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Abstract This paper develops an endogenous regime switching approach to modeling
financial crises. In the model there are two regimes, one a crisis regime, the second a regime
for normal economic times. The switch between regimes is based on a probability deter-
mined by economic variables in the economy. Agents in the economy know how economic
fundamentals affect the probability of moving in or out of the crisis state. That is, it is a
rational expectations solution of the model. The solution then ensures that decisions made
in the normal state fully incorporate how those decision affect the probability of moving
into the crisis state as well as how the economy will operate in a crisis. The model developed
captures all of the salient features one would want in an empirical model of financial crises.
First, it captures the non-linear nature of a crisis. Second, the regime switching model is
solved using perturbation methods and a second order solution. This allows the solution to
capture the impact of risk on decision rules due both in an out of the crisis. Third, since the
solution method is perturbation based it can handle a number of state variables and many
shocks. That is, we are less constrained than current non-linear methods in terms of the
size of the model. Fourth, the speed of the solution method means that non-linear filters
(e.g. particle filter) can be used to calculate the likelihood function of the model for a full
Bayesian estimation of the relevant shocks and frictions that are fundamental to models
of financial crises. Fifth, the fully rational expectations nature of the solution allows one
to ask key counterfactual policy questions. We adopt this approach to study sudden stop
episodes in Mexico. Our model is an adaption of Mendoza (2010). In particular, we rewrite
his occasionally binding collateral contraint model as a multi regime model and take it to
the data using our new estimation procedures.
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1 Introduction

This paper develops a new approach to estimating structural macroeconomic models of
financial crises. Financial crises are rare but large events, implying that any reasonable
model for analyzing crises must be non-linear. This non-linearity of course poses problems
computationally, particularly when one wants to take these models to the data formally
using likelihood based empirical methods. In this paper we combine two key types of
non-linearity. The first writes models of financial crises as a two (or more) regime model.
By viewing a financial crisis as a discrete regime we can capture the large and significant
change in an economy in crisis. The second is to solve our model to a second order solution,
allowing us to capture the impact of risk on decision making both in and out of the the
crisis.

The core of the new methodology is an endogenous regime switching approach to mod-
eling financial crises. In the model there are two regimes, one a crisis regime, the second a
regime for normal economic times. In our model a crisis regime is a regime where an occa-
sionally binding borrowing constraint binds, (Mendoza 2010). The switch between regimes
is based on a probability determined by economic variables in the economy. Likewise, the
switch back to normal times is based on economic fundamentals. In our model the prob-
ability of moving to the crisis regime where the borrowing constraint binds is a logistic
function of the debt to output ratio. Agents in the economy know of this probability and
how debt, output and other choices map into the probability of moving in or out of the
crisis state. That is, it is a rational expectations solution of the model. Our solution then
ensures that decisions made in the normal state fully incorporate how those decision affect
the probability of moving into the crisis state as well how the economy will operate in a
crisis (i.e the decision rules in this crisis).

The approach we develop allows us to capture all of the salient features one would
want in an empirical model of financial crises. First, it captures the non-linear nature of a
crisis: the crisis state can have very different properties/parameters from the normal state.
Second, we solve the regime switching model using perturbation methods and a second
order solution. This means that we can capture the change in decision rules as risk changes
in a crisis. Third, since our solution method is perturbation based we can handle a number
of state variables and many shocks. That is, we are less constrained than current non-linear
methods in terms of the size of the model. Fourth, the speed of the solution method means
that we can use non-linear filters to calculate the likelihood function of the model for a full
Bayesian estimation of the relevant shocks and frictions that are fundamental to models of
financial crises. Fifth, the fully rational expectations nature of the solution allows us to ask
counterfactual policy questions.

The literature on Markov-switching linear rational expectations (MSLRE) is now well
established (e.g Leeper and Zha (2003), Davig and Leeper (2007), and Farmer, Waggoner,
and Zha (2009)). The MSLRE approach introduces an important nonlinearity into the
standard linear rational expectations models. That nonlinearity is a discrete change in the
parameters across regimes. The MSLRE approach has been widely used to model shifts in
monetary and fiscal policy (e.g Bianchi 2014 or Davig, Leeper, and Walker 2010). Markov-
switching models in general are useful because they provide a tractable way to model how
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agents form expectations over discrete changes in policies. Foerster et al (2014) argue
that the MSLRE solution techniques, which impose Markov Switching after linearizing the
model, may differ from the solution to a model where switching is present in the original
model before linearization. In addition, the MSLRE model of course cannot be solved to
higher orders, which may matter in economies where risk is important. To address these
issues Foerster et al (2014) develop a perturbation methodology for constructing first or
second order solutions of markov-switching DSGE (MSDSGE) models. A key innovation of
their approach is to work with the original MSDSGE model directly, rather than starting
with a system of linear rational expectations equations. Our approach builds on their
approach, but solves a class of model when the probability of regime switch is an endogenous
function of the economy. An exogenous switching model would not be interesting for
financial crisis models as choices (for debt, production, policy) would all be unrelated to
whether or not a crisis occurs

