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Abstract

We propose a model of firm volatility based on customer-supplier connectedness.

In our model, supplier growth rate shocks influence the growth rates of their suppli-

ers, larger suppliers have more customers, and the strength of a customer-supplier link

depends on the size of the customer firm. When the size distribution becomes more dis-

persed, economic activity is concentrated among a smaller number of large customers,

the typical supplier becomes less diversified and its volatility increases. We document

new stylized facts that are consistent with the model. At the macro level, we show that

the firm size distribution and firm volatility distribution evolve together. Economy-

wide firm size concentration explains common movements in firm-level volatility. At

the micro level, we show that the sales network structure is an important determinant

of firm-level volatility.
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1 Introduction

In this paper we document a range of new empirical facts regarding firm size and firm

volatility. At the macroeconomic level, the firm size distribution and the distribution of

firm volatilities evolve in unison. At the microeconomic level, volatilities across firms covary

strongly, and a firm’s volatility is closely related to the structure of its economic linkages

with other firms.

To explain these facts, we develop a theoretical framework in which shocks propagate

through the economy through customer-supplier networks. Our model ascribes the secular

increase in U.S. firm-level volatility documented by Campbell, Lettau, Malkiel, and Xu

(2001) to economy-wide increases in the concentration of customer networks. The model

also replicates the factor structure in firm-level volatility.

The volatility of individual stock returns varies greatly over time (Lee and Engle (1993))

and across different firms (Black (1976), Christie (1982), and Davis, Haltiwanger, Jarmin,

and Miranda (2007)). While much progress has been made in describing the time-series

dynamics of volatility, our understanding of the underlying determinants of stock return

volatility is limited.

In a series of recent paper, several authors model the economy as an aggregator of firm-

level or sector-level shocks. Gabaix (2011) analyzes how the size distribution influences

aggregate fluctuations holding firms’ volatilities fixed. He argues for a “granularity” effect at

the economy-level – a small number of large firms drive aggregate volatility since aggregation

implies that shocks are size-weighted. In related work, Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi (2012) study how aggregate shocks are influenced by network structures.

In this paper, we approach firms themselves as aggregators of upstream shocks to other

firms in their supplier network. Our model embeds the firm-level analogue of granularity

– a small number of large customers drive most of the variation of individual firms. As a

given supplier’s customer size distribution becomes more concentrated, the standard 1/
√
N

diversification of shocks becomes impaired, and the supplier’s volatility increases as a result.
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We show how both the size distribution and network structure interact to produce cross-

sectional heterogeneity and time series dynamics in firms’ growth rate volatility that matches

the data.

Our network model of firm growth makes three critical assumptions. First, customer

growth rate shocks influence the growth rates of their suppliers. When a customer suffers

an adverse productivity shock, it purchases less from its suppliers, and thus a portion of

its shock is transmitted upstream. Second, larger suppliers have a higher probability of

being connected with customers. Hence, large firms typically supply to a higher number of

customers. Third, the weight of a customer-supplier link depends on the size of the customer

firm. A large customer will have a stronger connection with its suppliers than do smaller

customers because, for example, it accounts for a large fraction of the supplier’s total sales.

These simple assumptions have a rich set of macroeconomic and microeconomic impli-

cations for growth rate volatility. First, larger firms have lower volatility because they are

connected to more customers. Firms are aggregators of downstream shocks to the other

firms in their customer network, thus a broader customer base improves diversification.

Second, firms with more concentrated customer networks have higher volatility. In the

model, sizes of customers determine the strength of connections. Therefore, a supplier’s

customer network will be more concentrated if there is high dispersion in its customers’

sizes. When a supplier has some customers that are much larger than others, the large

customers’ shocks will exert an outsized influence on the supplier. A supplier with a very

concentrated customer base will be poorly diversified and have high volatility even if it has

a large number of customers.

In the cross-sectional data, we confirm that firm size and, more tellingly, the concentration

of firms’ customer networks, explains a substantial fraction of the variation in volatility across

firms. Each of these possess stronger explanatory power than the range of other volatility

determinants that have been studied in the literature, including industry concentration and

competition, R&D intensity, equity ownership composition, and firm age or cohort effects.
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Our framework predicts a close relation between the cross-section distributions of size

and volatility. The size distribution at any point in time determines the network structure.

Given firm sizes, the probability distribution of connections for all firms in the network is

pinned down, as are the weights of the links between firms (conditional on a link existing).

The network structure, in turn, determines the volatility distribution. Our model’s random

graph structure means that each supplier’s network is a random draw from the entire size

distribution and therefore inherits the concentration of the entire size distribution. Because

all firms draw from the same economy-wide size distribution, their customer networks have

equal concentration, in expectation. Cross-sectional differences in volatility are therefore

mostly driven by their differences in size rather than differences in customer concentration.

Variation in the size distribution, combined with the determination of volatilities within

the network mechanism, induces endogenous joint variation in the size and volatility distri-

bution. When the size distribution widens, total economic activity is concentrated among a

smaller number of firms. This is confirmed in the data. When the firm size distribution is

highly dispersed, the mean and dispersion in firms’ volatilities are also high. An important

validation of our model is that firm size dispersion predicts average volatility and volatility

dispersion, but not the reverse. We find that time series dynamics in the firm size distribution

can account for trends in average firm-level volatility that have been studied by Campbell

et al. (2001).

This widening of the size distribution affects the diversifiability of shocks for all firms,

but more so for small firms who have few shocks to diversify in the first place. As a result, an

approximate factor structure in total and idiosyncratic firm-level volatility arises in which the

factor is the concentration of the entire size distribution. Consistent with these predictions,

Kelly, Lustig and Van Nieuwerburgh (2012) uncover a factor structure in the volatility of

stock returns from 1926-2010. Even after removing all of the common variation in returns,

the volatility of the residuals inherits the same factor structure as total volatility. The

volatility factor accounts for between 30% and 40% of the time-series variation in firm-level
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volatility. They also show that the same factor structure appears in the volatility of sales

and earnings growth.

We calibrate our network model to evaluate its ability to match a range of moments in the

customer-supplier linkage data. These moments include correlations between a firm’s size, its

growth rate volatility, its number of customers, and the concentration of its customer base, as

well as cross section quantiles of the size, volatility and out-degree distributions. A calibrated

model with strong network feedback effects can match most of the cross-sectional and time-

series moments in the data. Importantly, the model reproduces the strong positive time-series

correlation between cross-sectional size dispersion and average volatility. Furthermore, it also

manages to replicate the negative cross-sectional correlation between size and firm variance,

as well as the negative correlation between customer concentration and firm variance.

Our model’s contribution is to link the size distribution to network formation, which in

turn affects volatility. The relevance of this mechanism extends beyond the specific context

in our paper where shocks travel upstream from customers to suppliers. A literature fol-

lowing John B. Long and Plosser (1987), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi

(2012) and Carvalho and Gabaix (2010) has considered downstream transmission instead.

We investigate a verison of our model where shocks travel downstream from suppliers to

customers. The implications for the size and volatility distributions are identical, but the

implications for the correlations between size and volatility on the one hand, and number

and concentration of customer and supplier networks on the other hand are different. On

balance, the data seem to support the downstream transmission mechanism more strongly.

The precise identification of these different channels in the data is a difficult topic we leave

for future research.

The rest of the paper is structured as follows. Section 2 describes the generic network

model and explores its volatility implications. Section 3 imposes more structure on the

nature of linkages, and it describes the factor structure in volatility that is generated by

our model. Section 4 presents macroeconomic evidence of the association between the firm
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size distribution and the firm volatility distribution. Section 5 describes micro evidence

for the association between firms’ customer network structures and their volatility. Section

6 calibrates the model that to match key features of the macro evidence linking size and

volatility distributions, and the micro network evidence. All of the proofs are in the appendix.

2 A Network Model of Firm Growth

We develop a dynamic network model of customer-supplier relations. In this directed net-

work, firms are exposed to their own idiosyncratic growth rate shocks, and also exposed to

growth rates of their customers. Shocks are propagated upstream through the network and

thus idiosyncratic shocks effectively become systematic.

2.1 Firm Growth

Define Si,t as the size of firm i, and its growth rate as gi,t+1, where Si,t+1 = Si,t exp(gi,t+1).

Firm i’s growth rate is defined as a linear combination of a firm-specific shock and a weighted

average of the growth rates of firms i’s customers:

gi,t+1 = µg + γ

N∑

j=1

wi,j,t gj,t+1 + εi,t+1. (1)

The parameter γ, which is assumed to be less than one in magnitude, governs the rate of

decay as a shock propagates through the network. The weight wi,j,t governs how strongly

firm i’s growth rate is influenced by the growth rate of firm j, and γ
∑N

j=1wi,j,t gj,t+1 is the

network’s aggregate impact on firm i. If i and j are not connected then wi,j,t = 0. Any firm j

that possesses a non-zero weight wi,j,t is interpreted as a customer of firm i. The full matrix

of connection weights is W t = [wi,j,t]. The structure in (15) implies that all rows of W t sum

to one. Its largest eigenvalue λmax is one. Connections are not generally symmetric, thus
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firm j can be a customer of i without i being a customer of j.1

We propose a highly stylized model that imposes stark assumptions on the nature of

the underlying innovations: Each firm i experiences an idiosyncratic, homoskedastic growth

rate shock εi,t+1 ∼ N(0, σε). By convention, the weight on the firm’s own growth is zero

(wi,i,t = 0 ∀ t, i). All dynamics in the volatility of growth rates will arise endogenously.

This is a directed network. Equation (1) says that shocks are propagated upstream,

from customer to supplier, rather than downstream. Shea (2002) lists a class of equilibrium

models in which final demand shocks are transferred upstream; Our model fits into this class.

Our upstream specification emphasizes demand shocks over supply shocks as drivers of the

network component of firm-level volatility.2 Acemoglu et al. (2012) derive a static version of

(2) as the equilibrium outcome in a multi-sector production economy in a constant-returns

to scale economy who has Cobb-Douglas preferences defined over all of the N different

commodities produced in this economy. Theirs is also a directed network, but in their

version the productivity shocks are transferred downstream from suppliers to customers.

The details are in section A of the separate Appendix. This downstream model of volatility

has similar implications for volatility, but not for other moments. We will explore these

implications below.

2.2 Volatility of Firm Growth

In matrix notation, gt+1 is the N × 1 vector of growth rates and εt+1 the vector of shocks,

and (1) is

gt+1 = µg + γW tgt+1 + εt+1, where εt+1 ∼ N
(
0, σ2

εI
)
. (2)

1These growth dynamics generate dynamics to the relative size (or shares) of firms that are similar to
those explored by Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2006) in a series of papers.
However, there is no mean reversion built into our shares. Furthermore, only the customer shares in W t are
relevant for the cash flow dynamics of a firm, not the firm size relative to the entire economy.

2Our specification abstracts from a major source of leakage in the network: retailers. However, if markets
are incomplete, retailers are exposed to some of the supplier’s shocks indirectly because of the labor income
and wealth shocks experienced by consumers (see section B in the separate appendix).
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As long as γ is smaller than one in magnitude,3 the matrix (I − γW t) is nonsingular and

gt+1 can be restated as

gt+1 = (I − γW t)
−1 (

µg + εt+1

)
. (3)

This variance-covariance matrix of gt+1 is therefore

V t

(
gt+1

)
= σ2

ε (I − γW t)
−1 (I − γW ′

t)
−1

. (4)

Let S̃ denote the vector of relative sizes. Then we can define the aggregate growth rate

of this economy as

ga,t+1 = S̃
′

tgt+1 = S̃
′

t (I − γW t)
−1 (

µg + εt+1

)
. (5)

The variance of the aggregate growth rate is given by

Vt(ga,t+1) = σ2
ε S̃

′

t (I − γW t)
−1 (I − γW ′

t)
−1

S̃t. (6)

A standard approach to evaluating systematic versus idiosyncratic risk is to run factor

model regressions. The primary factor is typically a size-weighted aggregate of the left hand

side variables. It is useful to examine how the network model impacts this type of analysis.

Let β denote the N × 1 vector of betas estimated over some sample. Then the residual

growth rate is defined as:

gres
t+1 = gt+1 − βga,t+1 =

(
I − βS̃

′

t

)
(I − γW t)

−1 (
µg + εt+1

)
(7)

The variance of the residual growth rate is given by:

Vt(g
res
t+1) = σ2

ε

(
I − βS̃

′

t

)
(I − γW t)

−1 (I − γW ′

t)
−1
(
I − S̃tβ

′

)
. (8)

3In general, |γ| must be smaller than the largest eigenvalue of W t. Because we have normalized the row
sums of W t to one, one is its largest eigenvalue.
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The variation in W t and S̃t will induce heteroskedasticity in both the total and the residual

growth rates, even though the underlying innovations are i.i.d.

2.3 First-order Effects on Volatility

To better understand the relation between the volatility and the network structure, we

start by focussing on first-order network effects. The first order approximation to the full

network model allows us to develop intuition via analytical expressions for firm volatility

in the model. Provided that |γ| < 1, the first order approximation of the inverse term in

gt+1 = (I − γW t)
−1 (

µg + εt+1

)
is given by

(I − γW t)
−1 = I + γW t + γ2W 2

t + γ3W 3
t + · · ·

≈ I + γW t.

Hence, we have the following first-order approximations of the growth rate and the variance

of the growth rate

gt+1 ≈ (I + γW t)
(
µg + εt+1

)
. (9)

In this first order approximation, firm i’s growth becomes

gi,t+1 ≈ (1 + γ)µg + εi,t+1 + γ
∑

j

wi,j,tεj,t+1. (10)

The variance for this first order approximation is given by:

Vt (gi,t+1) ≈ σ2
ε

(
1 + γ2Hi,t

)
, (11)

where Hi,t ≡ ∑N

j=1w
2
i,j,t is the size Herfindahl of firms in supplier i’s customer network.

Hence, to a first order, the variance of the firm’s growth rate is determined by its customer

network Herfindahl Hi,t, the volatility of the underlying innovations σ2
ε , and the rate of shock
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decay in the network γ.

All dynamics in volatility, according to this model, are driven by the respective supplier’s

customer concentration component, Hi,t. This will allow us to identify the source of common

volatility dynamics among all firms. It is easy to show that the first-order approximation of

volatility delivers a lower bound for the true variance in our full-fledged network model.

Proposition 1. The average variance is bounded below by the average customer Herfindahl:

1

N

∑

i

Vt (gi,t+1) ≥ σ2
ε

(
1 + γ2 1

N

∑

i

Hi,t

)
(12)

This follows because the higher-order feedback effects that we abstract from in the first-

order approximation can only act to increase firm-level volatility.

2.4 Higher-order Network Effects on Volatility

The strength of higher-order network effects depends on γ, which governs the rate of shock

decay, and the properties of the weighted adjacency matrix W t. We can put bounds on these

effects in symmetric versions of our model. To develop intuition, it is helpful to consider

two polar cases. The first case that we consider features maximally strong feedback effects,

but no diversification benefits from linkages. In such a network, each firm i only has one

connection. The corresponding W t matrix has ones above the main diagonal and zeros

elsewhere, except in the (N, 1) position. On the other hand of the spectrum, we consider a

network in which each firm is maximally diversified. Each firm is connected equally to all

other firms in the network. In this case, there is no concentration in suppliers’ customer

bases. The corresponding W t matrix has zeros on the main diagonal and 1
N−1

elsewhere.

These two cases, maximal concentration and maximal diversification, define a lower and

upper bound on the variance of firms in a symmetric network
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Proposition 2. In a symmetric network, the variance of a typical firm’s growth rate is

bounded by: For all i and t, we have

σ2
ε

[(
N−2
N−1

γ − 1
)2

+ 1
N−1

γ2

(
1

N−1
γ2 + N−2

N−1
γ − 1

)2

]
≤ V (gi,t) ≤

σ2
ǫ (1− γ2N )

(1− γ2)(1− γN)2
. (13)

In the case of maximal concentration, as N → ∞, the upper bound converges to an

expression that is identical to that of an AR(1) time-series process:

V (g) =
σ2
ǫ

1− γ2
. (14)

As γ approaches 1, the volatility in the network explodes because shocks do not decay as

they propagate through the network. Fixing γ, expression (??) represents an upper bound

on the volatility in symmetric networks in our model. In the case of maximal diversification,

as N → ∞, the variance of all firms in the diversified network converges to the original shock

variance σ2
ǫ .

