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Abstract

The contribution of generalized method of moments (Hansen and Singleton, 1982) was to

allow frequentist inference regarding the parameters of a nonlinear structural model without

having to solve the model. Provided there were no latent variables. The contribution of this

paper is the same. With latent variables.
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1 Introduction

We propose a generalized method of moments (GMM) estimator (Hansen and Singleton,

1982) for frequentist inference regarding the parameters of a nonlinear structural model that

has dynamic latent variables. By latent variables we mean all endogenous and exogenous

variables in the model that are not observed. Under the assumptions listed in Section 2, the

estimator is consistent and asymptotically normally distributed.

Intuitively the problem we address is this: GMM works by using data that can be viewed

as a draw (i.e., a sample) from the finite sample distribution implied by a model to ap-

proximate an unconditional expectation. We are missing data and must find some means

to construct a draw that includes the missing data. We use a distribution that would be

correct if the unconditional moment conditions of a GMM criterion defined over complete

data were normally distributed to derive a particle filter from which to draw the missing

data. This distribution can only assign mass to a limited class of sets. Working around this

limitation is the first technical challenge we face. The second is to show that draws based on

a normality assumption well approximate draws from the actual finite sample distribution

of the moment conditions. What is done here is distinct from the use of a particle filter to

integrate out latent variables at some stage of the computation of an estimator. Instead we

use the particle filter to construct a proposal density for an MCMC chain.

The specifics of the estimator we propose are as follows: We assume enough knowledge of

the transition density of the latent variables that we can draw a future latent variable given

the past and the model’s parameters. Under this assumption, we can define a Metropolis

within Gibbs algorithm with Chernozukov and Hong’s (2003) Markov Chain Monte Carlo

(MCMC) algorithm as the Metropolis step and Andrieu, Douced, and Holenstein’s (2010,

Subsection 4.1) modified particle filter algorithm as the Gibbs step. Justification of the

Gibbs step is where the aforementioned technical problems arise. The result is an MCMC

chain in the parameters. Parameter estimates and their standard errors are computed from

this MCMC chain.

The main attraction of GMM is that one does not have to solve the structural model. For

partial equilibrium models this is crucial because, in general, there do not exist practicable
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alternatives.

We also expect that an important application for our results will be statistical infer-

ence regarding general equilibrium models in macroeconomic applications such as dynamic

stochastic general equilibrium models (DSGE). For this class of models there are a variety

of methods one might consider.

One can use perturbation methods to approximate the model, use the approximation to

obtain an analytical expression for the likelihood, and then use some method of numerical

integration such as particle filtering to eliminate the latent variables along the lines proposed

by Fernandez-Villaverde and Rubio-Ramirez (2006). One can solve the model only to the

point of being able to simulate it and then use either simulated method of moments (SMM)

(Duffy and Singleton, 1993) or efficient method of moments (EMM) (Gallant and Tauchen,

1996). These cites are the ones that we think readers will find most useful. They are not

attributions. For attributions see the cited papers.

The main reason one might want to consider alternatives to these frequentist inference

procedures is that one has misgivings about the quality of the numerical methods one has

used to solve the structural model. For instance, perturbation methods such as linearization

cause loss of information: they typically require dealing with stochastic singularity and with

possible multiplicity of solutions (indeterminacy).

The aforementioned frequentist strategies have Bayesian counterparts. A state-of-the-

art Bayesian counterpart to Fernandez-Villaverde and Rubio-Ramirez (2006) is Flury and

Shephard (2010). A Bayesian counterpart to EMM is Gallant and McCulloch (2009).

There is a Bayesian counterpart to GMM with latent variables, namely Gallant and Hong

(2007). They exploit some differences between Bayesian and frequentist inference with the

consequence that their approach does not conveniently extend from Bayesian to frequentist

inference. That extension is the goal of this paper. Their constructions of various densities

derived from a continuously updated GMM criterion are directly applicable. The essence of

these constructions can be traced back to fiducial inference (Fisher, 1930). The main issue

is showing that a conditional density so constructed can be used to generate draws from the

conditional density of the latent variables given the observed variables. Once this is done,

the remainder of the analysis can be accomplished by citation.
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2 Assumptions

ASSUMPTION 1 We require the existence of (but not complete knowledge of) a dynamic

structural model that has parameters θ, a vector. We denote the true but unknown value

of the parameters by θo. We observe the history X = (X1, X2, ..., XT ), a subset of the

endogenous and exogenous variables in the model. We do not observe the variables in the

model that remain: Λ = (Λ1,Λ2, ...,ΛT ). These are the latent variables. Partial histories are

denoted X1:t = (X1, X2, ..., Xt) and Λ1:t = (Λ1,Λ2, ...,Λt).

ASSUMPTION 2 We assume that we can draw from the transition density of the dynamic

latent variables Λt+1 ∼ P (Λt+1 |Λt, θ). The transition density is assumed to be ergodic.

Examples of latent variables that satisfy Assumption 2 and are routinely used in eco-

nomics models are time-varying parameters, structural shocks, state-dependent parameters,

and state-dependent factors.

Note that the functional form P (Λt+1 |Λt, θ) implies that we can draw from the stationary

density P (Λt | θ) by drawing from P (Λt+1 |Λt, θ) with an arbitrary start Λ0 and waiting for

transients to die out.

The model can exhibit state dependence; e.g., Markov switching. If necessary to ac-

commodate state dependence, one can modify the functional form of the transition density

provided that ergodicity is retained because the only use made of the transition density

is to propose a value of Λt+1 for the purpose of extending Λ1:t. Therefore, the transition

density could, e.g., be of the form P (Λt+1 |Λ1:t, X1:t, θ). However, in this case, one must

provide some means to obtain an initial draw. One approach would be to use the method

proposed by Gallant and Hong (2007, p. 536), which starts with a guess for Λ0, draws from

P (Λt+1 |Λ1:t, X1:t, θ) recursively, and uses the last such draw as the start for estimation.

When working with DSGE models one is used to thinking in terms of observables and

states. That is not the dichotomy we have in mind here. Our division is into what is observed

and what is not observed. Thus, what we term latent variables can include unobserved states,

unobserved exogenous variables, and unobserved endogenous variables. The practical limit

on what is permitted is determined by Assumption 2 (and the preceding paragraph).
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Throughout we rely on conventional asymptotics, e.g., Hansen and Singleton (1982),

Gallant and White (1987), and Chernozukov and Hong (2003), which rules out most unit

root type behavior. This may require that a parameter lie in an open interval, which is a

condition that is trivially easy to impose on one or more parameters at the Metropolis step

of our proposed estimation method.

ASSUMPTION 3 We are given a set of conditional moment conditions of the form

E [g(Xt+1,Λt+1, θ) | It] = 0,

where g(·, ·, ·) is M -dimensional. The information set is It = {X−∞, ..., Xt, Λ−∞, ...,Λt}. We

assume that the unconditional moment conditions

E [g(Xt+1,Λt+1, θ)] = 0 (1)

would identify θ if both X and Λ were observed.