The application of the methodology is most closely related to the literature that has
built on the seminal work of Mendoza (2010). This literature has studied the normative
properties of model economies with endogenous financial crises (also labelled sudden stops or
credit crunches). Some examples include Bianchi (2011) who uses an endowment version of
such an economy and finds that the competitive equilibrium always entails more borrowing
relative to the constrained social planner allocation, and that a prudential tax on debt
(i.e., a prudential capital control) can replicate the social planner allocation. Benigno et
al (2012) show that in a production economy agents can actually borrow too little relative
to what is socially optimal. Benigno et al (2014) compare alternative tax instruments
chosen by a Ramsey planner in the same economy analyzed by Bianchi (2011) and find
that taxes on consumption (i.e., real exchange rate interventions) dominate capital controls
as a policy tool because they can achieve the unconstrained allocation while capital controls
can achieve only the constrained efficient one. Cespedes, Chang and Velasco (2012) compare
the transmission mechanism of alternative policy interventions in a similar model. Jeanne
and Korinek (2011) and Bianchi and Mendoza (2010) analyze models in which the price
externality arises because agents fail to internalize the effect of their decisions on an asset
price. Korinek and Mendoza (2013) provide a thorough review of the models, questions and
results from this large literature. They conclude by stating that an important future step
for this literature is the “development of numerical methods that combine the strenghts of
global solution methods in describing non-linear dynamics with the power of perturbation
methods in dealing with a large number of variables so as to analyze sudden stops in even
richer macroeconomic models”. This is exactly what the methodology developed in this
paper delivers.

The economic innovation of the paper is then to take the lessons from this normative
literature to the data and develop ways to implement these policies. Since the model
will be estimated on the data we can test, in a counterfactual sense, how various policies
would have worked in different historical episodes. This is an important innovation to the
literature, as the current papers (including my own) largely discuss policies effectiviness
while abstracting away from the historical sequence of shocks that occured in any given
crisis period. The paper will also contribute by documenting the sources of financial crises
by identifying the key shocks that drive us into a crisis.

4



There are many possible applications of our approach to other classes of models. For
example, Bocola (2015) builds a model of sovereign default. His estimation procedure is to
first estimate the model outside of the crisis period, using a solution technique that assumes
a crisis will not occur. Conditional on those parameter estimates a crisis probability that is
exogenous is appended to the model. Our approach allows one to estimate model parameters
fully incorporating the possibility of a crisis, and allowing for that crisis to be a function of
the economy.

Other methods have been developed to deal with occasionally binding constraints. Most
recently Guerrieri and Iacoviello (2015) developed a set of procedures called OccBin. OccBin
is a certainty equivalent solution method which requires agents to know precisely how long
a regime (the one you are not currently in) will apply if there are no shocks, making
it functionally quite similar to the perfect foresight methods used in the ZLB literature
(Eggertsson and Woodford; Christiano, Eichenbaum, and Rebelo). These methods rule out
precautionary effects, which we find to be important for the model we are looking at (we
can’t of course claim that these affects are important for all occasionally binding constraint
models).

2 The Model and the Competitive Equilibrium

In this section, we describe our model set-up. The model is largely from Mendoza (2010).
An exception is that we use a interest elastic debt function to pin down debt instead of an
endogenous rate of time preference.

2.1 Representative Household-Firm

As in Mendoza (2010) there is a representative household that also makes decisions about
production and capital accumulation. This structure ensures that the working capital con-
straint affects the borrowing constraint, a key feature of Mendoza’s paper The households
maximizes the utility function

U ≡ E0

∞∑
t=0

{
βt

1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (1)

with Ct denoting the individual consumption and Ht the individual supply of labor. The
elasticity of labor supply is ω, while ρ is the coefficient of relative risk aversion.

Households maximize utility subject to their budget constraint. The constraint each
household faces is:

Ct + It = AtK
η
t−1H

α
t V

1−α−η
t − PtVt − φrt (WtHt + PtVt)−

1

(1 + rt)
Bt +Bt−1 (2)

Vt are imported intermediate goods. Pt is the price of these imports, which will be a
stochastic process specified below. This shock is interpreted as a terms of trade shock.
Bt are one period international bonds with price net interest rate rt. The interest rate is
exogenous and equal to a stochastic process specified below. The φrt term reflects a working
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capital constraint, both wages and intermediate goods must be paid for with borrowed
funds. The price of labor and capital are given by wt and qt, both of which are endogenous
variables, but taken as given by the household. Investment incurs an adjustment cost in
terms of net investment:

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
(3)

It is gross investment.
The agents faces a collateral constraint:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) ≥ −κqtKt (4)

Households maximize (1) subject to (2) and (4) by choosing Ct, Bt, Kt, Vt and Ht. The
first-order conditions of this problem are the following:

Ct :

(
Ct −

Hω
t

ω

)−ρ
− µt = 0 (5)

Vt : (1− α− η)AtK
η
t−1H

α
t V
−α−η
t = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
(6)

Ht : αAtK
η
t−1H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+Hω−1

t (7)

Bt : µt = λt + β (1 + rt)Etµt+1 (8)

Kt : Etµt+1β

 1− δ +

(
ι
2

(
Kt+1

Kt

)2

− ι
2

)
+ηAt+1K

η−1
t Hα

t+1V
1−η−α
t+1

 = µt

(
1− ι+ ι

(
Kt

Kt−1

))
− λtκqt (9)