As N → ∞, this interval converges to [σ2
ǫ , σ

2
ǫ/(1− γ2)]. As the size distribution and,

hence, the network structure evolve, there will be variation in firms’ growth rate variance

within these bounds. If the network is sufficiently concentrated and γ approaches one, this

range is arbitrarily large.

We cannot solve for the variance of the growth rates for generalW matrices. However, we

can derive tighter bounds than the first-order bounds by using an eigenvector decomposition.

W can be interpreted as a transition probability matrix and the eigenvector associated with

the unit eigenvalue represents its invariant distribution. We use w̃ to denote this vector and

we will refer to these as the ergodic business links. The elements of w̃ can be interpreted

as summarizing the total strength of all the direct and indirect business connections with i.

Similarly, we use w̃−1 to denote the first column of the inverse of the matrix of eigenvectors.
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Proposition 3. There is a lower bound on the variance of firm i given by:

V (gi,t) ≥
w̃2

t,iσ
2
ǫ

(1− γ)2

N∑

k=1

(w̃−1
t,k )

2

The interpretation is straightforward. The larger the ergodic strength of a firm’s business

connections, as summarized by w̃t,i, the higher its volatility. This bound is not a first-order

approximation, but it incorporates all higher-order effects. This bound is obtained by only

collecting the terms associated with the unit eigenvalue. When γ is close to 1, this bound is

likely to be tighter than the first-order bounds.

Corollary 1. There is a lower bound on the the average firm-level variance determined

by the Herfindahl of ergodic links, represented by the eigenvector associated with the unit

eigenvalue:

1

N

∑

i

Vt (gi,t+1) ≥
H̃t

(1− γ)2
σ2
ǫ

N∑

k=1

(w̃−1
t,k )

2

where H̃t =
1
N

∑N

i=1 w̃
2
t,i.

This bound looks similar to the one derived in proposition 1. The difference is that this

bound incorporates higher-order effects, as evidenced by the 1/(1 − γ) term. The relevant

Herfindahl is the one associated with the ergodic business linkages in the network.

3 Size and Volatility

Sofar we have not made any assumptions about the nature of these linkages. To match the

cross-sectional evidence of customer-supplier relations, we introduce two size effects in our

network model. The first concerns the strength of the linkages: larger customers account for

a larger share of the supplier’s sales and hence have a larger impact on the supplier’s growth

rate. The second size effect concerns the number of links: larger suppliers are connected to
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more firms. This model will match many features of the relation between size, volatility, and

customer network concentration in the data.

3.1 Size Effects in Network Structure

The strength of i and j’s customer-supplier relations depend on the size of customer j, and

is defined as

wi,j,t =
bi,j,tSj,t∑N

k=1 bi,k,tSk,t

∀i, j, t. (15)

The existence of a link between i and j is captured by

bi,j,t =





1 if i connected to j at time t

0 otherwise,

and, conditional on a link existing (bi,j,t = 1), the strength of that link is simply a size

weight of customer j relative to the total size of all of i’s customers, Sj,t/
∑N

k=1 bi,k,tSk,t.

This weighting scheme assumes that larger customers have a larger impact on the supplier’s

growth rate.

The linkage structure at time t is determined by the firm size distribution. Each element

of the connections matrix, Bt = [bi,j,t], is drawn from a Bernoulli distribution with P (bi,j,t =

1) = pi,t:

pi,t = Si,t/

(
Z
∑

j

(Sj,t)

)
. (16)

According to this rule, the probability that supplier i and customer j are connected depends

on the size of the supplier, not the customer. Furthermore, larger suppliers have more

connections on average. This is the model’s second size effect.
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3.2 Factor Structure in Volatility

Kelly, Lustig and Van Nieuwerburgh (2012) document that there is a factor structure in firm-

level volatility. Even after removing all of the common variation in returns, the volatility of

the residuals is highly correlated across all firms. The average firm-level volatility accounts

for between 30% and 40% in the overall variation in firm-level volatility, even after removing

common sources of variation from returns. Common volatility fluctuations are shared by

firms across characteristic groupings such as industry and size. We argue that network

concentration is a natural volatility factor.

3.2.1 Firm-level Volatility

The structure of our model embeds a similarity in customer network concentration for all

suppliers, regardless of their size. Thus, the only difference in the network structure across

suppliers of different size is the number of customers they have. This can be seen in the

following large N approximation.

Proposition 4. In the first-order version, firm-level volatility inherits an approximate factor

structure, for large N :

Vt (gi,t+1) ≈ σ2
ε

(
1 +

1

pi,t
γ2Ht

)
. (17)

where Ht denotes the economy-wide Herfindahl.

Because all firms, large and small, draw from the same economy-wide size distribution,

their customer networks have equal concentration in expectation. In (17), this is captured

by all firms’ volatilities being exposed to a common factor: the Herfindahl of the entire firm

size distribution. Cross-sectional differences in volatility are driven by differences in size,

rather than differences in customer concentration, and are captured by one over the linkage

probability, pi,t. Bigger firms have a higher probability of establishing connections, therefore

they typically connect to more firms and achieve better diversification. The factor loading

1/pi,t is smaller for large firms, which scales down the level of their volatility relative to small
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firms. It also makes them less sensitive to fluctuations in the firm size distribution. They

have a lower volatility of volatility.

Corollary 2. If the firm size distribution is log-normal, then firm volatility in the first-order

version of the network for large N is approximately given by:

V (gi,t+1) ≈ σ2
ε

(
1 + γ2

exp
(
σ2
s,t

)

Npi,t

)
, (18)

where σ2
s,t denotes the cross-sectional variance of the size distribution.

According to a first-order approximation of our network model, σ2
s,t is the natural candi-

date for the volatility factor provided that the size distribution is log normal.

Proposition 5. In the first-order version, for large N , if the size distribution is log-normal,

the volatility distribution is also log-normal with mean E [log (V (gi,t+1)− σ2
ε)] ≈ log(σ2

εγ
2Z)+

3
2
σ2
S,t and volatility V (log (V (gi,t+1)− σ2

ε)) ≈ σ2
S,t.

These two equations imply that the dispersion in the size distribution forecasts the mean

and variance of the variance distribution across firms. We show in data and model simulations

that the distributions of log firm size and firm variance at any point in time are approximately

log normal, and that the variance in firm log sizes Granger causes the mean and the variance

of the the volatility distribution.

When the size distribution is not lognormal, other higher order moments may enter as

factors well.

Corollary 3. In the first-order version, for large N , the firm volatility is approximately

given by:

V (gi,t+1) ≈ σ2
ε

(
1 +

γ2

Npi,t
exp

(
∞∑

j=2

2j − 2

j!
κs,j,t

))
. (19)

where µs,j,t ≡ E[(log St)
j ] denotes the j-th central conditional moment and κ1,s,t = µ1,s,t,

κ2,s,t = µ2,s,t, κ3,s,t = µ3,s,t and κ4,s,t = µ4,s,t − 3µ2
2,s,t. In the case of log-normality, the sum

collapses to σ2
s,t.
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As expected, positive skewness and positive excess kurtosis in the distribution of log

size will tend to increase firm-level volatility. These higher order moments could enter as

additional volatility factors.

3.2.2 Residual Volatility

In the literature, idiosyncratic volatility is constructed by first removing the correlated com-

ponent of growth rates or returns with a statistical factor model, then calculating the volatil-

ities of the residuals (see, e.g., Bekaert, Hodrick, and Zhang (2010)). In a sparse random

network model like ours, a standard factor regression is mis-specified. There is no dimension-

reducing factor that can capture commonalities in growth rates since, by virtue of the net-

work, every firm’s shock may be systematic. A telltale sign of the mis-specification of the

factor model is that the residuals inherit a volatility factor structure that looks very similar

to the factor structure for total volatility.

Proposition 6. In a first-order version, the volatility of residuals also inherits an approxi-

mate factor structure:

Vt(g
res
i,t+1) ≈ σ2

ε

(
1 +

1

pi,t
γ2Ht −

[
Si,t

NE[Si,t]
+ γHt

]2)
. (20)

3.2.3 Aggregate Volatility

Finally, we consider the impact on aggregate volatility. In the first-order version of our

economy, aggregate volatility also is governed by the same factor structure.

Proposition 7. In the first-order version, aggregate volatility inherits an approximate factor

structure:

V (ga,t+1) ≈ σ2
εHt (1 + γ)2 . (21)
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Equation (21) predicts a strong link between dispersion in firm size (summarized by the

Herfindahl of the firm size distribution, Ht) and volatility of aggregate growth in the first-

order version of our economy. In fact, this expression can be shown to deliver a lower bound

on aggregate variance in the full-fledged model.

Proposition 8. For large N , the variance is bounded below by:

V ar(gat ) ≥ σ2
ǫHt(1 + γ)2 (22)

4 Macro Evidence on Size Dispersion and Volatility

This section documents new stylized facts about the evolution of the joint distribution of

firm size and firm-level volatility

4.1 Data

We conduct our analysis using stock market data from CRSP over the period 1926–2010 and

cash flow data from CRSP/Compustat over 1952–2010. We consider market and fundamental

measures of firm size and firm volatility calculated at the annual frequency. For size, we use

equity market value at the end of the calendar, or total sales within the calendar year. Market

volatility is defined as the standard deviation of daily stock returns during the calendar year.

Fundamental volatility in year t is defined as the standard deviation of quarterly sales growth

(over the same quarter the previous year) within calendar years t to t+ 4. We also consider

fundamental volatility measured by the standard deviation of quarterly sales growth within a

single calendar year. The one and five year fundamental volatility estimates are qualitatively

identical, though the one year measure is noisier because it uses only four observations.
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Section C in the separate appendix establishes that log size and log volatility are ap-

proximately normally distributed in the data. The near-log normality of size and volatility

distributions is convenient in that the dynamics of each distribution may be summarized

with two time series: the cross section mean and standard deviation of the log quantities.

We next examine these time series in detail.

4.2 Comovement of Size and Volatility Distributions

Figure 1: Average Volatility and Dispersion in Firm Size
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Notes: The figure plots cross section moments of the log size and log volatility distributions. All series
standardized to have mean zero and variance one.

Figure 1 plots the cross-sectional average of log firm-level volatility against two different

measures of size dispersion: the dispersion of log sales and the dispersion of log market equity

across firms. The correlation between average volatility and the market-based measure of

size dispersion is 67%. The correlation between average firm volatility and the sales-based

measure of size dispersion is 61%.

Figure 2 plots the cross-sectional standard deviation of firm-level volatility against the

same two measures of size dispersion. The correlation between volatility and the market-

based measure of lagged size dispersion is 60%. The correlation between volatility and lagged
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Figure 2: Dispersion in Volatility and Dispersion in Firm Size
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Notes: The figure plots cross section moments of the log size and log volatility distributions. All series
standardized to have mean zero and variance one.

sales-based size dispersion is 41%.

Figure 3 plots the mean (top panel) and dispersion (bottom panel) of the log volatility

distribution when volatilities are calculated either from returns are sales growth. Average

return volatility and average sales growth volatility have an annual time series correlation of

64%, and their dispersions have a correlation of 49%, demonstrating a high degree of similar-

ity between market volatilities and its (more coarsely measured) fundamental counterpart.

In section D of the Appendix, we show that these results continue to hold when we

consider individual industries, size quantiles and other slices of the data. It is important to

note that these secular changes in the size distribution are not specific to publicly traded

firms. In section E of the separate appendix, we document that the variance of the log

employment distribution of all firms has also increased over the same sample. There secular

decline in entry and exit rates over that sample may have contributed to the widening of the

size distribution.
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Figure 3: Fundamental and Market Volatility
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Notes: The figure plots the cross section mean (top panel) and standard deviation (bottom panel) of the log
volatility distribution for returns and sales growth. All series standardized to have mean zero and variance
one.

4.3 Granger Causality Tests

This evidence in Figures 1 and 2 raises a question of causality. Our network model predicts

that movements in the size distribution cause the volatility distribution to change. When the

size distribution spreads out (contracts) at time t, the network structure for the subsequent

period adjusts, and diversification of growth rate shocks is hindered (enhanced). While
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Table 1: Granger Causality Tests

Dependent Variable Independent Variables

Intercept µσ,t−1 σS,t−1

µσ,t Coeff -1.18 0.74 0.07
t-stat. -2.82 8.31 2.21

σS,t Coeff -0.28 -0.11 0.97
t-stat. -0.47 -0.88 16.01

Intercept σσ,t−1 σS,t−1

σσ,t Coeff -0.02 0.61 0.04
t-stat. -1.48 5.86 3.12

σS,t Coeff 0.20 -1.19 1.04
t-stat. 1.47 -2.25 15.88

Notes: Annual data 1926–2010. The table reports results of Granger causality tests for the ability of log
firm size dispersion (σS,t−1) to predict the mean (µσ,t) and standard deviation (σσ,t) of the log volatility
distribution. We use the market based volatility measure constructed from stock returns and the market
equity measure of size.

we cannot address the question of economic causality in our empirical tests, we can test

for causality in the time series sense. We use Granger causality tests to evaluate whether

dispersion in firm sizes predicts the mean and standard deviation of the volatility distribution,

after controlling for own lags of the dependent variable. Table 1 presents the results from

these tests. We find that dispersion in the log market equity of US firms has statistically

significant predictive power for average log firm return volatility, and dispersion in log firm

volatility. The reverse is not true. After controlling for own lags of size moments, moments

of the volatility distribution do not predict the size distribution.4 Both of these facts are

consistent with the implications of our network model. This evidence suggests that size

dispersion leads the volatility distribution.

4Lagged dispersion in log volatility appears to Granger cause size dispersion, but the coefficient has the
wrong sign. The hypothesis has the one-sided alternative that volatility dispersion positively predicts size
dispersion, thus this negative result leads us to fail to reject the null.
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4.4 Volatility Factor Structure

Recent research has documented a puzzling degree of common variation in the panel of

firm-level volatilities. Kelly, Lustig and Van Nieuwerburgh (2012) show that firm-level stock

return volatilities share a single common factor that explains roughly 35% of the variation

in log volatilities for the entire panel of CRSP stocks.5This R2 is nearly twice as high,

roughly 70%, for the 100 Fama-French (1993) portfolios. They also show that this strong

factor structure is not only a feature of return volatilities, but also holds for sales growth

volatilities. The puzzling aspect of this result is that the factor structure remains nearly

completely intact after removing all common variation in returns (or sales growth rates) by

extracting principal components, so common volatility dynamics are unlikely to be driven

by an omitted common factor.

The results of Section 3 suggest that our granular network model may be able to explain

the puzzling comovement in firm volatility. (17) predicts an approximate factor structure

among the volatilities of all firms, and suggests that concentration of the lagged economy-

wide size distribution is the appropriate factor. Furthermore, Equation (30) predicts that

factor model residuals will possess a similar degree of volatility comovement, despite residual

growth rates themselves being nearly uncorrelated.

In Table 2, we report results of panel volatility regressions for three different factor mod-

els. The panels consist of volatility of total returns (or sales growth rates) and idiosyncratic

volatilities. Idiosyncratic volatilities are calculated in a one factor model regression of stock

returns on the value-weighted market return or, for sales growth, of individual growth rates

on the sales-weighted aggregate growth rates. In both cases, residuals have average pairwise

correlations that are below 2% in absolute value, despite the original returns having average

correlations over 25% on average.

