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Abstract

Using a Markov-switching Bayesian likelihood approach, the paper proposes a new

measure of the degree of credibility of the Federal Reserve over the post WWII period.

We estimate a medium-scale macroeconomic model, where the central bank is endowed

with a commitment technology, and where a regime-switching process governs occa-

sional re-optimizations of announced plans. Our estimates reject the conventional full-

commitment and discretion cases, and show that deviations from commitment plans

were rather infrequent, and at dates consistent with conventional accounts of the US

monetary history. Our framework is used to discuss the role of policy re-optimizations

as sources of monetary policy shocks, and to assess the importance of central bank

credibility through counterfactual analysis.
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1 Introduction

Both in academia and in policy circles there is a widespread consensus on the importance

of central bank credibility for the conduct of monetary policy. However, very few studies

have attempted to assess empirically whether central banks are indeed credible. Such an

empirical assessment incurs in two main obstacles. First of all, the term “credibility” is used

in practice to refer to very different concepts, like those of “accountability”, “predictabil-

ity”, “independence”, ‘transparency” just to name a few examples.1. Thus, the objective

to be measured is ambigous by nature. Second, even upon agreeing on a particular defi-

nition, measures of credibility would depend on factors – like agent’s expectations, policy

announcements, economic shocks – that are not directly observable, and need to be proxied

with alternative and sometimes subjective measures.2

This paper proposes a novel measure of credibility that deals with these two problems.

First, our measure is based on a precise theoretical definition of credibility. Following the

large literature on time-inconsistency of macroeconomic policies (see e.g. Kydland and

Prescott (1977) and Barro and Gordon (1983)), we define credibility as the ability to com-

mit to previously announced plans. In the presence of forward looking agents, central banks

can reap the benefits of shaping agents’ expectations by announcing a plan and credibly

committing to it. However, there is an ex-post temptation to deviate from such a plan.

Credibility is defined as the ability to resist to such a temptation. This is consistent with the

central bank having “a history of doing what it says it will do”, which both academics and

policy makers selected as the most important factor in building central bank credibility in

Blinder (2000)’s survey. Second, our measure is obtained from a likelihood-based structural

estimation of a micro-founded Dynamic Stochastic General Equilibrium model, and relies

only on widely available aggregate macroeconomic series.

The monetary policy literature has dealt with the time-inconsistency problem either

assuming that the central bank always follow their announced plans (full commitment case)

or that it always deviates (discretion case). But it is not obvious that either of the two

dichotomous cases is reasonable in practice. In this paper we use a general framework,

which we refer to as loose commitment, that nests the extreme cases of full commitment and

1See Blinder (2000) for a survey of different uses of the term credibility among academics and policymak-
ers.

2For instance, Faust and Svensson (2001) proposed using the deviation of survey-based inflation expecta-
tions from the central bank’s inflation target as a measure of credibility. Cukierman (1992)) develops some
indicators of independence and transparency, through an index-based aggregation of information contained
in bylaws and questionnaires, among other data sources.
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discretion while allowing for a continuum of intermediate cases. The theoretical setting is

based on the works developed by Roberds (1987), Schaumburg and Tambalotti (2007) and

Debortoli and Nunes (2010). Here the central bank has access to a commitment technology,

but it occasionally gives in to the temptation to revise its plans.3 In the case of the Federal

Reserve a re-optimization could occur if policy makers succumb to outside pressure from

the political or the financial system. Additionally, as the composition of the Federal Open

Market Committee (the Fed’s main monetary policy making arm) changes over time there

may arise situations where past policy promises are abandoned.

In the model, re-optimizations are governed by a two-state stochastic process (st). When

st = 1 past promises are honored with probability γ, while st = 0 implies a re-optimization

with probability 1 − γ. A value of γ = 1 means there are no re-optimizations (the case

of full commitment) while γ = 0 means there is a re-optimization every period (the case

of discretion). Importantly, this setting allows for any intermediate value of γ between 0

and 1. We estimate this unconditional probability of honoring past promises, and interpret

it as a measure of the Federal Reserve’s level of credibility. Alternatively, that probability

can be thought of as a continuous variable measuring the durability of the Federal Reserve’s

promises, where longer durability corresponds to higher levels of credibility.

The empirical analysis is conducted within the medium-scale model of Smets and Wouters

(2007) (henceforth SW). This model does a good job of fitting the data and has become the

benchmark in the monetary policy literature. Additionally, models similar to this are com-

monly being used for policy analysis at central banks. We depart from that model in two im-

portant ways. First, instead of considering a simple monetary policy rule, monetary choices

are the outcome of the central bank’s optimal decision problem, within a loose commitment

framework. The central bank and the private agents are both aware of the possibility of

future re-optimizations and explicitly take it into account. Second, and since we are dealing

with a version of the SW model with regime-switching, we allow the variance of the shock

processes to shift over time to control for potential sources of time variation, other than

policy re-optimizations. Estimation is carried out using a Bayesian Markov Chain Monte

Carlo (MCMC) estimation.

The posterior mode of the unconditional probability of commitment is estimated to be

0.81 with fairly small confidence intervals. This implies that the data reject the commonly

used assumptions of full commitment (γ = 1) and discretion (γ = 0). Note that the empirical

3Roberds (1987) used the term “stochastic replanning” while Schaumburg and Tambalotti (2007) used
the term “quasi-commitment”.
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literature on optimal monetary policy has abstracted from assessing the empirical plausibility

of alternative commitment settings, by assuming either commitment or discretion.4 As the

only exceptions, the recent works of Givens (2012), Coroneo et al. (2013) and Chen et al.

(2013) contain estimates under both commitment and discretion (concluding that the data

favor the specification with discretionary policy) but not allowing for intermediate cases.5.

Our estimation also allows us to identify historical episodes when the Federal Reserve

has been more likely to have re-optimized policy plans. We find that there is a rise in

the smoothed probability of re-optimization (or smoothed probability of not fulfilling past

promises) coinciding with the appointment of Arthur Burns, G. William Miller and Paul

Volcker but not during the appointments of Alan Greenspan and Ben Bernanke. There is

also a rise in this probability around changes in operating procedures of the Federal Reserve;

specifically during the reserves targeting experiment conducted under Volcker in the early

1980s and the FOMC policy to start announcing the target for the Federal Funds rate

around 1994. Additionally we find a rise in this probability in 2008 around the start of the

quantitative easing policy under Ben Bernanke.

The estimated probability of commitment (0.81) and the use of quarterly data implies

that the Federal Reserve is expected to re-optimize plans once every 5 quarters. Since 0.81

is closer to 1, it is tempting to deduce that Federal Reserve policy is closer to commitment.

However, that conclusion would be unwarranted, as it clearly depends on the specific metric

being considered. In fact, we show that most second moments of the estimated model

are closer to their counterparts under discretion (i.e. γ = 0). But on the other hand

the counterfactual analysis paints a somewhat different picture. For the important case

of inflation, the counterfactual path of inflation under full commitment is much closer to

actual data, and furthermore it suggests that if the Federal Reserve had followed policy

under discretion, inflation would have stayed at high levels throughout the 1980s. Overall,

these issues highlight the importance of using our general framework, where sometimes the

dynamics of the economy are better described by the case of full commitment while at

other times the case of discretion is better. Lastly, another potential way to view our re-

optimization episodes is to view them as a source of monetary policy shocks. From this

viewpoint, we find that typically the deviations from commitment during the 70’s have

4See Dennis (2004), Söderström et al. (2005), Salemi (2006), Ilbas (2010) and Adolfson et al. (2011)
among others.