Market optimal prices for capital and labor are

qt = 1 + ι

(
Kt −Kt−1

Kt−1

)
(10)

Wt = Hω−1
t (11)

The last two conditions are the budget and complementary slackness conditions

Ct + It = AtK
η
t−1H

α
t V

1−α−η
t − PtVt − φrt (WtHt + PtVt)−

1

(1 + rt)
Bt +Bt−1 (12)(

1

(1 + rt)
Bt − φ (1 + rt) (wtHt + PtVt) + κqtKt

)
λt = 0 (13)

where λt is the multiplier on the international borrowing constraint.
We have three exogenous processes and 4 shocks. The interest rate has a debt elastic

component as well as a stochastic shock to the elasticity (country specific risk premium) as
well as to world interest rates.

rt = r∗ + (ψr + σrεr,t)
(
eB−Bt − 1

)
+ σwεw,t
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laws of motion for the exogenous variables

logAt = a(st) + ρA logAt−1 + σAεA,t (14)

logPt = p(st) + ρP logPt−1 + σP εP,t (15)

The borrowing cushion is given by the amount of borrowing over the debt limit

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt (16)

where B∗t ≥ 0.

2.2 Regime Switching

2.2.1 Re-writing the Slackness Condition

The complementary slackness condition (13) is summarized as

B∗t λt = 0, with B∗t , λt ≥ 0.

To re-interpret this condition, note there are two regimes: one in which the constraint binds
(B∗t = 0, λt ≥ 0), and one in which it does not (B∗t ≥ 0, λt = 0). The variable st ∈ {0, 1}
denotes the regime, and whether the constraint binds (st = 0) or does not bind (st = 1).
The regime switching variables ϕ (st) = γ (st) = st turn ”on” or ”off” the relevant portions
of the slackness condition. Having two parameters allows flexibility so that regime switching
affects to a maximal extent both the level of the economy as well as how it responds to
other state variables–in effect the slope and intercept of the decision rules.

The exact functional form is somewhat flexible, but one option that works well is

ϕ (st)B
∗
ss + γ (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− γ (st)) (λt − λss) . (17)

This functional form works well for several reasons. First, note that when st = 0, then
ϕ (0) = γ (0) = 0 and so the equation simplifies to

λt = 0 (18)

and when st = 1 then ϕ (1) = γ (1) = 1 and so the equation simplifies to

B∗t = 0. (19)

Further, the equation pins down the steady state values appropriately. As will be explained
in more detail later, only the switching variable ϕ (st) is perturbed, so the steady state
satisfies

ϕ̄B∗ss = (1− ϕ̄)λss (20)

where ϕ̄ denotes the ergodic mean of ϕ (st). Then if only the non-binding regime occurs,
then ϕ̄ = 0 and

λss = 0 (21)
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whereas if only the binding regime occurs then ϕ̄ = 1 and

B∗ss = 0. (22)

Intermediate values of ϕ̄ scale between these to cases according to

ϕ̄B∗ss = (1− ϕ̄)λss. (23)

Finally, due to the elasticity-type parameter γ (st), regime switching will affect the first-
order decision rules. To see this, note that the total derivative of the above and evaluated
at steady state is

γ (st) dB
∗
t = (1− γ (st)) dλt.

Again, when st = 0 then
dλt = 0

which implies a constant λt, and when st = 1 then

dB∗t = 0

which implies a constant B∗t .

2.2.2 Endogenous Probabilities

In order to ensure the regime switching setup maps as closely to the original framework
as possible, the transition probabilities are logistic functions. When the constraint is not
binding, the probability that it binds the next period depends on the value of its debt
relative to the credit limit (??):

Pr (st+1 = 1|st = 0) =
exp (−γ0,1B

∗
t )

1 + exp (−γ0,1B∗t )
(24)

where γ0,0 = γ0,1B
∗
ss.

When the constraint is binding, the probability that it does not bind the next period
depends on the slackness multiplier

Pr (st+1 = 0|st = 1) =
exp (−γ1,1λt)

1 + exp (−γ1,1λt)
(25)

The transition matrix is then

Pt =

[
p00,t p01,t

p10,t p11,t

]
=

[
1− exp(−γ0,1B∗t )

1+exp(−γ0,1B∗t )

exp(−γ0,1B∗t )

1+exp(−γ0,1B∗t )
exp(−γ1,1λt)

1+exp(−γ1,1λt) 1− exp(−γ1,1λt)
1+exp(−γ1,1λt)

]
.

Note that as γ0,1, γ1,1 → ∞ the probabilities achieve the threshold behavior of the
original constraint.