5Similarly, Engle and Figlewski (2012) document a common factor in option-implied volatilities since
1996, and Barigozzi, Brownlees, Gallo, and Veredas (2010) and Veredas and Luciani (2012) examine the
factor structure in realized volatilities of intra-daily returns since 2001. We provide an economic explanation
for a common factor in firm-level volatility, and argue that the cross-sectional dispersion of firm size is natural
candidate for this volatility factor.
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Table 2: R2 of Volatility Factor Models

Panel A: Total Volatility Panel B: Residual Volatility

Factors Factors

σS,t−1 µσ,t−1 µσ,t σS,t−1 µσ,t−1 µσ,t

Factor Model R2, All Firms

Return Volatility 24.4 25.9 39.3 24.7 26.5 37.5

Sales Gr. Volatility 21.8 23.4 24.3 21.4 25.8 27.8

Return Volatility Loadings by Size Quintile

(1) Big 1.25 1.09 1.18 1.32 1.10 1.19

(2) 1.12 0.92 1.05 1.21 0.93 1.05

(3) 1.07 0.85 0.99 1.15 0.84 0.97

(4) 0.92 0.74 0.90 0.97 0.69 0.83

(5) Small 0.80 0.65 0.84 0.81 0.55 0.71

Return Volatility R2 by Size Quintile

(1) Big 47.9 76.5 90.9 52.6 77.2 90.6

(2) 51.9 74.5 96.4 59.2 73.5 94.1

(3) 54.5 73.3 98.1 63.5 71.7 94.7

(4) 48.3 66.6 96.3 59.3 63.6 91.5

(5) Small 37.7 53.7 87.2 48.9 49.2 79.1

Notes: The table reports factor model estimates for the panel of firm-year volatility observations. In Panel
A, total volatility is measured as standard deviation of daily returns within the calendar year, and residual
volatility is estimated from daily regressions of firm returns on the value-weighted market portfolio within
the calendar year. In Panel B, total volatility in year t is measured as standard deviation of quarterly
observations of year-on-year sales growth for each stock in calendar years t to t + 4. Residual volatility is
measured from regressions of firms sales growth on the sales-weighted average growth rate for all firms. All
volatility factor regressions take the form log σi,t = ai+ bifactort+ ei,t. We consider three different volatility
factors. The first, motivated by our network model, is the lagged cross section standard deviation of log
market equity, σS,t−1. The second and third factors we consider are the lagged and contemporaneous cross
section average log volatility, µσ,t−1 and µσ,t. We report the pooled factor model R2 in percent.

The first factor that we consider is the standard deviation of the lagged log market equity

distribution, in line with Equation A. The second factor we consider is the sales-weighted

average of the left hand side volatility variable. The cross section average is a natural
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Figure 4: Average Firm Volatility by Size Quintile
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Notes: The top panel plots average log return volatility within CRSP market equity quintiles. The bottom
panel reports time series standard deviation of average volatility within each quintile.

benchmark for factor model comparison and it is typically highly correlated with the first

principal component of the panel. When this factor is used, we estimate the model with

the lagged average volatility to maintain comparable timing with the conditioning factor

implied by our model, and also with the contemporaneous average volatility. We report the

full panel R2 based on each factor.

The table shows that the lagged size dispersion has the same degree of explanatory power
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as the lagged average volatility. Both factors capture about 25% of the panel variation in

firm return volatility (Panel A). The contemporaneous average volatility can explain closer

to 40% of the variation, but uses a finer conditioning information set. Panel B repeats

these regressions for the panel of total and idiosyncratic sales growth volatility. In this case

the dispersion in firm sizes explains over 20% of the volatility panel variation, compared to

around 25% for both contemporaneous and lagged average sales growth volatility.

The model also predicts that larger firms have lower loadings on the size dispersion factor,

which lowers both the level of their volatilities relative to small firms, and also lowers their

volatility of volatility. Figure 4 plot the average log firm volatility within size quintiles each

year (top panel), and the volatility of average volatility for size quintiles (bottom panel). The

figures show that large firms have lower levels of volatility and also less time series variation

in volatility. Table 2 and Figure 4 are consistent with the model’s prediction that dispersion

in firm sizes predicts the entire panel of firm-level volatilities.

4.5 Aggregate Volatility Accounting

The volatility of firm-level stock returns has increased from an average of 26% per year

during the 1950’s to 63% per year since 1990 (see, for example, Campbell, Lettau, Malkiel,

and Xu (2001)). Since firm-level volatility of asset returns measures the uncertainty faced

by the managers of firms (Leahy and Whited (1996)), this represents a large increase in

uncertainty. Uncertainty has a major impact on employment and investment (Bloom, Bond,

and Van Reenen (2007), Bloom (2009), Stokey (2012) ).

The divergence between firm-level and aggregate volatility measures has long puzzled

financial economists. Candidate explanations can be divided into two classes, real and finan-

cial. Our stylized facts about the joint distribution of volatility and firm size largely survive

even if we do not use market-based measures of volatility and/or size. This evidence largely

rules out financial explanations of these stylized facts.

We find that accounting for changes in the size distribution nullifies the volatility trends
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Figure 5: Trends in Average Firm Volatility
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Notes: The figure plot log volatility of the value-weighted market equity portfolio (black line) as well as
the residual from a regression of log market volatility on the cross-sectional dispersion in log market equity
(gray line). It also shows estimated time trends in the original volatility data (black dotted line) and in the
residual (gray dotted line), and reports the t-statistic for the time trend coefficient estimate.

identified in work by Campbell et al. (2001). Figure 5 plots the log of aggregate market

volatility, as well as the residual from a regression of log market volatility on the cross-

sectional dispersion in log market equity. This regression has an R2 of 51.3%. The dotted

lines show estimated time trends in the original volatility data (black) and in the residual

(gray). The figure shows that, after controlling for fluctuations in the firm size distribution

over time, there is no anomalous trend in average idiosyncratic volatility in the post-war

era. This is consistent with the derivation of Section 3, which argues that the dispersion

in firm size influences firm-level volatility. Admittedly, our model cannot account for the

declining volatility of the market return over the same period, but this period decline with

a secular decline in the volatility of aggregate output consumption growth and hence is not
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too surprising.

5 Micro Evidence of Granular Networks

This section discusses the micro evidence on business networks.

5.1 Firm-level Network Data

Our data for annual firm-level linkages comes from the Compustat database. It includes

the fraction of a firm’s dollar sales to each of its major customers. Firms are required to

supply customer information in accordance with Financial Accounting Standards Rule No.

131, in which a major customer is defined as any firm that is responsible for more than

10% of the reporting seller’s revenue. Firms have discretion in reporting relationships with

customers that account for less than 10% of their sales, and this is occasionally observed. To

compare the linkage data to our model, we strictly impose the 10% sales truncation in both

the data and simulation when we calibrate the model. We discuss this further in the next

section. Our data set covers the period 1980-2009, and includes 48,839 customer-supplier-

year observations. Our data has been carefully linked to CRSP market equity data by Cohen

and Frazzini (2008), which allows us to associate information on firms’ network connectivity

with their market equity size and their return volatility.

Our empirical work is related to Cohen and Frazzini (2008), who document that news

about business partners does not immediately get reflected into prices. They use the same

data on the business network of firms gathered from their annual reports. We use their

business network data and we find that volatility is propagated upstream to suppliers as

opposed to downstream, to customers. Atalay, Hortaçsu, Roberts, and Syverson (2011)

use the same data to develop a realistic model of the buyer-supplier networks in the U.S.

economy. We will use their insights to develop our model.

The customer-supplier relationship data that we use is from Compustat, and is subject
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to two potential sources of bias. First, the data only include publicly traded firms. Second,

suppliers are only obligated to report material customer relationships, including any customer

that is responsible for more than 10% of the supplier’s sales. We take two steps to address

this empirical limitation. First, and most importantly, we simulate our model using the

full firm size distribution (including private firms), and then censor the simulated data in a

manner that matches the omission of small firms from Compustat data. Similarly, we censor

all simulated customer-supplier links whose weights fall below 10% of the supplier’s sales. By

calibrating a censored simulation against censored data, we are able to draw inferences about

network relationships among firms in the full, uncensored model economy. The second step

we take to address censoring issues is to show that the size and volatility dynamics uncovered

among public firms continues to hold when we pool public firm data with coarser data on

private firms available from the Census Bureau (see Appendix E).

5.2 Network Moments

Out-degrees range between one and 24, while in-degrees range from one to 130. We expect

that both of these distributions are highly distorted due to the truncated nature of the data.

Out-degrees can reach 24 since some suppliers (23%) voluntarily report customers that fall

below the 10% sales threshold. The maximum out-degrees falls to 5 when we strictly impose

the 10% sales truncation. Section F provides more details.

In Table 3, we report correlation statistics of the customer-supplier linkage data that are

relevant to the model structure described in Section 2. We calculate cross section correlations

for each yearly network realization in the Compustat linkage data. We also report the time

series average of annual correlations and a pooled correlation for all firm-year observations

combined. In our network data calculations, size is defined as firm’s annual sales. Columns

(1)-(5) focus on the out-degrees from a supplier to its customers. Columns (6)-(10) focus on

the in-degrees connecting a costumer to its suppliers.

The model assumes that suppliers have stronger connections with their larger customers,
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Table 3: Overview of Size, Volatility, and Customer-Supplier Network Struc-

ture

Supplier Customer
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

wi,j,t logSi,t logSi,t logHi,t logHi,t wi,j,t log Si,t log Si,t logHpurch
i,t logHpurch

i,t

Sj,t Out-Degree logHi,t log σi,t (r) log σi,t (s) Sj,t In-Degree logHi,t log σi,t (r) log σi,t (s)

Raw data

Avg. 0.27 0.03 -0.27 0.18 0.20 0.80 0.37 -0.40 0.19 0.07
t− stat 1.71 0.86 -7.87 3.48 5.32 39.45 21.63 -8.24 1.61 1.07

Truncated data

Avg. 0.30 0.01 -0.30 0.17 0.25 0.91 0.37 -0.44 0.25 0.09
t− stat 1.10 0.21 -7.26 3.49 5.53 45.41 22.79 -8.28 2.06 1.40

Notes: The table reports annual cross section correlations between various features of firm’s customer-
supplier network (based on Compustat data) with firm’s size and volatility. Annual data for 1980-2009. The
table reports the time-series average as well as the t-statistic, measured as the time-series average divided
by the time-series standard deviation estimated over the annual 1980-2009 sample.

and the table shows that this is indeed a very strong feature of the Compustat linkage data.

For each supplier i, we calculate the correlation between its customer’s total sales, and the

fraction of i’s revenues that are due to each customer. We then average this number across

all suppliers in a given year, this is reported in column (1). In an average year, a typical

supplier has a correlation of 27% between the size of its customers and the fraction of total

sales that each customer is responsible for. This supports our assumption that linkage weight

is closely related to the size of the customer.

We also assume that larger suppliers are connected to more customers on average. The

data cannot speak directly to this assumption due to the truncation of all linkages whose

weights fall below 10%. For example, a small firm that has a single customer accounting for

100% of its revenue can show up as having more links than a firm with 11 equally important

customers (weights of 9.1%) due to truncation. Column (2) shows that any correlation that

might exist between size and number of customers is largely destroyed by truncation, with

an average annual correlation of 3%.

Column (3) reports the correlation between a supplier’s size and the size Herfindahl of its
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customer network. As in the model, a supplier’s customer Herfindahl is calculated based on

the supplier’s weighted out-degrees, Hout
t,i =

∑
j w

2
i,j,t. Due to the log normal feature of our

model, we calculate correlations between log size and log Herfindahl. Our model predicts

that larger suppliers are more diversified and thus have lower customer Herfindahls. The

average of -27.0% is consistent with this prediction.

Column (4) compares suppliers’ log network Herfindahls to their log return volatilities

calculated from CRSP data. The model suggests that well-diversified suppliers (those with

lower Herfindahls) have lower volatility. This relationship is also identified in the linkage

data, where Herfindahl and volatility (in logs) have an average correlation of 18%. Column

(5) repeats this calculation using quarterly sales growth volatility in place of return volatility

and uncovers a similar association, with average and pooled correlations of 20%.

Whereas columns (1)-(5) focus on supplier networks, viewing the network from customers’

perspectives is also informative for understanding network structure. Our upstream model

predicts zero correlations in columns (6)-(10). A downstream model does not. In column

(6) we calculate the correlation between customer size and in-degree. According to our

upstream model, the probability that a connection exists between supplier i and customer j

depends only on i’s size and is independent of firm j’s size. Thus, our model would predict a

zero correlation between size and in-degree in the absence of link truncation. Because links

with weights below 10% are not observed, and if larger customers are associated with higher

linkage weights as we propose, then we would expect to see a strong association between

customer size and in-degree in the truncated data. For instance, in our model, large firms like

Apple or Walmart typically dominate their suppliers sales due to their massive sizes. While

we assume smaller firms are equally likely to be customers as large firms, our model predicts

that these weak links with small customers will not show up in the data, leaving large firms

counted as customers far more often, and giving rise to the high correlation between size and

in-degree that we see.

Column (7) shows that there is a significant association between a customer’s in-degree
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Herfindahl, H in
t,i =

∑
j w

2
j,i,t, and its size. However, the correlation between volatility and

supplier Herfindahl is not statistically significant in the case of return-based volatility (see

column (9)) and close to zero in the case of sales-based volatility reported in column (10).

A comparison of results in columns (1)-(5), which summarize features of suppliers net-

works, to results on customer networks in columns (6)-(9) suggests an interesting interpre-

tation of shock propagation through customer-supplier networks. First, results suggest that

the strength of links depend strongly on customer size (column (1)) as in our model. Sec-

ond, the association between a supplier’s size and its number of customers (columns (2) and

(6)) in the data is also consistent with our model assumption once the data truncation is

taken into account.Third, customer network concentration appears to associate strongly with

suppliers’ volatility, while this is not the case for customer volatility and supplier network

concentration. This is consistent with the notion that shocks are propagated upstream, from

customers to suppliers, and that the effects of these shocks on firms’ volatility depends on

how well-diversified a firm is in its customer base. We provide additional evidence in the

next subsection.

5.3 Determinants of Firm-level Volatility

A large literature has examined the determinants of firm level volatility on the basis of

firm characteristics, including Black (1976) who proposed that differences in leverage drive

heterogeneity in firm volatility, Comin and Philippon (2006) who argue for industry compe-

tition and R&D intensity, Davis et al. (2007) who favor age effects, and Brandt et al. (2010)

who argue that institutional ownership is a key volatility driver. Our model predicts that

there are two quantities that are equivalent in their determination of a firm’s volatility – its

size and its customer network concentration. Table 4 shows results of panel regressions of

firm-level log annual return volatility on size and the customer-supplier network out-degree

Herfindahl, while controlling for a range of firm characteristics including log age, leverage,

industry concentration, institutional holdings, as well as industry and cohort fixed effects.
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Table 4: Determinants of Firm-Level Volatility

Dependent Variable: Log Firm Volatility

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Log Sales -0.16 -0.14 -0.15 -0.12 -0.14 -0.12 -0.13 -0.12 -0.13 -0.12

-16.71 -15.57 -25.56 -23.93 -19.32 -12.10 -33.10 -19.93 -20.61 -17.78

Cust. Herf. 0.88 0.17 0.63 0.17 0.53 0.15 0.55 0.13 0.74 0.17

7.14 3.09 8.74 3.43 7.01 2.65 8.69 3.27 28.54 8.81

Log Age -0.05 -0.26 -0.11 -0.08 -0.22 -0.11

-3.07 -11.32 -6.60 -3.52 -6.58 -6.10

Leverage 0.29 0.10 0.24 0.30 0.04 0.23 0.32 0.13 0.26

3.32 1.08 3.10 4.53 0.48 3.45 4.71 1.87 3.95

Ind. Conc. 0.32 0.36 0.35 0.44 0.41 0.37 0.32 0.30 0.29

1.51 1.32 1.62 2.13 1.35 1.70 2.06 1.45 1.81

Inst. Hldg. -0.03 -0.50 -0.06

-0.39 -5.09 -0.61

Constant -3.91 -3.52 -3.78 -3.92 -3.03 -3.64 -3.80 -2.93 -3.60 -4.01 -3.64 -3.88 -3.86 -3.51 -3.75

-88.45 -54.43 -76.93 -49.72 -39.79 -42.73 -32.42 -30.61 -30.98 -72.31 -50.66 -59.97 -111.89 -94.74 -82.52

FE None None None None None None None None None Cohort Cohort Cohort Ind. Ind. Ind.

