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This paper studies the effects of opening to trade in a model where heterogeneous firms can

acquire productivity-increasing technology from other firms in the economy. In the model,

firms chose to upgrade their technology or to produce domestically and potentially for export

with their existing technology. If firms choose to upgrade their technology, they receive a new

technology from the distribution of producing firms’ technologies. The distribution of technol-

ogy is determined in equilibrium via the technology and production choices (both domestically

and abroad) of individual firms. We solve for a balanced growth path equilibrium, allowing us

to provide a theory of how trade interacts with equilibrium technology diffusion and in turn

affects technological progress, growth, and the dynamic gains from trade.
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1. Introduction

This paper studies the effects of opening to trade in a model where technology diffusion is

determined in equilibrium. Technology diffusion occurs as heterogeneous firms can acquire

productivity-increasing technology from other firms producing in the economy. Firms who

are not upgrading their technology produce domestically and potentially for export with their

existing technology. The joint upgrading and production choice determines the distribution

from which firms can acquire new productivity-increasing technologies and, hence, the rate

of technological diffusion and growth. We show how opening to trade changes the relative

value of upgrading versus producing, which in turn changes the equilibrium distribution of

technology, the rate of technological diffusion, and growth.

We model firms as monopolistic competitors who are heterogeneous in their productivity/tech-

nology. The production decision is standard and each firm has the opportunity to export after

paying a fixed cost.1 This determines selection into exporting, with only the most productive

firms exporting their goods to other markets. Thus, high productivity firms receive higher

profits from the ability to sell their good domestically and abroad.

The technology/upgrading decision is relatively new and innovative. We build on Perla and

Tonetti (2012), where firms chose to either upgrade their technology or continue to produce

in order to maximize expected discounted profits for the infinite horizon. If a firm decides to

upgrade its technology, it pays a fixed cost in return for a random productivity draw from the

productivity distribution of producing firms in equilibrium. Thus, the key aggregate state vari-

able for a firm is the distribution of firms producing at any instant. Economic growth is a result,

as firms are continually able upgrade their technology by learning from other, better firms in

the economy. Thus, this is a model of growth driven by endogenous technology diffusion.2

We solve for a balanced growth path equilibrium in this economy. There are essentially two

steps to establishing the existence of a balanced growth path equilibrium. First, we charac-

terize the evolution of the technology distribution over time, given the evolution of the firms’

dynamic policy rule (i.e. upgrade or not). We show that the technology distribution evolves

according to a repeated truncation of the time zero distribution. This result plus the assumption

that the initial distribution is Pareto implies that every subsequent distribution of technology is

Pareto itself. This allows us to completely characterize the path of the static-trade equilibrium

as in Chaney (2008) or Eaton, Kortum, and Kramarz (2011) at every point in time. These results

are independent of the balanced growth requirement which will allow us to study off balanced

1This setup follows the standard formulation heterogeneous monopolistic-competition frameworks of Melitz
(2003), Chaney (2008), and Eaton, Kortum, and Kramarz (2011).

2This type of diffusion of ideas is closely related to the models of Lucas (2009) and Lucas and Moll (2012), who
study knowledge/idea diffusion amongst individuals in a closed-economy. Kortum (1997) is an antecedent of
these models where knowledge diffusion comes from an external source.
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growth path dynamics in future versions. The second step solves for the firms control problem

to upgrade its technology, given a perceived law of motion for the distribution.

The key equilibrium requirement (amongst others) is that the actual evolution of the technology

distribution conforms with firms’ perceived law of motion for the distribution of technology.

On the balanced growth path we require that the distribution of technologies is stationary when

appropriately scaled and that real GDP and aggregate sales grow at a constant rate.

We calibrate the model and perform several comparative dynamics, showing how changes in

parameters affect growth rates on the balanced growth path. The main comparison focuses

on how changes in iceberg trade costs affect growth rates. Changes in iceberg trade costs are

interesting because they control how much each country trades with other countries and hence

the degree of openness. We find that decreases in the iceberg trade costs can optimally increase

or decrease the growth rate of the economy.

When technology adoption costs must be paid in output, growth rates increase. As the econ-

omy becomes more open, the relative value of being a firm with low productivity versus the

value of being a firm with high productivity changes. Low productivity firms lose from in-

creased trade, as they face more competition from foreign firms which reduces their profits

and the value of the firm. High productivity firms are able to expand and export, increasing

their profits and the value of the firm. Additionally, wages increase, especially decreasing the

profits of domestic producers. The net effect of these forces is to push more low productivity

firms to upgrade their technology sooner as the costs of searching in terms of forgone produc-

tion are smaller and the potential benefits (i.e., becoming an exporter) are now larger. Because

the amount and frequency of firms upgrading their technology is intimately tied to aggregate

growth, the growth rate increases as the economy becomes more open.

When technology adoption costs must be paid by hiring labor, a general equilibrium affect

dominates and growth rates decrease. Since the wage increases due to increased demand for

labor to produce for export, the cost of technology adoption also rises. The increase in search

costs dominate the increased convexity of the value function and growth declines as firms wait

longer before upgrading their technology. Although the response of growth rates to openness

depends on model parameters, reductions in iceberg trade costs always lead to increased wel-

fare.

