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Abstract

How can parameter estimates be biased in a dynamic stochastic general equilibrium model

that omits nonlinearity in the economy? To answer this question, we simulate data from a fully

nonlinear New Keynesian model with the zero lower bound constraint and estimate a linearized

version of the model. Monte Carlo experiments show that significant biases are detected in

the estimates of monetary policy parameters and the steady-state inflation and real interest

rates. These biases arise mainly from neglecting the zero lower bound constraint rather than

linearizing the equilibrium conditions. The estimated impulse responses to a monetary policy

shock are significantly different from the true responses. However, regarding the responses to

shocks to the discount factor and productivity, the biased parameters contribute to making the

differences small.
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1 Introduction

Following the development of Bayesian estimation and evaluation techniques, many economists have

estimated dynamic stochastic general equilibrium (DSGE) models using macroeconomic time series.

In particular, estimated New Keynesian models, which feature nominal rigidities and monetary

policy rules, have been extensively used by policy institutions such as central banks. Most of

the estimated DSGE models are linearized around a steady state because a linear state-space

representation along with the assumption of normality of exogenous shocks enables us to efficiently

evaluate likelihood using the Kalman filter. However, Fernández-Villaverde and Rubio-Ramı́rez

(2005) and Fernández-Villaverde, Rubio-Ramı́rez, and Santos (2006) demonstrate that parameter

estimates, the level of likelihood, and the moments based on a linearized model can be significantly

different from those based on its nonlinear counterpart. Moreover, in the context of New Keynesian

models, Basu and Bundick (2012), Braun, Körber, and Waki (2012), Fernández-Villaverde, Gordon,

Guerrón-Quintana, and Rubio-Ramı́rez (2015), Gavin, Keen, Richter, and Throckmorton (2015),

Gust, López-Salido, and Smith (2012), Nakata (2013a, 2013b), and Ngo (2014) emphasize the

importance of considering nonlinearity in assessing the quantitative implications of the models

when the zero lower bound (ZLB) constraint on the nominal interest rate is taken into account.

Despite the existence of these studies, attempts to estimated DSGE models in a fully nonlinear

and stochastic setting are still limited. A few exceptions are Fernández-Villaverde and Rubio-

Ramı́rez (2005), who estimate a neoclassical growth model in a nonlinear form,1 and Gust, López-

Salido, and Smith (2012), who estimate a fully nonlinear New Keynesian DSGE model in which

the ZLB constraint is occasionally binding. The reason for scarcity of such attempts is probably

due to high computational costs for the estimation of nonlinear models. To evaluate the likelihood

function in a nonlinear setting, one needs to rely on a nonlinear solution method and a particle

filter, both of which require iterative procedures, and their computational expense grows rapidly

with an increase in the dimensionality of problems.

In this paper, we examine how and to what extent the parameter estimates can be biased in

an estimated DSGE model when nonlinearity existing in the economy is omitted in the estimation

process. If significant biases were detected, it would urge researchers to be equipped with nonlinear

estimation techniques at any computational costs. Otherwise, it would at least assure practitioners

that the common practice of estimating linearized models could lead to reliable estimates. To this

1Fernández-Villaverde and Rubio-Ramı́rez (2007) estimate a real business cycle model with investment-specific

technological change, preference shocks, and stochastic volatility, using a second-order perturbation method.
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end, we solve a fully nonlinear New Keynesian model that incorporates the ZLB constraint using

a projection method and simulate artificial time series from the nonlinear model. The parameters

calibrated in this data-generating process (DGP) are regarded as true values. Then, using the

simulated data, a Monte Carlo experiment is conducted, in which a log-linearized version of the

model is estimated without imposing the ZLB. In the estimation, we employ Bayesian methods,

which are now extensively used to estimate DSGE models. We set the prior means equal to the true

parameter values and assess the parameter biases from neglecting the nonlinearity by comparing the

posterior means and credible intervals with the true values. Moreover, we compare the estimated

impulse response functions with the true ones to investigate to what extent the dynamic properties

of the estimated model can differ from those of the true nonlinear model.

The analysis in this paper is an extension of Hirose and Inoue (2015), who conduct a similar ex-

periment using the data simulated from a New Keynesian model in which nonlinearity is considered

only in a monetary policy rule to incorporate the ZLB constraint but the remaining equilibrium

conditions are linearized.2 While Hirose and Inoue (2015) point to parameter bias only result-

ing from omitting the ZLB, the present paper is able to investigate the bias arising from missing

nonlinearities regarding both the ZLB and the other equilibrium conditions.

Our main results are summarized as follows. In the baseline experiment, while the estimates of

the structural parameters related to preferences and nominal rigidities are not biased, significant

biases are detected in the estimates of the monetary policy parameters and the steady-state inflation

and real interest rates. We show that these biases arise for the most part from missing the ZLB

constraint rather than linearizing the equilibrium conditions. With the true parameter values, the

impulse response functions of the linearized model are substantially different from those of the

nonlinear model. Because of the biased parameters, the differences between the estimated and

true responses increase in response to a monetary policy shock. However, we find that the biased

parameters can make the differences small for shocks to the discount factor and productivity. We

also demonstrate that the biases in the parameter estimates increase if the true parameter values in

the DGP are altered so that the frequency of binding at the ZLB and the average duration of ZLB

spells increases. Nevertheless, the increased biases in the parameter estimates do not necessarily

amount to larger differences between the estimated and true impulse responses.

2Hirose and Inoue (2015) simulate the model using the solution algorithm of Erceg and Lindé (2014) and Boden-

stein, Guerrieri, and Gust (2013). In their algorithm, if the model-implied nominal interest rate falls below zero, a

sequence of contractionary monetary policy shocks is added in both the current and anticipated periods so that the

contemporaneous and expected interest rates at the lower bound are zero.
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A technical contribution of this paper is that the DGP used in our experiment has, to the

best of our knowledge, the richest dynamic structure of all the New Keynesian models with the

ZLB constraint solved in a fully nonlinear and stochastic setting. To make our test economy

realistic enough, we incorporate habit persistence in consumption preferences, price indexation of

intermediate-good firms, and monetary policy smoothing into a standard New Keynesian model.3 In

solving the model, we apply the efficient algorithm for the Smolyak-based projection methods using

the unidimensional disjoint sets of grid points developed by Judd, Maliar, Maliar, and Valero (2014)

to alleviate the computational burden associated with the increased number of state variables.

The remainder of the paper proceeds as follows. Section 2 describes the model used in our

analysis and a nonlinear solution method. Section 3 explains our Monte Carlo experiments and

presents our results. Section 4 conducts a robustness analysis with alternative parameter settings.

Section 5 is the conclusion.

2 The Model and Solution Method

This section describes the DGP used in our analysis. The DGP is characterized by a fully nonlinear

New Keynesian DSGE model with the ZLB constraint on the nominal interest rate. The nonlinear

model is solved using a Smolyak algorithm in the context of a projection method.

2.1 The Model

In the model economy, there are households, perfectly competitive final-good firms, monopolistically

competitive intermediate-good firms that face price stickiness, and a central bank. For empirical

validity, the model features habit persistence in consumption preferences, price indexation to recent

past and steady-state inflation, and monetary policy smoothing.