5The independent and contemporaneous work of Chen et al. (2013) also contains one specification with
“quasi-commitment” setting, similar to the one considered in this paper. That specification is nevertheless
rejected in favor of discretion, although it does not nest the cases of discretion and commitment.
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implied policies that are more expansionary, while deviations in the ’90s and 2000’s imply

policies that are relatively more contractionary.

The rest of the paper is organized as follows. Section 2 describes the setup of the loose

commitment framework and the baseline model. In section 3 we discuss the loose commit-

ment framework and the solution algorithm, and Section 4 presents the estimation details.

Section 5 illustrates the results, namely the parameter estimates the impulse response anal-

yses, and counterfactual exercises. Section 6 concludes.

2 The model

As discussed in the introduction, the distinctive feature of our model concerns the way

monetary policy is designed. The underlying economy is instead described by a standard

system of linearized equations

A−1xt−1 + A0xt + A1Etxt+1 +Bvt = 0 (1)

where xt denotes a vector of endogenous variables, vt is a vector of zero-mean, serially

uncorrelated, exogenous disturbances with variance-covariance matrix Σv, and A−1, A0, A1

and B are matrices whose entries depend (non-linearly) on the model’s structural parameters

(Θ). The term Et denotes rational expectations with respect to those innovations, conditional

on the information up to time t. The vast majority of the models used for monetary policy

analysis can be mapped into such formulation.6

The system of equations (1) implies that current variables (xt) depend on expectations

about future variables (Etxt+1). This gives rise to the time-inconsistency problem at the core

of our analysis. The central bank’s plans about the future course of policy could indeed have

an immediate effect on the economy, as long as those plans are embedded into the private

sector expectations. Such plans, however, are typically time-inconsistent. Having reaped the

gains from affecting expectations, the central bank has an ex-post incentive to disregard its

previous plans, and freely set its policy instruments. For this reason, characterizing monetary

policy choices requires a specific assumption regarding the central bank’s ability to commit.

Following Schaumburg and Tambalotti (2007) and Debortoli and Nunes (2010), it is

assumed that the central bank has access to a loose commitment technology. In particular,

the central bank is able to commit, but it occasionally succumbs to the temptation to revise

6Models with more lags, leads, constants, serially correlated shocks etc. can be cast into eq.(1) by suitably
expanding the vector xt.
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its plans. We refer to these occasional events as “policy re-optimizations”. Private agents

are aware of the possibility of policy re-optimizations and take it into account when forming

expectations.

More formally, at any point in time monetary policy can switch between two alternative

scenarios, captured by the unobserved state variable st ∈ {0, 1}. If st = 1 previous commit-

ments are honored. Instead, if st = 0, the central bank makes a new (state-contingent) plan

over the infinite future, disregarding all the commitments made in the past. The variable st

evolves accordingly to a two-state stochastic process

st =





1 with prob. γ

0 with prob. 1 − γ
.

In the limiting case where the probability γ = 1 the central bank always honors its promises,

and our formulation coincides with the canonical “full commitment” case. Instead, if γ = 0

the central bank always re-optimizes, as in the approach commonly referred to as “discre-

tion”. The main advantage of this setup is that γ can take on any value in [0, 1] and we will

estimate it from the data.

In the case of the Federal Reserve these re-optimizations could represent a change in the

composition of the Federal Open Market Committee (the Fed’s main policy making arm)

due to appointment of a new chairman or a change in the voting members. Additionally

pressure from the political system or the financial markets may cause a re-optimization.

Note that st is a special case of Markov switching typically known as independent switching.

The probability of moving to a commitment (discretion) state next period is the same, γ

(1− γ), regardless of whether in the current period there has been a re-optimization or not.

There are two main reasons for this assumption. First, it’s not clear that if a re-optimization

has just occurred that another one would be more or less likely in the future. Second,

this helps keep the model tractable. The solution algorithm for optimal policy under loose

commitment would take significant more computation time with state-dependent switching

as it requires a nonlinear solution method with finite sample simulations of a value function.

This would render the estimation procedure infeasible as it involves invoking this algorithm

a large number of times. Additionally we don’t allow for re-optimizations to depend on

endogenous state variables. This is potentially a bigger concern as it would invalidate the

estimation methods that rely on the re-optimization shocks being exogenous to the state

of the economy. In the appendix we address this concern by checking if the endogenous

state variables can help predict re-optimization episodes. Granger causality tests show that
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in fact the endogenous state variables do not have statistically significant predictive power.

Finally Debortoli and Nunes (2010) analyze a simple fiscal policy model where the probability

of re-optimization depends on endogenous state variables, and find similar results to the

corresponding exogenous probability case. Thus our simplifying assumption made to ensure

tractability seems like a reasonable approach. Extensions of this approach are left for future

work.

3 The central bank’s problem

As is common in the monetary policy literature, the central bank’s objectives are char-

acterized by a (period) quadratic-loss function x′tWxt. The central bank’s objectives may

or may not reflect the preferences of the underlying society. For instance, and following

Rogoff (1985), appointing a central banker who is more averse towards inflation than the

overall public may be desirable in the limited commitment settings considered here. 7 From

an empirical viewpoint, simple loss functions without explicit microfoundations have been

shown to realistically describe central bank’s behavior (see e.g. Rudebusch and Svensson

(1999), or more recently Ilbas (2010) and Adolfson et al. (2011)). For comparability with

that literature, and given the empirical focus of the present study, our baseline exercises are

conducted using a simple loss function.8.

The problem of central bank when making a new plan can then be written as

x′−1V x−1 + d = min
{xt}∞t=0

E−1

∞∑

t=0

(βγ)t[x′tWxt + β(1 − γ)(x′tV xt + d)] (2)

s.t. A−1xt−1 + A0xt + γA1Etxt+1 + (1 − γ)A1Etx
reop
t+1 +B(svo

t )vt = 0 ∀t (3)

The terms x′t−1V xt−1 +d summarize the value function at time t. Since the problem is linear

quadratic, the value function is given by a quadratic term in the state variables xt−1, and

a constant term d reflecting the stochastic nature of the problem. The objective function

is given by an infinite sum discounted at the rate βγ summarizing the history in which

re-optimizations never occur. Each term in the summation is composed of two parts. The

first part is the period loss function. The second part indicates the value the policymaker

7Additional theoretical support for describing the central bank’s behavior through simple loss functions
is provided for instance in Svensson (1999).

8As a robustness exercise, we have tried to get estimates obtained with a utility-based welfare criterion,
calculated according to the procedures described in Debortoli and Nunes (2006), Levine et al. (2008) and
Benigno and Woodford (2012), but the empirical fit is very poor.
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obtains if a re-optimization occurs in the next period.