The method we propose, described in more detail below, consists of two steps: a Gibbs

step that draws Λ given X, θ, and the previously drawn Λ; and, a Metropolis step that

draws θ given X, Λ, and the previously drawn θ. We shall prove that the θ draws are a

sample from the asymptotic distribution of the GMM estimator determined by (1) for large

T . These draws are the means by which statistical inference is conducted. The moment

conditions for the Gibbs and Metropolis steps can be different. For the Gibbs step only Λ

need be identified; for the Metropolis step only θ need be identified. One reason that one

might want to split the moments into two groups is to reduce computation time. If, say,

one can divide ten moment conditions into two groups of five each, then computation time

would more than halve.

GMM estimation results depend on the skill one uses in constructing moment conditions.

By making sure that the moments used at the Metropolis step span the scores of the likelihood

for observables (i.e., the density of X after eliminating Λ by integration), GMM results

can be made the same as those for the maximum likelihood estimator (MLE), which are

the best achievable. This is usually impossible without having an analytic expression for

the likelihood, in which case there is no point to using GMM. However, there do seem
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to be some principles one can apply in selecting moments at the Metropolis step that we

have discovered in our experimentation. One should try to identify as many parameters

as possible from the observed data alone and try to make the latent variables depend as

much as possible on quantities that can be computed from the observed data. If one is

successful at this, then estimation results will be satisfactory, in our experience, but estimates

of, e.g., the mean of the conditional distribution of the latent variables will not. This

is corrected, in our experience, by choosing the moments used in the Gibbs step so that

observed variables depend on the latent variables as much as possible without regard for

identification of parameters. I.e., the exact opposite of the goal for choosing moments for

the Metropolis step. We illustrate these principles in the DSGE example of Subsection 6.2.

What we require in Assumption 3 is different than what one might expect from the meth-

ods proposed by Fernandez-Villaverde and Rubio-Ramirez (2006). We can translate their

approach into our context by presuming that the scores of their likelihood (i.e., the joint den-

sity for X and Λ) are our moment conditions, in which case the moment conditions would

identify Λ and (at least partially) identify the parameters that appear in their likelihood

but would not identify the parameters that are unique to the transition density. The reason

for the difference is that we are using a modified particle filter (Subsection 4.2) to generate

a Gibbs proposal for a metropolis within Gibbs method whereas Fernandez-Villaverde and

Rubio-Ramirez are using a full particle filter (Subsection 4.1) to integrate Λ from the like-

lihood. This integration step puts the parameters unique to the transition density into the

objective function. We are not using the particle filter for integration and therefore must

identify the parameters unique to the transition density through moment conditions.

Some parameters of a model, particularly a DSGE model, may not be identified even if

the correct likelihood involving only observables were known. This is a common problem

in frequentist inference. When it occurs, the unidentified parameters must be calibrated or

one must resort to methods for determining the boundaries of identified sets. Our DSGE

example in Subsection 6.2 exhibits this problem and we deal with it by calibration.

Sample moment conditions corresponding to (1) are

gT (X,Λ, θ) =
1√
T

T∑

t=1

g(Xt,Λt, θ)
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with weighting matrix

Σ(X,Λ, θ) =
1

T

T∑

t=1

g̃(Xt,Λt, θ)
′g̃(Xt,Λt, θ) (2)

g̃(Xt,Λt, θ) = g(Xt,Λt, θ) −
1√
T
gT (X,Λ, θ) (3)

If the moment conditions are serially correlated one will have to substitute a heteroskedastic

autoregressive consistent (HAC) weighting matrix (Andrews, 1991) for that shown as (2). If

a HAC matrix is used, the residuals used to compute it should be of the form shown as (3).

ASSUMPTION 4 We assume that the sample moment conditions normalized by the

weighting matrix are asymptotically normal; i.e.,

Z = [Σ(X,Λ, θo)]−1/2 gT (X,Λ, θo)
d→ N(0, I).

Regularity conditions such that asymptotic normality obtains are in Hansen and Singleton

(1982), Gallant and White (1987), and elsewhere.

Define

p(X,Λ, θ) = (2π)−M/2 exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1 gT (X,Λ, θ)

}
(4)

ASSUMPTION 5 The Chernozhukov and Hong (2003) result holds; that is, a sample
{
θ(i)

}R
i=1

from the density

p(θ |X, Λ) ∝ p(X, Λ, θ) (5)

is a sample from the asymptotic distribution of the GMM estimator for large T .

With Assumption 5 in place, what we have to do to achieve the goal of this paper is

discover a method that generates an MCMC chain for (5). We do this by sampling
{
θ(i),Λ(i)

}

from the density

p(θ,Λ |X) ∝ p(X,Λ, θ) (6)

using a Metropolis within Gibbs algorithm and discarding the Λ draws.

We impose an additional requirement that is a considerable convenience:
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ASSUMPTION 6

� ∞

−∞

· · ·
� ∞

−∞

(2π)−M/2 exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1gT (X,Λ, θ)

}
dX1· · · dXT = 1, (7)

which implies

p(X |Λ, θ) = p(X, Λ, θ). (8)

As yet we have not encountered a practical application that violates this condition.

Usually all that is required is that each element of g is unbounded with respect to an element

of Xt and that the residuals used to compute the weighting matrix are centered as in (3). If

the integral in (7) does not integrate to one, but one has a convenient means to compute it,

then this requirement can be eliminated by using

p#(X |Λ, θ) =

exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1 gT (X,Λ, θ)

}

�∞

−∞
· · ·

�∞

−∞
exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1gT (X,Λ, θ)

}
dX1· · · dXT

(9)

instead of p(X |Λ, θ) to implement the particle filters in Subsections 4.1 and 4.2.

For the Gibbs step we need an additional technical condition:

ASSUMPTION 7 Let p(X1:t,Λ1:t, θ) denote (4) computed from a partial history. We

assume that

E
{

log p[X1:t, (Λ
o
1:t−1,Λt), θ

o] |Λo
1:t

}

has an isolated maximum in Λt at Λo
t if θo and Λo

1:t−1 were known.

In practice one can check this condition by looking at a few plots of log p(X1:t,Λ1:t, θ)

against Λt with all else fixed to see if Λt appears to be identified. If not, one can change the

moment conditions. In this connection see the discussion of moment conditions (41) through

(48) in Subsection 6.2.

The method we propose is as follows:

1. Initialization. Choose a reasonable start (θ(0), Λ(0)) and set i = 1.

2. Sample θ(i) from p(θ |X,Λ(i−1)) knowing θ(i−1) using a Metropolis algorithm (Subsec-

tion 4.3).
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3. Sample Λ(i) from p(Λ |X, θ(i)) knowing Λ(i−1), where

p(Λ |X, θ) ∝ p(X,Λ, θ), (10)

using a modified particle filter (Subsection 4.2).

4. Increment i and repeat from Step 2 until i exceeds some preassigned value R.

We discard the Λ draws to avoid excessive consumption of disk space and because there

is little use for the joint distribution of θ and Λ in frequentist inference. Of more use is to

be able to generate counterfactuals for Λ given some choice of X and θ. For this one needs

the ordinary particle filter algorithm (Subsection 4.1) that generates draws from P (Λ |X, θ).
Actually, as we shall see in Section 5, it is only the ordinary particle filter algorithm that we

have to derive because the rest of the theory follows directly by citation.

Also, we shall have to come to grips with the issue that the actual small sample distribu-

tion of Z is not the standard normal Φ on R
M but some other distribution ΨT , which issue

we shall address in Section 5. Until Section 5 shall ignore the distinction between Φ and ΨT

because asymptotically it does not matter and we only use densities defined in terms of Φ

and its density φ up to that point.