Each household h ∈ [0, 1] consumes final goods Ch,t, supplies labor Lh,t to intermediate-good

firms, and purchases one-period riskless bonds Bh,t so as to maximize the utility function

E0

∞∑
t=0

βt

(
t∏

k=1

dk

)−1 [
(Ch,t − γCt−1)1−σ

1− σ
− Lh,t

]

3While most of the existing studies that solve nonlinear New Keynesian models with the ZLB consider models

with the simplest lag structure and a limited number of shocks, Fernández-Villaverde, Gordon, Guerrón-Quintana,

and Rubio-Ramı́rez (2015) and Maliar and Maliar (2015) solve extended models with monetary policy smoothing

and a variety of structural shocks. However, their models do not incorporate consumption habit or price indexation

of firms.
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subject to the budget constraint

PtCh,t +Bh,t = PtWtLh,t +Rt−1Bh,t−1 + Th,t,

where β ∈ (0, 1) is the subjective discount factor, σ > 0 is the inverse of the intertemporal elasticity

of substitution, γ ∈ [0, 1] is the degree of external habit persistence in consumption preferences, Pt

is the price of final goods, Wt is the real wage, Rt is the gross nominal interest rate, and Th,t is

the sum of a lump-sum public transfer and profits received from firms. Following Eggertsson and

Woodford (2003) and Christiano, Eichenbaum, and Rebelo (2011), a shock to the discount factor

dt affects the weight of the utility in period t + 1 relative to the one in period t. The log of the

discount factor shock follows an AR(1) process:

log dt = ρd log dt−1 + εd,t, (1)

where ρd ∈ [0, 1) is an autoregressive coefficient and εd,t is a normally distributed innovation

with mean zero and standard deviation σd. The first-order conditions for optimal decisions on

consumption, labor supply, and bond-holding are identical among households and therefore become

Λt = (Ct − γCt−1)−σ , (2)

Wt =
1

Λt
, (3)

Λt =
β

dt
EtΛt+1

Rnt
Πt+1

, (4)

where Λt is the marginal utility of consumption and Πt = Pt/Pt−1 denotes gross inflation.

The representative final-good firm produces output Yt under perfect competition by choosing a

combination of intermediate inputs {Yf,t} so as to maximize profit PtYt−
∫ 1

0 Pf,tYf,tdf subject to a

CES production technology Yt =

(∫ 1
0 Y

θ−1
θ

f,t df

) θ
θ−1

, where Pf,t is the price of intermediate good f

and θ > 1 denotes the elasticity of substitution. The first-order condition for profit maximization

yields the final-good firm’s demand for intermediate good f , Yf,t = (Pf,t/Pt)
−θ Yt, while perfect

competition in the final-good market leads to Pt =
(∫ 1

0 P
1−θ
f,t df

) 1
1−θ

.

Each intermediate-good firm f produces one kind of differentiated good Yf,t under monopolistic

competition by choosing a cost-minimizing labor input Lt given the real wage Wt subject to the

production function

Yf,t = AtLf,t,

where At represents total factor productivity. The log of the productivity level follows an AR(1)

process:

logAt = ρa logAt−1 + εa,t, (5)
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where ρa ∈ [0, 1) is an autoregressive coefficient and εa,t is a normally distributed innovation with

mean zero and standard deviation σa. The first-order condition for cost minimization shows that

real marginal cost MCt is identical across intermediate-good firms and is given by

MCt =
Wt

At
. (6)

In the face of the final-good firm’s demand and marginal cost, the intermediate-good firms set

the prices of their products on a staggered basis as in Calvo (1983). In each period, a fraction

1 − ξ ∈ (0, 1) of intermediate-good firms reoptimize their prices while the remaining fraction ξ

indexes prices to a weighted average of past inflation Πt−1 and steady-state inflation Π̄. The firms

that reoptimize their prices in the current period then maximize expected profit

Et
∞∑
j=0

ξjβj

(
j∏

k=1

dk

)−1

Λt+j
Λt

[
Pf,t
Pt+j

j∏
k=1

(
Πι
t+k−1Π̄1−ι)−MCt+j

]
Yf,t+j

subject to the final-good firm’s demand

Yf,t+j =

[
Pf,t
Pt+j

j∏
k=1

(
Πι
t+k−1Π̄1−ι)]−θ Yt+j ,

where ι ∈ [0, 1) denotes the weight of price indexation to past inflation relative to steady-state

inflation. The first-order condition for the reoptimized price P ot is given by

P ot
Pt

=
θ

θ − 1

Et
∑∞

j=0 ξ
jβj

(∏j
k=1 dk

)−1 Λt+j
Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ι
Π̄

Πt+k

])−θ
MCt+jYt+j

]
Et
∑∞

j=0 ξ
jβj

(∏j
k=1 dk

)−1 Λt+j
Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ι
Π̄

Πt+k

])1−θ
Yt+j

]

Let St = θEt
∑∞

j=0 ξ
jβj

(∏j
k=1 dk

)−1 Λt+j
Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ι
Π̄

Πt+k

])−θ
MCt+jYt+j

]
and Ft = (θ−

1)Et
∑∞

j=0 ξ
jβj

(∏j
k=1 dk

)−1 Λt+j
Λt

[(∏j
k=1

[(
Πt+k−1

Π̄

)ι
Π̄

Πt+k

])1−θ
Yt+j

]
, so that P ot /Pt = St/Ft. Then,

St and Ft can be written in the following recursive forms:

St = θMCtYt + ξ
β

dt
Et

Λt+1

Λt

[(
Πt+1

Π̄

)(
Πt

Π̄

)−ι]θ
St+1, (7)

Ft = (θ − 1)Yt + ξ
β

dt
Et

Λt+1

Λt

[(
Πt+1

Π̄

)(
Πt

Π̄

)−ι]θ−1

Ft+1. (8)

Moreover, the final-good’s price Pt =
(∫ 1

0 P
1−θ
f,t df

) 1
1−θ

can be rewritten as

1 = (1− ξ)
(
St
Ft

)1−θ
+ ξ

(
Πt

Π̄

)θ−1(Πt−1

Π̄

)−ι(θ−1)

. (9)
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The final-good market clearing condition is

Yt = Ct, (10)

while the labor market clearing condition leads to

Yt∆t

At
=

∫ 1

0
Lf,tdf = Lt, (11)

where ∆t =
∫ 1

0 (Pf,t/Pt)
−θ df represents price dispersion across the intermediate-good firms. Under

the present pricing rule, the price dispersion evolves according to

∆t = (1− ξ)
(
St
Ft

)−θ
+ ξ

(
Πt

Π̄

)θ (Πt−1

Π̄

)−ιθ
∆t−1. (12)

A monetary policy rule is specified as

Rt = max [R∗t , 1] , (13)

where

R∗t =
(
R∗t−1

)φr [R̄(Πt

Π̄

)φπ (Yt
Ȳ

)φy]1−φr

exp(εr,t). (14)

R∗t denotes the hypothetical interest rate that the central bank would set according to a Taylor

(1993) type monetary policy rule where φr ∈ [0, 1) is the policy-smoothing parameter, φπ ≥ 0 and

φy ≥ 0 are the degrees of interest rate policy response to inflation and output, and R̄ and Ȳ are

the steady-state gross nominal interest rate and output. εr,t is a monetary policy shock, which is

normally distributed with mean zero and standard deviation σr. Rt = R∗t if R∗t ≥ 1 or the ZLB

is not imposed. In the case of R∗t < 1, Rt = 1 because the gross nominal interest rate cannot be

lower than one.

An equilibrium is given by the sequence {Yt, Ct,Wt, Lt,Λt,MCt, St, Ft,Πt,∆t, Rt, R
∗
t , dt, At}∞t=0

satisfying the equilibrium conditions (1)–(14).

2.2 Parameter Setting

The model is parameterized according to standard choices in the literature to make our test economy

as representative as possible.