A second comparative static changes the “thickness” of the right tail of the initial productivity

distribution, which is governed by the shape parameter in the Pareto distribution. We show that

as the right tail of the initial productivity distribution becomes thicker, the elasticity of growth

with respect to the degree of openness increases; the cost of autarky and benefit of frictionless

trade (in terms of growth rates) both become larger. This result is distinct from, but related to

the findings in other models of knowledge diffusion that growth increases with the thickness of
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the right tail of the productivity distribution (see, e.g., Alvarez, Buera, and Lucas (2008), Lucas

(2009), Perla and Tonetti (2012), Lucas and Moll (2012)). Moreover, this result suggest ways to

use the cross-country evidence on the relationship between trade and growth to discipline this

all important parameter.

The third comparative static focuses on scale effects. We keep the parameterization of the model

the same, but double the number of countries to understand how the scale or size of the econ-

omy matters. We show that the relationship between growth and openness is unchanged when

we increase the scale of the economy. Substantively, this result suggest that the key force be-

hind the relationship between growth and openness in our model does not operate through

scale effects per-se (i.e. firms upgrade faster because markets and profits are larger). Because

scale seems to be absent, this result reinforces the idea that the driving force is how openness

changes the relative value of firms across different productivity levels. Given the emphasis

on scale effects in endogenous growth models (see, e.g., Jones (2005a) and the discussion in

Ramondo, Rodriguez-Clare, and Saborio-Rodriguez (2012)) this result seems surprising. How-

ever, scale effects in newer models of knowledge diffusion are not well understood and we

hope to explore them further in the future.

2. Model

2.1. Countries, Time, Consumers.

There are N countries with subscripts i denoting the identity of each country. Time is con-

tinuous and evolves for the infinite horizon. The representative consumer in country i is risk

neutral with period utility function

Ui(t) =

∫ ∞

t

e−r(τ−t)Ci(τ)dτ (1)

The utility function Ui(t) is the discounted value of future consumption for the infinite future,

where r is the exogenously given discount rate. Consumers supply labor to firms for the pro-

duction of varieties, the fixed costs of production, and possibly for technology acquisition. La-

bor is supplied inelastically and the total units of labor in a country are Li.

There exists a final good producer in each country that aggregates a bundle containing qi(v)

quantity of variety v goods by a constant elasticity of substitution (CES) function. Qi(t) units

of the final good are produced and purchased by the consumer, with total expenditure, Yi(t),

defined by

Yi(t) = Pi(t)Qi(t), (2)
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where Pi(t) is the CES aggregate price index. Consumers then divide how the aggregate good is

divided between actual consumption and the goods component of “investment costs,” which

pay for the cost of firms upgrading their technology. Since the consumer supplies labor and

owns all firms, income is the sum of total payments to labor and profits which are rebated

back to the consumer. We abstract from borrowing or lending decisions, so consumers face the

budget constraint

Yi(t)
︸︷︷︸

Expenditures

= Pi(t)Ci(t)
︸ ︷︷ ︸

Consumption

+Pi(t)xi(t)Si(t)
︸ ︷︷ ︸

“Investment” Cost

= wi(t)Li + PiΠi(t)
︸ ︷︷ ︸

Income

. (3)

These relationships are elaborated in detail below.

2.2. Firms

In each country there is a unit mass of infinitely lived, monopolistically competitive firms. Each

firm alone can supply variety v.

The final good producer in each country is the purchaser of these varieties and solves

max
qij(v,t)

Pi(t)Qi(t)−
N∑

j=1

∫

Ωij(t)

qij(v, t)pij(v, t)dv

s.t. Qi(t) =

(
N∑

j=1

∫

Ωij(t)

q(v, t)
σ−1
σ dv

) σ
σ−1

.

The the measure Ωij(t) defines the set of varieties consumed in country i from country j. The

parameter σ controls the elasticity of substitution across varieties. The solution, qij(v, t) =

Qi(t)
(

pij(v,t)

Pi(t)

)−σ

, provides the demand for a firms variety in each market.

Going forward, we drop the notation carrying around the variety identifier, as it is sufficient to

identify each firm with its productivity level, z.

Firms are heterogeneous over their productivity, z, and hire labor, ℓ, to produce quantity q with

linear production technology,

q = z ℓ.

Productivity across firms, within a country, is described by the cumulative distribution function

Fi(z, t). We discuss this distribution in more detail later, however, it is important to recognize

that Fi(z, t) are the essential aggregate variables affecting firm decisions and they will be evolv-

ing over time endogenously as firms choose to upgrade their technology.
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Each instant, firms face fixed costs to undertake two activities. First, all firms have the ability

to pay a cost and search for a new technology, z. If they search, they will meet a firm that is

actively producing, and thus the draw is from a transformation of the equilibrium distribution

Fi(z, t). In equilibrium, the optimal firm policy will be a threshold productivity, hi(t), such

that all firms with productivity below hi(t) will search and will randomly meet a firm with

productivity above hi(t). This meeting structure represents limited directed search towards

more productive firms. Second, all firms have the ability to pay a fixed cost of hiring labor in

market j, wjκj , to export to foreign market j.