Sometimes one uses a penalty function in connection with MCMC using (6). In our exam-

ples we shall investigate the effect of multiplying (6) by a Jacobian term [det Σ(X,Λ, θ)]−M/2.

3 The Likelihood Induced by GMM

Gallant and Hong (2007) introduced a method for Bayesian inference for dynamic models

with (possibly endogenous) unobserved variables building on ideas due to Fisher (1930) and

used it to estimate the monthly and annual pricing kernels from a panel of equity and fixed

income securities. In the course of this development they characterized the likelihood induced

by GMM. We restate the subset of their results that we need here in a form more suited to

frequentist inference.

3.1 The Simplest Example

(Figure 1 about here)
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Consider a random sample X1, . . . , Xn from a normal distribution whose mean Λ is also

normally distributed. That is, there is one draw to get Λ and then n draws from n(X |Λ, σ2).

The statistic

Z =
√
n

(
X̄ − Λ√

s2

)

will have the t-distribution, where X̄ = 1
n

∑n
i=1Xi and s2 = 1

n−1

∑n
i=1(Xi − X̄)2. For large

enough n the t-distribution cannot be distinguished from the normal, which, for simplicity,

is the distribution that we shall use for Z to illustrate the ideas. With this simplification, X̄

and Λ have joint density

p(X̄,Λ) =
1√
2π

e−
n
2 (

X̄−Λ
σ )

2

.

This assertion is verified by an application of the change of measure formula (Gallant and

Hong, 2007).

This density is nonstandard in the sense that joint probability over (X̄,Λ) ∈ R
2 can only

be assigned to (the smallest σ-algebra containing all) sets bounded by 45 degree lines. An

example is the set labeled A(X̄,Λ) in Figure 1. The conditional probability for a set such as

that labeled C(X̄|Λ) in Figure 1 is computed as

P (C |Λ) =

�

C
p(X̄,Λ) dX̄

�∞

−∞
p(X̄,Λ) dX̄

.

Conditional probability must be computed in this way to achieve coherency. In most ap-

plications, as in this one, the integral that appears in the denominator of P (C |Λ) will be

identically equal to one for all Λ. Therefore, because the denominator is identically one,

p(X̄,Λ) is also a conditional density.

The conditional probability P (C |Λ) also attaches itself to sets of the form Cn =

{(X1, . . . , Xn) : X̄ ∈ C} by the change of measure formula (Gallant and Hong, 2007).

Information is lost relative to the full likelihood p(X1, . . . , Xn |Λ), were it available, because

only (the σ-algebra containing all) sets of the form Cn in R
n can be assigned conditional

probability by the density p(X̄,Λ). Denote the smallest σ-algebra containing all sets of the

form Cn by Cn. Nonempty sets Cn in Cn will be unbounded and have the restriction, among

others, that if (X1, X2, . . . , Xn) is in Cn then so will (Xσ(1), Xσ(2), . . . , Xσ(n)) be in Cn for any

permutation σ(·) of the integers 1 through n. In particular, bounded rectangles in R
n will
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not be in this σ-algebra and therefore cannot be assigned conditional probability whereas

they can be assigned probability by the full likelihood. This implies that Cn cannot contain

all the Borel subsets of R
n.

The essential point of this subsection is that p(X̄,Λ) can be regarded as a conditional

density on R
n and is therefore a likelihood.

A corollary is obvious at sight from the change of measure formula but is not emphasized

in Gallant and Hong (2007) because it is largely irrelevant to Bayesian inference: If a set

Cn is in Cn, then it is assigned the same probability by both the full likelihood and the

likelihood induced by the GMM criterion. This means that if one computes the unconditional

expectation of g(X,Λ) (where g(·,Λ) measurable Cn) using the law of iterated expectations

by integrating first with respect to X using either of the two likelihoods and then with

respect to Λ, one gets the same answer.

3.2 The Abstraction

The abstraction from these ideas is that the density p(X,Λ, θ) given by (4) generates a

likelihood p(X |Λ, θ) = p(X,Λ, θ) when (7) holds. If (7) fails, then one uses p#(X |Λ, θ)
given by (9) if computationally feasible. As it is obvious where p#(X |Λ, θ) needs to be

substituted for p(X |Λ, θ), we shall use p(X |Λ, θ) and the transition density p(Λt+1 |Λt, θ)

as the basis for frequentist inference in the sequel without further comment.

We remark in passing that if one conducts Bayesian inference using p(X |Λ, θ) as a

likelihood and p(Λt+1 |Λt, θ)× p(θ) as a prior for some density p(θ), as proposed by Gallant

and Hong (2007), we expect that using p(X |Λ, θ)×p(θ) in the Metropolis part of the method

proposed here and leaving the rest unchanged will prove to be a better algorithm than the

one proposed by Gallant and Hong.

4 Algorithms

Three algorithms are required to implement our method:

• A particle filter (PF) algorithm.

– Input: θ.

– Output: Draws
{
Λ(i)

}R
i=1

from P (Λ |X, θ).
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• A Gibbs algorithm.

– Input: The previous draw Λ(i−1) and a draw θ(i) from p(θ |X,Λ(i−1)).

– Output: A draw Λ(i) from P (Λ |X, θ(i)).

• A Metropolis algorithm.

– Input: The previous draw θ(i) and a draw Λ(i) from P (Λ |X, θ(i)).

– Output: A draw θ(i+1) from p(θ |X,Λ(i)).

In this section we present them in turn.

We previously introduced the notation X1:t = (X1, ..., Xt) and Λ1:t = (Λ1, ...,Λt) for

partial histories. The joint density for partial histories is

p(X1:t,Λ1:t, θ) = (2π)−M/2 exp

{
−1

2
gt(X1:t,Λ1:t, θ)

′ [Σ(X1:t,Λ1:t, θ)]
−1 gt(X1:t,Λ1:t, θ)

}
, (11)

which corresponds to (4). The densities p(X1:t |Λ1:t, θ) and p(θ |Λ1:t, X1:t) are proportional

to (11). For p(X1:t |Λ1:t, θ) the proportionality factor is assumed to be one; we do not need

the proportionality factor for p(θ |Λ1:t, X1:t) because we use a Metropolis algorithm to draw

from it.

4.1 A Particle Filter

1. Initialization.

• Input θ (and X )

• Set T0 to the minimum sample size required to compute gt(X1:t,Λ1:t, θ).

• For i = 1, . . . , N sample (Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

) from p(Λt|Λt−1, γ).

• Set t to T0 + 1.

• Set Λ
(i)
1:t−1 = (Λ

(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

)

2. Importance sampling step.

• For i = 1, . . . , N sample Λ̃
(i)
t from p(Λt|Λ(i)

t−1) and set

Λ̃
(i)
1:t = (Λ

(i)
0:t−1, Λ̃

(i)
t ).
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• For i = 1, . . . , N compute weights w̃
(i)
t = p(X1:t | Λ̃(i)

1:t, θ).

• Scale the weights to sum to one.

3. Selection step.

• For i = 1, . . . , N sample with replacement particles Λ
(i)
1:t from the set {Λ̃(i)

1:t} according

to the weights.

4. Repeat

• If t < T, increment t and go to Importance sampling step;

• else output
{

Λ
(i)
1:T

}N

i=1
.