Obs. 171,034 38,030 37,202 145,070 32,887 32,887 113,425 31,318 31,318 145,247 32,901 32,901 171,034 38,030 37,202

Adj. R2 0.329 0.048 0.361 0.347 0.228 0.402 0.354 0.281 0.413 0.405 0.307 0.448 0.386 0.218 0.425

Notes: The table reports panel regressions of firm’s return volatility on a range of characteristics including size (log sales), customer network Herfindahl, age, book leverage,
competition measured by industry size concentration, ownership composition measures as fraction of shares held by 13f-reporting institutions, as well as cohort and industry
fixed effects in certain specifications.
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Consistent with our model, we find that the two most important determinants of volatility

are size and customer-size concentration. A 100% increase in the size of the firm decreases

volatility by between 12% and 16%. An increase of customer Herfindahl from zero to one

increases volatility by 88% without controlling for size; the effect is 17% when we control

for size. Note that, in our model, size and network concentration are redundant since size

determines network structure. Within our network model, a supplier’s size and its customer

Herfindahl are nearly perfectly correlated in the cross section. Given that concentration in

the sales network is measured with substantial noise, it is highly likely that size captures an

important part of the true concentration effect.

When we replace the customer Herfindahl with the supplier Herfindahl in this multivariate

regression, concentration is no longer a significant determinant of firm-level volatility, after we

insert all of the other controls. The results of this section motivate the upstream transmission

of shocks in our network model. In Section 6, we analyze a complete calibration of our model

to the Compustat linkage data and firm volatility data to draw broader conclusions regarding

size and volatility in granular networks.

5.4 Industry-level Network Data

We have thus far presented our model and evaluated empirical networks at the firm level. As

further corroborating evidence, we present evidence the industry-level input-output networks

appear largely consistent with the network structure that we have proposed. Industry input-

output data are from the Bureau of Economic Analysis (BEA) at five year intervals between

1963 and 2002. Because industry definitions vary quite dramatically over time (with degree

of disaggregation ranging form roughly 350 to 450 industries depending on the year), it

is difficult to analyze network dynamics. However, this data is especially informative for

evaluating cross section association between industry size and network structure since this

data does not suffer the same truncation issue that we face in Compustat firm-level data.

Table 5 reports industry network correlations analogous to the firm network correlation in
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Table 5: BEA Industry Size, Volatility and Network Structure

Correlation between ... log Si,t log Si,t log Si,t log Si,t

and ... Out-Degree logHi,t In-Degree logHi,t

Average 0.505 -0.179 0.569 0.235

Notes: Cross section correlations of industry size, out-degree, and out-Herfindahl from BEA industry bench-
mark input-output tables. The number of industries range between 300 and 500 depending on the year.
Data for 1963, 1967, 1972,1977, 1982, 1987, 1992, 1997 and 2002.

Table 3. We find the log total output of a supplier industry and the number of industries that

it supplies to has an average correlation of 50.5% (ranging between 42.4% and 58.3% across

years). Similarly, an industry’s size has an average correlation of −17.9% with its purchaser

Herfindahl (range of -5.3% to 29.0%). Both of these facts, that larger supplier industries

have more connections and are better diversified, are consistent with our model. On the

purchaser side, we find an average correlation of industry size with in-degree of 56.9%, and

with supplier Herfindahl of 23.5%. Our model would not predict that a purchaser industry’s

in-degree would increase with size. But neither do we find evidence to suggest that purchaser

industries are experiencing any diversification benefits from their supplier network, since

larger industries have a higher in-degree concentration, not lower. On balance, we find the

BEA industry network data to be consistent with the network structure we propose.

6 Joint Dynamics of the Size and Volatility Distribu-

tion

Our model generates interesting feedback from the size distribution to volatility. As the size

dispersion increases, so does volatility, which in turn increases size dispersion.
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6.1 Feedback from Volatility to Size Distribution

Suppose there is no minimum size requirement, no death and and no entry. The persistence

parameter γ governs the strength of the network effect. When γ is zero, there are no network

effects. This γ = 0 version of the model satisfies Gibrat’s law: the mean growth rate and the

variance of the growth rate are constant across firms, regardless of size, because the growth

innovations are i.i.d. over time. In the absence of entry and exit, the size distribution is

divergent because the standard deviation of the log size distribution σS,t = σε

√
t. grows at

a rate
√
t. This is true even if the size drift, µg, is zero.

6

The network’s feedback effects contribute a term to the variance of the log size distribution

that grows exponentially in t. Hence, σS,t grows at a faster rate than
√
t, especially when γ

is large.

Proposition 9. If the higher-order cumulants are positive, then the variance of the log size

distribution at t is bounded below by:

E[σ2
S,0] + tσ2

ǫ + σ2
ǫ γ

2Z

t∑

τ=1

exp
[
2
(
τσ2

ǫ + σ2
S,0

)]
, t ≥ 0

Proof. The inequality follows directly from the recursive expression for the variance of the

log size distribution in Proposition 9.

The network effects adds an exponential growth term to the cross-sectional variance of

size. This term increases in γ. To discipline the behavior of the size distribution, we introduce

entry and exit.7

6The exogenous death rate and mimimim size requirement that we use are standard devices for ensuring
the existence of a steady-state distribution, even in this γ = 0 version of the economy (see de Wit (2005)).

7In the γ = 0 version of this model with a minimum size threshold, there is a steady-state size tail
distribution that satisfies a power law (G(S) = a/S̃ζ for some constant a and ζ = 1). Our model does not
replicate this scale-independence in the tail probabilities when γ > 0. In fact, the exponent ζ(S) depends on
size. When S is very large, the exponent is close to 1, but it smaller for smaller sizes. This simply reflects
the increase of the variance, which in turn produces more mixing of small and large firms. These results are
derived in section G of the separate appendix.
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6.2 Network Dynamics

To develop an understanding of the interaction between the size and volatility distribution

in the full version of the network model, we introduce entry and exit into a version of the

granular network model of Section 2 calibrated to match dynamics of the aggregate firm size

and firm volatility distributions, as well as features of the customer-supplier network found

in Compustat data.

The model begins at time 0 with an exogenous initial firm size distribution {Si,0}Ni=1,

where each Si,0 is drawn from a log normal distribution with mean µS,0 and standard devia-

tion σS,0. The linkage structure at time 0 is determined by the initial firm size distribution.

Each element of the connections matrix, B0 = [bi,j,0], is drawn from a Bernoulli distribution

with P (bi,j,0 = 1) = pi,0 and

pi,0 = fi({Si,0}Ni=1) = Si,0/

(
Z
∑

j

(Sj,0)

)
. (23)

According to this rule, the probability that supplier i and customer j are connected depends

linearly on the size of the supplier, not the customer. Furthermore, larger suppliers have

more connections on average. This is the model’s second size effect.

Firm sizes evolve according to the growth rate process (1), and linkages evolve with the

size distribution over time. To induce stationarity in the model, we allow firms to die and

be replaced by new firms, as in Atalay, Hortaçsu, Roberts, and Syverson (2011), whose

model matches important dynamic features of the actual buyer-supplier network in the U.S.

economy.

Each period t arrives with a new an N × 1 vector of firm sizes St. A fraction δ of firms

die randomly. Each defunct firm is replaced by a new firm that is drawn from the initial log

normal firm size distribution (with parameters µS,0 and σS,0).

The network of connections for surviving firms, governed by the N × N matrix Bt, is

redrawn on the basis of the prevailing size distribution. Connection probabilities each period
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are based on the size of suppliers as in (23). To induce persistence in links, we modify this

rule, giving suppliers a relatively high probability of reconnecting to its customers from the

previous period. The probability that a firm i that was connected to firm j in period t − 1

is again connected to that same firm j at time t is given by

max {pi,j,t + κ, 1} (24)

where κ > 0. Equation (24) preserves the probability rule pi,t = fi({Si,t}Ni=1) unconditional

of past linkages.

These rules for the connection dynamics and firms’ birth and death completely specify

the network evolution and the growth rate process in (1).

6.3 Calibration

We simulate our model for N = 2000 firms and 1300 periods (years). We discard the first

300 observations to let the network settle down to its long run distribution, and compute

our statistics by averaging over the last T = 1000 years. In each period we report moments

based on the sample of the largest 1000 firms.8 To further improve comparability between

model and data, we compare the model results for a constant sample of 1000 firms to an

appropriate corresponding Compustat subsample. We focus on the top-33%, a sample which

contains 1,000 firms on average in the data. For completeness, we also report the empirical

moments for the entire distribution of publicly traded firms (3000 firms on average).

Size in the data is measured as market capitalization deflated by the Consumer Price

Index. In order to compare variance moments in model and data, we want to take into

account that empirical variances are estimated with noise. Therefore, we report “estimated”

8Focusing on the top 1000 firms is the model’s way of recognizing that there are firms in the real world
that are not measured in our Compustat sample (e.g., private firms), and that the firms that are measured
are connected to these unmeasured firms affecting the former firms’ network, size growth, and volatility. Our
choice of N = 2000 is dictated by computational considerations.
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variance moments in the model, which we compute as:

log
(
V̂ art[gt+1]

)
= log (V art[gt+1]) + et+1

where e ∼ N (0, σ2
e) and σe is the time series average of the cross-sectional standard deviation

of log(V art[gt+1]).

In all simulations, we use the exact same random draws (and seed for the random number

generator) to enhance comparability across models. All variation across models is thus pro-

duced by endogenously changing size and volatility distributions, not by random differences

across simulations. Because network data are truncated, as explained above, we implement

the same truncation inside the model. That is, we set the weight wij,t equal to zero whenever

wij,t < 0.10.9

We choose the following paramers for our benchmark model. We set the mean exogenous

firm growth rate µ equal to zero, which is the growth rate we observe for real market

capitalization in the full cross-section.10 The initial firm size distribution is log normal with

mean µS0
= 10.20 and standard deviation σS0

= 1.06. These numbers equal the time-

series average of the observed cross-sectional mean and variance of the top-33% firm-size

distribution.

The exogenous firm destruction rate δ is set to 5%, close to the time-series average

firm exit rate in our sample of 4.2%. The probability of forming a connection between a

supplier and a customer is governed by the function p(·). The scalar Z governs the baseline

likelihood of a connection for a firm i. We set Z = 0.35 which implies that the largest firm

has a likelihood of connection of 27% on average. The parameter κ gives the additional

9As in the actual data, our model-based moment calculations do not rescale the weights from our sim-
ulation to sum to one across customers j, so

∑
j wij,t < 1. As discussed above, SEC regulation requires

that firms report all customers responsible for 10% or more of a supplier’s sales. Some firms report more
customers, however. We strictly impose the 10% truncation in the data by treating any relationship with
reported sales weight below 10% as missing.

10The observed growth annual rate is 8% per year in the top of the firm size distribution, but this number
is upwardly biased due to selection. Firms that leave the top of the size distribution are excluded from the
growth calculations while firms that enter the top group are newly included.
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probability of a connection when firm i and j were already connected in the previous period.

This additive term is not there for new firms (with no pre-existing connections). Thus, κ

governs the persistence of connections. We set κ equal to 0.5 to match the observed 54%

time-series average death rate of truncated links. In our benchmark model the average death

rate of truncated links is 57% whereas the average death rate of untruncated links is 46%.

The two key parameters are γ, which governs the persistence of the network, and σ,

which is the fundamental shock volatility. The parameter γ governs how important shocks

to customers’ growth are to a supplier. The closer γ is to one, the more important are

higher-degree (indirect) effects, i.e., effects beyond the direct supplier-customer relationship.

These two parameters are set to match as best as possible the mean and dispersion of firm

volatility.

6.4 Calibration Targets

This section first documents features of of the size, volatility and in/out-degree distribution

of U.S. firms. We will make use of these moments to calibrate a version of our network

economy.

6.4.1 Size Distribution Target Moments

Table 6 reports moments of the cross-sectional log size distribution (log S) in Panel A and the

firm growth distribution (gt = log St/ logSt−1) in Panel B. All reported moments are time-

series averages unless explicitly mentioned otherwise. The first column reports moments for

the full cross-section of firms observed in Compustat. The second column reports results

for the top-33% of Compustat firms in each year. Column 2 is the main column of interest

in the data. For example, 11.63 is the time-series average of the average log size of the

large-firm sample, which is naturally higher than the 9.61 for the full Compustat sample.

The dispersion of the log size distribution is 1.06 for the top-33% group and 1.79 for the full

sample.
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Table 6: Firm Size Distribution Target Moments

All Top-33% Model

Panel A: Cross-sectional Moments of Log Size

Avg 9.61 11.63 11.63

SD 1.79 1.06 1.07

5% 6.86 10.38 10.32

10% 7.39 10.47 10.44

25% 8.33 10.78 10.79

Med 9.48 11.39 11.42

75% 10.77 12.25 12.25

90% 12.05 13.10 13.10

95% 12.76 13.64 13.68

Panel B: Time Series Properties of Size Distribution

SD of σS,t 0.24 0.14 0.19

AR(1) σS,t 0.947 0.939 0.995

SD of σg,t 0.15 0.11 0.05

Ht 0.010 0.012 0.020

Notes: All reported moments in Panels A and B are time-series averages of the listed year-by-year cross
sectional moments (cross section average, standard deviation, and percentiles) for the sample 1926–2010.
The first column reports the full cross-section of firms . The second column reports results for the top-33%
of firms in each year. Column 3 reports the corresponding moments for the benchmark model. Panel A
reports moments of the log size distribution, where size is defined in the data as market equity. Panel B
reports the time-series standard deviation and time-series persistence of size dispersion σS,t, defined as the
cross-sectional standard deviation of log size, the time-series standard deviation of the cross section standard
deviation of log growth rates σg,t and the time-series average of the economy-wide Herfindahl index Ht.
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Panel B reports aggregate moments of the size distribution. The first two rows show that

size dispersion (the cross-sectional standard deviation of log size) has high variability over

time and is highly persistent. The time series standard deviation is 14% for the top-33% firms

and 24% for all firms. The third row shows that the cross-sectional standard deviation of

size growth (log size changes) is also volatile over time. The time series standard deviation

is 15% for all firms and 11% for the top-33% firms. These results confirm that the size

distribution moves around considerably over time. Finally, the size Herfindahl of the entire

economy, a standard concentration measure, is 0.012 in the data.

6.4.2 Volatility Distribution

Table 7 reports moments of the cross-sectional log variance distribution. In columns (1)

and (2), we compute the variance as the realized variance of daily stock returns within the

year, which is then annualized (multiplied by 252), and logged. In columns (3) and (4),

we compute the variance based on twenty quarters worth of year-over-year growth rates in

log sales. The window includes four growth rates in the current year and 16 in the next

four years. Because volatilities (standard deviations in levels) are more intuitive than log

variances, we exponentiate the moments of log variance and then take their square root,

which is what is reported in Table 7. All reported moments are time-series averages unless

explicitly mentioned otherwise.

Panel A shows that average firm return-based volatility is 40% per year for the full cross-

section and 30% per year for the large-firm sample. Average sales-based volatility is 29% for

the full sample and 24% for the large-firm sample. The range of return-based (sales-based)

volatilities goes from 17% (8%) at the fifth percentile to 54% (77%) at the 95th percentile

for the latter group. The cross-sectional dispersion in return volatility is 73% in Column (2)

and 97% in the full cross-section reported in Column (1). Sales-based volatility has even

larger dispersion of 142% and 151%, in Columns (4) and (3) respectively.

Panel B shows moments of the joint cross-sectional distribution of firm size and firm
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volatility. The first row computes the cross-sectional correlation between log size at time

t and log variance at time t + 1, for each t and then reports the time-series average. The

second row reports the slope coefficient (beta) of a cross-sectional regression of log variance

at time t + 1 on a constant and log size at time t; it reports the time-series average of that

slope. Both are strongly negative in the data showing that large firms have lower volatility

over the next period.

Panel C reports aggregate moments of the the volatility distribution and the joint size-

volatility distribution. The first row shows the time-series standard deviation of average

volatility: 69% in the full sample compared to a mean of 41% and 64% in the top-33% sample

compared to a mean of 30%. Average volatility is highly variable over time. The second row

shows that the cross-sectional standard deviation of log variance moves substantially over

time in both samples and for both ways of measuring volatility. The time series standard

deviation is 18% in the full sample and 12% in the top 1000 sample; both are lower than the

time-series volatility of mean volatility.

The third row reports the time-series correlation between size dispersion at t (the cross-

sectional standard deviation of log size) and mean volatility (the cross-sectional mean of log

variance) at time t+1. The two are strongly positively correlated in the data: 0.71 in the full

sample and 0.55 in the top sample. Similarly, size dispersion is strongly positively correlated

with volatility dispersion (the cross-sectional standard deviation of log variance) over time:

0.76 and 0.76, in Columns (1) and (2) respectively.