Finally, all firms face iceberg trade costs, dji ≥ 1, to ship goods abroad from i to destination j.

Given this environment, firms must make several choices. These choices can be separated into

problems that are static and dynamic. Below we first outline the dynamic problem of the firm,

taking the profit functions and evolution of the productivity distribution as given, and then the

static problem of the firm to derive the profit functions.

2.2.A. Firms Dynamic Problem

Given the static profit functions and a perceived law of motion for the productivity distribution

which are described below, each firm has the choice to acquire a new technology, z, and also

whether to export to market j or not. If a firm chooses to search and upgrade its technology, it

will not produce any output in that instant, it will pay a search cost, and it will meet another

firm that has chosen to produce and copy their productivity level. In other words, a firm is able

to replicate (at a cost) the technology of another producer that is currently operating. Thus, the

new productivity level is a random variable that’s distribution is the equilibrium distribution of

technology, conditional on the productivity being above the search threshold. This setup is very

closely related to Perla and Tonetti (2012) and is similar to Lucas and Moll (2012).3 The essential

trade-off that a firm faces is between the benefits of operating its existing technology versus the

expected net benefit of operating with a new technology. The firm’s objective is to maximize

the present discounted expected value of real profits, since it is owned by the consumers. With

all profits (πji(z, τ)) and costs (xi(τ)) in units of the aggregate consumption bundle when they

are received or paid, Ci(τ), the firm problem is

Vi(z, t) = max
Tji≥t

Ti≥t

{
∫ Ti

t

e−r(τ−t)πii(z, τ)dτ +
∑

j 6=i

∫ Tji

t

e−r(τ−t)πji(z, τ)dτ + e−r(Ti−t) [Wi(Ti)− xi(Ti)]

}

(4)

3This is also similar to Alvarez, Buera, and Lucas (2008) (with an internal source), with the important differ-
ence that we have a control problem that creates a recursion between the search decision of the firms and the
endogenous evolution of the productivity distribution.
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where

Wi(t) :=

∫

V (z̃, t)dFi(z̃, t|z̃ > h(t)) (5)

A firm chooses an absolute time, Ti, at which it will search for a new technology. For the waiting

time before searching, (Ti− t), the firm produces and earns profits from operating domestically.

The firm also chooses an absolute time at which it will stop exporting to country j, Tji. While

Tji − t > 0 the firm is an exporter to destination j and receives profits from this activity. Given

the fixed cost of exporting, every exporter will also operate domestically, i.e., Tji ≤ T and

search occurs at time Ti when a firm is only operating domestically. When a firm chooses to

search, it gets a new productivity draw with expected benefit Wi(Ti) and it pays the fixed cost

of searching xi(Ti).
4 By standard arguments, the solution to this problem can be shown to be

reservation productivity functions, hi(t) and φji(t). All firms with productivity less than or

equal to hi(t) will search and all other firms will produce. All firms with productivity greater

than or equal to φji(t) will export to destination j and all firms with lower productivity will not

export to j. Define the search and exporter thresholds as these indifference points:

hi(t) := max{ z | Ti(z, t) = t } (6)

φji(t) := max{ z | Tji(z, t) = t } (7)

The function hi(t) maps time into the largest productivity level such that the firm with that pro-

ductivity level is upgrading its technology. Given this definition, the function h−1
i (z) defines the

time at which a firm with productivity level z will draw a new technology. Then, since a draw

comes from the equilibrium distribution of producers, the expected value of the new technology

level, Wi(Ti), is defined in (5). Notice that the value of the new technology is integrated with re-

spect to the conditional productivity distribution Fi(z, t|z > hi(t)) and hence is a function of the

choices of the individual firms. We detail the evolution of this distribution—in equilibrium—in

more detail below. This problem takes the profit functions as given, but they are the result of a

static optimization problem.

2.2.B. Firms Static Problem

Below we describe a firm’s static problem and suppress any explicit dependence upon time to

ease notation. Given a firm’s location, productivity level, aggregate prices, and final good pro-

ducers’ demand, the firm’s static decision is to chose the amount of labor to hire, the price to set,

and exporting decisions to each destination to maximize profits each instant. Total firm profits

4The effects of particular specifications of the search cost are detailed in Section 3.5.A. In particular, we examine
the importance of the degree to which costs require hiring labor versus spending goods.
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equal the sum of domestic profits plus the sum of exporting profits across export markets, i.e.,

π(z) = πii(z) +
∑

j 6=i πji(z). Formally, the optimization problem is

Piπii(z) = max
pii,ℓii

pii(z)zℓii − wiℓii. (8)