4.2 A Gibbs Algorithm

1. Initialization.

• Input Λ
(1)
1:T , θ (and X )

• Set T0 to the minimum sample size required to compute gt(X1:t,Λ1:t, θ).

• For i = 2, . . . , N sample (Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

) from p(Λt|Λt−1, γ).

• Set t to T0 + 1.

• Set Λ
(i)
1:t−1 = (Λ

(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

)

2. Importance sampling step.

• For i = 2, . . . , N sample Λ̃
(i)
t from p(Λt|Λ(i)

t−1) and set

Λ̃
(i)
1:t = (Λ

(i)
0:t−1, Λ̃

(i)
t ).

• For i = 1, . . . , N compute weights w̃
(i)
t = p(X1:t | Λ̃(i)

1:t, θ).

• Scale the weights to sum to one.

3. Selection step.
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• For i = 2, . . . , N sample with replacement particles Λ
(i)
1:t from the set {Λ̃(i)

1:t}Ni=1
according

to the weights.

4. Repeat

• If t < T, increment t and go to Importance sampling step;

• else output the particle Λ
(N)
1:T .

4.3 A Metropolis Algorithm

To implement a Metropolis algorithm we require a proposal density for θ. A proposal density

is a transition density of the form T (θold, θnew) such as a move-one-at-a-time random walk.

In the examples of Section 6, we used the move-one-at-a-time random walk that uniformly

selects an index k and then moves the element θk,old of θold to θk,new according to a normal

with mean θk,old and variance σk, where σk is chosen by trial and error to achieve a rejection

rate of about 50% in the Accept-Reject step of the algorithm that follows. For K below we

set K = 50.

• Input: Λ, θold (and X )

• Propose: Draw θprop from T (θold, θ)

• Accept-Reject: Put θ(i) to θprop with probability

α = min

[
1,
p(X,Λ, θprop)T (θprop, θold)

p(X,Λ, θold)T (θold, θprop)

]

else put θ(i) to θold.

• Repeat: If i < K put θold = θ(i) and go to Propose; else output θ(K).

5 Theory

5.1 Particle Filter Theory

THEOREM 1 Under Assumptions 1 through 7, the particle filter algorithm defined in

Subsection 4.1 generates draws from P (Λ |X, θ).
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Proof Define

Zt(X1:t,Λ1:t, θ) = [Σ(X1:t,Λ1:t, θ)]
−1/2gt(X1:t,Λ1:t, θ)

and

ZT (X,Λ, θ) = [Σ(X,Λ, θ)]−1/2gT (X,Λ, θ).

Let θo denote the true value of θ and let Λo
1:t and Xo

1:t denote the realized values of the

data and latent variables. Neither θo nor Λo
1:t are observed; Xo

1:t is observed. Let zot =

Zt(X
o
1:t,Λ

o
1:t, θ

o).

For each pair (Λ1:t, θ) that the structural model permits, let X(Λ1:t,θ) be the set of per-

mitted X1:t. Let B(Λ1:t,θ) = {z : z = Zt(X1:t,Λ1:t, θ), X1:t ∈ X(Λ1:t,θ)}. We have assumed

that
�

B(Λ1:t,θ)
n(z|0, I) dz = 1. Under this assumption, p(X1:t,Λ1:t, θ) can be regarded as a

conditional density for X1:t given Λ1:t that can assign conditional probability to sets of the

form

C1:t = {X1:t : Zt(X1:t,Λ1:t, θ) ∈ B}

where B ⊂ R
M is Borel. The probability assigned to C1:t is P (C1:t|Λ1:t, θ) =

�

B
n(z|0, I) dz.

In the case B is a singleton, we use the notation Cz
1:t. Let C1:t denote the smallest σ-algebra

containing the C1:t.

The functions f(·) for which the integral
�
f(X1:t)P (dX1:t |Λ1:t, θ) can be computed must

be measurable with respect to C1:t. Such f(·) will be constant on Cz
1:t.

Given (Λ1:t, θ), for each z choose a point X∗
1:t ∈ X(Λ1:t,θ) for which

Zt(X
∗
1:t,Λ1:t, θ) = z

and set

X1:t(z,Λ1:t, θ) = X∗
1:t.

Conversely, any realization X1:t that is possible under the pair (Λ1:t, θ) must lie in some Cz
1:t

thus giving a map X1:t → X∗
1:t → zt in the opposite direction. Note that if X∗

1:t → z∗t then

z∗t → X∗
1:t; therefore, for convenience, we will always choose Xo

1:t as the X∗
1:t for its image so

that Xo
1:t → zot → Xo

1:t.

The following two points are subtle but important: (1) With Λ1:t and θ held fixed, an

f(·) measurable with respect to C1:t can be regarded either as a function of zt or as a function
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of X1:t. (2) A function g(·) of the form

g(z1:t) = f [X1:1(z1,Λ1:t, θ), X1:2(z2,Λ1:t, θ), . . . , X1:t(zt,Λ1:t, θ)] (12)

can be evaluated at (zo1:t,Λ1:t, θ) using

g(zo1:t) = f [Xo
1:1, X

o
1:2, . . . , X

o
1:t].

From the point of view of particle filter theory we have a transition density p(Λt |Λt−1, θ)

and a measurement density

p(zt |Λ1:t, θ) = n {[Zt[X1:t(zt,Λ1:t, θ),Λ1:t, θ] | 0, I} (13)

Note particularly that with θ and Λ1:t held fixed, the measurement density depends only on

zt ⊂ R
M , Λ1:t, and θ; it does not depend on X1:t. The particle filter produces draws Λ

(i)
1:T

from the density p(Λ1:T | z1:T , θ).

What we want are draws from the actual conditional density of Λ = Λ1:T given Xo
1:T

that we denote by fT (Λ | z1:T , θ). Let ΨT (·) denote the actual distribution of ZT (Xo
1:T ,Λ, θ)

and ψT (·) its density function. We have assumed that ΨT (·) converges in distribution to the

standard normal distribution Φ(·), with density φ(·), for large T . Let

u
(i)
T = φ(z

(i)
T ) p(Λ | θ) (14)

UT =

�

φ(ZT (Xo
1:T ,Λ, θ)) p(Λ | θ) dΛ (15)

v
(i)
T = ψT (z

(i)
T ) p(Λ | θ) (16)

VT =

�

ψT (ZT (Xo
1:T ,Λ, θ)) p(Λ | θ) dΛ (17)

where

p(Λ|θ) = p(Λ
(i)
1 | θ)

T∏

s=2

p(Λ(i)
s |Λ(i)

s−1, θ).

Using (14) through (17) to construct importance sampling weights, we have

1

N

N∑

i=1

v
(i)
T

u
(i)
T

UT
VT

gT (Xoe :1:T ,Λ
(i)
1:T , θ) =

UT
VT

1

N

N∑

i=1

ψT (z
(i)
T )

φ(z
(i)
T )

gT (Xo
1:T ,Λ

(i)
1:T , θ) (18)

is an approximation to
�

gT (Xo
1:T ,Λ, θ) fT (Λ | z1:T , θ) dΛ (19)
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The approximation error decreases as N → ∞.

We shall first show that
UT
VT

1

N

N∑

i=1

gT (Xo
1:T ,Λ

(i)
1:T , θ) (20)

also approximates (19) for large N and T .