In addition to the borrowing constraint, several other parameters change at the same
time as the regime, which allows for capturing important aspects of crises. In particular,
the laws of motion switch intercepts, so

logAt = a (st) + ρA logAt−1 + σAεA,t (26)

logPt = p (st) + ρP logPt−1 + σP εP,t (27)
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3 Competitive Equilibrium

The competitive equilibrium is given by first-order conditions for the representative household-
firm (5 equations) (

Ct −
Hω
t

ω

)−ρ
= µt

(1− α− η)AtK
η
t−1H

α
t V
−α−η
t = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
αAtK

η
t−1H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+Hω−1

t

µt = λt + β (st) (1 + rt)Etµt+1

Etµt+1β (st)

 1− δ +

(
ι
2

(
kt+1

Kt

)2

− ι
2

)
+ηAt+1K

η−1
t Hα

t+1V
1−η−α
t+1

 = µt

(
1− ι+ ι

(
Kt

Kt−1

))
− λtκqt

market price equations (2 equations)

qt = 1 + ι

(
Kt −Kt−1

Kt−1

)
Wt = Hω−1

t

budget constraints (2 equations)

Ct + It = AtK
η
t−1H

α
t V

1−α−η
t − PtVt − φrt (WtHt + PtVt)−

1

(1 + rt)
Bt +Bt−1

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
the debt cushion and borrowing limit constraints (2 equations)

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt

ϕ (st)B
∗
ss

(
B∗t
B∗ss

)γ(st)

= (1− ϕ (st))λss

(
λt
λss

)1−γ(st)

and laws of motion (3 equations)

rt = r∗ + (ψr + σrεr,t)
(
eB−Bt − 1

)
+ σwεw,t

logAt = a (st) + ρA logAt−1 + σAεA,t

logPt = p (st) + ρP logPt−1 + σP εP,t

and an auxiliary equation connecting capital (1 equation)

kt = Kt
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3.1 Regime Switching Equilibrium

The 15 equilibrium conditions are written as

Etf (yt+1,yt,xt,xt−1, χεt+1, εt, θt+1, θt) = 0

where the variables are separated into the predetermined variables xt−1 and the non-
predetermined variables yt. The variables are 4 predetermined variables

xt−1 = [Kt−1, Bt−1, At−1, Pt−1]

and 11 non-predetermined variables

yt = [Ct, Ht, Vt, It, kt, rt, qt,Wt, µt, λt, B
∗
t ]

with 2 shocks
εt = [εr,t, εw,t, εA,t, εP,t]

and 4 switching variables

θt = [ϕ (st) , a (st) , p (st) , γ (st)] .

These variables are partitioned into some that affect the steady state, θ1,t, and some that
do not, θ2,t. The partition in this case is

θ1,t = [ϕ (st) , a (st) , p (st)]

θ2,t = [γ (st)]

For solving the model, the functional forms are

θ1,t+1 = θ̄1 + χθ̂1 (st+1)

θ1,t = θ̄1 + χθ̂1 (st)

θ2,t+1 = θ2 (st+1)

θ2,t = θ2 (st)

xt = hst (xt−1, εt, χ)

yt = gst (xt−1, εt, χ)

yt+1 = gst+1 (xt, χεt+1, χ)

pst,st+1,t = πst,st+1 (yt)

Using these in the equilibrium conditions and being more explicit about the expectation
operator, given (xt−1, εt, χ) and st, the

Fst (xt−1, εt, χ) =

∫ 1∑
s′=0

πst,s′ (gst (xt−1, εt, χ)) f


gst+1 (hst (xt−1, εt, χ) , χε′, χ) ,

gst (xt−1, εt, χ) ,
hst (xt−1, εt, χ) ,

xt−1, χε
′, εt,

θ̄ + χθ̂ (s′) , θ̄ + χθ̂ (st)

 dµε′ = 0
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Stacking these conditions for each regime produces

F (xt−1, εt, χ) =

[
Fst=1 (xt−1, εt, χ)
Fst=2 (xt−1, εt, χ)

]

3.2 Steady State

The model has switching in parameters that would affect the steady state of the economy
in a fixed parameter case. In other words, the switching parameters ϕ (st), β (st), a (st),
and p (st) all affect the level of the economy directly, and will thus matter for steady state
calculations. In steady state, the transition matrix satisfies

Pss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

[
1− exp(−γ0,1B∗ss)

1+exp(−γ0,1B∗ss)
exp(−γ0,1B∗ss)

1+exp(−γ0,1B∗ss)
exp(−γ1,1λss)

1+exp(−γ1,1λss) 1− exp(−γ1,1λss)
1+exp(−γ1,1λss)

]
.

Let ξ = [ξ0, ξ1] denote the ergodic vector of Pss. Then define the ergodic means of the
switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1)

β̄ = ξ0β (0) + ξ1β (1)

ā = ξ0a (0) + ξ1a (1)

p̄ = ξ0p (0) + ξ1p (1)

The steady state of the economy depends on these ergodic means, and satisfies the
following equations (

Css −
Hω
ss

ω

)−ρ
= µss

(1− α− η)AssK
η
ssH

α
ssV

−α−η
ss = Pss

(
1 + φrss +

λss
µss

φ (1 + rss)

)
αAssK

η
ssH

α−1
ss V 1−α−η

ss = φWss

(
rss +

λss
µss

(1 + rss)

)
+Hω−1

ss

µss = λss + β̄ (1 + rss)µss

µssβ̄

 1− δ +

(
ι
2

(
kss
Kss

)2

− ι
2

)
+ηAssK

η−1
ss Hα

ssV
1−η−α
ss

 = µss

(
1− ι+ ι

(
Kss

Kss

))
− λssκqss

qss = 1 + ι

(
Kss −Kss

Kss

)
Wss = Hω−1

ss

Css + Iss = AssK
η
ssH

α
ssV

1−α−η
ss − PssVss − φrss (WssHss + PssVss)−

1

(1 + rss)
Bss +Bss

Iss = δKss + (Kss −Kss)