Using the demand function from the standard solution to the consumer’s problem, the profit

function satisfying (8) is

Piπii(z) =

(
1

σ

)(m wi

z

)1−σ Yi

P 1−σ
i

, where m :=
σ

σ − 1
. (9)

where m is the standard markup over marginal cost, wi is the wage rate in country i, and Pi is

the aggregate price index in country i. The decision to export to market j is similar, but differs

in that the firm faces variable iceberg trade costs and a fixed cost to sell in the foreign market,

or

Piπji(z) = max
pji,ℓji

{
pji(z)d

−1
ji zℓji − wiℓji − wjκj , 0

}
. (10)

Conditional on exporting, this implies that the profits from exporting to market j are

Piπji(z) =
1

σ

(
m dji wi

z

)1−σ
Yj

P 1−σ
j

− wjκj (11)

Given net profits described in (11), the productivity level φji, which determines the cutoff pro-

ductivity level above which firms from market i will export to market j, is

φji = k1
wi

Pj

(
wjκj

Yj

) 1
σ−1

, where k1 := m djiσ
1

σ−1 . (12)

All firms in market i with productivity level greater than or equal to φji will export to market

j, earning positive profits. Recall that the exporter threshold, φji, is directly related to Tji in

equation 7 of the dynamic problem.

3. Equilibrium

An equilibrium of the model economy consists of a set of initial productivity distributions and

sequences of productivity distributions, firms’ search and exporter thresholds, prices, and allo-

cations, that solve firms’ static and dynamic problems and satisfy market clearing and rational

expectation conditions. Below, we describe key equilibrium relationships, which can be sep-

arated into static and dynamic equilibrium relationships. We then formally define a balanced
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growth path equilibrium and state Proposition 2 which says that one exists and is proved by

construction.

3.1. Dynamic Equilibrium Relationships

Now we will derive the law of motion for the distribution, which is a function of the amount of

searchers and the evolution of the firm’s dynamic control hi(t). The description in this section

holds for regions of continuity in hi(t). hi(t) may not be continuous, particularly at “special

times” that reset the economy like time 0 or potentially when a closed economy unexpectedly

opens to foreign trade. Technical details surrounding discontinuities in h(t) and more detailed

derivations are provided in the appendix.

Derivation of Law of Motion and Searchers. Recall that hi(t) is defined as the reservation

value below which agents search. As a tie-breaking rule, it is assumed that agents at the thresh-

old search, and hence the function is right-continuous.5

The search technology of the environment is that searching firms only match with producing

firms, as in Perla and Tonetti (2012). Therefore, agents searching at time t only meet agents

strictly above hi(t). When thinking of the evolution of the distribution, h(t) is an absorbing

barrier sweeping through the distribution from below, and the infinimum of support of the

productivity density is

inf support{Fi(·, t)} = hi(t). (13)

Thus, the distribution from which searching agents receive a draw is the existing distribution

fi(z, t|z > hi(t)) = fi(z, t). (14)

Law of Motion: Kolmogorov Forward Equation. A key determinant of the growth rate of

the economy and of the evolution of the productivity distribution is the flow of searchers up-

grading their technology, S(t). There exists a flow of searchers during each infinitesimal time

period, where the flow of searchers is the net flow of the probability current through the search

threshold, h(t). As is derived in the appendix,

Si(t) = h′
i(t)fi(hi(t), t). (15)

While h(t) is an absorbing barrier removing mass from the system, the flow of searchers are

a source that are redistributed back into the system. These agents who search have an equal

5This technical assumption does not alter any economic forces.
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probability to draw any z in f(z, t), as stated in equation 14. Hence, since the only time a firm’s

productivity changes is when it searches, the Kolmogorov forward equation (KFE) for z >

hi(t) is simply the flow of searchers (source) times the density they draw from (redistribution

density):

∂fi(z, t)

∂t
= Si(t)fi(z, t) (16)

Using equation 15

∂fi(z, t)

∂t
= fi(z, t)fi(hi(t), t)h

′
i(t). (17)

In words, this says that the search threshold is sweeping across the density at rate h′
i(t) and as

the search boundary sweeps across the density from below it collects fi(hi(t), t) amount firms.

Then fi(hi(t), t)h
′
i(t) is the flow of searchers to be distributed back into the distribution. Since

the economic environment is such that searchers only meet existing producers above hi(t), but

hi(t) is the infinimum of support of fi(z, t), then the searchers are redistributed across the en-

tire support of fi(z, t). Since agents draw directly from the productivity density, they are redis-

tributed throughout the distribution in proportion to the density and thus, the flow of searchers

fi(hi(t), t)h
′
i(t) multiplies the density fi(z, t).

Solving the KFE.

Proposition 1. fi(z, t) evolves according to repeated left truncations at hi(t) for any hi(t) and Fi(0).

A solution to the Kolmogorov forward equation 17 is

fi(z, t) =
fi(z, 0)

1− Fi(hi(t), 0)
. (18)

That is, the distribution at date t is a truncation of the initial distribution at the minimum of

support at time t, hi(t).

Solving the Firm Dynamic Problem. Solving (4) consists of jointly finding the optimal search

policy function, hi(t) and the expected value of search, Wi(t), given profit functions, a pro-

ductivity distribution, Fi(z, t), and it’s law of motion. Below, we describe the general steps to

finding this solution.