Choose the cube (a0, b0] large enough that

UT
VT

�

I{ZT (Xo
1:T ,Λ, θ) ∈ (a0, b0]} gT (Xo

1:T ,Λ, θ) fT (Λ | z1:T , θ) dΛ (21)

approximates (19) to within ǫ/4. Let η = min{φ(z) | z ∈ (a0, b0]}. The assumption of

convergence in distribution implies that the convergence of ΨT ((a, b]) to Φ((a, b]) is uniform

over all cubes of the form (a, b] (Billingsly and Topsoe, 1967). Choose T large enough that

|ΨT ((a, b]) − Φ((a, b])| < ǫη/4. Choose N large enough that

UT
VT

1

N

N∑

i=1

I{ZT (Xo
1:T ,Λ, θ) ∈ (a0, b0]}

ψT (z
(i)
T )

φ(z
(i)
T )

gT (Xo
1:T ,Λ

(i)
1:T , θ) (22)

approximates (21) to within ǫ/4. Choose cubes of the form (ai, bi] of equal edge length h

small enough that ΨT ((ai,bi])/h
M

Φ((ai,bi])/hM approximates
ψT (z

(i)
T

)

φ(z
(i)
T

)
to within ǫ/4. We have shown that (20)

approximates (19) to within ǫ.

We shall now show that UT

VT
tends to one.

Choose J disjoint rectangles Ij = (cj, dj], where elements of cj may be −∞ and elements

of dj may be ∞, whose union is R
M and choose points ej ∈ Ij such that

∣∣∣∣∣

J∑

j=1

ψT (ej)IIj(z) − ψT (ej)

∣∣∣∣∣ < ǫ

∣∣∣∣∣

J∑

j=1

φ(ej)IIj(z) − φ(ej)

∣∣∣∣∣ < ǫ.

Note that 1 =
∑J

j=1

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ. Then for any T,

∑J
j=1 ψT (ej)

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ − ǫ
∑J

j=1 φ(ej)
�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ

<
UT
VT

<

∑J
j=1 ψT (ej)

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ
∑J

j=1 φ(ej)
�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ − ǫ
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Choose cubes of the form (aj, bj] of equal edge length h small enough that ΨT ((aj, bj])/h
M

approximates ψT (ej) to within ǫ and Φ((aj, bj])/h
M approximates φ(ej) to within ǫ, whence

∑J
j=1 ΨT ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ − 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + 2ǫhM

<
UT
VT

<

∑J
j=1 ΨT ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ − 2ǫhM

Choose T large enough that |ΨT ((a, b]) − Φ((a, b])| < ǫ, whence

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ − ǫ− 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ+ 2ǫhM

<
UT
VT

<

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ + ǫ+ 2ǫhM

∑J
j=1 Φ((aj, bj])

�
IIj(ZT (Xo

1:T ,Λ, θ)) p(Λ|θ) dΛ − ǫ− 2ǫhM

which proves that UT

VT
tends to one.

Regularity conditions sufficient to imply that particles are draws from the density

p(Λ1:T | z1:T , θ) are in Andrieu, Douced, and Holenstein (2010). They are mild, requiring

that the weights at the importance sampling step be bounded and that multinomial resam-

pling be used, which is the scheme used at the selection step.

The regularity conditions used to prove consistency and asymptotic normality of GMM

estimators typically include a compact parameter space, domination conditions on the mo-

ment conditions, and bounds on the eigenvalues of the weighting matrix so that bounded

weights are typically a side effect of these conditions. ✷

5.1.1 Comments on Particle Filter Theory

The performance of the particle filter depends upon the variance of the weights. As remarked

earlier, on can use penalty functions to help in this regard. However, even with a penalty

function, for small t there are few degrees of freedom for computing the weighting matrix

and the variance of the weights is a problem. One might try to control this by setting T0

larger than strictly necessary at the initialization step of the particle filter in Section 4.1
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but doing this has a deleterious effect on the performance of the particle filter because the

information from X is not being used until t exceeds T0.

A better approach is regularization of the weighting matrix. If the condition number

of the weighting matrix (ratio of smallest singular value value to the largest) falls below a

preset value η (e.g. η = 10−8) an amount δ is added to the diagonal elements of the weighting

matrix just sufficient to bring the condition number to η prior to inversion of the weighting

matrix.

The results of Chernozukov and Hong (2003) require that (1) hold, at least in the limit

as T → ∞. As noted in the proof of Theorem 1, the change of measure formula implies

that the expectation is the same for functions measurable C1:T whether one computes it

by first computing the conditional expectation with respect to Λ given X using the full

likelihood and then integrating with respect to X or by using the density fT (Λ | z1:T , θ) to

compute the conditional expectation. As shown in Subsection 5.1, the error in computing an

expectations using a draw from p(Λ |X, θ) instead of fT (Λ | z1:T , θ) tends to zero as T → ∞.

An implication is that the difference between the approximation of E [gT (X,Λ,Θ)] gotten by

using a draw (Λ, X) from the full likelihood, i.e., data, and gotten by first drawing X (i.e.,

data), then drawing Λ from fT (Λ | z1:T , θ) tends to zero with T .

5.2 Gibbs Theory

The proof above that we can draw a sample from fT (Λ | z1:T , θ) with negligible error for large

T implies that the algorithm given in Subsection 4.1 of Andrieu, Douced, and Holenstein

(2010) is valid. This, in turn, implies that the algorithm proposed in Subsection 4.2 generates

a valid Gibbs draw under the setup defined by Assumptions 1 through 7.

5.2.1 Comments on Gibbs Theory

Using only one particle to evaluate the conditional expectation does seem wasteful when

N are available from the modified particle filter of Subsection 4.1, as does carrying only

one particle forward. When we modified our code to carry all particles forward, to draw N

new particles from the 2N old and new particles at each selection step, and to average the

moments and weighting matrix over all particles before computing Z, we found that the only
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effect was to change results slightly at the cost of increasing run times by a factor of about

2(T !)N . We therefore dismissed retaining and using more than one particle from further

consideration.

In our examples we found that N = 1000 gave about the same results as N = 5000 and

larger. Andrieu, Douced, and Holenstein (2010) report similar experience for their examples

and suggest that the length of the MCMC chain R be increased rather than N because

runtimes increase less with R than with N for most of their examples. Because our runtimes

increase at the rate RM [(T !)N + TK], the suggestion that N be kept small at the cost of

increasing R carries considerable force.

5.3 Metropolis Theory

A compact parameter space, an identified model, and a move-one-at-a-time proposal are

enough to ensure that Metropolis part of the the Metropolis within Gibbs algorithm will

mix (Gamerman and Lopes, 2006).

6 Examples

We illustrate our proposal with two examples.

6.1 A Stochastic Volatility Model

Our first example is a stochastic volatility (SV) model:

Xt = ρXt−1 + exp(Λt)ut

Λt = φΛt−1 + σet

et ∼ N(0, 1)

ut ∼ N(0, 1)

The true values of the parameters are

θ0 = (ρ0, φ0, σ0) = (0.9, 0.9, 0.5)

for the purpose of plotting the particle filter and

θ0 = (ρ0, φ0, σ0) = (0.25, 0.8, 0.1)
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for illustrating estimation results. The reason for the difference is that the former generates

plots that are easy to assess visually whereas the latter are more representative of, say, fits

to daily S&P 500 closing prices.