(
1 +

ι

2

(
Kss −Kss

Kss

))
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B∗ss =
1

(1 + rss)
Bss − φ (1 + rss) (WssHss + PssVss) + κqssKss

ϕ̄B∗ss = (1− ϕ̄)λss

rss = r∗ + ψr

(
eB−Bss − 1

)
logAss = ā+ ρA logAss

logPss = p̄+ ρP logPss

kss = Kss

We can partially solve some of these directly

Ass = exp
ā

1− ρA

Pss = exp
p̄

1− ρP
qss = 1

Suppose know rss

Ωv =
Pss
(
1 + φrss +

(
1− β̄ (1 + rss)

)
φ (1 + rss)

)
(1− α− η)

Ωw =

(
φ
(
rss +

(
1− β̄ (1 + rss)

)
(1 + rss)

)
+ 1

α

)

Ωk =

1−(1−β̄(1+rss))κ
β̄

− 1 + δ

η

Hss =

(
Ass

Ωη
kΩ

α
wΩ1−α−η

v

) 1
α(ω−1)

Vss =
Ωw

Ωv

Hω
ss

Yss = ΩwH
ω
ss

Kss =
Ωw

Ωk

Hω
ss

Wss = Hω−1
ss

Iss = δKss

kss = Kss

Bss = B̄ − log

(
1 +

rss − r∗

ψr

)
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Css = Yss − (1 + φrss)PssVss − φrssWssHss − δKss +

(
rss

1 + rss

)
Bss

µss =

(
Css −

Hω
ss

ω

)−ρ
λss =

(
1− β̄ (1 + rss)

)
µss

B∗ss =
1

(1 + rss)
Bss − φ (1 + rss) (WssHss + PssVss) + κKss

And then rss solves
ϕ̄B∗ss − (1− ϕ̄)λss = 0

4 Calibration

We start the calibration by taking these parameters from Mendoza (2010).

Parameter Value
Risk Aversion ρ = 2
Labor Share α = 0.592
Capital Share η = 0.306
Wage Elasticity of Labor Supply ω = 1.846
Capital Depreciation (8.8% Annually) δ = 0.022766
Capital Adjustment Cost ι = 2.75
Collateral Constraint Parameter (Weakest Case) κ = 0.15
Working Capital Parameter φ = 0.2579
Persistence of Processes ρA = ρP = 0.9
Shock Standard Deviations σr = σw = σa = σp = 0.01

First consider the steady state of the model in the case when only the non-binding
regime occurs. We normalize a (0) = p (0) = 1. Mendoza targets an annualized real rate
of 8.57%. In the regime where the constraint does not bind, the steady state interest rate
in this case is rss = r∗ = 1

β
− 1, and the debt level is Bss = B̄. Setting β = 0.97959

yields r∗ = 0.0208352, which matches the target annualized rate. Mendoza also targets a
debt-to-output ratio of −0.86, which requires B̄ = −1.7517.

B̄ =

(
B

Y

)
ss

Ω
1

1−ω
w

(
Ωη
kΩ

1−α−η
v

) ω
α(1−ω)

Now consider the steady state of the model in the case when only the binding regime
occurs. In line with Mendoza’s estimates on the Mexican sudden stop, we set a (1) = −0.005
and p (1) = 0.005, which, combined with ρa and ρp, lead to a roughly 5% decrease in TFP
and a 5% increase in import prices. We set the interest rate elasticity ψr = 0.05, which
implies the real rate is increasing in debt.
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The following summarizes the rest of the parameterization

Parameter Non-Binding Binding
TFP a (0) = 0 a (1) = −0.005
Import Prices p (0) = 0 p (1) = 0.005
Discount Factor β = 0.97959
Interest Rate Intercept r∗ = 0.0208352
Interest Rate Elasticity ψr = 0.05
Neutral Debt Level B̄ = −1.7517

Finally, we compare four variants of the model that differ in the calibration of the
probabilities. In order to avoid circularity of finding the steady state, which in turn might
depend on the steady state of the transition probabilities, we calibrate the steady state
probabilities and back out the associated parameters of the probability function. That is

γ0,0 = log

(
1

p00,ss

− 1

)
+ γ0,1B

∗
ss

γ1,0 = log

(
1

p11,ss

− 1

)
− γ1,1λss

and then we can directly calibrate p00,ss and p11,ss.

Model p00,ss γ0,1 p11,ss γ1,1

Endogenous 0.98 1000 0.98 1000
Exogenous 0.98 0 0.98 0
Nonbinding Only 1 0 0 0
Binding Only 0 0 1 0

The following table shows the steady state values for the variables in steady state. Note
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that these are the deterministic steady states associated with each model.