Recall that the equilibrium search threshold hi(t) is the minimum of the productivity distribu-

tion. Given parameter constraints (particularly a positive fixed cost of exporting) the exporter
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productivity threshold is greater than the technology adoption search threshold. Thus, only

non-exporters optimally choose to search, and the first order condition that determines the

optimal search time is the derivative of the value function with respect to the search timing

decision, where the discounted stream of export profits earned before searching is 0 with cer-

tainty:

Vi(z, t)|(πji=0) = max
Ti≥t

{∫ Ti

t

e−r(τ−t)πii(z, τ)dτ + e−r(Ti−t) [Wi(Ti)− xi(Ti)]

}

,

Taking the derivative of the value function of a non-exporting firm with respect to Ti yields

∂Vi(z, t)|(πji=0)

∂Ti

=

[

∂
∫ Ti

t
e−r(τ−t)πii(z, τ)dτ

∂Ti

+
e−r(Ti−t)∂Wi(Ti)

∂Ti

−
∂e−r(Ti−t)xi(Ti)

∂Ti

]

(19)

= e−r(Ti−t)
[

πii(z, Ti)− rWi(Ti) +W
′

i (Ti) + rxi(Ti)− x
′

i(Ti)
]

(20)

Setting Ti = t, i.e., where the firm is just indifferent between switching technologies and pro-

ducing, and recognizing that the productivity level of the indifferent firm is z = hi(t) by defini-

tion, we have the first order condition

0 = πii(hi(t), t)− rWi(t) +W
′

i (t) + rxi(t)− x
′

i(t)

r(Wi(t)− xi(t)) = πii(hi(t), t) +W
′

i (t)− x
′

i(t) (21)

To provide intuition, this FOC is analogous to the standard bellman equation in asset pricing,

rV (t) = π(t) + dV (t)
dt

, where the flow (net) value of an asset must equal its dividend plus capital

gains. Since in our problem, this is the equity value of a firm, there is a natural arbitrage free

pricing interpretation. If the LHS was larger than the RHS, then the current value of the firm

would be larger than its dividend and resale value warrants, and an agent could make money

by shorting the firm this instant and buying it an instant later.

Equation 21 is one equation in hi(t) and Wi(t). We now want to find another equation in hi(t)

and Wi(t), providing two equations in two unknowns.

The second equation we focus on is the expected value of acquiring a new technology.

Since hi(t) is the minimum of support of Fi(z, t) as stated in equation 13, we can rewrite equa-
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tion 5 as

Wi(t) =

∫

Vi(z, t)dFi(z, t)

=

∫ ∞

hi(t)

{∫ h−1
i (z)

t

e−r(τ−t))πii(z, τ)dτ +
∑

j 6=i

∫ φ−1
ji (z)

t

e−r(τ−t)πji(z, τ)dτ

+ e−r(h−1
i (z)−t)

[
Wi(h

−1
i (z))− xi(h

−1
i (z))

]
}

dFi(z, t) (22)

The first integral in the inside bracket is the discounted value of domestic profits until the next

change of technology, where the search time Ti has been replaced with the function h−1
i (z). The

second integral in the inside bracket is the discounted value of profits from exporting. Similarly,

the final exporting time, Tji, has been replaced with the function φ−1
ji (z), which is defined in (7).

The function φji(z) is the largest z such that a firm stops exporting to market j. Thus the inverse

of this function defines the time when the firm stops exporting to market j. The final term in

the inside bracket is the discounted value of the new technology net of search costs evaluated

at the date h−1
i (z).

Outside the brackets, we then integrate over productivity levels with the existing (equilibrium)

productivity distribution of producers, Fi(z, t), since that is the distribution from which firms

draw. This defines the expected value of acquiring a new technology.

Equations (21) and (22) give us two equations from which we can solve for the policy function,

hi(t), and the expected value of a new productivity draw, Wi(t), for a given a law of motion for

the productivity distribution, Fi(z, t).

3.2. The Pareto Distribution

The shape of the productivity distribution plays an important role, affecting both the dynamic

technology acquisition decision of the firm and the firm’s static production and export deci-

sions. The parametric form of the initial productivity distributions across countries is an es-

sential initial condition specified by the researcher. The Pareto distribution has a history in the

growth (Kortum (1997); Jones (2005b); Perla and Tonetti (2012)), trade (Melitz (2003); Chaney

(2008)), and industrial organization (Gabaix (2009)) literature as being both empirically moti-

vated and particularly tractable. To maintain analytical tractability in the static firm problem

and to allow for a balanced growth path, we will solve for the equilibrium of our baseline model

under the assumption that the initial distributions are all Pareto with the same tail index.

