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Abstract

We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models

(DFM) that accounts for time-varying uncertainty of several model and data features in order

to provide more accurate and complete density nowcasts. The combination weights depend

on past nowcasting performance and other learning mechanisms that are incorporated in a

Bayesian Sequential Monte Carlo method which re-balances the set of nowcasted densities in

every period using the updated information on the time-varying weights. In this way, we are

able to weight data uncertainty, parameter uncertainty, model uncertainty, including model

incompleteness, and uncertainty in the combination of weights in a coherent way. Using

experiments with simulated data we show that the CDN approach works particularly well in

the presence of large data uncertainty and model incompleteness. For empirical analysis we

use U.S. real-time data and obtain as results that our CDN approach gives more accurate

density nowcasts of GDP growth than a model selection strategy and other combination

strategies throughout the quarter. The relative gains are particularly large for the two first

months of the quarter. CDN performs also well with respect to focusing on the tails and

delivers probabilities of stagnation, measured as negative growth, that provide good signals

for calling recessions in real time, and that are in line with forecasts from the Survey of

Professional Forecasters.
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1 Introduction

Economic forecast and decision making in real time are, in recent years, made under a high

degree of uncertainty. One prominent feature of this uncertainty is that many key statistics are

released with a long delay, are subsequently revised and are available at different frequencies.

Therefore, professional economists in business and government, whose job is to track the swings

in the economy and to make forecasts that inform decision-makers in real time, prefer to ex-

amine a large number of potential relevant time series. In this context factor models provide a

convenient and efficient tool to exploit information in a large panel of time series in a systematic

way by allowing for information reduction in a parsimonious manner while retaining forecasting

power. This is achieved by summarizing the information of the many data releases within a few

common factors.

Several studies have found such factor models very useful for forecasting, see e.g., Stock

and Watson (2002a,b, 2006), Forni et al. (2005) and Boivin and Ng (2005). A recent study

by Giannone et al. (2008) shows that they are particularly suitable for nowcasting. The basic

principle of nowcasting is the exploitation of the information which is published early and

possibly at higher frequencies than the target variable of interest in order to obtain an “early

estimate” before the official number becomes available, see Evans (2005) and Banbura et al.

(2011). A key challenge is dealing with the differences in data release dates that cause the

available information set to differ over points in time within the quarter. This is what Wallis

(1986) coined the “ragged edge” of data. Giannone et al. (2008) evaluate point nowcasts from

a dynamic factor model and highlight the importance of using non-synchronous data release.

These authors show that the root mean square forecasting error decreases monotonically with

each release.

The recent academic literature on factor models and nowcasting has focused on developing

single models that increase forecast accuracy in terms of point nowcasts, see, among others,

Banbura and Modugno (2014) and Banbura and Rünstler (2011). As there is considerable

uncertainty regarding several features of the model specification, for example, choice of variables

to include in the large data set, choice of number of factors, choice of lag length, etc., recent

work by Clark and McCracken (2009, 2010) suggested to follow the idea of Bates and Granger

(1969) and combine forecasts from a wide range of models with different features in order to
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reduce these problems.1 Surprisingly however, few studies in the nowcasting literature focus on

combining nowcasts from different models, Kuzin et al. (2013) and Aastveit et al. (2014) being

notable exceptions. Furthermore, the research interest in forecast combination has more recently

focused on the construction of combinations of predictive densities and not point forecasts, see

e.g. Hall and Mitchell (2007) and Jore et al. (2010).2 A recent extension to density forecasting is

to allow for time varying model weights with learning and model set incompleteness, see Billio

et al. (2013). Using a combination scheme that allows for model set incompleteness, seems

particularly suitable for nowcasting, as economic decision makers produce their nowcasts based

on both incomplete data information (ragged edge problem) and uncertainty about the true

data generating process.

In this paper, we introduce a Combined Density Nowcasting (CDN) approach to Dynamic

Factor Models (DFM) that accounts for time-varying uncertainty of several model and data

features in order to provide more accurate and complete density nowcasts. The combination

weights depend on past nowcasting performance and other learning mechanisms that are incor-

porated in a Bayesian Sequential Monte Carlo method which re-balances the set of nowcasted

densities in every period using the updated information on the time-varying weights.3 In this

way, we are able to weight data uncertainty, parameter uncertainty, model uncertainty, includ-

ing model incompleteness, and uncertainty in the combination of weights in a coherent way. We

address the aforementioned sources of uncertainty using a large unbalanced real-time macroe-

conomic data set for the United States and combine predictive density nowcast from 4 different

DFMs. The 4 DFMs varies in terms of the number of factors included.

In statistical terms, our CDN approach results in a convolution of a set of three probability

density functions: the conditional density of the nowcasts of individual models, the conditional

density of the latent weights of the combination scheme, and finally the density of the com-

bination scheme. The integral of this product of three densities does not have a closed form

solution and has to be evaluated numerically. The algorithm that we use to approximate the

weight and combination scheme densities is an extension of Billio et al. (2013) to the case of

1The idea of combining forecasts from different models have been widely used for economic forecasting. Tim-
mermann (2006) provides an extensive survey of different combination methods.

2See also Aastveit et al. (2014) for a nowcasting application.
3Note the analogy with dynamic portfolio management of a set of assets where periodically a rebalancing of

the assets occurs depending on the dynamic pattern of the weights that incorporate past performance of the
assets.
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dynamic factor models with model incompleteness and data uncertainty. The application of

a Sequential Monte Carlo method leads to good approximations of these two densities in the

convolution. The procedure is computational intensive, when the number of models to combine

increases. However, by making use of recent increases in computing power and recent advances

in parallel programming technique it is feasible to apply the non-linear time-varying weights

to the 4 factor models at different points in time during the quarter. In doing so, we apply

the MATLAB package DeCo (Density Combination), developed by Casarin et al. (2013), which

provide an efficient implementation of the algorithm in Billio et al. (2013) based on CPU and

GPU parallel computing.