Variable Endogenous Exogenous Nonbinding Only Binding Only
K 2.6163 2.6163 2.6599 2.5843
B (level) -1.7320 -1.7320 -1.7517 -1.6787
P 0.0125 0.0125 0.0000 0.0250
A -0.0125 -0.0125 0.0000 -0.0250
C 0.3322 0.3322 0.3794 0.2929
H 0.0730 0.0730 0.0985 0.0509
V -1.6362 -1.6362 -1.5767 -1.6895
I -1.1662 -1.1662 -1.1226 -1.1982
k 2.6163 2.6163 2.6599 2.5843
r (pp) 0.0199 0.0199 0.0208 0.0173
Q 0.0000 0.0000 0.0000 0.0000
W 0.0618 0.0618 0.0833 0.0431
µ 0.5119 0.5119 0.4171 0.5882
λ (level) 0.0016 0.0016 -0.0000 0.0062
B* (level) 0.0016 0.0016 0.0581 0.0000
Y 0.6644 0.6644 0.7114 0.6236
B/Y (level) -0.8912 -0.8912 -0.8600 -0.8998

5 Perturbation

For perturbation, we take the stacked equilibrium conditions F (xt−1, εt, χ), and differentiate
with respect to (xt−1, εt, χ). In general regime-switching models, the first-order derivative
with respect to xt−1 produces a complicated polynomial system denoted

Fx (xss,0, 0) = 0.

Often this system needs to be solved via Gröbner bases, which finds all possible solutions
in order to check them for stability. In our case, all the regime switching parameters show
up in the steady state, and we write θt = θ̄ + χθ̂ (st) so the steady state can be solved.
This is the Partition Principle of Foerster, Rubio-Ramirez, Waggoner, and Zha (2015).
Given these parameters, the regime switching in Fx (xss,0, 0) disappears and simplifies to
the standard no-switching case that can be solved via a generalized eigenvalue procedure.

After solving the eigenvalue problem, the other systems to solve are

Fε (xss,0, 0) = 0

Fχ (xss,0, 0) = 0

and second order systems of the form (can apply equality of cross-partials)

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} .

Recall the decision rules have the form

xt = hst (xt−1, εt, χ)

15



yt = gst (xt−1, εt, χ)

and so the second-order approximation takes the form

xt ≈ xt +H(1)
st St +

1

2
H(2)
st (St ⊗ St)

yt ≈ yt +G(1)
st St +

1

2
G(2)
st (St ⊗ St)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

6 Results

6.1 Stochastic Steady States

This table shows the stochastic steady state conditional on the nonbinding regime.

Variable Endogenous Exogenous Nonbinding Only
K 1.6757 2.6830 2.6605
B (level) -0.8653 -1.7540 -1.7510
P 0.0000 0.0000 0.0000
A 0.0000 0.0000 0.0000
C 0.0322 0.3893 0.3798
H -0.1736 0.1051 0.0987
V -2.0789 -1.5646 -1.5764
I -2.1068 -1.0995 -1.1220
k 1.6757 2.6830 2.6605
r (pp) -0.0226 0.0210 0.0208
Q 0.0000 -0.0000 -0.0000
W -0.1468 0.0889 0.0835
µ 0.8635 0.4011 0.4165
λ (level) -0.0000 -0.0000 -0.0000
B* (level) -0.9710 0.1013 0.0600
Y 0.1980 0.7236 0.7117
B/Y (level) -0.8618 -0.8507 -0.8594
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This table shows the steady state conditional on the binding regime.

Variable Endogenous Exogenous Binding Only
K 2.7412 2.5703 2.5845
B (level) -1.9987 -1.6517 -1.6793
P 0.0250 0.0250 0.0250
A -0.0250 -0.0250 -0.0250
C 0.3354 0.2888 0.2930
H 0.0973 0.0468 0.0510
V -1.6039 -1.6972 -1.6894
I -1.0413 -1.2122 -1.1979
k 2.7412 2.5703 2.5845
r (pp) 0.0331 0.0161 0.0173
Q -0.0000 0.0000 0.0000
W 0.0823 0.0396 0.0432
µ 0.5721 0.5907 0.5882
λ (level) -0.0285 0.0095 0.0061
B* (level) 0.0000 0.0000 0.0000
Y 0.7078 0.6161 0.6237
B/Y (level) -0.9888 -0.8920 -0.9000

7 Estimation of the Endogenous Regime-Switching Model

The advantage of writing the occasionally binding constraint model as an endogenous regime
switching model is that we can take the model to the data using likelihood based estima-
tion methods. Our estimation procedure is a Bayesian approach, based on a second-order
solution of the model.

7.1 Priors for Financial Crises

A problem that we face with financial crisis models, such as the Mendoza (2010) sudden
stop model, is that for any given country the number of periods spent in the constrained
state is relatively small, and the number of crisis events is small as well. While this fact is
good for the countries in question, it is a problem for the econometrician trying to estimate
a model of these events. This contrasts with the existing regime switching literature where
you typically switch between long lived regimes. For example, both regimes in hawk/dove
monetary policy models typically last a decade or more. In the case of financial crises,
with few observations the likelihood function may not be very informative for all of the
parameters in the constrained state. To address this problem we build a prior that incor-
porates information from a panel of countries that have experienced sudden stops. This
dramatically increases the information we have on sudden stop episodes. We then combine
this prior with the likelihood function from the endogenous regime switching model to form
the posterior for a single country.

We build our prior with a preliminary estimation of the model based on a GMM limited-
information approach. Andreasen, Fernandez-Villaverde and Rubio-Ramirez (2014) provide
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analytical solutions for the moments of a model that has been computed to the second (or
third) order. Given that computing the solution to the model is rapid with our perturbation
approach, the availability of analytic moments means that is is computational feasible to
quickly build a prior for the model. We choose moments to exploit the information from a
large panel of countries to form our prior for the estimation of our target country. These
moments include, means, variances, autocorrelations, unconditional probabilities of a crisis,
and potentially higher order moments. Importantly, we calculate these moments by state,
so we can develop prior information for parameters specific to each state.