The sequence of constraints (3) correspond to the structural equations (1), with the only

exception that expectations of future variables are expressed as the weighted average between

two terms: the allocations prevailing when previous plans are honored (xt+1), and those pre-

vailing when a re-optimization occurs (xreop
t+1 ).9 In a Markov-Perfect equilibrium, the choices

at the time of re-optimizations only depend on natural state-variables, i.e. Etx
reop
t+1 = F̃ xt,

where the matrix F̃ is taken as given by the central bank.10 Clearly, a rational expectation

equilibrium requires the matrix F̃ to be consistent with the policies actually implemented

by the central bank, and can be found as the solution of a fixed point problem.11

The solution to the central bank’s problem takes the form

[
xt

λt

]
= Fst

[
xt−1

λt−1

]
+Gvt (4)

where λt is a vector of Lagrange multipliers attached to the constraints (3) and the state

dependent matrices

F(st=1) =

[
F xx F xλ

F λx F λλ

]
F(st=0) =

[
F xx 0

F λx 0

]
. (5)

The above expressions highlight the effects of policy re-optimizations. In particular, no-

tice that the unobservable state st only affects the columns of the matrices Fst
describing

the responses to λt−1. This is because a policy re-optimization implies that previous com-

mitments are disregarded. Those commitments are summarized in our framework by the

co-state variables λt−1.
12 Therefore, when policies are re-optimized it is as if the current

variables are not affected by λt−1. On the contrary, the policy responses to the state vari-

ables xt−1 and to the shocks vt remain the same, regardless of whether the central bank

re-optimizes or not.13

9To simplify the notation, we have dropped regime dependence and replaced xt+1(st = 0) with the more
compact term x

reop

t+1 .
10A Markov-perfect equilibrium rules out the possibility of reputation and coordination mechanism between

different central bank’s selves.
11The numerical algorithm adopted is an extension of the methods to solve for (Markov-Perfect) equilibria

introduced by Backus and Driffill (1985), Söderlind (1999), and Dennis (2007), as described in Debortoli
et al. (2012).

12More formally, following Kydland and Prescott (1980) and Marcet and Marimon (2011), the central
bank problem can be written recursively by expanding the state of the economy to include the Lagrange
multiplier vector λt−1, with initial condition λ−1 = 0.

13It follows that x
reop
t = F xxxt−1+Gxvt. Moving this equation forward one period and taking expectations,
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Our setting bears some similarities to the models recently developed in monetary regime-

switching literature (see e.g. Davig and Leeper (2007), Farmer et al. (2009), Liu et al.

(2011) and Bianchi (2012)).14 In those models, an exogenous shock switches the economy

from one regime to another where the conduct of policy is different. In our model, the

re-optimization shocks are better thought of as starting a new commitment regime, where

another re-optimization shock in the future will end it and start yet another. Nevertheless, as

it happens in standard rational expectations regime-switching models, what happens under a

certain regime depends on what agents expect is going to happen under alternative regimes,

and on how likely it is that a regime change will occur. An important difference is that our

two policy regimes are described by the same structural parameters. In other words, allowing

for occasional re-optimizations does not require introducing any additional parameters, be-

sides the switching probability γ. As indicated by equation (5) policy re-optimizations only

impose specific zero-restrictions on the law of motion of the model states. Such restrictions

distinguish policy re-optimizations episodes from more generic sources of non-linearities, like

switches in structural parameters, or switches in policymakers’ preferences.

As mentioned above and is common in the regime-switching literature, considering ex-

ogenous stochastic switches is a necessary assumption to maintain tractability. Note that

we do show in the appendix that assuming that policy re-optimizations are uncorrelated

with endogenous state variables is a reasonable assumption. But we should make it clear

that in the model, the structural shocks vt do not automatically bring about a policy re-

optimization. This is because the optimal responses to those shocks is indeed always part

of the central bank state-contingent plan. In reality, policy re-optimizations could be the

consequence of a variety of factors, not explicitly modeled in our framework. Possible can-

didates for such events are changes in the dominating views within a central bank due to

time-varying composition of its decision-making committee or varying intensity of outside

pressures by politicians and the financial industry.15 In this respect, policy re-optimizations

one obtains Etx
reop

t+1 = Fxxxt. In a rational expectations equilibrium, it must therefore be the case that

Fxx = F̃ .
14Note that since the central bank is optimally choosing policy there is no chance of indeterminacy. There

would need to be an additional layer of uncertainty or mismeasurement to give rise to the possibility of
indeterminacy.

15In the case of the United States, the reserve bank presidents serve one-year terms as voting members of the
FOMC on a rotating basis, except for the president of the New York Fed. Furthermore, substantial turnover
among the reserve bank presidents and the members of the Board of Governors arises due to retirement and
outside options. With the (up to) seven members of the Board of Governors being nominated by the U.S.
President and confirmed by the U.S. Senate, the composition of views in the FOMC may be affected by the
views of the political party in power at the time of the appointment. Chappell et al. (1993) and Berger and
Woitek (2005) find evidence of such effects in the U.S. and Germany, respectively.
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could be viewed as a particular type of monetary policy shock, say ereop
t , described by

e
reop
t = x

reop
t − xt = −F xλλt−1. (6)

The latter expression makes clear that while the timing of these “re-optimization shocks”

is exogenous, their sign and magnitude is instead endogenous, and depends on the model

structural parameters and on the history of past shocks summarized by the vector λt−1. In

section 5.3 we describe in more details the implications of these re-optimization shocks.

An alternative approach would be to consider that policy re-optimizations are related to

switches in the central bank’s preferences, like from a “Hawkish” to a ”Dovish” regime. We

consider this as a promising area for future research, since such a framework would allow

the identification of the deep sources of regime switches in Taylor rule parameters commonly

found in the literature.16 Our setting does not distinguish between re-optimizations within

a policy regime, from those happening because of a regime change.

4 Estimation

4.1 Structural equations and parameters

The empirical analysis is conducted within the model of SW, that can be viewed as

the backbone of the DSGE models developed at central banks in recent years and used for

monetary policy analysis and forecasting. The model includes monopolistic competition in

the goods and labor market, nominal frictions in the form of sticky price and wage settings,

allowing for backward inflation indexation.17 It also features several real rigidities – habit

formation in consumption, investment adjustment costs, variable capital utilization, and

fixed costs in production.

The model describes the behavior of 14 endogenous variables: output (yt), consumption

(ct), investment (it), labor (lt), the capital stock (kt), with variable utilization rate (zt) and

associated capital services (ks
t ), the wage rate (wt), the rental rate of capital (rk

t ), the nominal

interest rate (rt), the value of capital (qt), price inflation πt, and measures of price-markups

(µp
t ) and wage-markups (µw

t ). The model dynamics are driven by six structural shocks:

two shocks – a price-markup (ep
t ) and wage-markup (ew

t ) shock – follow an ARMA(1,1)

16See for instance the discussion in Debortoli and Nunes (2013), comparing the implications of switches in
central banks’ preferences with changes in Taylor-rule parameters within a baseline New Keynesian model.

17Monopolistic competition is modeled following Kimball (1995), while the formulations of price and wage
stickiness follow Yun (1996) and Erceg et al. (2000).
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process, while the remaining four shocks – total factor productivity (ea
t ), risk-premium (eb

t),

investment-specific technology shock (ei
t) and government spending shock (eg

t ) – follow an

AR(1) process. All the shocks are uncorrelated, with the exception of a positive correlation

between government spending and productivity shocks, i.e. Corr(eg
t , e

a
t ) = ρag > 0.18

We depart from the original SW formulation in two fundamental ways. First, we do

not include a (Taylor-type) interest-rate rule, nor the associated monetary policy shock.