We first implement simulation experiments in order to understand the role of incompleteness

for nowcasting . We distinguish between data incompleteness (ragged edge problem) and model

set incompleteness (the true model is not a part of the forecasters’ model space) and compare

point and density nowcasting performance from our CDN approach with the performance of a

Bayesian Model Averaging (BMA) approach and the ex post best individual model. The results

illustrate that all three approaches provide accurate point and density nowcasts when there is

no incompleteness. However, when data incompleteness and/or model set incompleteness is

present, the point and density nowcasting performance from the CDN approach is superior to

both the BMA approach and the ex post best individual model, providing considerably more

accurate nowcasts.

Next, we show the usefulness of our CDN approach applied to 4 different DFMs for now-

casting GDP growth using U.S. real-time data. We divide data into different blocks, according

to their release date within the quarter, and update the density nowcasts at three different

points in time during each month of the quarter for the evaluation period 1990Q2-2010Q3. Our

experiment refers to a professional economist who is interested in dealing with various forms of

uncertainty in real-time, including model specifications.

We find that the CDN approach outperforms a BMA approach, a selection strategy and even

the ex-post best individual model in terms of density nowcasting performance for all blocks.

Interestingly, the relative gains in terms of improved density nowcasts are larger for the first

blocks of the quarter than for the last blocks of the quarter. By studying the standard deviation

of the combination residual, we show that this is higher for the earlier blocks in the quarter
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than for the later blocks in the quarter, indicating that incompleteness plays a larger role in

the early part of the quarter. Thus, there are clear gains in terms of improved nowcasting

performance from our CDN when incompleteness is present. Finally, the standard deviations of

the combination residuals fluctuate over time and seem to increase during economic downturns.

We document that the CDN approach also performs well with respect to focusing on the tails

and delivers probabilities of stagnation, measured as the probability of negative growth, that

provide timely warning signals for calling a recession and are in line with forecasts from the

Survey of Professional Forecasters.

The structure of the paper is as follows. Section 2 introduces our CDN approach. Section

3 describes the data. Section 4 contains results using simulated data and Section 5 provides

results of the application of the proposed method to U.S. nowcasting. Section 6 concludes. In

the Appendix, we provide additional figures.

2 Combined Density Nowcasting to Dynamic Factor Models

There is considerable empirical evidence that Dynamic Factor Models (DFMs) provide accurate

short-term forecasts, see e.g., Giannone et al. (2008) and Banbura and Modugno (2014). These

models are particularly useful in a data rich environment, where common latent factors and

shocks are assumed to drive the co-movements between aggregate and disaggregate variables and

the real-time data flow is inherently high dimensional with data released at different frequencies.

We build on this literature and propose a general model structure which can deal with both

uncertainty related to data due to different sample frequencies and data releases, and uncertainty

regarding model specification, such as selecting the number of factors and the information set.

We start to describe how individual factor models cope with data uncertainty. Next, we

specify the convolution of the three probability density functions that involve a novel combi-

nation scheme that deals with model uncertainty including model incompleteness and we end

with a brief description of the algorithms used to evaluate the convolution of densities.

2.1 Individual Factor Model

Assume we have a monthly (m) unbalanced dataset Xtm , where the unbalancedness is due to

data being released at different points in time (ragged edge). Let Xtm = (x1,tm , . . . , xN,tm)′ be
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a vector of observable and stationary monthly variables which have been standardized to have

mean equal to zero and variance equal to one. A dynamic factor model is then given by the

following observation equation:

Xtm = χtm + εtm = ΛFtm + εtm (1)

where Λ is a (n× r) matrix of factor loadings, Fm =

(
f1tm , . . . , frtm

)′
is the static

common factors and εtm =

(
ε1tm , . . . , εntm

)′
is an idiosyncratic component with zero

expectation and Ψtm = E
[
εtmε

′
tm

]
as covariance matrix.

The dynamics of the common factors follows a VAR process:

Ftm = AFtm−1 +Butm (2)

where um ∼ WN (0, Is), B is a (r × s) matrix of full rank s, A is a (r × r) matrix where

all roots of det(Ir − Az) lie outside the unit circle. The idiosyncratic and VAR residuals are

assumed to be independent:

εtm
utm

 ∼ i.i.d.N(
0

0

 ,
R 0

0 Q

) (3)

with R set to be diagonal.4

Lastly, predictions of quarterly GDP growth, ytq , are obtained by using a bridge equation

where nowcast of quarterly GDP growth (ytq) are expressed as a linear function of the expected

common factors:

ytq = α+ β′Ftq + ςtq (4)

The monthly factors Ftm given k initial conditions, are first forecasted over the remainder of

the quarter using equation (2) to produce the quarterly aggregate density p(Ftq+h|k). To obtain

quarterly aggregates of the monthly factors, (Ftq = F
(3)
tm ), we use the same approach as Giannone

et al. (2008) and Aastveit et al. (2014). Prior to estimating equation (1) and (2), we transform

4The estimates are robust to violations of this assumption, see e.g. Banbura et al. (2012)
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each monthly variable to correspond to a quarterly quantity when observed at the end of the

quarter. Quarterly differences are therefore calculated as xtq = x
(3)
tm = (1−L3

m)(1+Lm+L2
m)Ztm ,

where Lm is the monthly lag operator and Ztm is the raw data. Likewise quarterly growth rates

are calculated as xtq = x
(3)
tm = (1− L3

m)(1 + Lm + L2
m)logZtm .