The prior is formed by minimizing the distance between the model-implied moments
and the empirical counterparts from the data. To build the prior we start by denoting by Ψ̂
a vector of empirical moments from the data. Likewise, denote by Ψ(ζ) the same vector of
moments implied by the MSDSGE model, where ζ contains all the structural parameters to
be estimated, including state specific parameters. Our estimate of ζ will be the parameters
that minimizes the distance between Ψ̂ − Ψ(ζ), weighted with the usual GMM weighting
matrix. The properties and specification of this estimator is by now well known. There
is also a literature that concerns itself with the finite sample properties of this type of
estimate. Here we are unconcerned if the asymptotics hold (though they should since these
are simple moments we calculate.) We are primarily interest in bringing in information
outside of the likelihood function. We can increase or decrease the variance of this prior,
depending on how influential we want these moments to be. For example, we expect to
want to use a stronger prior for the crisis period since there are few observations time series
observations for the likelihood function for a single country. While the procedure here is to
develop our prior, the results themselves may be interesting, as they represent an estimate
of the model that can be thought of as a ’typical’ emerging market economy.

For the non-binding regime the regime duration is quite long lived (in Mexico there
are 3 short crisis periods). The moments we match then are growth rates in this regime.
Since the regime is long lived it is safe to use the moments implied by the model solution
for that regime. These are ergodic moments that essentially imply that you always stay in
that regime. Construction of these moments are described below. For the crisis regime the
economy spends little time in the crisis regime. This means that using unconditional mo-
ments from the decision rules in that regime makes little sense. Instead we use conditional
moments for the crisis regime. In particular, we look at the implied declined in output,
consumption etc. in the first period of the crisis. Construction of these moments for the
model are described below.

7.1.1 Variance-Covariance for Growth Rates

Note that via pruning, we can focus on the first-order terms for computing second moments.
In this case, assume that st = s for all t, and then supress the regime dependency of the
coefficient matrices for notational simplicity. Basic analysis of the shocks produces the
following first and second moments

µε = E [εt] = 0

Σε = V ar (εt) = Inε
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µ∆ε = E [∆εt] = 0

Σ∆ε = V ar (∆εt)

= V ar (εt) + V ar (εt−1)− 2Cov (εt, εt−1)

= 2Ine

Now for the predetermined variables xt, the

µx = E [x̂t] = hx (E [x̂t−1]) + hχ

= (I − hx)−1 hχ

Deriving the variance-covariance matrix of x

Σx = V ar (xt)

= E [x̂tx̂
′
t]− µxµ′x

= hxE
[
x̂t−1x̂

′
t−1

]
h′x − hxµxµ′xh′x + hεh

′
ε

= hxΣxh
′
x + hεh

′
ε

The properties of the vec operator include vec (ABC) = (C ′ ⊗ A) vec (B) which imply

vec (Σx) = (hx ⊗ hx) vec (Σx) + vec (hεh
′
ε)

so the variance-covariance matrix of xt is given by

vec (Σx) =
[
In2

x
− (hx ⊗ hx)

]−1
vec (hεh

′
ε)

Now to derive the autocovariance matrix Σxt,xt−1

Σxt,xt−1 = Cov (xt, xt−1)

= E
[
xtx
′
t−1

]
− µxµ′x

= E
[
hxx̂t−1x

′
t−1 + hχx

′
t−1

]
− E [hxx̂t−1 + hχ]E

[
x′t−1

]
= hxE

[
x̂t−1x

′
t−1

]
− hxµxµ′x

= hxΣx

and the autocovariance matrix Σxt,xt−2

Σxt,xt−2 = Cov (xt, xt−2)

= E
[
xtx
′
t−2

]
− µxµ′x

= E
[
hxx̂t−1x

′
t−2 + hχx

′
t−2

]
− E [hxx̂t−1 + hχ]E

[
x′t−2

]
= hxE

[
x̂t−1x

′
t−2

]
+ hχE

[
x′t−2

]
−
(
hxE [x̂t−1]E

[
x′t−2

]
+ hχE

[
x′t−2

])
= hxE

[
x̂t−1x

′
t−2

]
− hxµxµ′x

= hxΣxt,xt−1

= hxhxΣx
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Now the growth of xt has the moments

µ∆x = E [∆xt] = 0

Σ∆x = V ar (∆xt)

= V ar (∆xt) + V ar (∆xt−1)− 2Cov (xt, xt−1)

= 2Σx − 2Σxt,xt−1

= 2Σx − 2hxΣx

Σ∆xt,∆xt−1 = Cov (∆xt,∆xt−1)

= Cov (xt, xt−1)− Cov (xt, xt−2)− Cov (xt−1, xt−1) + Cov (xt−1, xt−2)

= Σxt,xt−1 − Σxt,xt−2 − Σx + Σxt−1,xt−2

= 2hxΣx − hxhxΣx − Σx

Now turning to yt, the mean is

µy = E [ŷt] = gxE [x̂t−1] + gχ

= gxµx + gχ

the variance-covariance is

Σy = V ar (yt)