The inverse of the intertemporal elasticity of substitution σ is set at 1.5. The habit persistence

and price indexation parameters (γ, ι) are both set at 0.5. These three values follow from the prior

means used in Smets and Wouters (2007). As is often calibrated in the New Keynesian literature,

we set the Calvo parameter ξ = 0.75, which implies that the average duration of prices is four

quarters.

7



The monetary policy parameters (φπ = 2.0, φy = 0.5) that represent the degrees of interest

rate response to inflation and output are larger than the coefficients in the original Taylor (1993)

rule, reflecting the recent literature in which the estimation of New Keynesian DSGE models leads

to interest rate responses to inflation larger than 1.5.4 Moreover, the larger degrees of the policy

response are required to ensure the convergence of the nonlinear solution for broader sets of model

parameters. The policy-smoothing parameter φr is set at 0.5.

The steady-state gross inflation rate Π is set at 1.005, so that the central bank’s target inflation

rate is two percent annually. The inverse of the subjective discount factor β, which is equivalent

to the steady-state gross real interest rate, is set at 1.0025, following the prior mean in Smets and

Wouters (2007). The resulting steady-state nominal interest rate is three percent annually. This is

almost the same as the average of the three-month Treasury bill rate in the post-1990 US sample.

The AR(1) coefficients for the shocks to the discount factor and productivity (ρd, ρa) are both

set at 0.7. The standard deviations of these shocks (σd, σa) are both 0.003 while a relatively

small value is assigned to that of the monetary policy shock (σr = 0.001). These parameter values

are determined so that the nominal interest rate is bounded at zero for substantial periods in a

simulated sample.

2.3 Solution Method

The model has four endogenous state variables (lagged output Y−1, the inflation rate Π−1, the

hypothetical nominal interest rate R∗−1, and price dispersion ∆−1) and three exogenous shocks (the

discount factor shock d, the productivity shock A, and the monetary policy shock εr).
5 The policy

functions satisfying the equilibrium conditions can be written as

S = h(S−1, τ),

where S−1 = (Y−1,Π−1, R
∗
−1,∆−1) and τ = (d,A, εr).

The policy functions are computed using the time-iteration method with a Smolyak algorithm

in the context of a projection method. Below is a brief description of the computational procedure,

and the details are explained in the Appendix. To solve for the policy functions on each grid

point (S−1, τ), first we approximate each AR(1) process of the exogenous shocks τ using Markov

4See, for instance, Lubik and Schorfheide (2004), Smets and Wouters (2007), and Justiniano, Primiceri, and

Tambalotti (2010).

5Time subscripts are omitted in this section and in the Appendix as the policy functions are time-independent

objects.
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chains. For each individual shock process, we use the method proposed by Rouwenhorst (1995) to

determine the grid points and transition matrix for the Markov chain. Seven discrete values are

chosen for the discount factor and productivity shocks, and five values are chosen for the monetary

policy shock, so that the total number of grid points for the exogenous variables is Nτ = 245.

Given the exogenous shock processes, we solve for the policy function h(S−1, τ) using a Smolyak

algorithm as in Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015).6

While Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015) use a standard

Smolyak method laid out in Malin, Krueger, and Kubler (2011), we apply a more efficient algorithm

developed by Judd, Maliar, Maliar, and Valero (2014).7 Specifically, we compute the unidimensional

disjoint sets of grid points of the endogenous variables S−1 and projection functions onto the grid

points with interpolation coefficients and a Chebyshev family of orthogonal basis functions. In

each iteration of the time-iteration method, the policy functions are evaluated at future state

(S, τ ′), which may be off the grid points. The grid points obtained by the Smolyak algorithm are

sparse; therefore the algorithm is more likely to be free from the curse of dimensionality. We use

the level of approximation µ = 2 so that the total number of grid points is N = 41.8 This number

is much smaller compared with the one obtained by a product of the maximum number of grid

points in each dimension, Ñ = 54 = 625. The Appendix shows that our solution method is very

accurate, albeit with the reduced number of grid points.

As in Gust, López-Salido, and Smith (2012), we do not approximate h(S, τ ′) directly, as the

ZLB on the nominal interest rate generates kinks in the policy functions. Instead, we introduce

an indicator function regarding the interest-rate regime and changes of variables so that the policy

functions are smoother and easier to converge. In particular, our algorithm does not rely on any

numerical solvers, which makes computation more reliable in finding an equilibrium.

6Gust, López-Salido, and Smith (2012) use a tensor product of Chebyshev basis functions, as they have only three

endogenous state variables by assuming Rotemberg pricing instead of Calvo pricing for modeling price stickiness.

7Judd, Maliar, Maliar, and Valero (2014) point out that evaluations of repeated basis functions used in the conven-

tional Smolyak algorithm is quite costly. To obtain the interpolation coefficients, they use a Lagrange interpolation

method instead of the original closed-form formula used in Malin, Krueger, and Kubler (2011).

8The level of approximation µ = 2 is also used in Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-

Ramı́rez (2015). They document that their algorithm fails to converge with the benchmark parameters when they

increase µ from 2 to 3.
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3 Monte Carlo Experiments

In this section, we conduct Monte Carlo experiments to examine how the parameter estimates can

be biased if the nonlinearity is omitted in the estimation process. Then, we analyze the effects of

these parameter biases on the model properties by comparing the estimated impulse responses with

those based on the true model.

3.1 Design

Our Monte Carlo experiments proceed as follows. First, we generate an artificial time series of

output (deviation from the steady state), inflation, and the nominal interest rate from the DGP

as described in the previous section, given the parameter values presented in Section 2.2. Thus,

the simulated series can be regarded as those that reflect the nonlinearity of the model economy

including the ZLB constraint on the nominal interest rate. Each simulated sample consists of 200

observations,9 corresponding to quarterly observations over a period of 50 years. This sample size

is chosen because it is comparable to the size with which many researchers estimate DSGE models

in practice.

Next, using the simulated data, we estimate a linearized version of the model. Log-linearizing

the equilibrium conditions (1)–(14) around the steady state and rearranging the resulting equations

yields

Ỹt =
1

1 + γ
EtỸt+1 +

γ

1 + γ
Ỹt−1 −

1− γ
σ (1 + γ)

(
R̃t − EtΠ̃t+1 − d̃t

)
, (15)

Π̃t =
β

1 + βι
EtΠ̃t+1 +

ι

1 + βι
Π̃t−1 +

(1− ξ) (1− ξβ)

ξ (1 + βι)

[
σ

1− γ
Ỹt −

σγ

1− γ
Ỹt−1 − Ãt

]
, (16)

R̃t = φrR̃t−1 + (1− φr)
(
φπΠ̃t + φyỸt

)
+ εr,t, (17)

where the variables with ˜ represent percentage deviations from their steady-state values. From

the simulated data, the percentage deviations of output from the steady state 100 log(Yt/Ȳ ), the

inflation rate 100 log Πt, and the nominal interest rate 100 logRt are assumed to be observable.

Then, the observation equations are
100 log(Yt/Ȳ )

100 log Πt

100 logRt

 =


0

π̄

r̄r + π̄

+


Ỹt

Π̃t

R̃t

 , (18)

9The model is simulated for 250 periods, and the first 50 observations are eliminated.
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where π̄ = 100 log Π̄ and r̄r = 100 log(1/β) are the steady-state inflation rate and the real interest

rate in percentage terms, respectively. In the subsequent analysis, π̄ and r̄r are parameters to be

estimated, instead of Π̄ and β.