The moment conditions used with this model are:

g1 = (Xt − ρXt−1)
2 − [exp(Λt)]

2 (23)

g2 = |Xt − ρXt−1||Xt−1 − ρXt−2| −
(

2

π

)2

exp(Λt) exp(Λt−1) (24)

...

gL+1 = |Xt − ρXt−1||Xt−L − ρXt−L−1| −
(

2

π

)2

exp(Λt) exp(Λt−L) (25)

gL+2 = Xt−1(Xt − ρXt−1) (26)

gL+3 = Λt−1(Λt − φΛt−1) (27)

gL+4 = (Λt − φΛt−1)
2 − σ2 (28)

Moment (26) identifies ρ independently of Λt; moments (23) through (26) overidentify Λt

given ρ. Moment (27) identifies φ given Λt and moment (28) identifies σ given Λt and φ.

What may not be obvious here is how an equation such as (23) identifies Λt . One can

see this at the point at which one computes weights in the importance sampling step of the

PF algorithm (Subsection 4.1). The weight wt depends on Λt while the weight wt−1 does

not. Therefore the incremental information regarding Λt provided by (23) does get used at

time t to determine Λt. For the Metropolis within Gibbs algorithm itself, the incremental

information does get used at the Gibbs step but does not get used at the Metropolis step

because the Metropolis step uses sums over all the data rather than partial sums.

Estimates of θ for the SV model are shown in Table 1 for three methods: Metropolis

within Gibbs GMM with a Jacobian term, without a Jacobian term, and using the Flury

and Shephard (2010) estimator. The Flury and Shephard estimator can be regarded as

state-of-the-art. The MCMC chain generated using the method are draws from the exact

posterior with a flat prior.

Applying the particle filter at the true value of θ and N = 5000, we obtain the estimate

of Λ shown as a time series plot in Figure 2 and as a scatter plot in Figure 3 for the case

when a Jacobian term is included and as Figures 4 and 5 when it is not. The plots for the
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Flury and Shephard estimator are Figures 6 and 7. In the particle filter vernacular, the

Metropolis within Gibbs GMM estimator is computed from a smooth whereas the Flury and

Shephard estimator is computed from a filter; accordingly, the plots shown for the Metropolis

within Gibbs GMM estimator are smooths whereas the plots shown of the Flury-Shephard

estimator are filters.

(Table 1 about here)

(Figure 2 about here)

(Figure 3 about here)

(Figure 4 about here)

(Figure 5 about here)

(Figure 6 about here)

(Figure 7 about here)

6.2 A Dynamic Stochastic General Equilibrium Model

The second example is taken from Del Negro and Schorfheide (2008). We need to have a

model with an exact analytical solution to generate accurate data with which to test our

proposed methods. The working paper version of the article has some simplified versions of

the full model in the article that have an analytic expression for the solution. The example

is one of the simplified versions.

The full model is a medium-scale New Keynesian model with price and wage rigidities,

capital accumulation, investment adjustment costs, variable capital utilization, and habit

formation. The simplified model discussed here is obtained by removing capital, fixed costs,

habit formation, the central bank, and making wages and prices flexible. With these choices,

the model has three shocks: the log difference of total factor productivity zt, a preference

shock that affects intertemporal substitution between consumption and leisure φt, and the

price elasticity of intermediate goods λt, called a mark-up shock in the article. In the full
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model the endogenous variables are output, consumption, investment, capital, and the real

wage, which are detrended by exp(zt) and expressed as log deviations from the steady-state

solution of the model, and inflation. Of these, the ones of interest in the simplified model

are the log deviations of wages and output, wt and yt, respectively, and inflation πt. The

time increment is one quarter.

The exogenous shocks are

zt = ρzzt−1 + σzǫz,t (29)

φt = ρφφt−1 + σφǫφ,t

λt = ρλλt−1 + σλǫλ,t,

where ǫz,t, ǫφ,t, and ǫλ,t are independent standard normal random variables.

The first order conditions are

0 = yt +
1

β
πt − Et(yt+1 + πt+1 + zt+1) (30)

0 = wt + λt

0 = wt − (1 + ν)yt − φt

where ν is the inverse Frisch labor supply elasticity and β is the subjective discount rate.

The solution for the endogenous variables is

wt = −λt (31)

yt = − 1

1 + ν
λt −

1

1 + ν
φt

πt = β
1 − ρλ

(1 + ν)(1 − βρλ)
λt + β

1 − ρφ
(1 + ν)(1 − βρφ)

φt + β
ρz

(1 − βρz)
zt

The true values of the parameters are

θ = (ρz, ρφ, ρλ, σz, σφ, σλ, ν, β) = (0.15, 0.68, 0.56, 0.71, 2.93, 0.11, 0.96, 0.996)

which are the parameter estimates for model PS of Del Negro and Schorfheide (2008) as

supplied by Frank Schorfheide in an email communication.

We take wt, yt, and πt as measured and zt and φt as latent so that in our notation

Xt = (wt, yt, πt)
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Λt = (zt, φt).

This model is simple enough that an analytical expression for the likelihood is immedi-

ately available by substituting equations (29) into equations (31). By inspection one can

anticipate identifications issues: a small change in σφ can be compensated by small changes

to ν, β, and σz. This in turn, causes the MCMC chain for estimating the model by maxi-

mum likelihood (Chernozukov and Hong, 2003) to fail to mix. If one is going to estimate this

model by frequentist methods, one must, as a practical matter, calibrate three of the four

parameters σz, σφ, ν, and β. Our choice is to calibrate σz, σφ, and ν, leaving β as the free

parameter. The situation here is rather stark: without calibrating σz, σφ, and ν, the MCMC

chain for the MLE will not mix. Given that the MLE MCMC chain will not mix without

these calibrations, one would hardly expect the Metropolis within Gibbs GMM chain to mix

without them.

As mentioned in Section 2, the general principles guiding moment selection are to identify

as many parameters as possible from the observed data and try to identify the latent variables

themselves indirectly from quantities that can be identified from the observed data. The

moment conditions (32) – (40) that follow were designed with these principles in mind.

g1 = (wt − ρλwt−1)
2 − σ2

λ (32)

g2 = wt−1(wt − ρλwt−1) (33)

g3 = [wt−1 − (1 + ν)yt−1][wt − (1 + ν)yt − ρφ(wt−1 − (1 + ν)yt−1)] (34)

g4 = [wt−1 − (1 + ν)yt−1](φt − ρφφt−1) (35)

g5 = [wt − (1 + ν)yt]
2 − σ2

φ (36)

g6 = wt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (37)

g7 = yt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (38)

g8 = πt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (39)

g9 = (yt−1 +
1

β
πt−1 − yt − πt)

2 − ρ2
zσ

2
z

1 − ρ2
z

(40)

Conditions (32) and (33) identify ρλ and σλ. Recalling that ν is calibrated, (34) identifies

ρφ; (35) identifies φt given ρφ. (This is not literally true because φt and ρφ will interact in the
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Metropolis iterations; this qualification applies a few times below also.) Because both ν and

σφ are calibrated, (36) helps enforce an identity linking wt and yt. Because σz is calibrated,

(37) – (39) identify ρz, β, and zt; here we cannot identify ρz and β without making use of

the latent variable zt, which is likely to negatively affect GMM relative to MLE. However,

(40) does help identify ρz and β without using zt.