In order to estimate equations (1), (2) and (4) one can make use of Bayesian approaches

based on Monte Carlo or frequentist estimation principles. In our case we take a pragmatic

approach and make use of standard frequentist approaches based on bootstrapping in order to

estimate equations (1), (2) and (4), and then compute p(Ftq+h|k) and p(ỹtq+h|Ftq+h, k). Here

we apply the boostrapping approach developed in Aastveit et al. (2014) and refer to that paper

for more details. Thus, motivated by Fernandez et al. (2001) and Sala-I-Martin et al. (2004),

we make use of Bayesian averaging of frequentist estimates, extending their Bayesian averaging

approach to account for time-varying weights and model set incompleteness.5

2.2 A convolution of combination, weight and predictive densities

While the dynamic factor model can cope with unbalanced data and provide forecasts of quar-

terly GDP growth using monthly information, there is considerable uncertainty regarding model

specification, such as selecting the number of factors (r) and other components of the informa-

tion set (X). This can potentially result in, say K, different DFM specifications. Selection

criteria and various testing procedure have been proposed in order to address such problems,

see e.g. Bai and Ng (2006).

Instead, we propose to follow the approach by Strachan and Dijk (2013), and rely on Bayesian

combination of several model features. We extend their approach of using fixed model weights

to the situation where we combine a set of predictive densities of model and data features

using time-varying weights as well as allowing for model incompleteness, meaning that the true

model is not necessarily included in the model set. Given that we obtain a combined predictive

density of quarterly growth, we can report tail probabilities of such features as high, low an

even negative growth.

The combined density is a convolution of the conditional predictive densities of the the dif-

ferent models, the conditional densities of the latent weights and the density of the combination

scheme. Assume that there are K specifications of different models, then we propose to compute

5We leave for further research to make an efficient Bayesian estimation procedure for the DFM that we use.
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the combined density nowcast of GDP growth p(ytq+h|y1:tq) as:

p(ytq+h|y1:tq) =
∫
ỹtq+h

(∫
wtq+h

p(ytq+h|ỹtq+h, wtq+h, Ftq+h,K)p(wtq+h|wtq)dwtq+h

)
p(ỹtq+h|Ftq+h,K)p(Ftq+h|K)dỹtq+h

(5)

where p(ytq+h|ỹtq+h, wtq+h, Ftq+h,K) is the combination scheme for the K different predictive

densities with a first-order Markov combination weights distributed as p(wtq+h|wtq); p(ỹtq+h|Ftq+h,K)

is a vector of K predictive densities for the variable ytq+h following equation (4) with K differ-

ent initial conditions; and p(Ftq+h|K) is a K−vector of the predictive densities for the factors

given by equation (2) with K different initial conditions. Notice that the combined density

p(ytq+h|y1:tq) is computed in a recursive way depending on past data. In the previous section,

we described how we estimated the set of predictive densities p(ỹtq+h|Ftq+h,K); hereby we

discuss how to compute the other densities.

We make use of a Gaussian combination scheme which allows for model incompleteness.

This is done via the following specification:

p(ytq+h|ỹtq+h, wtq+h, Ftq+h,K) ∝ exp

{
−1

2

(
ytq+h − wtq+hỹtq+h

)′
σ−1

(
ytq+h − wtq+hỹtq+h

)}
(6)

where wtq+h = (w1,tq+h, ..., wK,tq+h) is a (1×K) vector containing the K densities for the combi-

nation weights and ỹtq+h is a (K×1) vector containing theK predictive densities p(ỹtq+h|Ftq+h, k),

k = 1, ...,K.

In our modeling strategy, combination residuals are estimated and their distribution follows

a Gaussian process with mean zero and standard deviation σ, providing a probabilistic measure

of the incompleteness of the model set. In other words, the model that is specified in equation

(6) can be written as:

ytq+h
= wtq+hỹtq+h + ζtq+h (7)
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with ζtq+h ∼ N (0, σ2).

Thirdly, the combination weights wtq+h have a probabilistic distribution in the unit interval

and we model them as logistic transforms, given as

wk,tq+h =
exp{zk,tq+h}∑M
j=1 exp{zj,tq+h}

, k = 1, ...,K (8)

and

p(ztq+h|ztq , ỹtq−τ :tq)∝exp

{
−1

2

(
∆ztq+h −∆etq+h

)′
Λ−1

(
∆ztq+h −∆etq+h

)}
(9)

with ∆ztq+h = ztq+h − ztq , ztq+h = (z1,tq+h, ..., zK,tq+h) and ∆etq+h = etq+h − etq where

etq+h = (e1,tq+h, ..., eK,tq+h) is a learning function based on past predictive performances. There-

fore, ztq+h is a latent process evolving over time with dynamics following a first-order Markov

specification depending on past performances which describes the contribution of each model

in the combination. The logistic transformation restricts weights to be in the unit interval.

Furthermore, we define

ek,tq+h = (1− λ)

tq∑
i=τ

λi−1ek,i, k = 1, ..,K

where λ is a discount factor, and (tq − τ + 1) is the length of the learning parameter. In the

empirical application we set λ = 0.95 and τ = 1. Following the discussion in Gneiting (2011),

we propose that different scoring rules should be applied depending on the user preference.

Therefore, a user interested in point forecasting could focus on mean square prediction errors;

a user with a more general loss function should focus on scores that are based on density

forecasting, such as the log score, see section 2.4. A user just interested to standard Bayesian

updating and no learning based on past performance scores can set ∆etq+h = 0 and weights will

be driven by a process equal to the previous values plus a news component normally distributed

with zero mean and Λ covariance matrix.