The last four rows investigate the cyclicality of moments of the size- and volatility dis-

tribution. We compute aggregate size growth, measured as the weighted average growth

rate between t and t + 1 with weights measured at t that are equal to the relative size of a

firm. We correlate this aggregate growth rate with size dispersion at t (the cross-sectional

standard deviation of log size) and with the mean and the standard deviation of volatility

at t + 1 (the cross-sectional mean and standard deviation of log variance). Size dispersion

shows mild counter-cyclicality. Return-based average volatility seems counter-cyclical, and
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so does the dispersion of volatility in the top group of firms.11 This is consistent with the

new findings reported by Bloom, Floetotto, Jaimovich, and Terry (2012).

6.4.3 Network Moments

This section directly examines the connection between the properties of the customer-supplier

network and firm-level volatility. We report several moments that directly pertain to the

network in Table 8. All moments are time-series averages. We report the median and 99th

percentile of the cross-sectional distribution of the number of out-degrees Kout, the number

of customers that a supplier is connected to, and the number of in-degrees Kin, the number

of suppliers a customer is connected to. We also report the median and 99th percentile of

the cross-sectional distribution of the out- and in-degree Herfindahl indices Hout and H in.

In the data, we only observe connections measured from the perspective of the supplier,

and only those that represent more than 10% of the sales.12 As a result, the observed

out-degree distribution is a (potentially severely) truncated version of the true out-degree

distribution. The problem is less pronounced for the in-degree distribution, since the trun-

cation occurs based on supplier-reported data, but still highly relevant.

We find a median (truncated) out-degree of 1 and (truncated) 99th percentile of 3.3 con-

nections. The median (truncated) in-degree is 1 with a 99th percentile of 17 or 32 connections

depending on the sample. The Herfindahl indices, which are also based on truncated degree

information, are less biased because large customers receive a large weight and are more

likely to be in the database.

We calculate cross-sectional correlations of in- and out-degrees and in- and out-Herfindahls

at time t with log size at t and log variance at t+1. We find a nearly zero correlation between

truncated out-degree Kout) and size. This low correlation may be due to the truncation; we

will explain this bias when we discuss the simulation results.

11Sales-based volatility shows little covariance with aggregate growth in the economy, but this could be
because the volatility is computed from observations that span five years of data.

12Since reporting is voluntary for customers that represent less than 10% of sales, the data contain some
shares smaller than 10%. We replace those by zeroes. In the model we will apply the same truncation.
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Table 7: Firm Volatility Distribution Target Moments

All Top-33% All Top-33% Model
Returns Returns Sales Sales

Panel A: Cross-Sectional Moments of Firm Volatility

Avg 0.40 0.30 0.29 0.24 0.37
SD 0.96 0.73 1.51 1.42 0.45
5% 0.19 0.17 0.09 0.08 0.26
10% 0.22 0.19 0.11 0.10 0.28
25% 0.29 0.24 0.17 0.14 0.31
Med 0.40 0.30 0.29 0.23 0.36
75% 0.56 0.38 0.48 0.38 0.42
90% 0.75 0.48 0.77 0.60 0.49
95% 0.90 0.54 1.05 0.77 0.54

Panel B: Cross-Sectional Moments of Size-Volatility Distribution

Corr(St, Vt+1) −0.57 −0.33 −0.33 −0.18 −0.42
β(St, Vt+1) −0.32 −0.23 −0.27 −0.22 −0.18

Panel C: Time Series Properties of Volatility Distribution

SD of µσ2,t 0.69 0.64 0.46 0.42 0.20
SD of σσ2,t 0.18 0.12 0.13 0.13 0.05
Corr(σS,t, µσ2,t) 0.71 0.55 0.51 0.51 0.95
Corr(σS,t, σσ2,t) 0.76 0.76 0.57 0.38 0.77
SD of gagg,t 0.21 0.20 0.21 0.20 0.20
Corr(gagg,t, σS,t) −0.06 −0.08 −0.06 −0.08 −0.02
Corr(gagg,t, µσ2,t) −0.32 −0.43 0.01 −0.00 −0.01
Corr(gagg,t, σσ2,t) 0.04 −0.19 0.18 0.14 0.02

Notes:All reported moments in Panels A and B are time-series averages of the listed year-by-year cross sectional moments (cross section average,
standard deviation, and percentiles) for the sample 1926–2010. The first and third columns report return volatility and sales growth volatility,
respectively, for the full cross-section of firms. The second and fourth columns report results for the largest 33% of firms by market capitalization in
each year. Annual variances in Columns (1) and (2) are calculated from daily stock return data, while variances in columns (3) and (4) are based
on 20 quarters of sales growth rates (in the current and the next four years). Moments are computed based on the log variance distribution, but are
expressed as volatilities in levels for exposition. That is, we exponentiate each moment of the log distribution and take the square root. Column (5)
reports the corresponding moments for the benchmark model. Log variances in the model are constructed with added estimation noise to make them
comparable to the moments in the data.
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We find a strong negative relationship between supplier size and out-Herfindahl; the

correlation is -0.30. Large firms have a better-diversified portfolio of customers, and hence

small out-Herfindahls. We also find a positive relationship between supplier volatility and

out-Herfindahl: the correlation is 0.17. Firms with a more diversified portfolio of customers

and smaller Herfindahls have lower volatility because they more effectively diversify the

shocks that hit their customers. This also explains the negative correlation between firm

size and firm volatility in Panel B of Table 7.

We find a positive 0.37 correlation between in-degree and size, but we argue based on the

model that truncation induces an upward bias in this correlation. This provides evidence that

the likelihood of a connection between a supplier and a customer does not strongly depend

on the customer’s size. We find a zero (modest positive) correlation between in-Herfindahl

on the one hand and volatility (size) on the other hand.

6.5 Simulation Results

This section reports the simulation results. We focus on the benchmark calibration and leave

a detailed discussion of the alternative calibrations for the appendix.

6.5.1 Benchmark Calibration

As can be seen from column (3) in Table 6, the benchmark model matches the main moments

of the firm size distribution. It matches average firm size exactly. It also generates a large

amount of cross-sectional heterogeneity in firm size. Column 3 of Table 6 shows that size

dispersion averages 1.07, close to the observed 1.06 value reported in column 2. The inter-

quartile range for log firm size is [10.79,12.25], matching the [10.78,12.25] range in the top-

33% sample. At both extremes of the distribution, the model also compares favorably to the

data.

Panel B shows that size dispersion moves around dramatically over time in the model

and is very persistent. The model produces the same high time-series variability in the
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Table 8: Network Target Moments

All Top-33% All Top-33% Model
Returns Returns Sales Sales

Panel A: Out-degree Moments

median Kout 1.00 1.00 – – 1.71
99th % Kout 3.38 3.32 – – 4.66
median Hout 0.05 0.03 – – 0.60
99th % Hout 0.95 0.54 – – 1.00
Corr(Kout

t , St) 0.01 −0.07 – – 0.34
Corr(Hout

t , St) −0.30 −0.09 – – −0.78
Corr(Hout

t , Vt+1) 0.17 0.11 0.25 0.09 0.49

Panel B: In-degree Moments

median Kin 1.00 1.12 – – 1.90
99th % Kin 31.61 16.80 – – 7.39
median H in 0.00 0.00 – – 0.11
99th % H in 0.28 0.24 – – 0.85
Corr(Kin

t , St) 0.37 0.49 – – 0.49
Corr(H in

t , St) −0.44 −0.28 – – 0.03
Corr(H in

t , Vt+1) 0.25 0.19 0.09 0.12 0.01

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross-section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column (1)-(2) are calculated based on daily stock
return data, while the variance in Column (3)-(4) are based on 20 quarters worth of annual sales growth (in the
current and the next four years). Column (5) reports the corresponding moments for the benchmark model
(M1). Log variances in the model are constructed with added estimation noise to make them comparable to
the moments in the data.

46



size dispersion as observed (0.19 compared to 0.14 in column 2 and 0.24 in column 1), but

not that of the dispersion in size growth rates (0.05 versus 0.11 in column 2 and 0.15 in

column 1). The benchmark model slightly overstates firm concentration: the economy-wide

Herfindahl index is 0.020 compared to 0.012 in the data.

Next, we turn to the volatility distribution. Column (5) of Table 7 shows that the model

generates high average firm volatility of 37%, in between the return volatility in the full

sample of 40% and that in the top-33% sample of 30%. Average sales-based volatility in the

data is lower at 29% and 24%, respectively. The model is capable of generating a wide range

of volatility outcomes. The cross-sectional dispersion in volatility is 0.45, compared to 0.73

for the return-based measure (column 2), and 1.42 for the sales-based measure. The model

generates the right volatility at the 90 and 95th percentiles. The least volatile firms have a

volatility of 26% in the model, but only 17% in the return data.

Panel B shows that the model generates a -42% correlation between size and volatility

at the firm level, similar to the -33% in the data. That relationship between log variance

and log size is similar to the one in the data (slope coefficient of -0.18 versus -0.23). Panel C

shows that the model generates substantial variability over time in both the cross-sectional

mean of firm variance and in its dispersion, but still under-predicts these moments compared

to the data. The model generates a high volatility of aggregate growth rates of 20%, close

to the 20% in the data.

In the time-series, size dispersion is strongly positively correlated with both the mean

of the log firm variance distribution (0.95 correlation) and its dispersion (0.77 correlation).

These correlations are high in the data as well (0.55 and 0.76). These correlations are some

of the key moments we focus on in this paper.

Table 8 shows the network-related properties of the model. Like in the data, the model

generates a small median number of supplier-customer relationships after truncation: 1.71

on average in the model. The 99th percentile of the truncated out-degree distribution is

4.66 in the model and 3.19 in the data. Truncation severely affects the number of out-
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degrees. The median of the untruncated Kout distribution in the model is 3.71 and the 99th

percentile is 112. In the model, larger firms have more connections. The cross-sectional

correlation between the truncated out-degree and log size is 0.34, which is 0.26 lower than

the 0.60 correlation between the untruncated out-degree and log size. This downward bias

means that the observed correlation between truncated out-degree and log size in the data

(0.00) is downward biased. Applying the model-generated bias, the data would show a

positive correlation between untruncated out-degree and log size (albeit a smaller one as in

the model). That is, larger suppliers have more connections.

A reverse bias occurs for the correlation between in-degree and log size. The observed

value of 0.26 is somewhat smaller than the 0.49 value in the benchmark model, where both

numbers are based on the truncated in-degree distribution. However, the correlation between

untruncated out-degree and log size 0.04 in the model, which implies that this moments is

severely upward biased due to truncation. The magnitude of the bias is such that the

(unobserved) correlation between untruncated in-degree and log size could easily be zero.

That zero correlation between customer size and number of connections is an important

assumption of the model.

The model matches some properties of Herfindahls, but not others. The main shortcom-

ing of the benchmark calibration is that its truncated out-degree Herfindahl is too high. The

median is 0.60, much higher than the 0.05 value we observe in the data. The reason is that

the number of connections a typical supplier has is small (the median out-degree is 3.7), and

that large customers receive a large weight (wij is strongly increasing in size of the supplier

Sj). To match volatility levels in a setting with only uncorrelated shocks, the model requires

too much concentration in customer networks.

On the positive side, the model generates a strong negative correlation between out-degree

Herfindahl and size and a positive correlation between out-degree Herfindahl and volatility.

Both are important features of the data. The model also matches the correlation pattern

between in-Herfindahls and size and volatility. In the model, truncated and untruncated
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Herfindahls are very similar, suggesting no evidence for bias in the empirical counterparts.

Finally, we re-estimate the volatility factor regressions of Table 3. The corresponding

R2s for total volatility from left to right are 36%, 37%, and 40%, quite comparable to the

data. Thus, the model replicates the strong factor structure in volatilities.

6.5.2 Alternative Calibrations

We compute several other models that illustrate various features of the model. These are

discussed at length in the separate appendix in section H. These alternative model features

show that strong network persistence is important (high γ, and a model with higher-order

network effects). They also show that we can match the low observed out-Herfindahls by

changing the parameters that govern the number and the importance of connections, without

jeopardizing the main predictions of the model. That calibration, however, cannot generate

enough firms with high enough volatility.

6.5.3 Downstream Transmission

A version of our model with downstream transmission essentially delivers the same untrun-

cated moments, except for the network moments, where in-degree and out-degree moments

are reversed. However, the truncation does change the results. Section I in the separate

appendix discusses the results in detail. This downstream version of our model matches the

in-degree network moments slightly better, but completely misses the robust cross-sectional

relation between customer concentration and volatility.

7 Conclusion

We document new features of the joint evolution of the firm size and firm volatility distri-

bution and propose a new model to account for these features. In the model, shocks are

transmitted upstream from customers to suppliers. Firms sell products to an imperfectly
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diversified portfolio of customers. The larger the supplier, the more customer connections

the supplier has, the better diversified it is and the lower its volatility. Large customers have

a relatively strong influence on their suppliers, so shocks to large firms have an important

effect throughout the economy. When the size dispersion of the economy increases, such

large firms become more important and many firms’ network of customers becomes less di-

versified. In those times, average firm volatility is higher as is the cross-sectional dispersion

of volatility. We provide direct evidence of such linkages, and use the supplier-customer

relationship data to calibrate our model, and we show that the calibrated model replicates

the most salient features of the firm size and the volatility distribution.
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A Proofs

• Proof of Proposition 1:

Proof. We will derive a lower bound on the average variance. We use the following notation to denote
the matrix inverse:

v = (I − γW t)
−1 = I + γW t + γ2W 2

t + γ3W 3
t+

The average variance is given by 1
N
σ2
ǫ

∑
i e

′
ivv

′e′i. First, note that:

e′iv ≥ e′i(I + γW t),

because the W matrix only has positive entries. Hence, in turn, it follows that:

e′ivv
′e′i ≥ e′i(I + γW t)(I + γW ′

t)e
′
i

We have derived the following lower bound on the average variance:

1

N

∑

i

Vt (gi,t+1) ≥ σ2
ǫ


1 +

2

N
γ

N∑

i=1

wii +
1

N
γ2

N∑

i=1

∑

j=1

w2
ij,t




We can restate this expression using the Herfindahl:

1

N

∑

i

Vt (gi,t+1) ≥ σ2
ε

(
1 + γ2

1

N

∑

i

Hi,t

)

• Proof of Proposition 2

Proof. In such a network, each firm i only has one connection:

gi = µg + γgi+1 + εi, (25)

where firmN+1 is firm 1 by convention. Without loss of generality, thisW t matrix can be represented
with ones above the main diagonal and zeros elsewhere, except in the (N, 1) position. By backward
substitution, we obtain the following expression for the growth rate of firm 1:

g1 =
1

1− γN

[
µ
N−1∑

i=1

γi +
N−1∑

i=1

γiǫi+1

]

Hence, the variance of a typical firm is given by

V (g) =
σ2
ǫ (1 − γ2N)

(1 − γ2)(1 − γN )2

• Proof of Proposition 2

Proof. Next, we consider a network structure in which each firm is connected to all other firms and
all links have the same weight on the other firms’ growth rate. That weight is given by 1

N−1 . The

weighting matrix W has zeros on the diagonal and 1
N−1 everywhere else. The growth equation is

given by (I − γW )−1(µ + ε). (I − γW ) has ones on the main diagonal and −γ
N−1 everywhere else.

54



(I − γW )−1 has (N−2)γ−(N−1)
γ2+(N−2)γ−(N−1) on the diagonal and −γ

γ2+(N−2)γ−(N−1) . We need to compute the

diagonal elements of the variance-covariance matrix. This yields the following expression:

V (gi) = σ2
εdiag

(
[I − γW ]

−1
[I − γW ]

−1
)

= σ2
ε

[
((N − 2)γ − (N − 1))

2
+ (N − 1) γ2

(γ2 + (N − 2)γ − (N − 1))
2

]

= σ2
ε




(
N−2
N−1γ − 1

)2
+ 1

N−1γ
2

(
1

N−1γ
2 + N−2

N−1γ − 1
)2


 (26)

• Proof of Proposition 3:

Proof. We use Λ to denote the diagonal eigenvalue matrix of W , with diagonal elements λt,ii, and P t

to denote its eigenvector matrix. Recall that P−1
t = P ′

t and therefore P tP
′
t = I. The first column

of P t is the eigenvector associated with the unit eigenvalue.