The central bank behavior is instead modeled according to the loose commitment setting

described above. Our baseline results are obtained using the following central bank loss

function
∞∑

t=0

E0[π
2
t + wyỹ

2
t + wr(it − it−1)

2] (7)

where πt is inflation, ỹt is the output gap and it is the nominal interest rate. πt is the deviation

of inflation from the steady-state level. Thus the implicit inflation target is the steady-state

level of inflation (π̄), which is estimated from the data. Without loss of generality, the

weight on inflation is normalized to one so that wy and wr represent the weights on output

gap and interest rate relative to inflation. The loss function above does not induce an average

inflation bias, as the implicit output target is taken to be consistent with the natural-rate

hypothesis (i.e. monetary policy cannot systematically affect average output).19 In other

words, within this model the time-inconsistency problem only leads to a stabilization-bias

in response to economic shocks, as illustrated in Clarida et al. (1999).

Second, we account for changes in the volatility of the exogenous shocks. Recent studies

(see Sims and Zha (2006), Primiceri (2005) and Cogley and Sargent (2006) among others)

find that exogenous shocks have displayed a high degree of heteroskedasticity. Ignoring

this heteroskedasticity can lead to inaccurate inference as pointed out by Hamilton (2010)

and Sims and Zha (2006). Our main concern is that a model without this might attribute

time variation in the volatility of the shocks to a re-optimization episode. To mitigate this

concern, we assume that the variance-covariance matrix Σv(·) depends on an unobservable

state svo
t ∈ {h, l}, following a two-state Markov-chain with transition probability P vo.

We estimate the same parameters as in the original SW paper, using their same priors,

18For a complete description of the model, the reader is referred to the original Smets and Wouters (2007)
paper. The model can be cast into (1) defining xt as a 22x1 vector containing all the variables described
above (i.e. endogenous variables, structural shocks and corresponding MA components), and vt ∼ N(0, Σv)
as a 6x1 vector of i.i.d. innovations to the structural shocks.

19This is consistent with the original specification of the SW, where because of price and wage indexation,
steady state inflation has no real effect.
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and the same observable variables.20 The three additional structural parameters are 1)

probability of commitment (γ), 2) the loss function weight on output gap (wy) and the loss

function weight on interest rate smoothing (wr). For γ we use a uniform prior on the interval

[0,1], as we do not want to impose any restrictive prior beliefs about whether the optimal

policy is conducted in a setting that is closer to full commitment or discretion. Thus the

posterior of γ will be entirely determined by the data. For the weight parameters we set

fairly loose gamma priors and the details are in Table 1. Regarding the parameters of the

shock processes, two values for the standard deviations of the shocks are estimated using the

same priors used by SW. The monetary policy shock that appears in the interest rate rule

in SW is replaced by an i.i.d. measurement error. This is required to ensure that we have

enough shocks to avoid the stochastic singularity problem in evaluating the likelihood.

We use the same data as in SW but extend the data sample to run from 1965:Q5-2012:Q2.

There may be concern about using the data from 2007 onwards that includes the financial

crisis and also the zero lower bound. It is important to note that our specification remains

agnostic about the specific monetary policy instrument used by the central bank. As a result,

one could abstract from considering the zero-bound on the nominal interest rate, and use

data that goes through the financial crisis, which would be a challenge if monetary policy

were described by a rule for the nominal interest rate. As a robustness check, we estimate

the posterior mode of the model where the data sample does not include the financial crisis

and find very similar results. Additionally we estimate the model using long-term interest

rates (instead of the fed funds rate) which did not face the zero lower bound constraint. All

these results are discussed below.

4.2 Estimation procedure

The likelihood function for the DSGE model in SW can be evaluated using the standard

Kalman Filter. Given the regime-switching nature of our model, the standard Kalman filter

needs to be augmented with the Hamilton (1989) filter, following the procedure described

in Kim and Nelson (1999). The likelihood function is combined with the prior to obtain

the posterior distribution. We use the Metropolis-Hastings algorithm to sample from the

posterior distribution. The detailed steps in evaluating the likelihood function, together with

the outline of the Metropolis-Hastings algorithm are provided in the appendix.

The solved equations of the model can be written in the state space notation of Kim and

20We also fix the elasticity of labor with respect to the real wage. See section 5.1 and the appendix for a
detailed discussion.
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Nelson (1999):

xobs
t = Hβt + Az

βt = µ̃+ Fst
βt−1 +Gvt

with βt ≡ [xt, λt] and xobs
t denote the observable variables, which are a subset of xt. The first

equation is the measurement equation that where the matrix H picks out the observables

from βt and the term Az is just a vector of the constant trends in the observables. The errors

are assumed to be distributed normally, vt ∼ N(0, Qsvo
t

), where the variances are allowed

to switch over time. The parameters in the matrix Fst
depend on the Markov-switching

process st and the switching variance parameters in Qsvo
t

depend upon the Markov-switching

process svo
t . st has two states corresponding to continuing past plans and re-optimizing. We

will use two states for svo
t as well corresponding to high and low variances. A two state

Markov switching process governing variance switches has been found to fit the data best

in estimated regime-switching DSGE models, see Liu et al. (2011) and Bianchi (2012). The

transition probabilities of the Markov process st and svo
t are given by the transition matrices

P and P v

P =

[
γ 1 − γ

γ 1 − γ

]

P vo =

[
p1 (1 − p1)

(1 − p2) p2

]

The rows of the transition matrix P are the same, representing the fact that the commitment

switching happens independently. This means that next period’s probability of a reopti-

mization (or honoring past promises) is the same regardless whether the central bank has

reoptimized this period or not. The variance switching on the other hand is state-dependent.

Notice that this setup is different from a standard Markov-switching state-space model, as

the probability of commitment,γ, not only enters into the transition matrix P , but it also

affects the state-space matrices Fst
and G.
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5 Results

5.1 Parameter Estimates

Following SW we fix 5 structural parameters.21 In addition, we set the wage elasticity

of labor supply σl = 1.22 The different specification of monetary policy introduces three

structural parameters, the loss function weight on output-gap (wy), the loss function weight

on interest rate smoothing (wr) and the probability of commitment (γ). The regime switching

variance specification introduces two values for the standard deviation of the shocks as well

as two parameters of the transition matrix (P ).