If the three densities in equation (5) did all belong to the normal family with no dynamics,

the integral in (5) could be solved analytically or by simple numerical methods like direct Monte

Carlo simulation. The integral in our case does not have a closed form solution. However, there
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is a perfect analogy between the set up of the equations in our CDN approach and the model

specification in nonlinear State Space literature. Therefore we can apply a Sequential Monte

Carlo method by interpreting the combination scheme in a state space formulation. Equation

(6) is the measurement or observable equation; equations (8) and (9) are nonlinear transition

equations. Equations (1), (2) and (4) can be interpreted as being equivalent to the parameter

equations in the nonlinear State Space but they can also be presented as being part of a general

State Space model where the nonlinear filtering methods are to be used to approximate these

densities. Note that equation (5) accounts for several sources of uncertainty, including different

sample frequencies, different data releases, different information sets and model specifications.

The convolution has such useful properties like commutative, associative and distributive

laws that enable is to be flexible in the order of integration and other properties. As mentioned,

we use sequential Monte Carlo integration to solve part of the integral in (5) by using the

regularized version of the Liu and West (2001) procedure and we make use of draws from the K

individual predictive densities. Therefore ỹjtq+h,k is a draw from p(ỹtq+h|Ftq+h, 1) and wd−jtq+h,1
is

a draw from wtq+h,k with k = 1, ...,K.

Our methodology is very general and allows to convolute predictive densities provided by

various methods (parametric Bayesian and Frequentist models as well as nonparametric meth-

ods), given the condition that p(ỹtq+h|Ftq+h,K) represents densities. We repeat that in the

empirical applications in section 5 we construct predictive densities using frequentist bootstrap-

ping methods and combine these predictive densities using Bayesian inference. The algorithm

is explained in detail in the next section.

Our approach accounts for various sources of uncertainty, such as data uncertainty, param-

eter uncertainty, model uncertainty; and it estimates a time-varying weight wk,tq+h based on

past predictive density performance for each of these components. The resulting predictive

density will integrate out the aforementioned sources of uncertainty while allowing for model

incompleteness. We label this as a Combined Density Nowcasting approach applied to Dynamic

Factor Models.

2.3 Algorithm and parallelization

The main steps to estimate our general model are:
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Step 1: Estimate K DFM models and generate draws for F̃k,tm+h, k = 1, ...,K.

Step 2: Conditional on F̃k,tm+h generate draws of ỹtq+h, k = 1, ...,K

Step 3: Combine the predictions from the K models, accounting for uncertainty on the

number of factors (r) and information set (X), using the convolution mechanism.

We elaborate on each step briefly.

Step 1: The following bootstrap procedure is used to construct simulated forecasts. Let

Â0 = [Â1, . . . , Âp], B̂0, û0,txm , ξ̂0,txm , Λ̂0, α̂0, β̂0, and ê0,tm+hm denote the initial point estimates.

Then, for d = 1, ..., 2000:

1. Simulate monthly F̃txm =
∑p

i=1 ÂiF̃txm−i + B̂0u
∗
txm

, where u∗txm is re-sampled from û0,txm .

2. Simulate X̃txm = Λ̂0F̃txm + ξ∗txm , where ξ∗txm is re-sampled from ξ̂0,txm .

3. Based on X̃txm , re-estimate the model to get a new set of parameter and factor estimates.

Use these to generate factor forecasts according to equation (2), where shock uncertainty

is included by re-sampling from û0,txm .

Step 2: Estimate equation (4) based on the monthly factor estimated in the previous step and

converted to quarterly as described in the previous section, and construct forecasts for ỹtq+h

where shock uncertainty is included by re-sampling from ê0,tm+hm .

Step 3: Apply an extension of the parallelized version of the sequential Monte Carlo algorithm

of Billio et al. (2013) and Casarin et al. (2013) to the case of Dynamic Factor Models. For a

technical description of this algorithm, we refer the reader to Casarin et al. (2013). Here, we

provide some details on the prior. The combination weights are [0,1]-valued processes and one

can interpret them a sequence of prior probabilities over the set of models. In our framework,

the prior probability on the set of models is random, as opposite to the standard model selection

or BMA frameworks, where the model prior is fixed. The likelihood, given by the combination

scheme, allows us to compute the posterior distribution on the model set. In this sense the pro-

posed combination scheme shares some similarities with the dilution and hierarchical model set

prior distributions for BMA, proposed in George (2010) and Ley and Steel (2009) respectively.

The learning strategy also plays a crucial role and we propose to use scores depending on the
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loss function of interest. In the next section we describe our scores for forecast evaluation and

for each metric we apply the corresponding score in the learning mechanism in (9). For all the

cases, we also consider standard Bayesian updating.

We repeat steps 1-3 recursively for every block in each quarter vintage. The exercise is very

time consuming and requires parallelization to be implemented. We parallelize the code in two

directions. First, step 1 and step 2 are parallelized across models, vintages and blocks. Then,

step 3 is parallelized across draws using the MATLAB toolbox DeCo described in Casarin et al.

(2013).6

2.4 Forecast evaluation

The aim of this paper is to provide an efficient methodology which deals with various sources of

uncertainty in order to improve nowcast accuracy. As most other papers focusing on nowcasting

do, we provide first some results on point forecasts. However, as these forecasts are only optimal

for a small and restricted group of loss functions, our main focus is on density forecasting. When

evaluating the predictive nowcasts, we evaluate both the full distribution as well as their tails.

For notational simplicity, we define t = tq in the remaining part of the paper.