W t = P tΛtP
−1
t

The element P [i,1] can be interpreted as the total strength of all the direct and indirect business
connections of firm i. Using simple matrix algebra, we have that:

(I − γW t)
−1

= P t




∞∑

j=0

γjΛj
t


P−1

t = P tΛ̂tP
−1
t , (27)

where the last equality defines Λ̂t. It is a diagonal matrix with diagonal elements λ̂t,ii = (1−γλt,ii)−1.

We can now write the variance of the growth rate gt+1 = (I − γW t)
−1

εt+1 as a function of the
eigenvalues of the W matrix:

V t

(
gt+1

)
= σ2

ǫP t




∞∑

j=0

γjΛj
t


P−1

t P
−1,′
t




∞∑

j=0

γjΛj
t


P ′

t,

= σ2
ǫP tΛ̂

2

tP
′
t

The conditional variance of firm k’s growth rate can be written as

Vt[g
k
t+1] =

N∑

j=1

P 2
kj λ̂

2
jj .

The (i, j)-th element of expression (27) can be stated as:

At(g)[i, j] =
Pt,i,1P

−1
t,1,j

(1− γλ1)
+
Pt,i,2P

−1
t,2,j

(1 − γλ2)
+ . . .+

Pt,i,NP
−1
t,N,j

(1− γλN )

Hence, we know that the following inequality obtains:

At(g)[i, j] ≥
(
Pt,i,1P

−1
t,1,j

(1 − γλ1)

)
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The variance of gi is given by
∑

k (At(g)[i, k])
2
. Hence, the lower bound is given by:

Vt(g)[i, i] ≥ σ2
ǫ

∑

k

(
Pt,i,1P

−1
t,1,k

(1 − γλ1)

)2

The result follows directly from the above expression for the variances. We only consider the terms
associated with the largest eigenvalue of unity to derive a lower bound.

• Proof of Proposition 4:

Proof. Note E[bi,j,t] = pi,t, and bi,j,t is independent of customer j’s size. By the law of large numbers,
this implies that

1

N

∑

i

bi,j,tS
x
j,t → E[bi,j,tS

x
j,t] = pi,tE[Sxj,t], x = 1, 2.

Therefore, for sufficiently large N , a supplier’s customer concentration Herfindahl is approximately

Hi,t =
1
N

∑
j bi,j,tS

2
j,t

N
(

1
N

∑
j bi,j,tSj,t

)2 ≈
E[S2

j,t]

pi,tNE[Sj,t]2
.

This bears close resemblance to the Herfindahl of the economy-wide size distribution, Ht. By the
same law of large numbers rationale,

Ht =
1

N

∑

i

S2
i,t−1

(
∑

i Si,t−1)
2 ≈

E[S2
j,t−1]

NE[Sj,t−1]2
.

Together, these results imply the following common factor structure for growth rate volatilities of
firms in this network economy:

Vt (gi,t+1) ≈ σ2
ε

(
1 +

1

pi,t
γ2Ht

)
. (28)

• Proof of Corollary 2

Proof. If the firm size distribution is log normal at t, then

E[Sxi,t] = exp

(
xµs,t +

x2

2
σ2
s,t

)

where µs,t ≡ E[logSi,t] and σ
2
s,t ≡ V (logSi,t). As a result, the firm size Herfindahl is

Ht ≈
E[S2

j,t]

NE[Sj,t]2
=

1

N
exp

(
σ2
s,t

)
.

Hence, in the first-order approximation, the common variance dynamics for all firms are determined
by cross section standard deviation of the size distribution, σ2

s,t:

V (gi,t+1) ≈ σ2
ε

(
1 + γ2

exp
(
σ2
s,t

)

Npi,t

)
.
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• Proof of Corollary 3

Proof. If the firm size distribution is not log normal at t, then we can still use the cumulant-generating
function to characterize volatility. Note that the expected value of any moment of firm size is given
by:

E[Sxt ] = exp




∞∑

j=1

xj

j!
κs,j,t




where µs,j,t ≡ E[(log St)
j ] denotes the j-th central conditional moment and κ1,s,t = µ1,s,t, κ2,s,t =

µ2,s,t, κ3,s,t = µ3,s,t and κ4,s,t = µ4,s,t− 3µ2
2,s,t. As a result, the economy-wide Herfindahl is given by:

Ht ≈
E[S2

j,t]

NE[Sj,t]2
=

1

N
exp




∞∑

j=2

2j − 2

j!
κs,j,t


 .

Hence, in the first-order approximation, the common variance dynamics for all firms are determined
by cross section moments of the size distribution:

V (gi,t+1) ≈ σ2
ε


1 +

γ2

Npi,t
exp




∞∑

j=2

2j − 2

j!
κs,j,t




 .

• Proof of Proposition 7

Proof. The first order approximation for ga,t+1 is

ga,t+1 ≈
∑

j

εj,t+1

(
S̃j,t + γ

∑

i

S̃i,twi,j,t

)
.

We can rewrite this expression (suppressing t) as

∑

i

S̃iwi,j =

∑
i Sibi,jSj∑

i Si
∑
j bi,jSj

≈
Sj
∑

i Si
bi,j
pi

N2E[Si]2
.

Under weak regularity, 1
N

∑
i Si

bi,j
pi

−−−−→
N→∞

E
[
Si

bi,j
pi

]
= E

[
SiE

[
bi,j
pi

|Si
]]

= E[Si], where the last

equality follows from bi,j being Bernoulli(pi). As a result,
∑

k S̃kwk,j ≈ Sj/(NE[Sj]) = S̃j .

Noting that
∑

k S̃
2
k,t = Ht and

∑
k S̃k,twk,j,t ≈ Sj,t/(NE[Sj,t]), the aggregate growth rate variance

can be approximated as

V (ga,t+1) ≈ σ2
ε

∑

j

(
S̃j,t + γ

∑

i

S̃i,twi,j,t

)2

≈ σ2
εHt (1 + γ)2 . (29)

• Proof of Proposition 8:
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Proof. We will derive a lower bound on the aggregate variance. We use the following notation to
denote the matrix inverse:

v = (I − γW t)
−1

= I + γW t + γ2W 2
t + γ3W 3

t+

Because the W matrix only has positive entries, it follows that

S̃
′

tv ≥ S̃
′

t(I + γW t)

This in turn implies that the following inequality holds:

S̃
′

tv ≥ S̃
′

t(I + γW t)

As a result, the following inequality holds for the quadratic expression:

S̃
′

tvv
′S̃

′

t ≥ S̃
′

t(I + γW t)(I + γW ′
t)S̃t

The right hand side of this inequality is given by:

S̃
′

tS̃t + 2S̃
′

tγW tS̃t + S̃
′

tγ
2W tW

′
tS̃t

The aggregate variance is given by σ2
ǫ S̃

′

tvv
′S̃

′

t. Hence, we have derived the following lower bound on
the aggregate variance:

S̃
′

tvv
′S̃

′

t ≥ Ht + 2γ
N∑

i=1

N∑

j=1

wij,tS̃i,tS̃j,t + γ2
N∑

i=1

N∑

k=1

S̃i,tS̃k,t
∑

j=1

wij,twkj,t

Using the definition of the weights, we obtain the following expression:

Ht + 2γ

∑N

i=1

∑N

j=1 bij,tS̃i,tS̃
2
j,t∑

i bij S̃j
+ γ2

∑N

i=1 S̃i,t
∑N

k=1 S̃k,t
∑

j=1 bij,tbkj,tS̃
2
j,t∑

i bijS̃j
∑

k bjkS̃k

This can be further simplified to obtain the following expression:

Ht + 2γ

∑N
i=1 Si,t

∑N
j=1 bij,tS

2
j,t∑

i bijSj(
∑

l Sl)
2

+ γ2
∑N
k=1 Sk,t

∑N
i=1 Si,t

∑
j=1 bij,tbkj,tS

2
j,t∑

i bijSj
∑

k bjkSk(
∑

l Sl)
2

Note E[bi,j,t] = pi,t, and bi,j,t is independent of customer j’s size. By the law of large numbers, this
implies that

1

N

∑

j

bi,j,tbk,j,tS
x
j,t → E[bi,j,tbk,j,tS

x
j,t] = pi,tpk,tE[Sxj,t], x = 1, 2.

We also know that:
1

N

∑

j

bi,j,t
pi,t

Sxj,t → E[Sxj,t], x = 1, 2.

Therefore, for sufficiently large N , the aggregate variance is bounded below by:

V ar(gat ) ≥ σ2
ǫ

E[S2
i ]

NE[Si]2
(
1 + 2γ + γ2

)

for large N . This expression can be succinctly stated as follows:

V ar(gat ) ≥ Ht(1 + γ)2
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• Proof of Proposition 6

Proof. The covariance between an individual growth rate and aggregate growth is approximated by

Covt(gi,t+1, ga,t+1) ≈ Covt


εi,t+1 + γ

∑

j

wi,j,tεj,t+1 ,
∑

j

εj,t+1

[
S̃j,t + γ

∑

i

S̃i,twi,j,t

]


≈ σ2
ε (1 + γ)

(
Si,t

NE[Si,t]
+ γHt

)

Therefore the regression coefficient is approximated by

βi,t =
Covt(gi,t+1, ga,t+1)

V (ga,t+1)
≈ 1

1 + γ

(
γ + Si,t

E[Si,t]

E[S2
i,t]

)
.

From here, the close similarity in volatility factor structure for raw growth rate volatility and residual
volatility becomes apparent. Residual growth from a factor model, defined as gresi,t+1 = gi,t+1−βiga,t+1

has variance

Vt(g
res
i,t+1) = Vt(gi,t+1)− 2βi,tCovt(gi,t+1, ga,t+1) + β2

i,tVt(ga,t+1)

= Vt(gi,t+1)− Covt(gi,t+1, ga,t+1)
2/Vt(ga,t+1)

≈ σ2
ε

(
1 +

1

pi,t
γ2Ht −

[
Si,t

NE[Si,t]
+ γHt

]2)
.

• Proof of Proposition 5:

Proof. If pi,t = Si,t/
(
Z
∑

j(Sj,t)
)
, then approximate log normality of Si,t implies V (gi,t+1) is also

approximately log normal. Furthermore, the parameters of the V (gi,t+1) distribution depend only on
the dispersion in firm sizes. This is evident from Equation 17, which implies

log
(
V (gi,t+1)− σ2

ε

)
= log(σ2

εγ
2Z)− log(Si,t) + log



∑

j

Sj,t


+ log (Ht)

= log(σ2
εγ

2Z)− log(Si,t) + log (NE[Sj,t]) + log (Ht) .

Assuming that Si,t is log normal and noting that log
(∑

j Sj,t

)
≈ log (NE[Sj,t]), we see that V (gi,t+1)

is a shifted log normal where

E
[
log
(
V (gi,t+1)− σ2

ε

)]
≈ log(σ2

εγ
2Z) +

3

2
σ2
S,t

and
V
(
log
(
V (gi,t+1)− σ2

ε

))
≈ σ2

S,t.

• Proof of Proposition 9
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Proof. For large N , we can approximate the first-order growth dynamics of firm i as:

gi,t+1 ≈ µ+ ηt+1, ηt+1 ∼ N


0, σ2

ǫ


1 +

γ2

S̃i,tN
Z exp




∞∑

j=2

2j − 2

j!
κs,j,t−1








This follows directly from corollary 3 and the specification for pi. For large N , this can be further
simplified to yield:

gi,t+1 ≈ µ+ ηt+1, ηt+1 ∼ N


0, σ2

ǫ


1 +

γ2

Si,t
Z exp




∞∑

j=2

2j − 1

j!
κs,j,t−1








The log size of firm i at time t is given by logSi,t = log Si,0 +
∑t

τ=1 gi,τ . We use σ2
si,t

to denote the
variance of logSi,t conditional on Si,0. Hence, the variance of the log size distribution at t in the
first-order version of this economy is given by:

σ2
si,t

≈ σ2
si,t−1 + σ2

ǫ


1 +

γ2

S̃i,t−1N
Z exp




∞∑

j=2

2j − 2

j!
κs,j,t−1




 , t ≥ 1,

which is the variance of the cumulative growth rate of firm i. This implies that the average variance
of the size of firms in the first-order version of this economy is given by:

E[σ2
si,t

] ≈ E[σ2
si,t−1] + σ2

ǫ


1 + γ2Z exp




∞∑

j=2

2j − 1 + (−1)j

j!
κs,j,τ−1




 , t ≥ 1

Finally, note that:
V ar(log St) ≥ E[σ2

si,t
] = E[V ar(log St|S0)].

This follows directly from the Cauchy-Schwarz inequality.

Hence, in the first-order version of our economy, for large N , there is a lower bound on the cross-
sectional variance of the log size distribution given by:

E[σ2
si,0] +

t∑

τ=1

σ2
ǫ


1 + γ2Z exp




∞∑

j=2

2j − 1 + (−1)j

j!
κs,j,τ−1




 , t ≥ 1.

In the log-normal case, the last sum reduces to exp(2σ2
s,τ−1):

E[σ2
si,0] +

t∑

τ=1

σ2
ǫ

(
1 + γ2Z exp(2σ2

s,τ−1)
)
, t ≥ 1

The result stated in the proposition follows directly if the higher-order cumulants are positive.
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Separate Appendix

A Downstream Transmission

Acemoglu et al. (2012) derive a static version of (2) as the equilibrium outcome in a multi-sector production
economy in a constant-returns to scale economy populated by a stand-in agent who has Cobb-Douglas
preferences defined over all of the N different commodities produced in this economy. Theirs is also a
directed network, but in their version the productivity shocks are transferred downstream from suppliers to
customers. Consider the growth equation for (customer) firm j:

gj,t+1 = µg + γ

N∑

k=1

wk,j,t gk,t+1 + εj,t+1. (30)

In this economy, the weights wkj are the input weights of good k for firm j in the production of commodity
j. γ measures the input share in GDP. In matrix notation, this amounts to:

gt+1 = µg + γW ′
tgt+1 + εt+1. (31)

This specification emphasizes upstream supply shocks as the only drivers of firm-level volatility, while our
model focuses on downstream demand shocks as the only drivers.

B Retailers

In the data, we also consider retailers who do not have any out-degrees in the standard sense. Our simple
model can be extended to include retailers. Consider a group of retailers l = N +1, .., N +k. In the strictest
interpretation of the model, retailers have wlm = 0,m = 1, . . . , N . They contribute k zero rows to the
adjacency matrix W . However, if markets are incomplete, then some of the labor income risk that is specific
to firms would show up in the consumption decisions of workers at these firms. That in turn would expose
retail firms to some of the upstream risk.

Let vl,m,t denote the link strength of retailer l to customers working at supplier m.

gi,t+1 = µg + γ

N+k∑

j=1

wi,j,t gj,t+1 + εi,t+1, i = 1, . . . , N. (32)

gl,t+1 = µg + ψ
N+k∑

m=1

vl,m,t gm,t+1 + εl,t+1, l = N + 1, .., N + k. (33)

ψ governs howmuch firm-specific idiosyncratic risk is transferred to consumption; when markets are complete,
ψ = 0. We adopt specification (15) for these retail-customer weights and impose that they sum to one. Larger
retailers are connected to a larger number of consumers, and larger consumers are more important. Retail
firms create network leakage because of the zero rows in the W matrix.

C Approximate Log Normality of Size and Volatility

We first we present evidence that the cross section distribution of size and volatility are approximately
log normal. There is an extensive literature studying the firm size distribution that we do not cover here.
We merely note that our sample of firm sizes is approximately log normal. Hall (1987) characterized the
literature on US firm sizes saying “The size distribution of firms conforms fairly well to the log normal, with
possibly some skewness to the right.” Axtell (2001) provides evidence that firm sizes follow a power law in a
large sample including all private US firms. Cabral and Mata (2003) argue that firm sizes evolve toward a log
normal distribution over time. Rossi-Hansberg (2007) and Wright show that establishment and enterprise
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Figure 6: Log Firm Size: Empirical Density Versus Normal Density

Panel A: Size Measured as Market Equity
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Panel B: Size Measured as Sales
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Notes: The figure plots histograms of the empirical cross section distribution of log annual firm market
equity (Panel A) and log annual firm sales (Panel B). The left-hand histogram pools all years (1926-2010)
and the right-hand histogram is the one-year snapshot for 2010. Overlaid on these histograms is the exact
normal density with mean and variance set equal to that of the empirical distribution. Each figure reports
the skewness and kurtosis of the data in the histogram.

sizes for public and private US non-farm businesses have tails that are thinner than power law. We discuss
the association between public and private firm size distributions in Appendix E.