In the estimation, we employ Bayesian methods. The prior distributions of parameters are

presented in the second to fourth columns of Table 1. Each prior mean is set to the corresponding

true parameter value used in the DGP. Gamma distributions with a standard deviation of 0.2

are chosen for the inverse of the intertemporal elasticity of substitution σ, the monetary policy

reaction parameters (φπ, φy), and the steady-state inflation and real interest rates (π̄, r̄r). Beta

distributions with a standard deviation of 0.2 are used for habit persistence γ, the Calvo parameter

ξ, price indexation ι, the policy-smoothing parameter φr, and the autoregressive coefficients (ρd, ρa).

For the standard deviations of the shocks (100σd, 100σa, 100σr), inverse-gamma distributions with

a standard deviation of 2 are assigned. To obtain the posterior distributions, we generate 200,000

draws using the random-walk Metropolis–Hastings algorithm and discard the first 25 percent of

these draws.10

These steps are replicated 200 times, and the posterior means and Bayesian credible intervals

for the parameters are averaged over the replications. Then, we can evaluate the parameter bias

arising from missing the nonlinearity by examining how the resulting posterior means and credible

intervals differ from the true parameter values.

According to the simulated sample of 40,000 periods (200 Monte Carlo replications with a sample

size of 200 observations) using the baseline parameter setting, the economy is at the ZLB for 9.7

percent of quarters, and the average duration of ZLB spells is 2.8 quarters. These statistics indicate

that our model economy is more frequently constrained by the ZLB than the simulation results

in the previous studies that employ nonlinear New Keynesian models similar to ours. Fernández-

Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2012) simulate a model calibrated for

the US economy and show that the economy spends 5.5 percent of quarters at the ZLB and that

the average duration at the ZLB is 2.1 quarters. Gust, López-Salido, and Smith (2012) estimate a

model in a fully nonlinear setting, and the simulation of their estimated model demonstrates that

the economy is at the ZLB for 3.1 percent of quarters and that the average duration of the ZLB

spells is about three quarters.11

10The scale factor for the jumping distribution in the Metropolis–Hastings algorithm is adjusted so that the accep-

tance rate of candidate draws is approximately 25 percent.

11Gust, López-Salido, and Smith (2012) also document that financial market participants in 2009:Q1 expected a

duration of three quarters, on average, for which the federal funds rate would remain at virtually zero.
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3.2 Results

3.2.1 Parameter estimates

The fifth to sixth columns in Table 1 (Baseline) present the averages of the posterior means and

the 90 percent credible intervals for the estimated parameters in the baseline experiment.

The estimates of the structural parameters (σ, γ, ξ, ι), which are related to preferences and

nominal rigidities, are not biased because the posterior mean estimates are very close to the true pa-

rameter values and the 90 percent credible intervals contain the true values. The policy-smoothing

parameter φr, the autoregressive coefficients (ρd, ρa), and the standard deviations of the shocks

(σd, σa, σr) are also not affected substantially by omitting the nonlinearity in the estimation.

However, we detect significant biases in the estimates of the parameters that characterize the

degree of a monetary policy response to inflation φπ and the steady-state inflation and real interest

rates (π̄, r̄r), in the sense that the mean estimates for these parameters differ from the corresponding

true values and that the credible intervals do not include the true values. The estimated monetary

policy response to output φy is also substantially biased although its credible interval contains the

true value.

For the biased estimates of the monetary policy reaction parameters (φπ, φy), the same explana-

tion as in Hirose and Inoue (2015) applies. In the DGP, the monetary policy reaction function has

a kink where the ZLB constraint becomes binding; that is, the reaction function has positive slopes

with respect to inflation and output if the unconstrained nominal interest rate is positive, but the

slopes become flat if it turns negative. However, when such a kink is omitted in the estimation,

as is the case in our experiment, the estimated slopes are approximated to lie between the positive

and flat slopes, and thus these monetary policy parameters can be underestimated.

The downward biases detected in the estimates of the steady-state inflation and real interest

rates (π̄, r̄r) are in stark contrast to the result in Hirose and Inoue (2015), who find upward bias

in the steady-state real interest rate.12 In the present analysis, the DGP is characterized by the

12Hirose and Inoue (2015) explain the reason for the upward bias in the steady-state real interest rate as follows.

The presence of the ZLB forces the nominal interest rate to be equal to or greater than zero. However, if the model

estimation fails to consider the ZLB, the nominal interest rate can be negative, and the mean of the model-implied

nominal interest rate declines. Then, the estimate of the steady-state nominal interest rate must rise to adjust the

difference between the mean of the model-implied nominal interest rate and that of the corresponding series simulated

from the DGP with the ZLB, given the model is linearized around the steady state. In their experiment, such an

adjustment has mostly emerged as a change in the estimate of the steady-state real interest rate, rather than the

steady-state inflation rate.
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fully nonlinear model. In such an environment, the stochastic steady state can be substantially

different from the deterministic steady state. In particular, once the ZLB constraint is taken into

account, the presence of uncertainty can reduce inflation and output by a substantial amount, as

emphasized by Nakata (2013a), and hence their levels in the stochastic steady state become lower

than those in the deterministic one. In reality, the mean of the inflation rate simulated from the

DGP, which is asymptotically equivalent to the stochastic steady-state value, is 0.39 percent while

the corresponding deterministic value is calibrated at 0.5. Because the latter is treated as the true

value, the discrepancy between the two steady states is adjusted by the lower estimate of π̄ in our

experiment. The nominal interest rate in the stochastic steady state can be either larger or smaller

than its deterministic steady-state value. It will be larger if the direct effect of the ZLB constraint

is strong. It will be smaller if the feed-back effect of reduced inflation and output on the nominal

interest rate through the Taylor-type monetary policy rule is dominant. In the present experiment,

the mean of the nominal interest rate simulated from the DGP is 0.57 percent, which is much

lower than the deterministic steady-state value of 0.75 percent. Consequently, the steady-state real

interest rate r̄r is underestimated while the downward bias in the estimate of π̄ partially contributes

to filling the gap between the two steady states.

These sources of the parameter biases could potentially affect the estimates of other structural

parameters that characterize the dynamic IS equation (15) and the New Keynesian Phillips curve

(16) because we employ the system-based estimation approach. However, our experiment indicates

that such an effect is quite limited.

3.2.2 Which nonlinearity matters?

Our baseline experiment suggests that omitting nonlinearity in estimation leads to substantial

biases in parameter estimates. Which missing nonlinearity causes such biases, the ZLB constraint

or the nonlinear equilibrium conditions? To answer this question, we conduct two additional Monte

Carlo experiments. First, the DGP in the baseline experiment is replaced with the one where the

ZLB constraint is not imposed but the other nonlinearities remain unchanged. Second, we consider

the DGP where the ZLB constraint is imposed but all the equilibrium conditions are linearized.

The latter experiment is comparable to the analysis in Hirose and Inoue (2015) in the sense that

the DGP is quasi-linear, although the solution methods are different from each other.13

The first additional experiment assesses to what extent parameter estimates can be biased

13In the present paper, we solve the quasi-linear model using a projection method described in the Appendix.

Regarding the solution method employed in Hirose and Inoue (2015), see footnote 2.
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if nonlinearities in the equilibrium conditions other than the ZLB constraint are ignored in the

estimation. The seventh to eighth columns of Table 1 (No ZLB in DGP) presents the results.

