.0942 0.961%** 0.301**
(0.0922) (0.147) (0.0913) (0.136)
temperate conifer 0.610%** 0.0487 0.316%** -0.131
(0.119) (0.171) (0.118) (0.161)
boreal forest -0.416%** -0.114 -0.0320 -0.964%**
(0.142) (0.185) (0.136) (0.174)
tropical grassland -0.481%** -0.797%** -0.0120 -0.356%**
(0.0729) (0.124) (0.0669) (0.107)
temperate grassland 0.267*** 0.199 0.363%** 0.471%**
(0.0895) (0.130) (0.0878) (0.125)
montane grassland 0.745%** -0.0139 0.297%** 1.248%%*
(0.110) (0.183) (0.101) (0.169)
tundra -0.509%** -0.685%**
(0.128) (0.115)
Mediterranean forest 0.886%** -0.232 1.915%%* -1.034%**
(0.109) (0.169) (0.127) (0.164)
mangroves -0.684%** 1.261* -0.733%** 0.703
(0.193) (0.711) (0.178) (0.467)
temperature 0.154%** 0.0148* 0.123%** -0.0132
(0.00631) (0.00781) (0.00794) (0.00911)
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(1) (2) (3) (4)
Variable Interaction Variable Interaction
precipitation -0.00823*** 0.00185%* -0.00986%*** 0.00125
(0.000563) (0.000940) (0.000651) (0.000851)
growing days 0.00919%** 0.00288*** 0.00708*** 0.00142**
(0.000395) (0.000591) (0.000413) (0.000563)
land suitability 2.040%** 1.383%#* 2.106%** -0.123
(0.0735) (0.111) (0.07883) (0.111)
abs(latitude) 0.121%%* 0.00698 0.0908%** -0.0887***
(0.00410) (0.00559) (0.00573) (0.00697)
elevation 0.000444%** 6.30e-05 0.000233%** -0.000615%**
(3.92e-05) (5.69e-05) (4.11e-05) (5.82e-05)
1 (coast) 1.237*%* -1.041%%* 1.291%** -1.225%%*
(0.0780) (0.0897) (0.0732) (0.0809)
distance to coast -0.00156%** 0.00182%** -0.00145%** 0.00155%**
(3.96e-05) (5.87e-05) (4.83e-05) (6.61e-05)
1 (harbor<25km) 1.697%** 0.0416 1.687%** -0.304**
(0.116) (0.145) (0.108) (0.128)
1 (river<25km) 1.203%*#* -0.900%*** 1.094%** -0.639%***
(0.112) (0.132) (0.108) (0.125)
1 (big lake<25km) 0.375%4* -0.0135 0.425%#* -0.341%**
(0.0519) (0.0603) (0.0484) (0.0557)
Country FEs No Yes
Observations 228,690 228,690
R-squared 0.492 0.581

Notes: Columns (1) and (3) report the coefficient on the variables listed, and columns (2) and (4) report the coefficient
on the variable’s interaction with the high-education dummy. High education equals 1 if average years of education is
greater than or equal to 3.6 (no country FEs version) or 3 (with country FEs version). Clustered standard errors in

parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table A5: High urbanization differentials

Dependent variable: lrad2010land_ csd

(1) (2) (3) (4)
Variable Interaction Variable Interaction
constant -1.206*** -1.756
(0.307)
ruggedness -1.69e-05*** 1.12e-05%** -1.87e-05*** 9.10e-07
(2.82¢-06) (3.94¢-06) (2.53¢-06) (3.37¢-06)
malaria index -0.0393*** -0.0262%** -0.0271%%* -0.122%**
(0.00271) (0.00982) (0.00251) (0.0100)
tropical moist forest 0.282%** -1.860%** 0.272%** -2.090%**
(0.0882) (0.193) (0.0778) (0.195)
tropical dry forest 1,181+ -0.865%** 0.535%** -0.640%**
(0.103) (0.259) (0.0931) (0.192)
temperate broadleaf 1.814%#* -0.506%** 1.178%%* 0.111
(0.0848) (0.144) (0.0853) (0.131)
temperate conifer 1.155%** -0.687*** 0.671%** -0.58T7***
(0.112) (0.167) (0.112) (0.157)
boreal forest 0.719%*** -1.409%** 0.121 -1.053%**
(0.192) (0.226) (0.135) (0.173)
tropical grassland -0.254%%* -1.385%** 0.163%** -0.547%**
(0.0679) (0.121) (0.0606) (0.104)
temperate grassland 0.705%** -0.440%** 0.623%** 0.158
(0.0863) (0.129) (0.0821) (0.122)
montane grassland 0.885%** -0.505%** 0.515%** 0.877%**
(0.0940) (0.195) (0.0917) (0.158)
tundra -2.955%H* 2.348%** -0.698%**
(0.519) (0.534) (0.115)
Mediterranean forest 1.234%H% -0.801%** 2.014%** -1.224%%*
(0.105) (0.170) (0.124) (0.162)
mangroves 0.205 -1.2471%%* -0.0140 -1.302%**
(0.198) (0.479) (0.178) (0.359)
temperature 0.164*** -0.0163** 0.138%** -0.0328%**
(0.00583) (0.00731) (0.00761) (0.00881)
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(1) (2) (3) (4)
Variable Interaction Variable Interaction
precipitation -0.00753*** 0.00109 -0.00925%#* -1.17e-05
(0.000539) (0.000881) (0.000625) (0.000824)
growing days 0.00807*** 0.00412%** 0.00770%** 0.000552
(0.000371) (0.000572) (0.000384) (0.000539)
land suitability 1.952%#* 1.580*** 1.853%+* 0.415%**
(0.0656) (0.110) (0.0720) (0.106)
abs(latitude) 0.123%%* -0.0139%** 0.103%** -0.104%**
(0.00355) (0.00517) (0.00551) (0.00675)
elevation 0.000454%** -4.84e-05 0.000220%** -0.000361***
(3.55e-05) (5.30e-05) (3.93e-05) (5.49¢-05)
1 (coast) 0.974%** -0.765%** 1.127%%* -0.951%**
(0.0710) (0.0832) (0.0682) (0.0760)
distance to coast -0.00138*** 0.00165%** -0.00136*** 0.00128***
(3.61e-05) (5.70e-05) (4.65e-05) (6.46e-05)
1 (harbor<25km) 1.522%** 0.226* 1.462%+* -0.0359
(0.106) (0.136) (0.0967) (0.119)
1 (river<25km) 1.173%%* -0.787*** 0.915%*%* -0.390%***
(0.106) (0.127) (0.107) (0.125)
1 (big lake<25km) 0.375%4* -0.0479 0.359%** -0.238%***
(0.0469) (0.0560) (0.0458) (0.0535)
Country FEs No Yes
Observations 243,661 243,661
R-squared 0.483 0.579