One could attempt a comparison with the methods proposed in (Fernandez-Villaverde

and Rubio-Ramirez, 2006) using equations (31) to avoid numerical solution methods. The

difficulty is that (31) is a singular set of measurement equations, to use the filtering vernacu-

lar. The customary approach is to add measurement error to these equations. This presents

the additional difficulty of determining how to calibrate the scale of the measurement error.

The scale can be manipulated to make results nearly the same as for the MLE (larger scale)

or very poor (smaller scale). We do not present these results because we feel one learns

nothing from them. One of the advantages of GMM, SMM, and EMM type methods is that

singular measurement equations do not cause problems.

Applying the proposed Metropolis within Gibbs GMM method both with and without a

Jacobian term to the DSGE model of Subsection 6.2, we obtain the estimates of θ shown in

Table 2. Table 2 suggests that the Metropolis within Gibbs GMM estimates are reasonable

relative to MLE estimates and within the range one might expect for GMM estimates.

(Table 2 about here)

As mentioned in Section 2, while the moment conditions (32) through (40) can be ex-

pected to obtain reasonable results for estimating the parameters θ, they can be expected to

do a poor job of estimating the latent variables Λ. That this is the case here as can be verified

by inspecting figures similar to Figures 8 through 11 that are not shown. In particular, the

plots not shown have slopes that are much shallower than those of Figure 9 and 11.

In order to improve the estimate of Λ given X we consider the following additional
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moment conditions derived from the first order conditions of the DSGE model:

h1 = yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1 (41)

h2 = wt−1 h1 (42)

h3 = yt−1 h1 (43)

h4 = πt−1 h1 (44)

h5 = wt − (1 + ν)yt − φt (45)

h6 = wt−1 h5 (46)

h7 = yt−1 h5 (47)

h8 = πt−1 h5 (48)

Applying the particle filter using conditions (41) through (48) at the true value of θ and

N = 10000, we obtain the estimates of Λ given X shown as time series plots in Figures 8

and 10, with and without a Jacobian term, respectively, and as scatter plots in Figures 9

and 11, with and without a Jacobian term, respectively.

(Figure 8 about here)

(Figure 9 about here)

(Figure 10 about here)

(Figure 11 about here)

Estimation results using moment conditions (32) through (40) at the Metropolis step and

conditions (41) through (48) at the Gibbs step are shown in Table 3. As seen, by comparing

Table 2 to Table 3, estimation performance only improves marginally.

(Table 3 about here)

Using moment conditions (32) through (40) at the Metropolis step and conditions (41)

through (48) at the Gibbs step rather than conditions (32) through (40) for both reduces

computational cost slightly because runtimes for the Gibbs step increase at approximately

RM(T !)N whereas runtimes for the Metropolis step increase at approximately RMTK.

27



7 Discussion of Examples

The main conclusions from these results are not surprising, one could have guessed most of

them ahead of time:

• In a state space model situation where an analytic form for the measurement equation

is available, maximum likelihood when possible, or Flury and Shephard (2010) when

not, are better than what we propose unless one is incredibly clever at choosing moment

equations.

• When there is no alternative that does not rely on perturbation or numerical approxi-

mations that one would rather avoid, our proposal is a viable option.

• The quality of the chosen moments does matter and there are some principles guiding

selection in this context:

– One should identify as many parameters as possible from the observed data.

– One should identify the latent variables themselves from quantities that can be

identified from the observed data.

• A penalty function can make p(X,Λ, θ) more peaked and improve performance as seen

most dramatically by comparing the figures for PFs computed with and without a

Jacobian: those with have much smaller standard errors. The penalty function we

used amounts to letting p(X,Λ, θ) correspond to the distribution of gT rather than ZT .

• Bayesian methods are popular for the examples we present because, as seen from the

examples, there is not at all as much information in the data as one could desire. And,

because the data are calendar dated in most applications, more is not available. If one

does wish to use moment based Bayesian inference, we conjecture that the technology

that we propose is superior to that proposed by Gallant and Hong (2007).

8 Conclusion

We proposed an algorithm for estimating the parameters of a dynamic model with unob-

served variables using only moment conditions and illustrated with two examples: a stochas-
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tic volatility model and a dynamic stochastic general equilibrium model. We used both a

continuously updated GMM criterion and the same with a Jacobian penalty term. We found

that estimates improved slightly with the Jacobian term. Particles deplete much faster when

the Jacobian term is present than they do when it is not. (The rate of depletion is the rate

at which particle variability declines as t moves from T to 1. E.g., compare Figures 2 and 4.)

More relevant to applications would be the ability to use our particle filter results to gener-

ate impulse response functions for dynamic models with unobserved variables at a given θ

using only moment conditions. We have managed to convince ourselves that our results are

sufficient for this purpose and are currently working on the requisite algorithms.
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Table 1. Parameter Estimates for the SV Model

Moment Conditions (23) through (28) at
both the Metropolis and Gibbs Steps.

Parameter True Value Mean Mode Standard Error

With Jacobian Term

ρ 0.25 0.30488 0.30961 0.074778

φ 0.8 0.09153 0.94851 0.660790

σ 0.1 0.09023 0.06702 0.050229

Without Jacobian

ρ 0.25 0.30271 0.30939 0.076758

φ 0.8 0.15348 0.85765 0.643400

σ 0.1 0.11400 0.08435 0.070081

Flury and Shephard Estimator

ρ 0.25 0.30278 0.28555 0.059320

φ 0.8 0.17599 0.89189 0.509780

σ 0.1 0.09737 0.07839 0.064661

Data of length T = 250 was generated by simulating the model of Subsection 6.1 at the
parameter values shown in the column labeled “True Value”. In the first two panels
the model was estimated by using the Metropolis within Gibbs methods described in
Section 2 with a one-lag HAC weighting matrix using N = 1000 particles for Gibbs
and K = 50 draws for Metropolis. In the third panel the estimator is the Bayesian
estimator proposed by Flury and Shepard (2010) with a flat prior. It is a standard
maximum likelihood particle filter estimator except that the seed changes every time
a new θ is proposed with N increased as necessary to control the rejection rate of the
MCMC chain. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of a Metropolis within Gibbs chain of length R = 9637
for the first two panels and the same from an MCMC chain of length R = 500000 with
a stride of 5 for the third.
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Table 2. Parameter Estimates for the DSGE Model

Using Moment Conditions (32) through (40) at

Both the Metropolis and Gibbs Steps.