To shed light on the predictive ability of our methodology, we consider several evaluation

statistics for point and density forecasts previously proposed in the literature. Suppose we have

k = 1, ...,K different approaches to nowcast GDP. We compare point forecasts in terms of Root

Mean Square Prediction Errors (RMSPE)

RMSPEk =

√√√√ 1

t∗

t∑
t=t

ek,t+h

where t∗ = t− t+ h, t and t denote the beginning and end of the evaluation period, and ek,t+h

is the h-step ahead square prediction error of model k.

The complete predictive densities are evaluated using the Kullback Leibler Information Cri-

terion (KLIC) based measure, utilizing the expected difference in the Logarithmic Scores of

the candidate forecast densities; see, for example, Mitchell and Hall (2005), Hall and Mitchell

(2007), Amisano and Giacomini (2007) and Kascha and Ravazzolo (2010). The KLIC chooses

6If the user was in the last vintage and block, parallelization across models in steps 1 and 2 and parallelization
across predictive draws in step 3 are required to derive predictive densities for future values.
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the model that on average gives the higher probability to events that actually occurred. Specif-

ically, the KLIC distance between the true density p(yt+h|y1:t) of a random variable yt+h and

some candidate density p(ỹk,t+h|y1:t) obtained from model k is defined as

KLICk,t+h =

∫
p(yt+h|y1:t) ln

p(yt+h|y1:t)
p(ỹk,t+h|y1:t)

dyt+h,

= Et[ln p(yt+h|y1:t)− ln p(ỹk,t+h|y1:t))]. (10)

where Et(·) = E(·|Ft) is the conditional expectation given information set Ft at time t. An esti-

mate can be obtained from the average of the sample information, yt+1, . . . , yt+1, on p(yt+h|y1:t)

and p(ỹk,t+h|y1:t):

KLICk =
1

t∗

t∑
t=t

[ln p(yt+h|y1:t)− ln p(ỹk,t+h|y1:t)]. (11)

Although we do not pursue the approach of finding the true density, we can still rank the

different densities, p(ỹk,t+h|y1:t), k = 1, . . . ,K by different criteria. For the comparison of two

competing models, it is sufficient to consider the Logarithmic Score (LS), which corresponds to

the latter term in the above sum,

LSk = − 1

t∗

t∑
t=t

ln p(ỹk,t+h|y1:t), (12)

for all k and to choose the model for which it is minimal, or, as we report in our tables, its

opposite is maximal.

3 Data

We consider in total 120 monthly leading indicators to nowcast quarterly GDP growth in the

United States. Our real-time dataset is similar to the one used in Aastveit et al. (2014).7 As

in that paper, we use the last available data vintage as real-time observations for consumer

prices and survey data if the real-time data vintage is not available. For other series, such

as disaggregated measures of industrial production, real-time vintage data exist only for parts

7The main source is the ALFRED (ArchivaL Federal Reserve Economic Data) database maintained by the
Federal Reserve Bank of St. Louis. In addition some series are also collected from the Federal Reserve Bank of
Philadelphia’s Real-Time Data Set for Macroeconomists, see Croushore and Stark (2001).

13



of the evaluation period. For these variables, we use the first available real-time vintage and

truncate these series backwards recursively. Finally, for financial data, we construct monthly

averages of daily observations.

Following Banbura and Rünstler (2011) we divide the data into “soft data” and “hard data”.

The first set includes 38 surveys and financial indicators and reflects market expectations,

as opposed to the latter set that includes 82 measures of GDP components (e.g. industrial

production), the labor market and prices. The soft data are often timely available (i.e. early

in the quarter), while real activity data are published with a significant delay but this latter

category is considered to contain a more precise signal for GDP forecasting.

The full forecast evaluation period runs from 1990Q2 to 2010Q3. We use monthly real-

time data with quarterly vintages from 1990Q3 to 2010Q4, i.e., we do not take account of data

revisions in the monthly variables within a quarter.8 The starting point of the estimation period

is 1982M1. We study nowcasts at 9 different points in time during a quarter. They correspond to

the beginning, middle and end of each month in the quarter. Since GDP measures are released

approximately 20-25 days after the end of the quarter, our exercise also includes 2 backcasts,

calculated at the beginning and the middle of the first month after the quarter of interest. See

Table 1 for information on the final 11 blocks. When nowcasting GDP growth, the choice of a

benchmark for the “actual” measure of GDP is not obvious (see Stark and Croushore (2002)

for a discussion of alternative benchmarks). We follow Romer and Romer (2000) in using the

second available estimate of GDP as the actual measure.

4 Simulation Exercise

In this section we implement several simulation exercises to understand what are the role of

data incompleteness and model incompleteness for nowcasting. In practice, economic decision

makers produce their nowcasts based on incomplete data information (ragged edge problem) and

uncertainty about the true data generating process (DGP). In the simulation exercises below,

we will therefore distinguish between different degrees of incompleteness. We refer to weak

incompleteness in the case where the forecaster produce forecast based on missing observations

of data (i.e. the ragged edge problem). The DGP is in this case assumed to be a part of the

8The quarterly vintages reflect information available just before the first release of the GDP estimate.
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Table 1. Block information
Block Time Horizon

Nowcasting

1 Start of first month of quarter 2-step ahead
2 10th of first month of quarter (after inflation release) 2-step ahead
3 Around 20-25th of first month of quarter (after GDP release) 1-step ahead
4 Start of second month of quarter 1-step ahead
5 10th of second month of quarter (after inflation release) 1-step ahead
6 Around 20-25th of Second month of quarter 1-step ahead
7 Start of thirds month of quarter 1-step ahead
8 10th of Third month of quarter (after inflation release) 1-step ahead
9 Around 20-25th of third month of quarter 1-step ahead

Backcasting

10 Start of fourth month of quarter 1-step ahead
11 10th of fourth month of quarter (after inflation release) 1-step ahead

The table shows time in the quarter and forecast horizon for the 11 blocks.

forecasters’ model space. On the contrary, when the DGP is not a part of the forecasts’ model

space, we refer to this as a case of strong incompleteness.