Table 1: Prior and Posterior Distribution of Structural Parameters

Prior Posterior

Distr. Mean St. Dev Mode Mean 5% 95%
l̄ St. State Labor Normal 0.000 2.000 0.243 0.234 0.213 0.253
π̄ St. State Inflation Gamma 0.620 0.100 0.742 0.754 0.647 0.874
γ̄ Growth Rate Normal 0.400 0.100 0.182 0.184 0.148 0.221
β̄ Discount Factor Gamma 0.250 0.100 0.223 0.241 0.129 0.365
α Capital Income Share Beta 0.300 0.050 0.192 0.192 0.166 0.219
ψ Capital Cap. Utilization Normal 0.500 0.150 0.697 0.686 0.525 0.831
ϕ Capital Adj. Cost Normal 4.000 1.500 6.316 6.532 5.084 8.125
σc Risk Aversion Normal 1.500 0.370 1.771 1.766 1.488 2.091
h Habit Persistence Beta 0.700 0.100 0.765 0.765 0.700 0.821
Φ Fixed Cost Normal 1.250 0.120 1.614 1.600 1.490 1.714
ιw Wage Indexation Beta 0.500 0.150 0.500 0.527 0.316 0.734
ιp Price Indexation Beta 0.500 0.150 0.809 0.809 0.689 0.908
ξp Price Stickiness Beta 0.500 0.100 0.783 0.775 0.727 0.822
ξw Wage Stickiness Beta 0.500 0.100 0.626 0.619 0.539 0.695
wy Output-Gap weight Gamma 1.000 1.000 0.015 0.017 0.010 0.026
wr Interest rate weight Gamma 1.000 1.000 1.824 2.248 1.403 3.288
γ Prob. of Commitment Uniform 0.500 0.290 0.811 0.815 0.777 0.851

The posterior mode of the probability of commitment γ is 0.81 suggesting that the Federal

Reserve was expected to reoptimize on average once every 5 quarters. Figure 1 shows the

marginal posterior distribution of γ. It is clear that the confidence intervals rule out both

21The depreciation rate δ is fixed at .025, spending-GDP ratio gy at 18%, steady-state markup in the labor
market at 1.5 and curvature parameters in the goods and labor markets at 10. See SW for details.

22We had difficulty estimating this parameter in the Bayesian MCMC algorithm. In the robustness section
in the appendix, we show that changing this value from 1 does not change the results.
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Figure 1: Posterior distribution of γ
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Note: The figure shows the posterior distribution of γ, which is the probability of commitment.

the commonly used setup of full commitment (γ = 1) and discretion (γ = 0). The posterior

mode estimates of the structural parameters are reported in 1. The parameter reflecting the

weight on interest rate smoothing wr tends to be sensitive to the model and the data sample.

We find a somewhat high estimate of wr = 1.82 but our estimate here falls in the estimated

range in the literature, for example from 0.0051 in Favero and Rovelli (2003) to 4.517 in

Dennis (2006) and even higher in other papers. Note also that allowing for an additional

term in the loss function that involves interest rate variability tends to reduce the estimate

of wr, see Ilbas (2010). The estimated value of 0.015 for wy also falls in the estimated range

from .002 in Favero and Rovelli (2003) to 2.94 in Dennis (2006). The estimates of rest of the

structural parameters are reported in 1 and are similar to those reported in SW, despite the
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different sample and the differences in the central bank behavior with some differences. The

degree of price indexation is estimated to be smaller here pointing towards a bigger role of

the forward looking components of the Phillips curve.

Table 2: Prior and Posterior Distribution of shock processes

Prior Posterior

Distr. Mean Std. Dev Mode Mean 5% 95%

σl
a Inv Gamma 0.1 2 0.343 0.352 0.307 0.403
σl

b Inv Gamma 0.1 2 0.158 0.158 0.123 0.194
σl

g Inv Gamma 0.1 2 0.356 0.359 0.303 0.418
σl

I Inv Gamma 0.1 2 0.412 0.415 0.350 0.488
σl

p Inv Gamma 0.1 2 0.146 0.149 0.129 0.173
σl

w Inv Gamma 0.1 2 0.274 0.279 0.243 0.318
σl

m Inv Gamma 0.1 2 0.064 0.066 0.055 0.079
σh

a Inv Gamma 0.1 2 0.643 0.652 0.562 0.759
σh

b Inv Gamma 0.1 2 0.292 0.296 0.228 0.372
σh

g Inv Gamma 0.1 2 0.650 0.660 0.568 0.766
σh

I Inv Gamma 0.1 2 0.569 0.573 0.472 0.689
σh

p Inv Gamma 0.1 2 0.221 0.227 0.194 0.264
σh

w Inv Gamma 0.1 2 0.346 0.355 0.293 0.428
σh

m Inv Gamma 0.1 2 0.315 0.322 0.279 0.378
diag(P vo,l) Beta 0.8 0.16 0.934 0.916 0.858 0.961
diag(P vo,h) Beta 0.8 0.16 0.883 0.857 0.759 0.934
µw Beta 0.5 0.2 0.894 0.874 0.789 0.936
µp Beta 0.5 0.2 0.986 0.977 0.947 0.995
ρga Beta 0.5 0.2 0.425 0.430 0.295 0.567
ρa Beta 0.5 0.2 0.999 0.999 0.997 1.000
ρb Beta 0.5 0.2 0.447 0.456 0.308 0.617
ρg Beta 0.5 0.2 0.940 0.940 0.908 0.968
ρI Beta 0.5 0.2 0.769 0.776 0.710 0.841
ρp Beta 0.5 0.2 0.947 0.927 0.880 0.958
ρw Beta 0.1 0.2 0.996 0.991 0.978 0.999

Note the superscripts l and h refer to the low volatility and high volatility regimes.

Table 2 reports the estimates of the parameters of the shock processes. The standard

deviations are not directly comparable to SW since we allow them to switch over time. But

the weighted average of our estimated standard deviations across the two regimes is very

similar to the SW estimates. The parameters of the shock process of the price-markup shock

are somewhat different. Both the autoregressive parameter ρp and the µp are estimated to be
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larger here than in SW. Justiniano and Primiceri (2008) also report having different estimates

for the persistence of the price-markup shock and end up using an i.i.d. specification. We

estimate the posterior mode of the model using both just an AR(1) specification and an i.i.d.

specification of the price-markup process and find that the results are very similar to the

benchmark case. These results are presented in the robustness section in the appendix. The

rest of the parameters of the shock processes are also very similar to SW.

5.2 Policy re-optimizations episodes

The bottom panel of figure 2 shows the (smoothed) probabilities of being in a high volatil-

ity regime. Note the term smoothed probability refers to inference about which regime was

prevalent based on using all available information. The identified periods of high-volatility

are consistent with canonical analyses of US business-cycles. The 70s and the early 80s

are characterized by long and recurrent episodes of high-volatility. The probability of high-

volatility surges in correspondence with well-known oil shock episodes: the OPEC oil em-

bargo of 1973-1974, the Iranian revolution of 1978-1979 and Iran-Iraq war initiated in 1980.23

From 1984 onwards, the economy entered a long period with low-volatility – the Great-

Moderation – interrupted by the bursting of the dot-com bubble in 2000, and by the events

in the aftermath of September 11, 2001. Finally, periods with high-volatility are clearly

identified in correspondence with the Great-Recession and financial crisis of 2008-2009.