Figure 6 plots histograms of the empirical cross section distribution of firms’ market equity value (Panel
A) and sales (Panel B), taking the log of both quantities. The left figure in each panel shows the distribution
of firm sizes pooling all firm-years from (1926–2010 for market equity, 1970–2010 for sales) and the right
figure shows a one-year snapshot for 2010. Overlaid on these histograms is the exact normal density with
mean and variance set equal to that of the empirical distribution. Each figure also reports the skewness and
kurtosis of the data in the histogram.

The pooled empirical distribution, and the distributions for all individual years, appear nearly normally
distributed. They demonstrate only slight skewness (always less than 0.5 in absolute value) and do not
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Figure 7: Log Volatility: Empirical Density Versus Normal Density

Panel A: Volatility Measured from Market Returns
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Panel B: Volatility Measured from Sales Growth
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Notes: The figure plots histograms of the empirical cross section distribution of annual firm-level volatility
(in logs). Panel A reports return volatility where, within each calendar year, we calculate the standard
deviation of daily returns for each stock. Panel B reports sales growth volatility where, for each year t, we
calculate volatility as the standard deviation of quarterly observations of year-on-year sales growth for each
stock in calendar years t to t + 4. The left-hand histogram pools all years (1926-2010) and the right-hand
histogram is the one-year snapshot for 2010 for returns and 2006 for sales growth (since sales growth volatility
is calculated over a five-year window).

possess substantive leptokurtosis (always less than 3.3).
Figure 7 shows cross section distributions of yearly return volatility (Panel A) and sales growth volatility

(Panel B) in logs for all CRSP/Compustat firms. Volatility also appears to closely fit a log normal distri-
bution, with skewness no larger than 0.4 and kurtosis never exceeding 3.7. Figure 7 demonstrates near log
normality of total return and growth rate volatility. Kelly, Lustig and Van Nieuwerburgh (2012) show that
the same feature holds for idiosyncratic volatility.
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Figure 8: Firm Dynamics
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Notes: The figure plots the entry and exit rates for all U.S. firms based on Census data. The data is annual
and the sample covers 1977-2009. Source: U.S. Small Business Administration, Office of Advocacy, from
data provided by the U.S. Census Bureau, Business Dynamics Statistics.

D Robustness

Table 9 shows that the strong correlation between moments of the volatility distribution and lagged size
dispersion across markets, size quantiles and industries. We find that the the size distribution’s predictive
correlation with both mean volatility and dispersion in volatility is robust in each of these sample decom-
positions. Size dispersion predicts volatility moments among either NYSE or NASDAQ stocks, among large
and small stocks, and within all industries.

D.1 Frequency Decomposition

To distinguish between the trend and cycle in the size and volatility moments, we apply the Hodrick-Prescott
filter with a smoothing parameter of 50. The top panel shows the trend component. The bottom panel shows
the cycle component. The top panel plots the trend in the cross-sectional average of log firm-level volatility
against the cross-sectional dispersion of log market equity and log market volatility. The correlation between
the trend components in average volatility and the market-based measure of lagged size dispersion is 90%.
The correlation between lagged size dispersion and the trend component in market volatility is 55%.

The correlation between the cycle component in average log volatility and lagged market equity dispersion
is 26%. These results suggest that the bulk of the predictive relation between the dispersion in the firm size
distribution and moments of the volatility distribution occurs at lower frequencies. However, there is also
significant evidence of correlation between cyclical volatility and size dispersion.

E Inclusion of Private Firms

We use Census data private sector firms sorted by employment. The data is provided by the U.S. Census
Bureau, Business Dynamic Statistics. The sample covers 1977-2009. The data is annual. The census reports
data in 12 employment bins ranging from 1 − 4 at the low end to 10, 000+ at the high end. We construct
the same bins using the Compustat employment data.
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Table 9: Composition

# Firms ρ(σsubset,s,t, σs,t) ρ(µσ,t, σs,t−1) ρ(σσ,t, σs,t−1)

All stocks 3004 - 71.7% 79.3%
By sample period / exchange

NYSE only 1158 64.2% 62.1% 77.6%

Non-NYSE 3018 89.9% 58.1% 40.7%

At least 50 yrs 347 78.1% 44.5% 62.7%

Random 500 500 90.5% 64.9% 80.7%
By size

Smallest third 1000 67.7% 71.7% 51.9%

Middle third 1000 87.7% 61.6% 69.8%

Largest third 1003 86.8% 55.9% 73.4%
By industry

Consumer Non-Dur. 248 91.4% 64.4% 72.3%

Consumer Durables 107 87.6% 33.4% 74.9%

Manufacturing 528 91.9% 53.1% 79.8%

Energy 140 72.9% 68.4% 67.9%

Technology 413 88.1% 85.2% 58.2%

Telecom 55 23.6% 14.3% 10.6%

Retail 310 86.5% 69.0% 69.8%

Healthcare 188 69.5% 69.4% 50.6%

Utilities 112 67.8% 19.7% 64.8%

Other 904 82.8% 63.3% 65.7%

Notes: Annual data 1926-2010. We use the market based volatility measure constructed from stock returns
and the market-based measure of size (market equity). The first column reports the time series average
of the cross section number of firms. The second column reports the time-series correlation between the
size dispersion of the sub-cross section and the dispersion of the full cross section. Column three reports
the correlation between average log volatility (µσ,t) and lagged log size dispersion (σS,t−1) and column four
reports the correlation between dispersion in log volatility (σσ,t) and lagged log size dispersion.
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Figure 9: Trend and Cycle in Size and Volatility Distributions

1930 1940 1950 1960 1970 1980 1990 2000 2010

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

Std. Dev. of Size Dist.
Average Stock Volatility
Market Volatility

1930 1940 1950 1960 1970 1980 1990 2000 2010

−2

−1

0

1

2

3

 

 

Std. Dev. of Size Dist.
Average Stock Volatility
Market Volatility

Notes: The figure plots HP-filtered trend and cycle components of time series moments of size and volatility
distributions using smoothing parameter of 50.

We also created a spliced series that divides the 10,000+ binds into 25 sub-bins using an imputation
from the Compustat size data. At the start of the sample, Census reports 728 firms with more than 10,000
employees, while Compustat reports 677. So, we have fairly comprehensive coverage at the start of the
sample. However, at the end of the sample, there are 1,975 with 10,000+ firms,only 1,016 of which show up
in Compustat. There are more large, private firms at the end of the sample.

Figure 10 plots the cross-sectional variance of log employment in Census and Compustat data. The
evolution of the size distribution when considering the entire universe of firms seems similar to the one in
Compustat. The correlation between the cross-sectional variance of log size in Compustat and the spliced
series (shown in Panel A) is 0.62. The correlation between the non-spliced Census measure (shown in Panel
B) and the Compustat measure is 0.65.13 Hence, the secular changes in the size distribution that we have

13Note that the variance of log employment in the Compustat data is much larger than the variance in
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Figure 10: Variance of Log Employment: Compustat vs. Census Data

1976 1982 1987 1993 1998 2004 2009 2015
3

3.5

4

C
en

su
s

 

 

1976 1982 1987 1993 1998 2004 2009 2015
1.2

1.3

1.4

1.5

C
en

su
s

 

 

4.5

5

5.5

6

6.5

7

C
om

p

Spliced Census
Comp

4.5

5

5.5

6

6.5

7

C
om

p

Census
Comp

Notes: The figure plots the cross-sectional variance of log employment in the Compustat and Census data
(left-hand-side axis). The data is annual and the sample covers 1977-2009. Source: U.S. Small Business
Administration, Office of Advocacy, from data provided by the U.S. Census Bureau, Business Dynamics
Statistics.

documented are not specific to publicly traded firms.
Finally, figure 8 plots the entry and exit rates for U.S. firms. The figure documents a secular decline in

entry and exit rates over the sample. These secular changes may have contributed to the changes in the size
distribution that we have documented.

F Network Overview

Figure 11 provides a summary of network connections for customers and suppliers in the Compustat linkage
data. The left panel shows the distribution of number of links by supplier (out-degree) on a log-log scale,
while the right panel shows the distribution of links by customer (in-degree). Out-degrees range between
one and 24, while in-degrees range from one to 130. We expect that both of these distributions are highly
distorted due to the truncated nature of the data. Out-degrees can reach 24 since some suppliers (23%)
voluntarily report customers that fall below the 10% sales threshold. The maximum out-degrees falls to 5
when we strictly impose the 10% sales truncation. Figure 12 reports histograms of weights of customer-
supplier sales linkages pooling all supplier-year observations. The distribution for the raw data, in which
some suppliers voluntarily report customers below the 10% sales threshold, is on the left. The right panel
shows the weight distribution when we strictly impose the 10% sales truncation in our calibration below.

These correlations are visualized in Figure 13, which presents a snapshot of the Compustat customer-
supplier network in 1980, zooming in on a region of the network dominated by retail firms (Sears, KMart
and JC Penney), automotive manufacturers (Ford and General Motors), technology/telecom firms (IBM and
AT&T) and industrials (General Electric and United Technologies). The size of each nodes is proportional to
a firm’s log sales, and edges between nodes are proportional to wi,j,t. Arrows on edges point from customer

the Census data.
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Figure 11: Customer-Supplier Network Degree Distributions
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Notes: The figure plots log-log survivor plots of the out-degree and in-degree distributions of the Compustat
customer-supplier network data pooling all firm-years for 1980–2009.

Figure 12: Customer-Supplier Network Linkage Weights
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Notes: The figure plots the histogram of Compustat customer-supplier sales weights for the raw data (left
panel), and when we strictly imposed the 10% sales threshold in our calibration. Plots pool all firm-years
for 1980–2009.
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to supplier.

G Tail Probabilities

As N → ∞, the pdf converges to f(g;Gt(S)), with dependence on the entire distribution of firm sizes.
The law of motion for the tail distribution Gt(S) = Prob(x > S) can be stated as:

Gt+1(S) =

∫
Gt

(
S

exp(g)

)
ft(g)dg̃, (34)

where f denotes the p.d.f. of the growth rates. Assume that the cross-sectional size distribution is log-normal.
After substituting the approximate first-order approximation of growth dynamics, we obtain:

Gt+1(S) =

∫
Gt

(
S

exp(g)

)
1

σǫ

√
1 + γ2

Np(S) exp(σ
2
s,t−1)

exp


− g

2σ2
ǫ

(
1 + γ2

Np(S) exp(σ
2
s,t−1

)


 dg

Proposition 10. In the first-order version of this economy, there exists a steady state distribution which

satisfies a power law with coefficient:

ζ(S) =
1

1 + γ2ZE[S]
S

(∑∞
j=2

2j−2
j! κs,j,t

) ,

provided that µg = −(1/2)σ2
ǫ .

Proof. We consider the case of a log-normal size distribution. The extension to the general case is straight-
forward. Suppose we conjecture the following tail distribution G(S) = a/Sζ(S) and solve for a steady-state
tail distribution.

G(S) =

∫ (
exp(g)

S

)ζ(S)
a

1

σǫ

√
1 + γ2

Np(S) exp(σ
2
s )

exp


− g

2σ2
ǫ

(
1 + γ2

Np(S) exp(σ
2
s

)


 dg

This can also be stated as:
G(S) =

a

Sζ(S)
E[exp(gζ(S))|S]

To solve for a steady-state distribution, we have to find a function ζ(S) such that: E[exp (gζ(S)) |S] = 1 for
all S. We need to solve for the following equation for ζ(S):

logE[exp (gζ(S)) |S] = µgζ(S) + (1/2)ζ(S)2σ2
ǫ

(
1 +

γ2

Np(S)
exp(σ2

s )

)
= 0.

This is a quadratic equation that can be solved for ζ. We assume that µg = −(1/2)σ2
ǫ . We substitute for

p(s). As N → ∞,
∑

i Si → NE[S]. After some simplifications, we obtain the following non-zero root of the
quadratic equation:

ζ(S) =
1

1 + γ2ZE[S]
S

exp(σ2
s )
.

In the general case with non-normal size distribution, we obtain the same expression with the cumulant
function inside the exponent.

As S/E(S) → ∞, ζ(S) → 1. In this limiting case, we end up back in the standard case with an exponent
equal to 1. However, for smaller S, the slope declines in absolute value, simply because the increase in
variance produces mixing of smaller and larger firms.

To summarize, network effects break Gibrat’s law. Growth innovations are no longer iid and as a result
the size distribution will not settle down. Our model produces aggregate dynamics as the size distribution
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G(·) changes over time, and the growth pdf changes along with it because the underlying network structure is
changing. In the following sections we show that size distribution dynamics also feed back into time variation
for the volatility distribution.

H Alternative Calibrations

To better understand the various parts of the model, we explore a number of alternative models to our
benchmark model (M1). Table 10 lists the parameters. The results for size, volatility, and network moments
are reported in Tables 11, 12, and 13, respectively.

Table 10: Calibration

Parameter Description M1 M2 M3 M4 M5

1. N # firms reported each period 1000 1000 1000 1000 1000

2. T # years in simulation (after burn-in) 1000 1000 1000 1000 1000

3. µg Exogenous firm growth rate 0 0 0 0 0

4. µSo Mean initial log size distribution 10.20 10.20 10.20 10.20 10.20

5. σSo Standard deviation initial log size distribution 1.06 1.06 1.06 1.06 1.06

6. δ Exogenous firm destruction rate 0.05 0.05 0.05 0.05 0.05

7. κ Governs the survival rate of connections 0.5 0.5 0.5 0.5 0.5

8. Z Governs likelihood of new connections 0.35 0.35 0.35 0.35 0.10

9. ψ Governs the importance of connections 1 1 1 1 0.1

10. γ Importance of the network 0.95 0.95 0.95 0.75 0.95

11. σ Fundamental shock volatility (i.i.d.) 0.22 0.22 0.22 0.30 0.25

12. network Full-degree or first-degree approximation F A F F F

13. p(·) Governs probability of a connection B B A B B

Notes: In row 12, F indicates full-degree network and A indicates first degree-approximation. In row 13, B indicates benchmark
and A indicates alternative assumption.

Model 2 (M2) is the first-degree approximation to the benchmark model, discussed in Section 3, with
all parameters left unchanged. It produces dramatically different size and volatility results, underscoring
the importance of network persistence. Out-degree Herfindahls in M2 are lower than in M1. Because of less
concentrated networks, firms are better able to diversify the shocks that hit their customer network. Mean
volatility (27%) and the dispersion in volatility across firms (26%) are substantially lower in the first-degree
approximation as in the full-degree network. The median firm is 15% smaller while the largest firms are
34% smaller than in M1. In terms of macro moments, the size dispersion fluctuations almost completely
disappear (4% time-series standard deviation versus 19%). The same is true for average firm volatility (3%
time-series standard deviation versus 20%), aggregate growth volatility (4% versus 20%), and the volatility
of the cross-sectional dispersion of volatility. The dramatic reduction in aggregate volatilities shows that
higher-order connectivity amplifies shocks and is crucial in producing the patterns in aggregate moments we
observe in the data.