The parameter estimates are unbiased in that all the mean estimates are almost the same as the

true values. This finding implies that the DGP in this experiment is very close to its linearized

counterpart. Thus, omitting nonlinearity in estimation would not affect parameter estimates if the

ZLB were not an issue. The second additional experiment is to quantify the effect of omitting solely

the ZLB constraint on the parameter estimates. The results are shown in the last two columns

of Table 1 (Quasi-linear DGP). As in the baseline experiment, nonnegligible biases are found in

the estimates of the monetary policy reaction parameters (φπ, φy) and the steady-state inflation

and real interest rates (π̄, r̄r), although the biases are smaller than those in the baseline.14 Given

that the effect of missing nonlinearity in the equilibrium conditions is virtually zero from the first

experiment, we can conclude that the biases detected in the baseline experiment are mainly due to

ignoring the ZLB constraint rather than linearizing the equilibrium conditions.

To gain more insight about the results, Figure 1 illustrates the policy functions of output Yt,

inflation Πt, and the nominal interest rate Rt for the range of the state variables, Yt−1, Πt−1, and

R∗t−1 shown on each horizontal axis. Each panel compares the policy functions of the three DGPs

considered above: the nonlinear model with the ZLB (thick solid line in red), the nonlinear model

without the ZLB (thin solid line in blue), and the quasi-linear model with the ZLB (dashed lines

in black). Two points should be stressed here. First, the policy functions of the nonlinear model

without the ZLB appear to be almost linear, indicating that the linear model can approximate well

the nonlinear model in the absence of the ZLB. Thus, no biases are detected in the first additional

experiment. Second, the policy functions of the nonlinear model with the ZLB and those of the

quasi-linear model with the ZLB are very similar to each other and exhibit strong nonlinearities in

the panels associated with the nominal interest rate. This is the reason why the substantial biases

are found in the estimates of the monetary policy parameters and the steady-state inflation and

real interest rates both in the baseline experiment and in the second additional experiment.

3.2.3 Impulse responses

From a practical perspective, it is important to investigate to what extent the dynamic properties of

the estimated model that omits nonlinearity can differ from those of the true nonlinear model. To

14The smaller biases indicate that the quasi-linear DGP in this experiment exhibits less nonlinearity than the fully

nonlinear DGP in the baseline experiment. This is because nonlinearity is amplified by combining the ZLB constraint

with the other nonlinear equilibrium conditions. However, we find such a difference is admittedly small.
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examine this issue, we compare the impulse response functions estimated without the nonlinearity

with those computed using the true model. Figure 2 depicts the impulse responses of output,

inflation, and the nominal interest rate to one standard deviation shocks to the (1) discount factor,

(2) productivity, and (3) monetary policy. The responses are expressed in terms of the percentage

deviation from the steady state to exclude the effects of the differences in stochastic steady-state

values in each DGP and the biased estimates of steady-state parameters. In each panel, the thick

solid (red) line represents the true response, and the thin solid (blue) and dashed (blue) lines are

the posterior mean and 90 percent credible interval of the estimated response given the biased

parameters, respectively. For comparison, each panel contains the response of the linear model

with the true parameters, shown by (black) dots.

Sizeable differences are found between the responses of the linear model with the true parameters

and those of the true model. These differences arise from the fact that the policy functions of the

nonlinear model with the ZLB constraint are substantially different from those of the linear model

without the constraint. In contrast, the mean estimates of the responses become closer to the true

responses regarding the shocks to the discount factor and productivity, implying that the biased

parameters contribute to partially replicating the true responses to these shocks. For the responses

to the monetary policy shock, however, the mean estimates of the responses deviate more from the

true ones than the responses of the linear model with the true parameters.

In terms of 90 percent credible intervals, the estimated responses of the interest rate to the

productivity shock and those of output and inflation to the monetary policy shock are different

from the true responses in that the true responses are outside the credible intervals. Therefore,

the dynamic properties of the estimated model without the nonlinearity are no longer the same as

those of the true model.

4 Robustness Analysis

According to the DGP in our baseline experiment, the nominal interest rate is bounded at zero

for 9.7 percent of quarters, and the average duration of ZLB spells is 2.8 quarters. As the proba-

bility of hitting the ZLB increases in the simulated sample, parameter biases due to excluding the

nonlinearity in the estimation might become large. To analyze such a possibility, we change the

parameters assigned to the DGP so that the model economy is more frequently constrained by the

ZLB. We then conduct the same Monte Carlo exercises as the baseline experiment using the data

simulated by the DGP with the alternative parameter settings. Specifically, we consider two cases.
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One is where the true steady-state real interest rate r̄r falls by 0.03 (0.12 percent annually) so that

r̄r = 0.22. In this case, the probability of being stuck at the ZLB is 14.8 percent of the simulated

sample. The other is where the standard deviation of the discount factor shock 100σd increases

from 0.3 to 0.33. In the latter case, the number of zero interest rate periods increases because large

negative shocks are more likely to depress the economy and to lower the nominal interest rate, and

the model economy is at the ZLB for 14.2 percent of quarters. In both cases, the average duration

of ZLB spells is 3.1 quarters, which is longer than that in the baseline experiment.15

Table 2 presents the averages of the posterior means and the 90 percent credible intervals for

the parameters in the two alternative experiments: the case of low r̄r and the case of large σd. In

both cases, the biases in the estimates of the monetary policy reaction parameters (φπ, φy) and the

steady-state inflation and real interest rates (π̄, r̄r), which are found in the baseline experiment

(Table 1), become large. In particular, the credible interval for φy no longer includes the true value.

Moreover, a significant bias is detected in the estimates of the standard deviation of the monetary

policy shock σr. The reason for the upward bias in σr is straightforward. In the simulated data, the

nominal interest rate never falls below zero because the DGP takes account of the ZLB constraint.

In the estimation process, however, the model-implied nominal interest rate can be negative, and

such a discrepancy must be captured by the monetary policy shock εrt , which results in the increase

in σr. The estimates of the other parameters are almost unbiased, as in the baseline experiment,

and hence are robust to the increased probabilities and durations of the ZLB in the DGP.

Figure 3 and 4 show the impulse responses of output, inflation, and the nominal interest rate to

each one standard deviation shock in terms of the percentage deviation from the steady state in the

case of low r̄r and the case of large σd, respectively. As in the preceding section, each panel draws

the true response, the posterior mean and 90 percent credible interval for the estimated response,

and the response of the linear model with true parameters. Compared with the baseline experiment

(Figure 2), the differences between the responses of the linear model with true parameters and those

of the true nonlinear model become large throughout the figures. As for the differences between the

estimated and true responses, the widening differences are found in the responses to the monetary

policy shock because of the upward bias in the estimates of its standard deviation σr. However,

changes in the differences are limited regarding the responses to the discount factor shock and the

productivity shock. Thus, the increased biases in the parameter estimates do not necessarily make

the estimated responses deviate further from the true ones.

15The solutions did not converge if we parameterized the DGP so that the probability of being at the ZLB or the

duration of ZLB spells increases more.

16



5 Concluding Remarks

This paper has investigated parameter bias in an estimated DSGE model that neglects nonlinearity

intrinsic to the economy. According to the results in our Monte Carlo experiments, significant

biases have been detected in the parameter estimates associated with the monetary policy rule

and the steady-state inflation and real interest rates. These biases are caused by ignoring the

nonlinearity arising from the ZLB rather than linearizing the equilibrium conditions. We have

demonstrated that the estimated impulse response functions can be substantially different from

the true ones although the biased parameters partially contribute to making the differences small.

These findings are a caution to researchers against the common practice of estimating linearized

DSGE models without considering nonlinearity.

Our finding regarding the source of parameter bias indicates that omitting nonlinearity in

estimation would not affect parameter estimates if the ZLB was not an issue. However, it might

not be the case if the DGP is characterized by a more highly nonlinear model than considered in this

paper, such as the one with recursive preferences, state-dependent pricing, or increased uncertainty.