The top panel shows the smoothed probability of re-optimizations. We can isolate only

five dates when re-optimizations were more likely than continuations of previous plans – i.e.

the smoothed probability of re-optimization exceeds 50%. Those dates are (i) 1969:Q4, (ii)

1980:Q3, (iii) 1984:Q4, (iv) 1989:3 and (v) 2008:Q3. If we lower the cutoff threshold to 40%

then we get two additional dates (vi) 1979:Q1 and (vii) 1993:Q1. A natural test for the

validity of our results is to contrast these dates with existing narrative accounts of the US

monetary policy history. The first two episodes coincide with the appointment of new Federal

Reserve Chairmen: Arthur Burns in early 1970 and Paul Volcker in mid 1979. In late 1980

there is another re-optimization, corresponding to a view that there has been a policy-reversal

during 1980, and that the Volcker was credible and effective only from late 1980 or early

1981 (see e.g. Goodfriend and King (2005)). We see another re-optimization in 1984 which

could potentially correspond to the end of the experiment of targeting non-borrowed reserves

that was undertaken in the first few years under Volcker. Only two episodes are identified

over the 20-year long Greenspan tenure. A first re-optimization occurred in 1989, close to

23See for example the recent historical survey of Hamilton (2011).
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Figure 2: Smoothed Probabilities: Re-optimization and High Volatility Regime
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Note: The figure shows the smoothed probability of being in a re-optimization state (upper panel), and of being in the high-
volatility regime (lower panel) for the posterior mode estimates. Shaded areas correspond to the NBER recessions, and the
vertical solid lines indicate the appointment of a new Federal Reserve Chairman.

the “Romer and Romer” date of December 1988 (see Romer and Romer (1989)). A second

re-optimization is identified in 1993. Arguably, this could be related with the major policy

change of February 1994 when the Federal Reserve began explicitly releasing its target for the

federal funds rate, along with statements of the committee’s opinion on the direction of the

economy. Those announcements were intended to convey information about future policies,

as an additional tool to influence current economic outcomes. The last re-optimization is

identified in 2008, when the Federal Reserve started adopting unusual policy decisions like the

purchases of mortgage-backed securities and other long-term financial assets. Thus overall it

appears that some of our dates align with changes in Federal Reserve chairmen while others

correspond to changes in operating procedures of the Federal Reserve. Moreover, there does
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not seem to be any systematic correspondence between re-optimizations and recessions, or

switches in the volatility regime.

In order to gain some insights about the effects of a policy re-optimization, Figures 3 -

5 illustrate the impulse responses of some variables of interest to a technology, government

spending and wage markup shock, respectively. The blue lines show the responses using the

estimated value of γ = .81. The solid blue line shows the path under the assumption that

a re-optimization never occurs (even though agents expect it to occur) and the dashed blue

line shows the path under the scenario that a re-optimization occurs after 5 quarters – the

implied average duration of policy plans. For comparison, the dashed-green line shows the

path of the variables when γ = 1 (full-commitment) – while the dashed red line shows the

path when γ = 0 (discretion). A few interesting observations stand out. First, the effects

of a policy re-optimization depend on the history of previous shocks. For instance, if a re-

optimization occurs after a technology shock, it involves a reduction in inflation relative to

continuing past plans. Whereas if a re-optimization occurs after a markup shock it involves

an increase in inflation. The response of the interest rate and output gap to re-optimization

shocks display a similar pattern. Second, the responses under loose commitment (blue lines)

do not always lie in between the discretion and full commitment cases. This is because there

is uncertainty about the timing of future re-optimizations, a feature that is unique to our

framework.
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Our re-optimizations could also be interpreted as a particular class of monetary policy

shocks. Within our model, a deviation from previous commitment, like a generic monetary

policy shock, constitutes an exogenous and unanticipated change in the course of policy.

But there is an important difference between policy re-optimizations and generic monetary

shocks. For example, suppose the economy was hit by a sequence of increases in oil prices,

and that the Federal Reserve had committed to keep the interest rate high over a certain

horizon. In that case, a policy re-optimization would bring about a more expansionary

policy than expected. On the contrary, in an economy affected by negative demand shocks,

the central bank would commit to keep the interest rate low, and and a re-optimization

would then be associated with an unanticipated contractionary policy. Thus, whether a

re-optimization has a positive or a negative impact on the variable of interest depend on the

entire sequence of shocks previously experienced by the economy.

Thus it seems useful to analyze the effects of re-optimizations over our sample period.

To that end, Figure 6 illustrates the effects of deviating from a commitment plan on a given

date. Specifically it shows the difference, [xt|st = 0, xt−1] − [xt|st = 1, xt−1] for output

growth, inflation and the nominal interest rate. The thought experiment is the following: If

a re-optimization were to occur at each period in our sample how would the values of output,

inflation and interest rates be different relative to the case where the previous commitment

is honored? 24 Policy re-optimizations would have made output and inflation higher until

the early 1980s, but would have had a negligible effect (or lowered them) during the Great

Moderation. This is because in periods with high volatility the central bank needs to make

significant commitments to its future actions to stabilize the economy. Those commitments

constitute a relevant burden in subsequent periods, and abandoning past commitment would

lead to a radically different outcomes. Instead, in a low volatility economy the central bank

carries over less relevant commitments, and there is less need to stabilize the economy. As a

consequence, the effects of abandoning past commitments are relatively small.

Regarding the specific episodes discussed above, Figure 6 shows that the re-optimizations

of the ’70s and ’80s are all associated with an increase in the level of inflation and output

growth. In other words, those re-optimizations implied a “looser” policy than under the

commitment plan. The two re-optimizations of 1993 and 2009 are instead associated with

a more contractionary policy. This suggests that Quantitative Easing does constitute a

deviation from a commitment plan, but in the sense that monetary policy should have been

24The exercise is conducted conditioning on the estimated parameters being consistent with an uncondi-
tional probability of commitment being equal to our estimated value of 0.81.
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Figure 3: Impulse responses to a Technology Shock
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Note: Impulse responses to a 1 standard deviation shock under alternative commitment settings. The line with “dots” indicates
the responses under “loose commitment”, assuming that a policy re-optimization occurs after 5 quarters, and there is no policy
re-optimization thereafter.
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Figure 4: Impulse responses to a Demand Shock
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Note: Impulse responses to a 1 standard deviation government expenditure shock under alternative commitment settings. The
line with “dots” indicates the responses under “loose commitment”, assuming that a policy re-optimization occurs after 5
quarters, and there is no policy re-optimization thereafter.
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Figure 5: Impulse responses to a Wage-Markup Shock
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Note: Impulse responses to a 1 standard deviation wage markup shock under alternative commitment settings. The line with
“dots” indicates the responses under “loose commitment”, assuming that a policy re-optimization occurs after 5 quarters, and
there is no policy re-optimization thereafter.

23



Figure 6: Historical Effects of Policy Re-optimizations
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Note: The figure shows the effects of re-optimizations over time, measures as the difference between the value conditional on
re-optimization and the value conditional on continuation of previous commitment, i.e. xt(st = 0) − xt(st = 1). Vertical lines
indicate the episodes where Prob(st = 0) > 50%.

24



more expansionary than it actually was. This conforms to the common view that as the

economy hit the zero-lower bound, quantitative easing was a necessary but insufficient tool.

5.3 Is there still a scope for building credibility?

Our estimated value for the probability of commitment of γ = .81 may induce to think

that the Federal Reserve is already sufficiently close to the ideal full-commitment case. That

conclusion is unwarranted, as the specific value of γ, per se, is not indicative what would

be the implications of a further increase in credibility. For this reason, Table 3 shows how

commitment affects the (unconditional) second moments for some relevant variables. In

general, the relative standard deviations the cross-correlations with output in a model with

γ = .81 are closer to the discretion that to the commitment case. The last line of the table

reports the implied welfare losses with respect the full-commitment case, measured in terms

of equivalent permanent increase in the inflation rate.25 According to that measure, the total

gains of passing from discretion to commitment are equivalent to a permanent decrease in

the inflation rate of 1.2% per year. Most of those gains – corresponding to a 1% permanent

reduction in inflation – could still be achieved if increasing credibility from .081 to 1.