We run 4 simulation exercises, where in each exercise we produce recursive density nowcasts

for 60 quarters. For the 3 first simulation exercises, we simulate yt assuming that the DGP

(DGP1) follows a dynamic factor model, described in section 2.1, with 2 factors extracted at

the end of the sample (corresponding to the information set at Block 11). In the last simulation

exercise, we assume that the DGP (DGP2) follows a VAR(4) in GDP growth, the unemployment

rate, core PCE in inflation, and the federal funds rates. DGP2 is estimated from a balanced

panel at the end of the sample. In each simulation exercise, we compare the performance of

our CDN approach, both in terms of point nowcasts (MSPE) and density nowcasts (LS), with

a Bayesian Model Averaging (BMA) approach as well as the best ex-post individual model.

In the first simulation exercise, (Sim1), we estimate (and combine) 4 individual DFMs

with 1-4 factors extracted from a panel corresponding to the information at Block 11. Thus,

in this exercise the DGP is a part of the model space and there is therefore no model set

incompleteness and no data incompleteness. We introduce weak incompleteness in the second

simulation exercise (Sim2). We estimate (and combine) the same individual DFMs with 1-4

factors. The only difference from Sim1 is that the models are now estimated with incomplete

data information. More precisely, the models are estimated using data that corresponds to

the information that is available when nowcasting at the middle of the quarter (i.e., Block 5).
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Hence, there is data incompleteness, but no model incompleteness.

The last two simulation exercises focus on cases of strong incompleteness (cases where both

data incompleteness and model incompleteness is present). In the third simulation exercise,

(Sim3), we estimate (and combine) 4 individual DFMs. However, we assume that for some

reason, the factors are only estimated based on the “hard data” variables in our data set (i.e.

we assume that no survey data are available to the forecaster). Thus, there is weak model

incompleteness, since the “true” model (which is a DFM with 2 factors extracted from the full

data set) is within the model space, but all the models are misspecified in terms of using the

wrong data set (i.e. using just a subset of all the “true” data series in order to extract the

factors). In addition, we also assume that there is data incompleteness as in Sim2. In the final

simulation exercise (Sim4), we also assume a different DGP. In this case, we assume that DGP

follows a VAR(4) (DGP2) in GDP growth, the unemployment rate, inflation and the interest

rate, while we again estimate and combine individual DFMs with 1-4 factors extracted from all

the available data series (i.e. our estimated models are similar to the ones in the Sim2 exercise).

Table 2. Simulation results

BMA Best model CDN

Sim1: No incompleteness
LS -0.251 0.224 0.074

MSPE 0.028 0.025 0.024
Sim2: Weak incompleteness

LS -3.882 -3.875 -0.459
MSPE 0.198 0.161 0.147

Sim3: Strong incompleteness
LS -4.359 -4.328 -0.457

MSPE 0.241 0.240 0.169
Sim4: Strong incompleteness

LS -0.567 -0.555 -0.325
MSPE 0.205 0.186 0.112

The table reports results from the 4 simulation exercises, showing the average log score (LS) and mean square

prediction error (MSPE) for three different prediction methods: standard Bayesian model averaging based on

predictive likelihood (BMA), the ex-post best performing model and our combined density nowcasting (CDN)

approach applied to dynamic factor models. Bold numbers indicates the most accurate model for different

statistics.

Table 2 reports results from the simulation exercises. When there is no model incom-

pleteness the best individual model, CDN and BMA perform very similar in terms of point
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forecasts. There are some differences in terms on density forecasting performance, where the

CDN approach clearly outperforms the BMA approach. As expected, the best individual model

outperforms both BMA and CDN in terms of density nowcasting. Still, the results indicate that

the CDN approach seems work well in the case where there is no data and model incompleteness.

When introducing data and model incompleteness, there are clear gains from using our CDN

approach relative to the other strategies. Starting with the case of weak incompleteness (i.e.,

Sim 2 where only data incompleteness is present), our CDN approach substantially improves

upon the BMA approach, both in terms of point and density nowcasts performance. Inter-

estingly, the CDN approach also outperforms the ex-post best individual model. This result

is rather striking, as the only source of incompleteness, is missing data observations (ragged

edge problem). Thus, this indicates that using a combination scheme that allows for model

incompleteness is important in the case where data observations are missing. The relative im-

provements, compared to the other strategies, are even more evident in the cases of strong

incompleteness (Sim3 and Sim4). Comparing the nowcasting performance from our CDN ap-

proach with the BMA approach and ex-post best individual model, indicates that there is a

scope for substantial improvements in performance by using a combination scheme that allows

for model incompleteness, when both data and model set incompleteness is present.9

5 Empirical Application

In this section, we analyze the performance of our CDN approach for nowcasting U.S. real GDP

growth. The main goal of the exercise is to examine the nowcasting performance of our CDN

approach and to study the role of model incompleteness for nowcasting.

5.1 Point and density nowcasts of GDP growth

We produce density nowcasts/backcasts for GDP growth at 11 different points in time, described

in section 3, using 4 different DFMs. The models differ in terms of the numbers of factors

included.10 Our exercise refers to a researcher who construct nowcasts in real time accounting for

9Note that since DGP1 and DGP2 are rather different, it may be misleading to compare the absolute perfor-
mance for each model from the two different simulation exercises (Sim3 and Sim4).