Investigating such a possibility is left for future research.
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Appendix

To solve for the policy functions on each grid point (S−1, τ), we follow the approach in Christiano

and Fisher (2000) and Gust, López-Salido, and Smith (2012). We consider the regime-specific

policy functions hi(S−1, τ) for i = {1, 2}, whose index is associated with the interest-rate regime.

Specifically, the policy functions are defined as weighted averages of the regime-specific functions:

Y = hY (S−1, τ) = hY,1(S−1, τ)1{hR,1(S−1,τ>1} + hY,2(S−1, τ)1{hR,1(S−1,τ)≤1},

Π = hΠ(S−1, τ) = hΠ,1(S−1, τ)1{hR,1(S−1,τ)>1} + hΠ,2(S−1, τ)1{hR,1(S−1,τ)≤1},

∆ = h∆(S−1, τ) = h∆,1(S−1, τ)1{hR,1(S−1,τ)>1} + h∆,2(S−1, τ)1{hR,1(S−1,τ)≤1},

R∗ = hR(S−1, τ) = hR,1(S−1, τ)1{hR,1(S−1,τ)>1} + hR,2(S−1, τ)1{hR,1(S−1,τ)≤1},

where the regime-specific policy rule is given by

hR,1(S−1, τ) = (R∗−1)φr

[
R̄

(
hΠ,1(S−1, τ)

Π̄

)φπ (hY,1(S−1, τ)

Ȳ

)φy]1−φr

exp(εr),

hR,2(S−1, τ) = 1,

and 1{D} is the indicator function that is one if the condition D is true and zero otherwise. The

hypothetical interest rate, R∗, is either above or below the lower bound of R̄ = 1. The indexed

policy functions do not depend on the current indicator function.

Given the processes of τ , the regime-specific functions in each regime i = 1, 2 satisfy the following

equilibrium conditions:

1

Wi(S−1, τ)
= βd−1hR,i(S−1, τ)

∑
τ ′

{
Φ(τ ′|τ)

W(S, τ ′)hΠ(S, τ ′)

}
,

Si(S−1, τ) = θWi(S−1, τ)A−1

+ βd−1ξ
∑
τ ′

Φ(τ ′|τ)


[(

hΠ(S, τ ′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ι]θ Wi(S−1, τ)

W(S, τ ′)
hY (S, τ ′)
hY,i(S−1, τ)

S(S, τ ′)

 ,

Fi(S−1, τ) = (θ − 1)

+ βd−1ξ
∑
τ ′

Φ(τ ′|τ)


[(

hΠ(S, τ ′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ι]θ−1
Wi(S−1, τ)

W(S, τ ′)
hY (S, τ ′)
hY,i(S−1, τ)

F (S, τ ′)

 ,

1 = (1− ξ)
(
Si(S−1, τ)

Fi(S−1, τ)

)1−θ
+ ξ

[(
hΠ,i(S−1, τ)

Π̄

)(
Π−1

Π̄

)−ι]θ−1

,

h∆,i(S−1, τ) = (1− ξ)
(
Si(S−1, τ)

Fi(S−1, τ)

)−θ
+ ξ

[(
hΠ,i(S−1, τ)

Π̄

)(
Π−1

Π̄

)−ι]θ
∆−1,
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where Φ(τ ′|τ) is a transition probability from τ to τ ′,

Wi(S−1, τ) ≡ (hY,i(S−1, τ)− γY−1)σ,

and hΠ(S, τ ′), hY (S, τ ′), S(S, τ ′), F (S, τ ′) and W(S, τ ′) are weighted averages of the regime-specific

functions in the next period. Note that the regime-specific functions are affected by the possibility

that the nominal interest rate can be bounded at zero in the next period. They also depend on

the values of the policy functions, S = hi(S−1, τ). For example, in the first equation, the future

possibility of being at the ZLB enters through hΠ(hi(S−1, τ), τ ′) or W(hi(S−1, τ), τ ′).

Furthermore, as in Gust, López-Salido, and Smith (2012), we apply the following changes of

variables

Vi(S−1, τ) ≡
∑
τ ′

Φ(τ ′|τ)


[(

hΠ(S, τ ′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ι]θ hY (S, τ ′)S(S, τ ′)
W(S−1, τ)hY,i(S−1, τ)

 ,

Ki(S−1, τ) ≡
∑
τ ′

Φ(τ ′|τ)


[(

hΠ(S, τ ′)
Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ι]θ−1
hY (S, τ ′)F (S, τ ′)

W(S−1, τ)hY,i(S−1, τ)

 .

We employ the policy function iteration algorithm with initial values ofW(0)
i (S−1, τ), V(0)

i (S−1, τ)

and K(0)
i (S−1, τ) on the grid points. The values of Si(S−1, τ) and Fi(S−1, τ) are obtained from the

values of W(j−1)
i (S−1, τ), V(j−1)

i (S−1, τ) and K
(j−1)
i (S−1, τ) on the grid points in each iteration

j = 1, 2, ....16 Therefore, we can solve for the policy functions hi(S−1, τ) at each grid point without

relying on any numerical solvers. As a result of the changes of variables, the previous equations

become

Si(S−1, τ) = θW(j−1)
i (S−1, τ)A−1 + d−1βξW(j−1)

i (S−1, τ)V(j−1)
i (S−1, τ), (A.1)

Fi(S−1, τ) = (θ − 1) + d−1βξW(j−1)
i (S−1, τ)K(j−1)

i (S−1, τ). (A.2)

Furthermore, the policy functions of hΠ,i(S−1, τ) and hY,i(S−1, τ) are given by

hΠ,i(S−1, τ) = Π

(
Πt−1

Π̄

)ι(
ξ−1

[
1− (1− ξ)

(
Si(S−1, τ)

Fi(S−1, τ)

)1−θ
]) 1

θ−1

, (A.3)

hY,i(S−1, τ) =W(j−1)
i (S−1, τ)1/σ + γY−1. (A.4)

Equations (A.1)-(A.4) imply that there is a one-to-one mapping fromW(j−1)
i (S−1, τ), V(j−1)

i (S−1, τ)

and K(j−1)
i (St−1, τt) to hΠ,i(St−1, τt) and hY,i(S−1, τ). Then the values of W(j)

i (S−1, τ), V(j)
i (S−1, τ)

16For simplicity of notation, we omit the index j from the functions except for W(j)
i (St−1, τt), V(j)

i (St−1, τt) and

K(j)
i (St−1, τt).
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and K(j)
i (S−1, τ) are updated as

W(j)
i (S−1, τ) =

[
βd−1hR,i(S−1, τ)

∑
τ ′

{
Φ(τ ′|τ)

Ŵ(S; τ ′)ĥΠ(S; τ ′)

}]−1

,

V(j)
i (S−1, τ) =

∑
τt+1


[(

ĥΠ(S; τ ′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ι]θ ĥY (S; τ ′)

hY,i(S−1, τ)

×
(
θA′−1 + βd′−1ξV̂(S; τ ′)

)
Φ(τ ′|τ)

}
,

K(j)
i (S−1, τ) =

∑
τt+1


[(

ĥΠ(S; τ ′)

Π̄

)(
hΠ,i(S−1, τ)

Π̄

)−ι]θ−1
ĥY (S; τ ′)

hY,i(S−1, τ)

×
(

(θ − 1)/Ŵ(S; τ ′) + βd′−1ξK̂(S; τ ′)
)