Model 4 (M4) tells a similar story. Here, we revert to the full-degree network, but lower the persistence
parameter of the network to γ = 0.75. Because lowering γ lowers average volatility, we adjust the volatility
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Table 11: Firm Size Distribution

(1) (2) (3) (4) (5) (6) (7)

All Top-33% M1 M2 M3 M4 M5

Panel A: Cross-sectional Moments of Log Size

Avg 9.61 11.63 11.63 11.47 11.66 11.78 11.57

SD 1.79 1.06 1.07 0.97 1.19 1.30 1.00

5% 6.86 10.38 10.32 10.34 10.21 10.33 10.41

10% 7.39 10.47 10.44 10.43 10.34 10.44 10.50

25% 8.33 10.78 10.79 10.72 10.73 10.80 10.80

Med 9.48 11.39 11.42 11.26 11.43 11.47 11.34

75% 10.77 12.25 12.25 11.99 12.35 12.43 12.08

90% 12.05 13.10 13.10 12.78 13.30 13.54 12.91

95% 12.76 13.64 13.68 13.34 13.93 14.32 13.51

Panel B: Time Series Properties of Size Distribution

SD of σS,t 0.24 0.14 0.19 0.04 0.43 0.11 0.15

AR(1) σS,t 0.947 0.939 0.995 0.959 0.995 0.981 0.997

SD of σg,t 0.15 0.11 0.05 0.01 0.01 0.02 0.03

Ht 0.010 0.012 0.020 0.018 0.036 0.088 0.034

Notes: All reported moments in Panels A and B are time-series averages of the listed year-by-year cross
sectional moments (cross section average, standard deviation, and percentiles) for the sample 1926–2010.
The first column reports the full cross-section of firms . The second column reports results for the top-33%
of firms in each year. Column 3 reports the corresponding moments for the benchmark model (M1). Column
4 shows the first-degree approximation of the benchmark model (M2). Columns 5-7 show three variations of
the full-degree network model for different parameter values, described in the main text, and labeled M2-M5.
Panel A reports moments of the log size distribution, where size is defined in the data as market equity.
Panel B reports the time-series standard deviation and time-series persistence of size dispersion σS,t, defined
as the cross-sectional standard deviation of log size, the time-series standard deviation of the cross section
standard deviation of log growth rates σg,t and the time-series average of the economy-wide Herfindahl index
Ht.
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of the shocks σ upwards to 0.30. This model behaves similarly to M2 in that it has a more compact firm
volatility distribution and much lower variability in size dispersion, mean variance, and variance dispersion
than M1. Unlike M2, M4 has a much higher economy-wide Herfindahl index (0.088) indicating strong firm
size concentration. This arises form the higher shock volatility which helps to produce large firms with many
connections. The largest firms are too large compared to the data.

In Model 3 (M3), we modify the probability that a supplier is connected to a customer and make it less
steep in size. Specifically, we change the probability of a connection from the benchmark equation (??) to
the alternative

pi,j,t =
1

Z + log
(

maxk{Sk,t}
Si,t

) ; prob of conn = max {pi,j,t + κ, 1}

where we use the same scalar values for Z and κ than in the benchmark specification. This radically changes
the average number of (untruncated) out-degrees from 10 in the benchmark to 441, while the truncated

average out-degree actually falls. The median (truncated or untruncated) out-Herfindahl drops from 0.60 to
0.06, bringing it in line with the data. Because smaller firms now have bigger networks, they achieve better
diversification. The dispersion of volatility is much lower (0.08 in M3 versus 0.45 in M1) and this dispersion
fluctuates much less over time. The cross-sectional correlation between size and volatility becomes positive,
but there is much less dispersion in volatility in the first place.

In Model 5 (M5) we consider a calibration that delivers a substantially lower out-degree Herfindahl than
the benchmark model, bringing it closer to the data. We change the function wi,j,t, which governs the
importance of customer j in supplier i’s network:

wi,j,t =
bi,j,tS

ψ
j,t∑

k 6=i bi,k,tS
ψ
k,t

∀j 6= i

We make the importance of a given customer less steep in customer size by setting the curvature parameter
ψ = 0.1. All other calibrations set ψ = 1. To further lower the out-degree Herfindahl, we lower Z from
its benchmark value of 0.35 to 0.10, making the probability of a connection steeper in supplier size. This
generates more connections on average. Finally, we increase the volatility of the shocks to 25% so that the
model generates the same mean variance as in the data. By giving large customers a smaller weight in the
network, M5 reduces the median out-degree Herfindahl from 0.60 in M1 to 0.11; the truncated counterpart is
0.05 matching the data. The average number of (untruncated) connections is 32 and the median is 12. The
larger number of connections helps to further lower the Herfindahls. M5 continues to generate substantial
firm size dispersion and the right amount of average firm volatility, in part because of the higher shock
volatility (σε =0.25 versus 0.22). However, the volatility dispersion (0.20) is severely curtailed, like in M3
(0.08), compared to the 0.45 in M1 and the even higher numbers in the data. M5 cannot generate enough
highly volatile firms, compared to the data. Aggregate moments such as size dispersion, mean variance,
variance dispersion, and aggregate growth display meaningful time variation, but less than in the benchmark
model. Despite this drawback, this model has arguably a more realistic network structure, and continues to
generate interesting variation in the key moments of interest.

I Downstream Results

We use the exact same calibration. If we abstract from truncation, then reversing the direction only changes
the network moments reported in Table 8: in-degree and out-degree moments are reversed. However, after
truncation, the results look different. Table 14 reports results for the downstream transmission case. This
version of the model has more success matching the in-degree moments, but then it does considerably
worse matching the out-degree moments in the top panel. In particular, this version of the model implies
counterfactually that there is no connection between customer Herfindahls and volatility. In the data, we
found that this relation is robust top controlling for other variables, while the relation between supplier
Herfindahls and volatility is not.
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Table 12: Firm Volatility Distribution

(1) (2) (3) (4) (5) (6) (7) (8) (9)
All Top-33% All Top-33% M1 M2 M3 M4 M5

Returns Returns Sales Sales

Panel A: Cross-Sectional Moments of Firm Volatility

Avg 0.40 0.30 0.29 0.24 0.37 0.27 0.51 0.40 0.31
SD 0.96 0.73 1.51 1.42 0.45 0.26 0.08 0.29 0.20
5% 0.19 0.17 0.09 0.08 0.26 0.22 0.48 0.31 0.27
10% 0.22 0.19 0.11 0.10 0.28 0.23 0.48 0.33 0.27
25% 0.29 0.24 0.17 0.14 0.31 0.24 0.49 0.36 0.29
Med 0.40 0.30 0.29 0.23 0.36 0.27 0.50 0.40 0.30
75% 0.56 0.38 0.48 0.38 0.42 0.29 0.52 0.44 0.32
90% 0.75 0.48 0.77 0.60 0.49 0.32 0.53 0.48 0.35
95% 0.90 0.54 1.05 0.77 0.54 0.33 0.54 0.50 0.36

Panel B: Cross-Sectional Moments of Size-Volatility Distribution

Corr(St, Vt+1) −0.57 −0.33 −0.33 −0.18 −0.42 −0.49 0.20 −0.50 −0.37
β(St, Vt+1) −0.32 −0.23 −0.27 −0.22 −0.18 −0.13 0.01 −0.11 −0.07

Panel C: Time Series Properties of Volatility Distribution

SD of µσ2,t 0.69 0.64 0.46 0.42 0.20 0.03 0.82 0.09 0.15
SD of σσ2,t 0.18 0.12 0.13 0.13 0.05 0.01 0.02 0.01 0.07
Corr(σS,t, µσ2,t) 0.71 0.55 0.51 0.51 0.95 0.86 0.76 0.90 0.93
Corr(σS,t, σσ2,t) 0.76 0.76 0.57 0.38 0.77 0.09 0.34 −0.54 0.94
SD of gagg,t 0.21 0.20 0.21 0.20 0.20 0.04 0.62 0.15 0.15
Corr(gagg,t, σS,t) −0.06 −0.08 −0.06 −0.08 −0.02 0.02 −0.13 0.02 −0.01
Corr(gagg,t, µσ2,t) −0.32 −0.43 0.01 −0.00 −0.01 −0.01 −0.11 0.01 −0.01
Corr(gagg,t, σσ2,t) 0.04 −0.19 0.18 0.14 0.02 0.04 −0.03 0.01 −0.00

Notes:All reported moments in Panels A and B are time-series averages of the listed year-by-year cross sectional moments (cross section average,
standard deviation, and percentiles) for the sample 1926–2010. The first and third columns report return volatility and sales growth volatility,
respectively, for the full cross-section of firms. The second and fourth columns report results for the largest 33% of firms by market capitalization
in each year. Annual variances in Columns 1 and 2 are calculated from daily stock return data, while variances in columns 3 and 4 are based on
20 quarters of sales growth rates (in the current and the next four years). Moments are computed based on the log variance distribution, but are
expressed as volatilities in levels for exposition. That is, we exponentiate each moment of the log distribution and take the square root. Column 5
reports the corresponding moments for the benchmark model (M1). Column 6 shows the first-degree approximation of the benchmark model (M2).
Columns 7-9 show three variations of the full-degree network model for different parameter values, described in the main text. Log variances in the
model are constructed with added estimation noise to make them comparable to the moments in the data.
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Table 13: Network Moments

(1) (2) (3) (4) (5) (6) (7) (8) (9)
All Top-33% All Top-33% M1 M2 M3 M4 M5

Returns Returns Sales Sales

Panel A: Out-degree Moments

median Kout 1.00 1.00 – – 1.71 1.99 0.75 1.12 1.03
99th % Kout 3.38 3.32 – – 4.66 4.94 2.24 4.05 7.93
median Hout 0.05 0.04 – – 0.60 0.51 0.04 0.88 0.05
99th % Hout 0.95 0.54 – – 1.00 1.00 0.23 1.00 0.72
Corr(Kout

t , St) 0.01 −0.07 – – 0.34 0.25 −0.08 0.45 −0.55
Corr(Hout

t , St) −0.30 −0.09 – – −0.78 −0.67 −0.12 −0.72 −0.53
Corr(Hout

t , Vt+1) 0.17 0.11 0.25 0.09 0.49 0.70 0.45 0.63 0.58

Panel B: In-degree Moments

median Kin 1.00 1.12 – – 1.90 2.00 0.00 1.35 2.06
99th % Kin 31.61 16.80 – – 7.39 7.42 45.41 5.90 6.93
median H in 0.00 0.00 – – 0.11 0.11 0.00 0.07 0.01
99th % H in 0.28 0.24 – – 0.85 0.83 0.00 0.76 0.05
Corr(Kin

t , St) 0.37 0.49 – – 0.49 0.46 0.31 0.38 0.16
Corr(H in

t , St) −0.44 −0.28 – – 0.03 0.03 0.21 −0.07 0.01
Corr(H in

t , Vt+1) 0.25 0.19 0.09 0.12 0.01 −0.00 0.17 0.05 0.03

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross-section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column 1 is calculated based on daily stock return
data, while the variance in Column 2 is based on 20 quarters worth of annual sales growth (in the current and
the next four years). Column 3 reports the corresponding moments for the benchmark model (M1). Column
4 shows the first-degree approximation of the benchmark model (M2). Columns 5-7 show three variations
of the full-degree network model for different parameter values, described in the main text. Log variances
in the model are constructed with added estimation noise to make them comparable to the moments in the
data.

14



Table 14: Network Target Moments

All Top-33% All Top-33% Model
Returns Returns Sales Sales

Panel A: Out-degree Moments

median Kout 1.00 1.00 – – 3.88
99th % Kout 3.38 3.32 – – 6.15
median Hout 0.05 0.03 – – 0.25
99th % Hout 0.95 0.54 – – 1.00
Corr(Kout

t , St) 0.01 −0.07 – – 0.14
Corr(Hout

t , St) −0.30 −0.09 – – −0.09
Corr(Hout

t , Vt+1) 0.17 0.11 0.25 0.09 0.05

Panel B: In-degree Moments

median Kin 1.00 1.12 – – 1.90
99th % Kin 31.61 16.80 – – 7.39
median H in 0.00 0.00 – – 0.11
99th % H in 0.28 0.24 – – 0.85
Corr(Kin

t , St) 0.37 0.49 – – 0.59
Corr(H in

t , St) −0.44 −0.28 – – −0.39
Corr(H in

t , Vt+1) 0.25 0.19 0.09 0.12 0.32

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross-section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column (1)-(2) are calculated based on daily stock
return data, while the variance in Column (3)-(4) are based on 20 quarters worth of annual sales growth (in the
current and the next four years). Column (5) reports the corresponding moments for the benchmark model
(M1). Log variances in the model are constructed with added estimation noise to make them comparable to
the moments in the data.
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J Upstream vs Downstream

We first investigate our modeling assumption that shocks are transmitted from customers to suppliers, and
not the reverse. Table 15 reports estimates for how firms’ sales growth rates are affected by growth of firms
in their customer-supplier networks. In column (1) we estimate a pooled OLS regression model for upstream
growth rate transmission that takes the form gi,t+1 = a + b

∑
j wi,j,tgj,t+1 + ei,t+1 where the dependent

variable is the sales growth rate of supplier i in year t + 1 and
∑

j wi,j,tgj,t+1 is the network effect of i’s
customers on i’s growth rate. The weights are taken directly from the from Compustat linkage data. The
regression coefficient b, which is the spatial equivalent of an autoregression coefficient, is analogous to γ in
our model. We find that a customer’s weighted growth rate has an influence of b̂ = 0.90 on its immediate
suppliers, 0.902 on its suppliers suppliers, and so forth through the network. Thus a customer’s growth rate
shock has a half-life of 8 steps through the network.

Column (2) runs the same regression but also controls for gagg,t+1, the sales-weighted average growth
rate for all firms in the sample. This regression allows us to test whether customer linkages have explanatory
for a supplier’s growth rate after controlling for a simple one-factor structure in growth rates where all firms
have the same loading on the factor. After controlling for aggregate growth, the coefficient on weighted
customer growth rates is 0.79 and is highly statistically significant (in all cases standard errors are clustered
by firm and year).

In column (3) we allow for supplier specific loadings on the aggregate growth factor gagg,t+1 by first
running univariate time series regressions of the form gi,t+1 = ci + digagg,t+1 + ei,t+1, then running a
second-stage pooled OLS regression of the residuals on the network-based growth effect: ei,t+1 = a +
b
∑
j wi,j,tgj,t+1 + vi,t+1. We find a second stage coefficient on the upstream network effect of 0.64, which is

again highly significant. Columns (4), (5) and (6) report downstream transmission model estimates, which
take the same form as (1), (2) and (3) except the dependent variable is the growth rate of each customer,
and the network effect is calculated as the weighted average growth rate of suppliers a given customer (with
weights being the value of customer purchases from each supplier divided by the total sales of the customer
firm). The estimated downstream transmission effect is economically small, only −0.02. While this estimate
is marginally significant, the sign is negative and we view these results as a failure to reject the null of no
downstream effect.
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Table 15: Upstream versus Downstream Growth Rate Transmission

Supplier Growth Customer Growth

(1) (2) (3) (4) (5) (6)

Linkages Growth 0.901 0.788 0.642 -0.022 -0.024 -0.022

8.63 7.91 5.17 -2.24 -2.45 -2.06

Aggregate Growth 0.760 1.045

6.74 8.72

R2 (%) 3.11 4.50 1.84 0.13 3.45 0.13

Notes: The table reports estimates for how firms’ sales growth rates are affected by growth of firms in their
customer-supplier networks. In column (1) we estimate a pooled OLS regression model for upstream growth
rate transmission that takes the form gi,t+1 = a+ b

∑
j wi,j,tgj,t+1 + ei,t+1 where the dependent variable is

the sales growth rate of supplier i in year t+ 1 and
∑

j wi,j,tgj,t+1 is the network effect of i’s customers on
i’s growth rate (calculated from Compustat linkage data). Column (2) runs the same regression but also
controls for gagg,t+1, the sales-weighted average growth rate for all firms in the sample. In column (3) we allow
for supplier specific loadings on the aggregate growth factor gagg,t+1 by first running univariate time series
regressions of the form gi,t+1 = ci + digagg,t+1 + ei,t+1, then running a second-stage pooled OLS regression
of the residuals on the network-based growth effect: ei,t+1 = a+ b

∑
j wi,j,tgj,t+1 + vi,t+1 (only second stage

estimates are reported). Columns (4), (5) and (6) report downstream transmission model estimates, which
take the same form as (1), (2) and (3) except the dependent variable is the growth rate of each customer,
and the network effect is calculated as the weighted average growth rate of suppliers a given customer (with
weights being the value of customer purchases from each supplier divided by the total sales of the customer
firm). All growth rates are de-meaned at the firm level, and standard errors are clustered by firm and year.
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Figure 13: 1980 Network Snapshot

AT&T
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Notes: The figure shows one region of the Compustat customer-supplier network for 1980. Size of nodes
represent log sales of a firm, and arrows represent directed links from supplier to customer (with arrow
thickness corresponding to the weight of the link). We highlight certain central nodes including AT&T,
IBM, United Technologies, General Electric, Sears, JCPenney, General Motors and Ford.
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