= E [ŷtŷ
′
t]− µyµ′y

= gxE
[
x̂t−1x̂

′
t−1

]
g′x − gxµxµ′xg′x + gεg

′
ε

= gx⊀xg
′
x + gεg

′
ε

and the autocovariance between yt and yt−1 is

Σy,yt−1 = Cov (yt, yt−1)

= E
[
yty
′
t−1

]
− µyµ′y

= gxE
[
x̂t−1x̂

′
t−2

]
g′x − gxµxµ′xg′x + gεg

′
ε

= gx
(
Σxt,xt−1

)
g′x + gεg

′
ε

and between yt and yt−2 is

Σy,yt−2 = Cov (yt, yt−2)

= E
[
yty
′
t−2

]
− µyµ′y

= gxE
[
xt−1x

′
t−3

]
g′x − gxµxµ′xg′x

= gxΣxt,xt−2g
′
x

The growth of yt has variance-covariance matrix

Σ∆y = V ar (∆yt)

= V ar (yt) + V ar (yt−1)− 2Cov (yt, yt−1)

= 2 (gx⊀xg
′
x + gεg

′
ε)− 2

(
gx
(
Σxt,xt−1

)
g′x + gεg

′
ε

)
= gx

(
2⊀x − 2Σxt,xt−1

)
g′x

= gx (Σ∆x) g
′
x
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and auto-covariance matrix

Σ∆yt,∆yt−1 = Cov (∆yt,∆yt−1)

= Cov (yt, yt−1)− Cov (yt, yt−2)− Cov (yt−1, yt−1) + Cov (yt−1, xt−2)

= Σyt,yt−1 − Σyt,yt−2 − Σy + Σyt−1,yt−2

= 2gx
(
Σxt,xt−1

)
g′x − gxΣxt,xt−2g

′
x − gx⊀xg

′
x + gεg

′
ε

= gx (2hxΣx − hxhxΣx −⊀x) g
′
x + gεg

′
ε

7.1.2 Means Conditional on First Period of Crisis

First, note that pruning implies a second order is needed for means. The first- and second-
order contributions are

x̂ft = H(1)
st

[
x̂f ′t−1 0 1

]′
x̂st = H(1)

st

[
x̂s′t−1 0 0

]′
+H(2)

st

([
x̂f ′t−1 0 1

]′ ⊗ [ x̂f ′t−1 0 1
]′)

which imply a total effect of
xt = xss + x̂ft + x̂st .

So the stochastic steady state associated with st is given by

x̄fst = (Inx − hx (st))
−1 hχ (st)

x̄sst = (Inx − hx (st))
−1H(2)

st

([
x̄f ′t−1 0 1

]′ ⊗ [ x̄f ′t−1 0 1
]′)

x̄st = xss + x̄fst + x̄sst

Starting from the stochastic steady state of st−1, if the realization of the regime is st,
then

x̂ft = H(1)
st

[
x̄fst−1

0 1
]′

x̂st = H(1)
st

[
x̂s′st−1

0 0
]′

+H(2)
st

([
x̂f ′st−1

0 1
]′ ⊗ [ x̂f ′st−1

0 1
]′)

xt = xss + x̂ft + x̂st .

Similarly, for the non-predetermined variables

ŷft = G(1)
st

[
x̄fst−1

0 1
]′

ŷst = G(1)
st

[
x̂s′st−1

0 0
]′

+G(2)
st

([
x̂f ′st−1

0 1
]′ ⊗ [ x̂f ′st−1

0 1
]′)

yt = yss + ŷft + ŷst .
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7.2 State Space Representation

For likelihood estimation, the state space representation is

Xt = Hst (Xt−1, εt)

Yt = Gst (Xt,Ut)

The observables are
Yt =

[
∆yt ∆ct ∆it rt

]′
Given st and εt, We can construct a first order approximation to ∆yt by

∆yt = yt − yt−1

= G(1)
st

[
x̂′t−1 εt 1

]′ − yt−1

and the first order approximation to xt is

xt = xss +H(1)
st

[
x̂′t−1 εt 1

]′
Therefore, the state equation is

Xt =

 xt
yt

∆yt

 =

 xss +H
(1)
st

[
x̂′t−1 εt 1

]′
yss +G

(1)
st

[
x̂′t−1 εt 1

]′
G

(1)
st

[
x̂′t−1 εt 1

]′ − yt−1


and the observation equation is

Yt =


∆yt
∆ct
∆it
rt

 = D

 x̂t
yt

∆yt

+ Ut

where D denotes a selection matrix.
In matrix form, the above are xt

yt
∆yt

 =

 xss +H
(1)
χ,st

yss +G
(1)
χ,st

G
(1)
χ,st

+

 H
(1)
x,st 0 0

G
(1)
x,st 0 0

G
(1)
x,st −I 0


 x̂t−1

yt−1

∆yt−1

+

 H
(1)
ε,st

G
(1)
ε,st

G
(1)
ε,st

 εt
and 

∆yt
∆ct
∆it
rt

 = S∆yt + Ut

which can be denoted as
Xt = Ast +BstXt−1 + Cstεt

Yt = DXt + EUt
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