Φ(τ ′|τ)
}
,

where the estimated values of Ŵ(S; τ ′), V̂(S; τ ′) and K̂(S; τ ′) are used to obtain the values of

ĥΠ(hi(S−1, τ); τ ′) and ĥY (hi(S−1, τ); τ ′). To obtain the estimated values, we approximate the func-

tions Ŵ(S; τ ′) ≈ W(j−1)(S, τ ′), V̂(S; τ ′) ≈ V(j−1)(S, τ ′) and K̂(S; τ ′) ≈ K(j−1)(S, τ ′) for any points

in the domain of S for given τ ′ by a projection method. The values of the approximated functions

on the grid points (S−1, τ) are given by

W(j−1)(S−1, τ) =W(j−1)
1 (S−1, τ)1{hR,1(S−1,τ)>1} +W(j−1)

2 (S−1, τ)1{hR,1(S−1,τ)≤1},

V(j−1)(S−1, τ) = V(j−1)
1 (S−1, τ)1{hR,1(S−1,τ)>1} + V(j−1)

2 (S−1, τ)1{hR,1(S−1,τ)≤1},

K(j−1)(S−1, τ) = K(j−1)
1 (S−1, τ)1{hR,1(S−1,τ)>1} +K(j−1)

2 (S−1, τ)1{hR,1(S−1,τ)≤1}.

The algorithm is summarized as follows.

1. W(0)
i (S−1, τ), V(0)

i (S−1, τ) and K(0)
i (S−1, τ) are given on each grid point (S−1, τ) as initial

values.

2. hi(S−1, τ) is computed for each regime i = 1, 2, as the values ofW(j−1)
i (S−1, τ), V(j−1)

i (S−1, τ)

and K(j−1)
i (St−1, τt) are given on each grid point.

3. The estimated values Ŵ(S; τ ′), V̂(S; τ ′) and K̂(S; τ ′) in the next period are obtained by a

projection method.

4. ĥ(hi(S−1, τ); τ ′) is computed for each regime i = 1, 2 on each grid point (S−1, τ, τ
′).

5. W(j)
i (S−1, τ), V(j)

i (S−1, τ) and K(j)
i (S−1, τ) are updated on each grid point (S−1, τ) by taking

expectations over τ ′.

6. Iterate the procedures 2–5 until the algorithm converges so that
∥∥W(j)(S−1, τ)−W(j−1)(S−1, τ)

∥∥ <
ε,
∥∥V(j)(S−1, τ)− V(j−1)(S−1, τ)

∥∥ < ε and
∥∥K(j)(S−1, τ)−K(j−1)(S−1, τ)

∥∥ < ε hold.

20



Quasi-linear model The policy functions for the quasi-linear model are solved using the same

algorithm above. As the model is approximated at the first order, higher-order price dispersion

ceases to exist. Then, the vector of endogenous state variables is reduced to S−1 ≡ (Ỹ−1, Π̃−1, R̃
∗
−1).

The regime-specific policy rule is given by

hR,1(S−1, τ) = φrR̃
∗
−1 + (1− φr) (φπhΠ,1(S−1, τ) + φyhY,1(S−1, τ)) + εr,

hR,2(S−1, τ) = − log R̄.

Given the processes of τ , the regime-specific functions in each regime i = 1, 2 satisfy the following

equilibrium conditions:

hY,i(S−1, τ) =
∑
τ ′

Φ(τ ′|τ)

{
1

1 + γ
hY (S, τ ′) +

1− γ
σ (1 + γ)

hΠ(S, τ ′)
}

+
γ

1 + γ
Ỹ−1 −

1− γ
σ (1 + γ)

(
hR,i(S−1, τ)− d̃

)
,

hΠ,i(S−1, τ) =
β

1 + βι

∑
τ ′

Φ(τ ′|τ)hΠ(S, τ ′) +
ι

1 + βι
Π̃−1

+
(1− ξ) (1− ξβ)

ξ (1 + βι)

[
σ

1− γ
hY,i(S−1, τ)− σγ

1− γ
Ỹ−1 − Ã

]
.

We defineWi(S−1, τ) ≡ hY,i(S−1, τ) and Vi(S−1, τ) ≡
∑

τ ′ Φ(τ ′|τ)hΠ(hi(S−1, τ), τ ′). GivenW(j−1)
i (S−1, τ)

and V(j−1)
i (S−1, τ), we have

hΠ,i(S−1, τ) =
β

1 + βι
V(j−1)
i (S−1, τ) +

ι

1 + βι
Π̃−1

+
(1− ξ) (1− ξβ)

ξ (1 + βι)

[
σ

1− γ
W(j−1)
i (S−1, τ)− σγ

1− γ
Ỹ−1 − Ã

]
, (A.5)

hY,i(S, τ ′) =W(j−1)
i (S−1, τ). (A.6)

There is a one-to-one mapping fromW(j−1)
i (S−1, τ) and V(j−1)

i (S−1, τ) to hΠ,i(St−1, τt) and hY,i(S−1, τ).

Then the values of W(j)
i (S−1, τ) and V(j)

i (S−1, τ) are updated as follows:

W(j)
i (S−1, τ) =

∑
τ ′

Φ(τ ′|τ)

{
1

1 + γ
ĥY (hi(S−1, τ), τ ′) +

1− γ
σ (1 + γ)

ĥΠ(hi(S−1, τ), τ ′)

}
+

γ

1 + γ
Ỹ−1 −

1− γ
σ (1 + γ)

(
hR,i(S−1, τ)− d̃

)
,

V(j)
i (S−1, τ) =

∑
τ ′

Φ(τ ′|τ)ĥΠ(hi(S−1, τ), τ ′),

where ĥΠ(S; τ ′) and ĥY (S; τ ′) are evaluated from the estimated values of Ŵ(S; τ ′) ≈ W(j−1)(S, τ ′)

and V̂(S; τ ′) ≈ V(j−1)(S, τ ′).
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Accuracy of the solutions As we rely on approximation to solve for the policy functions

h(S−1, τ), we assess the accuracy of the solutions, following Maliar and Maliar (2015). In each

experiment, equilibrium paths are simulated for 40,000 periods (N = 200 Monte Carlo replica-

tions with a sample size of T = 200 observations). For each sample of {(St−1, τt)}it=1,..,T where

i = 1, ..., N , we compute the residual functions:

R1(St−1, τt) = 1−

[
βd−1hR(St−1, τt)

∑
τ ′

{
Φ(τ ′|τt)

Ŵ(h(St−1, τt); τ ′)ĥΠ(h(St−1, τt); τ ′)

}]
W(St−1, τt),

R2(St−1, τt) = 1−
∑
τ ′


[(

ĥΠ(h(St−1, τt); τ
′)

Π

)(
hΠ(St−1, τt)

Π

)−ι]θ ĥY (h(St−1, τt); τ
′)

hY (St−1, τt)

×
(
θA′−1 + d′−1βξV̂(h(St−1, τt); τ

′)
)

Φ(τ ′|τt)
}
/V(St−1, τt),

R3(St−1, τt) = 1−
∑
τ ′


[(

ĥΠ(h(St−1, τt); τ
′)

Π

)(
hΠ(h(St−1, τt), τ

′)

Π

)−ι]θ−1
ĥY (h(St−1, τt); τ

′)

hY (St−1, τt)

×
(

(θ − 1)/Ŵ(h(St−1, τt); τ
′) + d′−1βξK̂(h(St−1, τt); τ

′)
)

Φ(τ ′|τt)
}
/K(St−1, τt).