Another interesting exercise consists of simulating what would have happened if the

Federal Reserve had operated under alternative commitment scenarios. To that end, we

re-solve the model assuming that the central bank operates either under full-commitment

(γ = 1) or under discretion (γ = 0). The remaining parameters of the model, as well as the

sequence of disturbances are left unchanged.

Figure 7 displays the actual and the two counterfactual series. Two main messages can be

drawn from this exercise. First, credibility seems to play a minor role towards the beginning

(late 1960s to late 1970s) and the end (late 1990s onwards). The path of inflation, interest

rate and output growth are similar under discretion and full commitment and they are close

to actual data. Second there are important differences in the middle of the sample (early

1980s to late 1990s). Crucially, the figure suggests that if the Federal Reserve had pursued

policy under discretion in the 1980s then inflation would have stayed high well into the

1990s at the same time that nominal interest rates would have also been high. Put another

way, Federal Reserve behavior in this period can be better described as acting under full

commitment. The figure also provides a concrete example of the importance of considering a

loose commitment framework to fit the behavior of our time series. For instance, the actual

25Such a measure is often used to gauge losses for the objective functions employed by central banks and
is described, for instance, in Jensen (2002).
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Table 3: Second Moments and Welfare

Model US Data

Commitment γ = .81 Discretion 1966-2012

Std. of Output 10.80 10.92 10.80 12.05

Relative Standard deviation
Fed Fund Rate 0.051 0.085 0.095 0.074
Price Inflation 0.035 0.070 0.081 0.049
Wage Inflation 0.068 0.095 0.101 0.065
Hours 0.534 0.541 0.540 0.286

Cross-correlations (w.r.t. output)
Fed Fund Rate 0.052 -0.478 -0.471 -0.571
Price Inflation -0.046 -0.551 -0.637 -0.641
Wage Inflation 0.071 -0.319 -0.423 -0.501
Hours 0.397 0.417 0.404 0.102

Welfare Loss 0.000 1.090 1.209 -
(% permanent change in Inflation)

path of the nominal interest rate or inflation is sometimes closer to commitment, sometimes

closer to discretion, and does not always lies in between the commitment and discretion

extremes.

6 Conclusion

The paper proposes a structural econometric approach to measure the degree of the Fed-

eral Reserve’s credibility, within a standard medium-scale macroeconomic model. Monetary

policy choices are modeled according to a loose commitment setting, where deviations from

commitment plans are governed by a regime-switching process. The estimated probability of

the central bank honoring its promises is used as a measure of credibility. As opposed to pre-

vious studies, we find that that the Federal Reserve has a relatively high level of credibility,

even though there are significant departures from the full-commitment.

We also identify historical episodes where the Federal Reserve has been more likely to

have re-optimized policy plans. Those episodes sometimes line up closely with changes of

Fed chairmen and other times with changes in the operational procedures of the Federal
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Figure 7: Counterfactual analysis
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Reserve. Our policy re-optimizations can be interpreted as a source of monetary policy

shocks. In that respect, we find that most deviations from commitment during the 70’s have

implied too expansionary policies, while deviations in the ’90s and 2000’s have been more

contractionary. Finally, through a counterfactual analysis, we show that the Federal Reserve

operating under discretion would not have been able to bring down inflation in the 1980s,

while credibility seems to play a minor role during the 1970s and since the 1990s.

Other than the obvious way of honoring its commitments there is another potential way

for the Federal Reserve to increase its credibility. It can better communicate with the public

about current and future policy actions. Indeed, under the helm of chairman Ben Bernanke,

the Federal Reserve has taken several measures to achieve exactly this. In 2012 the Federal

Reserve announced an official inflation target of 2%. Additionally they started releasing

individual forecasts of the FOMC members’ relating to economic activity. Exploring the

role of credibility in a dynamic model which has a channel for central bank communication

seems a fruitful area for future research.
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Appendix

A-1 Evaluating the Likelihood Function

We can evaluate the likelihood function in the following manner. M is the number

of states that the Markov-switching process can take. Note we combine the 2 two-state

switching processes st and sv
t into 1 four-state process St, which meansM = 4. The likelihood

function is evaluated in four steps.

Step 1: Perform the Kalman Filter for i = 1, ..M, j = 1, ..M

β
i,j

t|t−1 = µ̃+ Fjβ
i
t−1|t−1

P
i,j

t|t−1 = FjP
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t−1|t−1F
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t −Hβ
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Step 2: Perform the Hamilton Filter

P (St, St−1) = P (St|St−1P (St−1|ψt−1)

f(xobs
t |ψt−1) =
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St
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Note that the conditional density is normal and given by
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Step 3: Perform the Kim & Nelson approximations to collapse the M2 unobservable βi,j

t|t

into M ones. For each j calculate the following
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Step 4: After performing steps 1-3 ∀t we can evaluate the log likelihood function

l(θ) =

T∑

t=1

ln(f(xobs
t |ψt−1))

A-2 Metropolis-Hastings Algorithm

This section explains the Bayesian estimation procedure that uses the Metropolis-Hastings

algorithm and will be used to estimate all the parameters of the model jointly. Our estima-

tion method follows the Metropolis-Hastings algorithm used in SW. The main difference is

that the evaluation of the likelihood has to be modified to deal with the addition of regime-

switching. The estimation follows a two step procedure. In the first step we numerically

maximize the log posterior distribution to get an estimate of the posterior mode. In the

second step, using the posterior mode calculated in the first step as a starting value, we use

the Metropolis-Hastings algorithm to completely characterize the posterior distribution.

Let θ be the parameters to be estimated. The M-H algorithm involves generating a draw

from a candidate generating density, q(.). Let this candidate draw be called θ(g+1). Then

this new draw is accepted with the following probability.

α(θ(g+1), θ(g)) = min

(
p(θ(g+1)|Y ).q(θ(g))

p(θ(g)|Y ).q(θ(g+1))
, 1

)

Following SW(2007) we use the inverse of the Hessian at the posterior mode (that comes

out of the numerical optimization procedure) as the candidate generating density which is

centered around the current draw δ(g).

δ(g+1) = δ(g) + cH̃−1

where c is a scale factor and H̃ is the Hessian at the posterior mode. This is known as a

random walk Metropolis-Hastings step. We then tune the parameter c to get an acceptance

rate of between 25% and 35% as recommended by Gamerman and Lopes (2006). The full

parameter vector θ is sampled in one block. We have also tried blocking by splitting the

parameter vector θ into 2 or more blocks but found that the Metropolis-Hastings algorithm

ran most efficiently with one block and had good convergence properties as discussed below.
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A-3 Convergence Diagnostics

The Metropolis-Hastings algorithm is run for 500,000 draws where the first 25,000 draws

are discarded. Note since the chain is initialized at the posterior mode, a large number

of burn-in draws is not required. From the remaining 475,000 draws, one of out of every

ten draws is saved resulting in an effective sample of 47,500. Figure A-1 shows the trace

plots of the draws from the Metropolis-Hastings algorithm, and as can be seen the draws

seem to be mixing well. To get a better idea of the correlation of the draws the top panel

of figure A-2 plots the 20th order autocorrelation for each of the estimated parameters.