10We obtained very similar results when using 12 different DFMs: 4 models extracting factors from the hard
data; 4 models using the soft data; and 4 models using all the data. For each group, we then considered 1 to
4 factors, resulting in 4 different DFM specifications for each data group. In general, the models using factors

17



various forms of uncertainty, including uncertainty related to model specification. We consider

three different model specification strategies:

1. SEL: A selection strategy where we recursively pick the model with the highest realized

cumulative log score at each point in time throughout the evaluation period.

2. BMA: A Bayesian model averaging approach based on predictive likelihood.

3. CDN: Our Combined Density Nowcasting approach, applied to the 4 DFMs

Table 3 reports results for the three different model specification strategies at the 11 different

points in time (blocks) during the quarter. In addition, we also report results for the best

performing ex-post individual model (labeled Ex-Post). The first column, shows the LS and

MSPE for the BMA approach, while all other columns report measures relative to the BMA

performance. The table reveals three interesting results. First, with the exception of the results

for Block 1 and Block 2, the point nowcasting accuracy from the different models are very

similar. Second, the CDN approach provides more accurate density nowcasts than BMA and

SEL for all of the blocks. It also provides more accurate density nowcasts for all blocks than

the ex-post best individual model, with the only exceptions being results for block 8 and block

10, where Ex Post performs slightly better than the CDN. Overall, this indicates that there

are clear gains in terms of improved nowcastng performance from our CDN approach when we

take into account the whole density shape of the nowcasts. Third, the relative gains in terms of

improved density nowcasts, are larger for the first blocks of the quarter than for the last blocks

of the quarter. This supports the findings from the simulation exercises in section 4, which

showed that the gains from the CDN approach are larger when uncertainty is high, and thus

the incompleteness is strong. In the early part of the quarter the data incompleteness (denoted

as weak incompleteness) is larger than in the latter part of the quarter. In addition, when the

data uncertainty is high, it is also more likely that it becomes harder to detect the “true” DGP

than when the data uncertainty is low. That is, it is also more likely that model incompleteness

is present when data uncertainty is high.

To illustrate the role of higher incompleteness, figure 1 shows the standard deviations of

the combination residuals for the incomplete model sets, see equation 7, over time for Block

extracted form all the data series were superior to the models extracting factors from either hard or soft data.
For brevity, and in order to save computational time, we therefore only report results when combining 4 different
DFMs.
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Table 3. Point and density forecasting

BMA SEL Ex Post CDN
Block 1

LS -1.441 1.124 0.926 0.590
MSPE 0.583 0.988 0.524 0.542

Block 2
LS -1.101 1.117 0.954 0.715

MSPE 0.317 1.032 0.959 0.924
Block 3

LS -0.980 0.987 0.977 0.814
MSPE 0.289 0.989 0.983 1.025

Block 4
LS -0.892 0.997 0.978 0.862

MSPE 0.275 0.991 0.977 1.007
Block 5

LS -0.768 0.991 0.961 0.897
MSPE 0.241 0.990 0.969 1.002

Block 6
LS -0.788 0.993 0.964 0.882

MSPE 0.247 0.989 0.969 0.984
Block 7

LS -0.743 0.990 0.953 0.911
MSPE 0.242 0.991 0.958 0.969

Block 8
LS -0.619 1.000 0.968 0.995

MSPE 0.203 0.995 0.972 1.024
Block 9

LS -0.655 0.998 0.965 0.949
MSPE 0.218 1.002 0.979 0.973

Block 10
LS -0.594 1.023 0.951 0.998

MSPE 0.189 1.011 0.980 1.031
Block 11

LS -0.610 0.995 0.952 0.931
MSPE 0.187 0.991 0.974 0.989

The table shows average log score (LS) and mean square prediction error (MSPE) for four different prediction

methods: standard Bayesian model averaging based on predictive likelihood (BMA), selecting the model with

highest recursive score at each point in time (SEL), the ex-post best performing model and our combined density

nowcasting (CDN) approach applied to dynamic factor models for different blocks. The results in the second,

third and fourth column show LS and MSPE relative to the BMA measure. Bold numbers indicates the most

accurate model for different statistics. See Table 1 for information on different blocks.
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Figure 1. Standard deviation of the combination residuals

1993Q1 2001Q1 2009Q1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

 

 

1 5 11

Standard deviation of the combination residuals for incomplete model sets from equation 7, for Block 1, Block 5

and Block 11.

1, Block 5 and Block 11. The figure reveals two interesting observations. First, for most of

the time observations, the standard deviation of the combination residuals is higher for Block

1 than Block 5 and Block 11, and higher for Block 5 than Block 11. This observation therefore

confirms that incompleteness is higher in the early part of the quarter than in the later part of

the quarter. Second, the standard deviations of the combination residuals fluctuate over time.

Interestingly, the standard deviation of the combination residual is high in 2001 and in the

latter part of 2008 and the early part of 2009. This coincides with the U.S. economy being in a

recession. The high standard deviation is evident for Block 1 and Block 5 for the 2001-recession,

and even more pronounced for the Great Recession, increasing the standard deviation for the

combination residual for all blocks. In section 5.2 we will more carefully study the performance

of our CDN approach during economic downturns.