Assumption 1. The initial distributions of productivity are Pareto, Fi(z, 0) = 1−

(
hi(0)

z

)θ

∀i, with

densities, fi(z, 0) = θhi(0)
θz−1−θ.
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Lemma 1. Assumption 1 together with Proposition 1 implies

fi(z, t) = θhi(t)
θz−1−θ (23)

That is, if Fi(z, 0) is Pareto with tail index θ and minimum of support hi(0), then Fi(z, t) remains

Pareto with the same tail index θ and new minimum of support hi(t). This greatly simplifies

the derivation of static equilibrium relationships and solving for the model along a balanced

growth path. This assumption implies that the

3.3. Static Equilibrium Relationships

At every date t, there are essentially three aggregate equilibrium objects that determine the

static allocation problem of production and trade across countries. These are the aggregate

price index, trade shares, and aggregate sales. Below we describe each of these objects as an

explicit function of time, with detailed derivations provided in the appendix.

Price Index. From standard CES arguments, the price index in market i is

Pi(t)
1−σ =

∫ ∞

hi(t)

pii(z, t)
1−σfi(z, t)dz +

∑

j 6=i

∫ ∞

φij(t)

pij(z, t)
1−σfj(z, t)dz.

Given the assumption that initial productivity distributions are Pareto, the CES price index is

Pi(t)
1−σ = k2(mwi(t))

1−σhi(t)
σ−1 +

∑

j 6=i

k3(mdjiwj(t))
−θhj(t)

θPi(t)
θ+1−σ

(
wi(t)κi

Yi(t)

)σ−1−θ
σ−1

(24)

where k2 :=
θ

θ+1−σ
and k3 := k2σ

σ−1−θ
σ−1 .

Note that this expression is similar—but not the same—as standard results for the CES price

index in monopolistic competition models (e.g. Chaney (2008) or Eaton, Kortum, and Kramarz

(2011)). The key differences regard the term for the home country effect on the left-hand side

of (24). This term is not multiplied by the price index P θ+1−σ
i as the foreign country terms are.

The power term is 1− σ not θ as in the foreign country terms. Finally, the constant multiplying

each of these terms are different as well (k2 vs. k3). The reason for this difference is that there is

not a fixed cost of operating domestically as models such as Chaney (2008) or Eaton, Kortum,

and Kramarz (2011) have.

Trade shares. Trade shares, λji, equal the expenditure country j spends on goods from country

12



i relative to total expenditure in country j. Mathematically, the trade share is given by

λji(t) =

∫ ∞

φji(t)

pji(z, t)qji(z, t)

Yj(t)
fi(z, t)dz

Given the distributional assumptions, the optimal price and quantity rules for firms of produc-

tivity level z, and the price index in equation 24, the trade share is

λji(t) =
k3(mdijwi(t))

−θhi(t)
θPj(t)

θ+1−σ
(

wj(t)κj

Yj(t)

)σ−1−θ
σ−1

k2(mwj(t))1−σhj(t)σ−1 +
∑

n 6=j k3(mdnjwn(t))−θhn(t)θPj(t)θ+1−σ

(
wn(t)κn

Yn(t)

)σ−1−θ
σ−1

. (25)

Note again, that this expression is similar—but not the same—as standard results for trade

shares in monopolistic competition models. The key differences are the same issues arising in

the price index discussed above.

From equation 25 we can derive a simple expression for the home trade share, λii(t), in terms

of the real wage and technology parameters

λii(t) = k2m
1−σ

(
wi(t)

Pi(t)

)1−σ

hi(t)
σ−1 (26)

By inverting this expression, one can relate the wage to the home trade share in a way that is

similar to the expression for the welfare gains from trade as discussed in Arkolakis, Costinot,

and Rodriguez-Clare (2011), with a difference. The key difference is that the elasticity of the

real wage with respect to the home trade share is not dictated by the shape parameter in the

productivity distribution, θ, but by the preference parameter, σ.

Given the trade share formula, we want to express the profit functions in equations 9 and 11 in

a more convenient format. Noting that domestic profits are a function of the real wage and the

real wage’s relationship to trade shares in (26), we have

Pi(t)πii(z, t) = k4λii(t)

(
z

hi(t)

)σ−1

Yi(t), where k4 =
1

k2σ
(27)

A similar formula for profits from a firm in market i exporting to market j is

Pi(t)πji(z, t) = k4λjj(t)d
1−σ
ij

(
z

hj(t)

)σ−1(
wi(t)

wj(t)

)1−σ

Yj(t)− wj(t)κj (28)

13



Aggregate Sales. Total sales to country i, Yi(t), can be expressed as

Yi(t) = wi(t)Li +

∫ ∞

hi(t)

Pi(t)πii(z, t)fi(z, t)dz +
∑

j 6=i

∫ ∞

φji(t)

Pi(t)πji(z, t)fi(z, t)dz.

This simply says that total sales must equal all income earned from labor plus profits earned by

firms and rebated to consumers. Substituting 26 into the profit functions and then integrating

over productivity we have

Yi(t) =wi(t)Li + k3k4λii(t)Yi(t) (29)

+
∑

j 6=i

{

k3k4λjj(t)d
1−σ
ij

(
wi(t)

wj(t)

)1−σ

Yj(t)

(
φji(t)

hi(t)

)σ−1−θ

− wj(t)κj

(
φji(t)

hi(t)

)−θ
}

.