Notes: Columns (1) and (3) report the coefficient on the variables listed, and columns (2) and (4) report the coefficient
on the variable’s interaction with the high-urbanization dummy. High urbanization equals 1 if the fraction of urban
population is greater than or equal to 0.44 (no country FEs version) or 0.38 (with country FEs version). Clustered

standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



Table A6: Spatial autoregressive model results

Full sample Lit sample
Rook Queen Rook Queen
(1) (2) (3) (4)
Neighbors’ lights (rook), avg 0.990%** 0.658***
(0.00135) (0.00260)
Neighbors’ lights (queen), avg 1.001%** 0.642%+*
(0.00151) (0.00276)
ruggedness -8.21e-06*** -9.97e-06*** -1.92e-05%*** -2.12e-05%***
(5.88¢-07) (6.78¢-07) (1.08¢-06) (1.16e-06)
malaria index -0.00144*** -0.00143** -0.00612%** -0.00687***
(0.000445) (0.000563) (0.00145) (0.00153)
tropical moist forest -0.0478%** -0.0570%** -0.202%** -0.215%**
(0.0137) (0.0166) (0.0240) (0.0262)
tropical dry forest -0.00282 -0.0157 -0.182%** -0.193%**
(0.0173) (0.0211) (0.0249) (0.0273)
temperate broadleaf -0.0226* -0.0536%** 0.0338 0.0198
(0.0125) (0.0155) (0.0233) (0.0256)
temperate conifer -0.00362 -0.0226 0.0534* 0.0532*
(0.0170) (0.0209) (0.0284) (0.0313)
boreal forest -0.0414%*** -0.0402%* 0.0123 0.0266
(0.0142) (0.0178) (0.0307) (0.0339)
tropical grassland -0.0394*** -0.0394*** -0.0463* -0.0560**
(0.00927) (0.0115) (0.0249) (0.0270)
temperate grassland -0.00187 -0.00811 -0.184%** -0.208%**
(0.0112) (0.0141) (0.0226) (0.0249)
montane grassland 0.0654*+* 0.0621*+* -0.0228 -0.0227
(0.0189) (0.0230) (0.0338) (0.0370)
tundra -0.0339** -0.0250 0.270%** 0.338***
(0.0158) (0.0197) (0.0462) (0.0514)
Mediterranean forest 0.00543 -0.000963 0.0434* 0.0377
(0.0156) (0.0193) (0.0256) (0.0280)

Continued on next page



Table A6 — Continued from previous page

Full sample Lit sample
Rook Queen Rook Queen
(1) (2) (3) (4)
mangroves -0.212%** -0.227*% -0.0793 -0.0903
(0.0653) (0.0729) (0.0669) (0.0718)
temperature -0.00406*** -0.00747*** -0.0160%** -0.0195%**
(0.000601) (0.000751) (0.00154) (0.00170)
precipitation -0.000412%** -0.000469*** -0.000804*** -0.000933***
(7.55¢-05) (9.316-05) (0.000154) (0.000169)
growing days 0.000158%** 6.45e-05 0.000264*** 0.000188**
(4.85¢-05) (5.99¢-05) (8.69¢-05) (9.51e-05)
land suitability 0.0601*** 0.0428*** -0.152%%* -0.177%F*
(0.0103) (0.0128) (0.0170) (0.0187)
abs(latitude) -0.00292*** -0.00550*** -0.0114%** -0.0138%**
(0.000433) (0.000539) (0.000943) (0.00104)
elevation -3.83e-05%*** -5.37e-05*** -0.000126*** -0.000146***
(4.99¢-06) (6.14¢-06) (1.15¢-05) (1.26¢-05)
1 (coast) 0.0745%** 0.106%** 0.537%** 0.595%**
(0.00991) (0.0118) (0.0171) (0.0186)
distance to coast 1.90e-05%** 3.50e-05%** 3.21e-05%* 4.89e-05***
(4.67¢-06) (6.05¢-06) (1.276-05) (1.41e-05)
1 (harbor<25km) 0.361%** 0.497%** 0.233%** 0.295%**
(0.0217) (0.0256) (0.0223) (0.0245)
1 (river<25km) 0.155%** 0.222%** 0.173%** 0.229%**
(0.0157) (0.0197) (0.0228) (0.0251)
1 (big lake<25km) 0.0261%+* 0.0376%+* 0.0871 %+ 0.0986%+*
(0.00649) (0.00794) (0.0129) (0.0142)
Observations 243,970 243,973 98,934 98,935
R-squared 0.823 0.803 0.631 0.600

Notes: Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1