Figure 2 shows the weights associated with the 4 dynamic factor models for Block 1, Block

5 and Block 11. We notice the large uncertainty on the weights, with substantial variation

over time. There is a clear indication that DFMs with either 1 or 2 factors obtain higher

weights than DFMs with 3 and 4 factors. Moreover, the weights are also changing between
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the blocks. Finally, the red dotted line in each subfigure shows the corresponding weights

obtained by the BMA approach. Comparing the CDN weights with the BMA weights, we

see two interesting differences. First, the median of the CDN weights and BMA weights differ

substantially, where there are much larger movements over time from the BMA weights. Second,

the BMA approach selects much more extreme weights, attaching almost all the weights to one

single model, consistent with findings in Amisano and Geweke (2013). The main difference

between our CDN approach and the BMA approach, is that our weighting scheme allows for

model incompleteness.11

Finally, figure 3 shows a full set of recursive real-time out-of-sample density nowcasts for U.S.

GDP growth for the period 1990Q2-2010Q3 at three different blocks (Block 1, 5 and 11). The

three panels illustrate how the precision of the predictive densities improves, i.e., being more

narrow and centered around the actual GDP values, as more information becomes available.

5.2 Prediction of the business cycle phases

In the previous section we have shown that the CDN approach provides accurate nowcasts when

focusing on the entire distribution of GDP growth. The full distribution of the CDN can also

be used to compute probabilities to be in specific phases of the business cycle. There is a large

literature on estimating and timely detect turning points and economic downturns, see e.g.,

Harding and Pagan (2002), Chauvet and Piger (2008), Hamilton (2011) and Stock and Watson

(2014). The individual economists in the The Survey of Professional Forecasters (SPF) also

report forecasts of the probability of a decline in the level of real GDP in the current quarter

and the following four quarters. Motivated by this, we use the CDN to study the probability

of negative growth in the current quarter (i.e., GDP growth nowcasts below 0).

Figure 4 compares the recursive probabilities of negative growth in the current quarter from

our CDN approach with the mean responses for the probability of negative growth in the current

quarter provided by the SPF. To ensure that the information set used to construct our CDN

nowcasts are as similar as possible to the information available when the SPF forecasts where

made, we report report CDN nowcasts for Block 5.12 By comparing the the CDN and the SPF

forecasts with actual GDP growth (shown by the bars), we find that both the CDN and SPF

11The BMA weights based on predictive likelihood will also take into account past predictive performance
scores.

12Block 5 corresponds to the information set a few days prior to the release of the SPF forecasts.
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Figure 2. Time-varying weights
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The figures plot the 90% credibility intervals of the model posterior weights and their medians (blue dotted lines)

for Block 1, 5, and 11. The first row of each sub-figure shows weights for DFM models with 1 and 2 factors. The

second row of each sub-figure shows weights for DFM models with 3 and 4 factors. The red dotted line shows

the weights attached to each model using the BMA approach.
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Figure 3. Recursive Nowcasts
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The figures plot recursive nowcasts for Block 1, 5 and 11. The shaded areas show the 90% credibility intervals of

the predictive densities and their medians (blue dotted lines). The red dotted line show actual GDP, measured

as the 2nd release. 23



Figure 4. Probabilities of negative growth
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Probabilities over time of negative quarterly growth given by the CDN approach and SPF. The red and black

lines plot the probabilities scaled by 2 (therefore covering the interval [0,2]); the bars plot the realization.

forecats deliver timely and accurate forecasts of negative growth.

To provide insights about which method is more accurate, we can compute concordance

statistics (CS). The concordance statistics counts the proportion of time during which the

predicted and the actual GDP series are in the same state. We assume two states, either being

in a state of negative growth or in a state of positive growth. We say that a model predicts

negative growth for the current quarter if the probability of negative growth is 50% or larger.

Comparing the CS for the CDN with the SPF, we find that they perform equally good with

CS = 0.963.

6 Conclusion

In this paper, we have introduced a Combined Density Factor Model (CDFM) approach that

accounts for time-varying uncertainty of several model and data features in order to provide more
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accurate and complete density nowcasts. The combination weights depend on past nowcasting

performance and other learning mechanisms that are incorporated in a Bayesian Sequential

Monte Carlo method which re-balances the set of nowcasted densities in every period using

the updated information on the time varying weights. In this way, we are able to weight data

uncertainty, parameter uncertainty, model uncertainty, including model incompleteness, and

uncertainty in the combination of weights in a coherent way.

We first implement simulation experiments in order to understand the role of incompleteness

for nowcasting, distinguishing between data incompleteness (ragged edge problem) and model

set incompleteness (the true model is not a part of the forecasters’ model space). By comparing

point and density nowcasting performance from our CDN approach with the performance of

a Bayesian Model Averaging (BMA) approach and the ex post best individual model, we find

that the CDN approach provides superior nowcasts.

We then show the usefulness of our CDN approach applied to 4 different DFMs for nowcast-

ing GDP growth using U.S. real-time data. The experiment refers to a professional economist

who is interested in dealing with various forms of uncertainty in real-time. We therefore data

into different blocks, according to their release date within the quarter, and update the density

nowcasts at three different points in time during each month of the quarter for the evaluation

period 1990Q2-2010Q3.

We find that the CDN approach outperforms a BMA approach, a selection strategy and even

the ex-post best individual model in terms of density nowcasting performance for all blocks.

Interestingly, the relative gains in terms of improved density nowcasts are larger for the first

blocks of the quarter than for the last blocks of the quarter. By studying the standard deviation

of the combination residual, we show that this is higher for the earlier blocks in the quarter

than for the later blocks in the quarter, indicating that incompleteness plays a larger role in

the early part of the quarter. Thus, there are clear gains in terms of improved nowcasting

performance from our CDN when incompleteness is present. Finally, the standard deviations of

the combination residuals fluctuate over time and seem to increase during economic downturns.

We document that the CDN approach also performs well with respect to focusing on the tails

and delivers probabilities of stagnation, measured as the probability of negative growth, that

are timely and in line with forecasts from the Survey of Professional Forecasters.
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