Then, we calculate the mean and maximum of the residuals {Rj(St−1, τt)}i across different samples

i = 1, ..., N and residuals j = 1, ..., J .17

Table 3 (the columns with the label “Equilibrium paths”) shows the accuracy of each solution

for the nonlinear model with the ZLB (Baseline), the nonlinear model without the ZLB (No ZLB in

DGP), the quasi-linear model with the ZLB (Quasi-linear DGP), and the two models with different

parameter values from the baseline (Case of low r̄r and Case of large σd). The maximum size of

residuals is about 0.3% in the baseline model (10−2.527), and it is similar in the cases of low r̄r and

large σd. This result suggests that our solution method is very accurate even in the presence of the

ZLB, compared with previous studies such as Fernández-Villaverde, Gordon, Guerrón-Quintana,

and Rubio-Ramı́rez (2015) and Maliar and Maliar (2015).18 The case of the quasi-linear model

17In the quasi-linear model, the residual functions are

R1(St−1, τt) = hY (St−1, τt)−
γ

1 + γ
Ỹt−1 +

1− γ
σ (1 + γ)

(
hR(St−1, τt)− d̃t

)
−
∑
τ ′

Φ(τ ′|τt)
{

1

1 + γ
ĥY (h(St−1, τt); τ

′) +
1− γ

σ (1 + γ)
ĥΠ(h(St−1, τt); τ

′)

}
,

R2(St−1, τt) = hΠ(St−1, τt)−
ι

1 + βι
Π̃t−1 −

β

1 + βι

∑
τ ′

Φ(τ ′|τt)ĥΠ(h(St−1, τt); τ
′)

− (1− ξ) (1− ξβ)

ξ (1 + βι)

[
σ

1− γ hY (St−1, τt)−
σγ

1− γ Ỹt−1 − Ãt
]
.

18Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015), who use a Smolyak algorithm and
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is even more accurate than the baseline case, although it is less accurate than that of the model

without the ZLB; the maximum residuals are about 0.06% and <0.01% (10−3.195 and 10−4.570),

respectively.

We also evaluate the accuracy of the solutions based on 40,000 random points from uniform

distributions over the entire state space. Table 3 (the columns with the label “Entire state space”)

demonstrates the same tendency across the cases, although the errors are slightly larger (but

acceptable).

the same level of approximation, µ = 2, report that the mean and maximum of the Euler equation error (R1(St−1, τt)

in this paper) are 10−3.256 and 10−1.648. Maliar and Maliar (2015) show that the mean and maximum errors across

all equilibrium conditions (as in this paper) are 10−3.65 and 10−1.81 in the case with the ZLB and a third-degree

polynomial solution with the EDS (ε-distinguishable set) grid.
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Fernández-Villaverde, Jesús, and Juan F. Rubio-Ramı́rez, 2007. “Estimating Macroeconomic Mod-

els: A Likelihood Approach.” Review of Economic Studies, 74(4), 1059–1087.
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Table 2: Posterior distributions of parameters in alternative experiments

Case of low r̄r Case of large σd

Parameter True value Mean 90% interval Mean 90% interval

σ 1.500 1.530 [1.212, 1.844] 1.528 [1.209, 1.842]

γ 0.500 0.521 [0.424, 0.619] 0.521 [0.425, 0.619]

ξ 0.750 0.733 [0.693, 0.773] 0.733 [0.694, 0.773]

ι 0.500 0.570 [0.388, 0.754] 0.573 [0.390, 0.755]

φπ 2.000 1.614 [1.456, 1.771] 1.619 [1.459, 1.778]

φy 0.500 0.376 [0.263, 0.487] 0.376 [0.265, 0.486]

φr 0.500 0.514 [0.466, 0.562] 0.515 [0.468, 0.561]

π̄ 0.500 0.347 [0.294, 0.400] 0.352 [0.299, 0.405]

r̄r 0.22/0.25 0.138 [0.094, 0.182] 0.175 [0.130, 0.219]

ρd 0.700 0.721 [0.644, 0.800] 0.716 [0.638, 0.794]

ρa 0.700 0.672 [0.544, 0.800] 0.670 [0.543, 0.799]

100σd 0.30/0.33 0.347 [0.251, 0.440] 0.382 [0.277, 0.484]

100σa 0.300 0.355 [0.225, 0.481] 0.356 [0.226, 0.481]

100σr 0.100 0.115 [0.105, 0.124] 0.118 [0.108, 0.128]

Notes: In the case of low r̄r, the true value of r̄r is 0.22. In the case of large σd, the true value of 100σd is 0.33.

Means and 90% intervals are the averages of the posterior means and 90% credible intervals based on 200 Monte

Carlo replications using a sample size of 200 observations. In each of the Monte Carlo replications, 200,000 MCMC

draws are generated and the first 25 percent of the draws are discarded.

Table 3: Accuracy of the solutions

Equilibrium paths Entire state space

log10 L1 log10 L∞ log10 L1 log10 L∞

Baseline -3.508 -2.527 -2.951 -1.780

No ZLB in DGP -5.045 -4.570 -4.831 -4.008

Quasi-linear DGP -4.160 -3.195 -3.522 -2.456

Case of low r̄r -3.477 -2.531 -2.961 -1.770

Case of large σd -3.453 -2.532 -2.948 -1.784

Note: L1 and L∞ are the average and maximum of the absolute residuals across all the equilibrium conditions based

on 40,000 points of (S−1, τ) on the equilibrium paths and 40,000 random points from uniform distributions over the

entire state space, respectively.
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Figure 1: Policy functions
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Notes: The figure shows the policy functions of output, inflation, and the nominal interest rate for the range of

the state variables shown on each horizontal axis. The thick solid, thin solid, and dashed lines represent the policy

functions of the nonlinear model with the ZLB, the nonlinear model without the ZLB, and the quasi-linear model

with the ZLB, respectively.
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Figure 2: Impulse responses in the baseline experiment

(1) Discount factor shock
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Notes: The figure shows the impulse responses of output, inflation, and the nominal interest rate (in terms of the

percentage deviation from the steady state) to one standard deviation shocks to the discount factor, productivity, and

monetary policy. The thick solid lines represent the true responses, the dots are the responses of the linearized model

with true parameters, and the thin solid and dashed lines are the averages of the posterior means and 90% credible

intervals for the estimated responses, respectively, where the averages are taken over 200 Monte Carlo replications.
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Figure 3: Impulse responses in the case of low r̄r

(1) Discount factor shock
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Notes: The figure shows the impulse responses of output, inflation, and the nominal interest rate (in terms of the

percentage deviation from the steady state) to one standard deviation shocks to the discount factor, productivity, and

monetary policy. The thick solid lines represent the true responses, the dots are the responses of the linearized model

with true parameters, and the thin solid and dashed lines are the averages of the posterior means and 90% credible

intervals for the estimated responses, respectively, where the averages are taken over 200 Monte Carlo replications.
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Figure 4: Impulse responses in the case of large σd

(1) Discount factor shock
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(2) Productivity shock
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(3) Monetary policy shock

2 4 6 8 10 12
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
Output

2 4 6 8 10 12
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005
Inflation

2 4 6 8 10 12
-0.02

0

0.02

0.04

0.06

0.08

0.1
Interest rate

Notes: The figure shows the impulse responses of output, inflation, and the nominal interest rate (in terms of the

percentage deviation from the steady state) to one standard deviation shocks to the discount factor, productivity, and

monetary policy. The thick solid lines represent the true responses, the dots are the responses of the linearized model

with true parameters, and the thin solid and dashed lines are respectively the averages of the posterior means and

90% credible intervals for the estimated responses, where the averages are taken over 200 Monte Carlo replications.
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