Parameter True Value Mean Mode Standard Error

With Jacobian

ρz 0.15 0.21596 0.15006 0.08632

ρφ 0.68 0.60098 0.58945 0.04988

ρλ 0.56 0.50134 0.46443 0.28818

σλ 0.11 0.10827 0.08923 0.06494

β 0.996 0.98429 0.99603 0.01476

Without Jacobian

ρz 0.15 0.21887 0.23069 0.09179

ρφ 0.68 0.59967 0.60750 0.04988

ρλ 0.56 0.50884 0.31473 0.28981

σλ 0.11 0.10797 0.11613 0.06896

β 0.996 0.98201 0.99634 0.01834

Maximum Likelihood

ρz 0.15 0.15165 0.15087 0.00583

ρφ 0.68 0.59185 0.59419 0.05044

ρλ 0.56 0.56207 0.56549 0.05229

σλ 0.11 0.11225 0.11189 0.00508

β 0.996 0.99640 0.99643 0.00186

Data of length T = 250 was generated by simulating the model of Subsection 6.2 at the
parameter values shown in the column labeled “True Value”. In the first two panels
the model was estimated by using the Metropolis within Gibbs method described in
Section 2 with a two-lag HAC weighting matrix using N = 1000 particles for Gibbs and
K = 50 draws for Metropolis. In the third panel the model was estimated by maximum
likelihood. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of a Metropolis within Gibbs chain of length R = 9637
for the first two panels and the same from an MCMC chain of length R = 500000 with
a stride of 5 for the third.
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Table 3. Parameter Estimates for the DSGE Model Using

Conditions (32) through (40) at the Metropolis Step

and Conditions (41) through (48) at the Gibbs Step

Parameter True Value Mean Mode Standard Error

With Jacobian

ρz 0.15 0.21702 0.15006 0.08367

ρφ 0.68 0.61408 0.58945 0.05102

ρλ 0.56 0.50082 0.46443 0.28344

σλ 0.11 0.11086 0.08924 0.06493

β 0.996 0.98740 0.99603 0.01056

Without Jacobian

ρz 0.15 0.23508 0.15007 0.08975

ρφ 0.68 0.69870 0.58945 0.06127

ρλ 0.56 0.49904 0.46443 0.28418

σλ 0.11 0.11292 0.08924 0.06559

β 0.996 0.97465 0.99604 0.02479

Maximum Likelihood

ρz 0.15 0.15165 0.15087 0.00583

ρφ 0.68 0.59185 0.59419 0.05044

ρλ 0.56 0.56207 0.56549 0.05229

σλ 0.11 0.11225 0.11189 0.00508

β 0.996 0.99640 0.99643 0.00186

As for Table 2.
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Figure 1. GMM Probability Assignment. Under the assumption that X̄ and Λ

have joint density p(X̄,Λ) = 1
σ
√

2π
e−

n

2
(X̄−Λ)2

σ2 where X̄ = 1
n

∑n

i=1 Xi, joint probability

on (X̄,Λ) can only be assigned to sets bounded by 45 degree lines such as the one

labeled A(X̄,Λ) in the figure. The conditional probability for a set such as C(X̄|Λ) in

the figure is computed as

P (C |Λ) =

�

C
p(X̄,Λ) dX̄

�∞
−∞ p(X̄,Λ) dX̄

The conditional probability P (C |Λ) also attaches itself to sets of the form Cn =

{(X1, . . . ,Xn) : X̄ ∈ C } by the change of measure formula. Information is lost relative

to the full likelihood p(X1, . . . ,Xn |Λ) because only the σ-algebra containing all sets of

the form Cn in R
n can be assigned conditional probability by the density p(X̄,Λ). In

particular, bounded rectangles in R
n will not be in this σ-algebra and therefore cannot

be assigned conditional probability whereas they can be assigned probability by the

full likelihood.
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Figure 2. PF for Λ with Jacobian, Time Series Plot, SV Model. Data of

length T = 100 was generated from a simulation of the model of Subsection 6.1 and

N = 5000 particles computed using the algorithm described in Section 4.1 with a

Jacobian term. The dashed blue line plots the simulated Λ for the last 50 time points.

The solid red line is the mean of the particles and the dotted red lines are plus and

minus two pointwise standard errors. The moment equations were (23) through (28);

a one lag HAC estimator was used for (2).
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Figure 3. PF for Λ with Jacobian, Scatter Plot, SV Model. As for Figure 2

except that plotted is the mean of the particles vs. the simulated Λ.
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Figure 4. PF for Λ, without Jacobian, Time Series Plot. As for Figure 2

except that estimation is without a Jacobian term.
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Figure 5. PF for Λ, without Jacobian, Scatter Plot, SV Model. As for

Figure 4 except that plotted is the mean of the particles vs. the simulated Λ.
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Figure 6. PE for Λ, Flurry-Shephard Method, Time Series Plot, SV Model.

As for Figure 2 except that plotted is a filter, not a smooth, and weighting is by the

measurement density, not GMM.
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Figure 7. PF for Λ, Flurry-Shephard Method, Scatter Plot. As for Figure 6

except that plotted is the mean of the particles vs. the simulated Λ.
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Figure 8. PF for Λ with Jacobian, Time Series Plot, DSGE Model. Data of length T = 250
was generated by simulating the model of Subsection 6.2 and N = 10000 particles were computed using the
algorithm described in Section 4.1 with a Jacobian term. The dashed blue line in the upper panel plots the
simulated φt for the last 50 time points. The lower panel is the same for zt. In both panels, the solid red
line is the mean of the particles and the dotted red lines are plus and minus two pointwise standard errors.
The moment equations were (41) through (48); a two lag HAC estimator was used for (2).

41



−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

o

o

o
o

o

o

o
o

o

oo

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o oo

o

o
o

o

o

o

o

o

o

o

oo

o

o

o o

o

o

oo

o

o

o o

o o

o
o

oo

o
o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

oo
o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

oo

o
o

o

o
o

o
o o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
oo

o
o

o

oo

o

o

o

o

o

o
o

oo
o

o

o

o

o oo
o

o

o

o
o

o
o

o

o

o

o o

oo

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o

oo

o

o

o

oo

o

o o
o

o

oo

o
oo

o

o

o

o
o

ooo o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o
o

o

o
o

o

o

o

o
o

oo
o

o

o o

o

o
oo

o o
ooo o oo

−10 −5 0 5 10

−
10

−
5

0
5

10

oo

o
o

o
o

o

o

o

o

o

o

o

o

o
o

o

oo

o o

o

o

o

o

oo

o

oo
oo

o
o

o

o

o

oo

o

o

o

o o

o

o

oo
o

o

o

o

o

o

o

o

o

o

ooo
o

o

o
o

o

o

o

o

o

o

o

o

o
o

o
o o

o

o

oo

o

o
o

o
o

o
o o
o

o

o

oo

o

o

o

o

o

o

o

o o

o
o

o
o

o
o

o

o

o o

o

o

o

o

oo
o

o

oo

o

o

o

o

o

o
oo

o

o
o

oo

o

o
o

o
oo

oo

oo oo

o

o
o

o

o

o
o

o
o

o

o

o
o

o o
o

o
o

o

o

o o
o

o

o

o
o

o
o

o

o

oo

oo

o

o

o o
o

o o

o

o

o

o oo o

oo

o
o

o

o
oo

o
o

o

o

o

o

o

oo

oo

o

o

o

o

o

o
o

o

o

o
o

o
o

o
o

o
o

o
o

o

o
o

o
o

o

o

o
o

o
o

o

o
o

Figure 9. PF for Λ with Jacobian, Scatter Plot, DSGE Model. As for Figure 8

except that plotted is the mean of the particles vs. the simulated Λ for all 250 time

points.
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Figure 10. PF for Λ without Jacobian, Time Series Plot, DSGE Model. As

for Figure 8 but without a Jacobian term.
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Figure 11. PF for Λ without Jacobian, Scatter Plot, DSGE Model. As for

Figure 9 but without a Jacobian term.
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