3.4. Market Clearing

Before constructing the market clearing conditions, we must specify a functional form for

the search cost of upgrading technology, xi(t). The cost to draw a new productivity level is

a convex combination of hiring domestic labor and spending final goods, given by x(t) =

ζ
[

(1− η)w(t)
P (t)

+ ηEt[zi]
]

. η ∈ [0, 1] controls the degree to which the cost of search requires la-

bor as opposed to goods, while ζ affects the overall cost of upgrading technology. w(t)
P (t)

is the

real cost of hiring a unit of labor, while Et[zi] is the amount of goods required to search. As

is standard, the search cost in goods must grow with the economy or become irrelevant over

time.6

Goods Market Clearing. Final goods are spent on either consumption or paying technology

adoption costs. Since ζηEt[zi] final goods are spent per search and there is a flow of Si(t)

searchers each instant, the goods market clearing condition is

Yi(t)

Pi(t)
= Qi(t) = Ci(t) + ζηEt[zi]Si(t)

Labor Market Clearing. Wages, wi(t), are determined by the labor market clearing conditions.

Aggregating the labor in market i used for domestic production, Li,d, and for export production,

6This could alternatively be achieved by indexing the cost to the minimum productivity in the economy instead
of the average or by making the cost a fixed fraction of output. Average productivity was chosen as the goods cost
since it more closely corresponds with the benefit of searching, the expected value of a new productivity.
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Li,ex, yields

Li,d =

∫ ∞

hi(t)

pii(z, t)
−σYi(t)

zPi(t)1−σ
fi(z, t) and Li,ex =

∑

j 6=i

∫ ∞

φji(t)

djipji(z, t)
−σYj(t)

zPj(t)1−σ
fi(z, t). (30)

Since the fixed cost of exporting from j to i requires units of i labor, the total amount of labor

from i used in the production of fixed costs equals

Li,κ =
∑

j 6=i

∫ ∞

φij(t)

κifj(z, t)dz = κi

∑

j 6=i

(
hj(t)

φij(t)

)θ

. (31)

Since the technology upgrade search cost is partially paid to hire labor, the search component

of labor demand is

Li,x = ζ(1− η)Si(t) (32)

Equating aggregate labor supply, Li, with aggregate labor demand yields the labor market

clearing condition:

Li = Li,d + Li,ex + Li,κ + Li,x

Li =

∫ ∞

hi(t)

pii(z, t)
−σYi(t)

zPi(t)1−σ
fi(z, t) +

∑

j 6=i

∫ ∞

φji(t)

djipji(z, t)
−σYj(t)

zPj(t)1−σ
fi(z, t) + κi

∑

j 6=i

(
hj(t)

φij(t)

)θ

+ ζ(1− η)Si(t).

(33)

3.5. A Balanced Growth Path Equilibrium

Definition 1. A balanced growth path (BGP) equilibrium is a set of initial distributions Fi(0) with

support [zmini,∞), search and exporter thresholds {hi(t), φji(t)}
∞
t=0, firm price and labor policies

{pji(z, t), ℓji(z, t)}
∞
t=0, wages {wi(t)}

∞
t=0, aggregate trade shares and price indexes {λi(t), Pi(t)}

∞
t=0, and

a growth rate g > 0 such that for all countries i:

• Given aggregate prices and distributions

– hi(t) is the optimal search threshold,

– φji(t) is the optimal export threshold to market j,

– pji(z, t) and ℓji(z, t) solve the static optimization problem,

• Markets clear at each date t.

• Sales grow at a constant rate Y (t) = Y0e
gt,
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• The distribution of productivities is stationary when re-scaled:

fi(z, t) = e−gtfi(ze
−gt, 0) ∀ t, z ≥ zminie

gt

The initial distribution must have infinite right tailed support or the economy would not be able

to grow indefinitely. Requiring sales to grow at a constant rate, the productivity distributions

to be constant after rescaling, and trade shares and prices to be constant ensures that the BGP

equilibrium features balanced growth. Restricting g > 0 ensures that the BGP equilibrium has

growth.

3.5.A. Solving for a BGP

We will now prove existence of a BGP equilibrium by construction in a particular environment.

Assumption 2. There are N symmetric countries.

Assumption 3. Preferences are such that σ = 2.

Assumption 4. L = 1

We will guess that along the BGP, the search threshold, wages, and the value of search also

grow at constant rate g. These guesses will be verified as part of the solution methodology.

Guess 1. The optimal search threshold grows at the same rate g as total sales: h(t) = h0e
gt.

Guess 2. Wages grow at the same constant rate g as total sales: w(t) = w0e
gt.

Guess 3. The optimal value of search grows at the same rate g as total sales: W (t) = W0e
gt.

Here we solve for the special case of N symmetric countries with CES substitution parameter

σ = 2. Imposing the balanced growth path guess that h evolves according to h(t) = egth0,

w evolves according to w(t) = egtw0, the BGP restriction that total sales evolves with Y (t) =

egtY0, and dropping the notation identifying the country, simplifies the profit functions from

equations 27 and 28 to

P (t)πd(z, t) = k4λ(t)

(
z

h0

)

Y0 (34)

P (t)πex(z, t) = πd(z, t)d
−1 − egtw0κ. (35)

with the explicit dependence on time now noted. Here the country identifier notation is changed

such that πd(z, t) denotes the domestic profits of a firm and πex(z, t) denotes the exporting prof-

its to a single country.