These autocorrelations are all below 0.6 and most them lower than 0.3, suggesting that the

dependence in the draws diminishes fairly rapidly. The lower panel shows the inefficiency

factors, this is the inverse of the relative numerical efficiency of Geweke (1992). These

numbers are mostly below 40 while some of them are a bit higher. Note these are much

lower as compared to the SW M-H algorithm as reported by Chib and Ramamurthy (2010).

Thus, overall the convergence diagnostics are satisfactory.

A-4 Assumption of exogenous switching

Recall that the shocks that drive the re-optimizations are assumed to be exogenous.

There may be a concern that the switching is actually driven by the state of the economy.

Here we address this concern by showing that the endogenous variables in the model do not

help predict future reoptimization episodes. More specifically we run Granger Causality tests

to see whether the data used in the estimation can help forecast changes in the probability

of reoptimization. The unrestricted regression involves regressing the smoothed probability

on four of its lags and four lags of all the seven macro variables (log difference of real GDP,

real consumption, real investment and the real wage, log hours worked, the log difference of

the GDP deflator, and the federal funds rate). The restricted regression imposes zeros on

the coefficients of the macro variables. Table 4 shows the F statistics and the corresponding

p-values of these exclusion restrictions. The first row labeled ”All” shows these values for the

restriction that jointly all the macro variables have no forecasting power for the probability

of commitment. The p value shows that we cannot reject this at the 10% level. The next

rows show the tests of whether individually each of the variables can forecast the probability

of reoptimization. At the 10% level we fail to reject for all the variables except for investment

where the p value is extremely close to 0.1. These test seem to suggest that our assumption

about exogenous switching appears to be reasonable.
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A-5 Robustness Checks

In this section we discuss a variety of robustness checks. First we start by estimating

the model by excluding data since the beginning of the financial crisis. At the onset of the

financial crisis, the Federal Reserve responded by lowering the fed funds rate. When the zero

lower bound was reached, the Fed took unusual policy actions which included among others,

buying long-term Treasury bonds and mortgage-backed securities. As mentioned earlier, in

this model optimal monetary policy involves ensuring that the first order conditions of the

central bank’s optimization problem are satisfied and consistent with household and firm’s

optimal decisions. As has been shown earlier (for example see Clarida et al. (1999)), the

optimal policy can implemented in a variety of ways, including a Taylor-type instrument

rule. Since our model does not require optimal policy to be implemented using an interest

rate rule, the zero lower bound is not an issue for us. However there might be a concern

that since our model does not capture the financial system very well,26 including data from

the financial crisis might bias our estimated results. More specifically, we want to make sure

that the the estimates of the probability of commitment and the smoothed probabilities of

reoptimization are not sensitive to excluding the financial crisis from the data sample. The

fourth row in table 5 shows the estimates of the model where the data sample is restricted

to end at Q2:2007. The estimates of γ and wy are very close to the benchmark case, whereas

the estimate of wr is lower at 0.87. This lower estimate is most likely due to the fact that the

Federal Reserve has kept the Fed funds rate constant (around zero) from late 2008 onwards.

In most macro models the fed funds rate is the interest rate used. This is because the

behavior of the Federal Reserve is modeled using a Taylor-type short-term interest rate rule.

But it’s not obvious that the interest rate directly affecting consumers’ and firms’ behavior

is the short term interest rate. Due to the setup of the formulation of monetary policy in our

model, it allows us flexibility in choosing the interest rate. We estimate the model replacing

the fed funds rate with a longer term interest rate, specifically the interest rate on a 10 year

Treasury note. This has the added benefit of allowing us to estimate the model using through

the financial crisis without worrying about the zero lower bound. The resulting estimate of

the probability of commitment is 0.8 and the smoothed probabilities of re-optimization and

high/low volatilities are quite similar to the benchmark case.

As mentioned in the Estimation section, in addition to the values fixed in SW we fix σl,

the elasticity of labor supply with respect to the real wage. Due to the non-separable form of

26However, this model does have a risk-premium shock that behaves similarly to a net worth shock (as in
Bernanke et al. (1999)).
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the utility function in SW this elasticity is not directly comparable to the popularly discussed

Frisch labor supply elasticity. Here the Frisch elasticity depends upon, among other things,

σl and the level of hours worked. Fortunately, changing the value that σl is fixed at, has

very little impact on the parameter estimates.27 There is a debate in the literature regarding

what the labor supply elasticity should be set to and range varies from 0.5 to over 2, see

Peterman (2012) for details. We consider three additional values of σl, 1.92, 3 and 0.5. 1.92

is the estimate of SW, 3 is close to the estimate in Bianchi (2012) (a paper similar to ours)

and 0.5 is close to what is typically estimated in micro studies. The estimates of wy and γ

(shown in rows 5,6 and 7) are very similar. The estimate of wr does change somewhat, see

the section on parameter estimates for a more in-depth discussion of this.

Finally we consider different prior specifications. For γ, we consider a beta prior with

both shape parameters set to 0.5 (labeled Prior 1 in table 5). This prior distribution gives

roughly the same weight to values in the [0.2,0.8] interval while putting more weight on

values near the end points 0 and 1. This specification is chosen to ensure that even with

a higher prior probability weight on discretion (0) and commitment (1), the data chooses

a value of γ close to 0.8 (row 3 in table 5. The other prior specification (labeled Prior 2

in table 5) goes back to the uniform prior for γ but uses a Gamma distribution for wy and

wr with a higher variance. Specifically we use the Gamma distribution with mean 2 and

variance 4, but the resulting estimates are very similar to the benchmark case. In conclusion,

the estimate of the probability of commitment γ is stable for all the different specifications

considered.

27Here we only show the estimates of wy , wr and γ but the other estimated parameters are little affected
as well.
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Table 4: Granger Causality Test

F statistic p value

All 1.3993 0.1038

GDP 1.1258 0.3466
Consumption 0.2326 0.9197
Investment 2.0064 0.0965
Wage 1.4927 0.2072
Hours 0.9282 0.4493
Inflation 0.6068 0.6583
Fed Funds 1.1415 0.3393

Table 5: Estimates under various specifications

Posterior mode

Data Prior σl wy wr γ

Full Benchmark 1 0.015 1.824 0.811
Full Prior 1 1 0.015 1.829 0.812
Full Prior 2 1 0.016 1.950 0.812

Pre-fin crisis Benchmark 1 0.031 0.874 0.781
Full Benchmark 1.92 0.014 1.804 0.812
Full Benchmark 0.5 0.022 0.879 0.801
Full Benchmark 3 0.013 1.882 0.811

Full-Long Term Benchmark 1 0.019 1.244 0.803

This table shows the posterior mode estimates of the loss function weight on output wy, the loss function weight on interest

rate smoothing wr and the probability of commitment γ for various specifications.
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Figure A-1: Trace Plots
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Note: This figure shows the MCMC draws for loss function weight on output gap: wy, the weight on interest rate smoothing:
wr and the probability of commitment: γ.
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Figure A-2: 20th Order Autocorrelations
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Note: The top panel of this figure shows the 20th order autocorrelations (y-axis) of the MCMC draws for all the estimated
parameters (x-axis) while the bottom panel shows inefficiency factors.
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