Before proceeding we should note that the trade share, λ(t), and price index, P (t), potentially

vary with time. We proceed to verify that they do not.
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λ(t) and P (t) are constant if h(t) and w(t) grow at the same rate as sales, as stated in guess 1

and guess 2. Imposing symmetry, the trade share and associated price index are

P (t)1−σ = k2(mw(t))1−σh(t)σ−1 + (N − 1)k3(mdw(t))−θh(t)θP (t)θ+1−σ

(
w(t)κ

Y (t)

)σ−1−θ
σ−1

(36)

λ(t) =
k3(mdw(t))−θh(t)θP (t)θ+1−σ

(
w(t)κ

Y (t)

)σ−1−θ
σ−1

k2(mw(t))1−σh(t)σ−1 + (N − 1)k3(mdw(t))−θh(t)θP (t)θ+1−σ

(
w(t)κ
Y (t)

)σ−1−θ
σ−1

. (37)

(38)

Careful examination of equation (36) shows that only the ratio of wages, w(t), to the search

threshold, h(t), affects the evolution of P (t). Thus, if h(t) and w(t) both grow at constant rate g

as stated in guess 1 and guess 2, the aggregate price index must be constant.

Next, careful examination of equation (37) shows that only the ratio of wages, w(t), to either the

minimum of support of the distribution, h(t), or sales, Y (t), affects the evolution of λ(t). Thus,

the trade share must be constant on a balanced growth path.

From equation 35, the cutoff value for exporting is

φ(t) = χh(t) where χ :=
dκw0

k4Y0λ
(39)

Sales are then

Y (t) = w(t)k5 where k5 =
1− κχ−θ

1− [k3k4λ (1 + (N − 1)d−1χ1−θ)]
. (40)

Thus, guess 2, that wages are growing at the same rate as sales, is verified.

Summarizing, we have shown that given assumptions and guesses,

λ(t) = λ(0) ∀ t, P (t) = P (0) ∀ t, and Y (t) = k5w0e
gt. (41)

We have characterized completely how the profit functions are growing over time. The next

step is to use this information in the firms dynamic problem and verify that the balanced growth

path guesses solve the firm problem and satisfy the BGP equilibrium requirements.

The broad outline for the proof is to verify the economy is on a balanced growth path. A key

aspect of this is to verify guess 3 that W (t), the expected value of search, is growing at a constant

rate, i.e., W (t) = egtW0. To accomplish this, we will plug in our guesses above into the formula
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for the value of search (equation 22) and verification comes if we can solve for a growth rate g

and initial value of search W0 that are independent of time.

Proposition 2. Given assumptions 1-4, there exists a balanced growth path.

Note, since P is constant, we can normalize the numeraire such that P (t) = 1 ∀ t.

Proof

Given the balanced growth path guess, h−1(z) equals

h−1(z) =

log

(
z

h0

)

g
. (42)

Using equation 39, φ−1(z) equals

φ−1
ji (z) =

log
(

z
χh0

)

g
(43)

Recall from Lemma 1 that

fi(z, t) = θhi(t)
θz−1−θ. (44)

Starting from equation 22, substituting the profit functions from equations 34 and 35 and using

the guess W (t) = W0e
gt we have

W0e
gt =

∫ ∞

h(t)

∫ h−1(z)

t

e−r(τ−t)k4λ

(
z

h0

)

Y0 dτ dF(z, t) (45)

+ (N − 1)

∫ ∞

φji(t)

∫ φ−1
ji (z)

t

e−r(τ−t)k4d
−1λ

(
z

h0

)

Y0dτ dF(z, t)

− (N − 1)

∫ ∞

φji(t)

∫ φ−1
ji (z)

t

e−r(τ−t)κw0e
gτ dτ dF(z, t)

+

∫ ∞

h(t)

e−r(h−1(z)−t)

[

egh
−1(z)

(

W0 − ζ

(

(1− η)w0 + η
θ

θ − 1
h0

))]

dF (z, t).

Computing the integrals and dividing by egt gives the initial value of search,
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W0 =
(N − 1)w0κχ

−θ + θ
(
g
(
W0 − ζ

[
(1− η)w0 − η θ

θ−1
h0

])
(θ − 1) + k4Y0λ

)

(r + g(θ − 1))(θ − 1)
. (46)

Note that W0 is not explicitly a function of time, a key step in verifying the guess that g is

constant and W (t) = W0e
gt.

Given that the initial wage, w0, and initial sales, Y0, are solved from the sales and labor market

clearing equations, equation 46 is one equation in two unknowns, g and W0. We now turn to

the FOC of the dynamic firm problem to derive a second equation in g and W0.

Given the assumptions, the value function is

V (z, t) = max
T≥t

{∫ T

t

e−r(τ−t)πd(z, τ)dτ + (N − 1)

∫ T

t

e−r(τ−t)πex(z, τ)dτ (47)

+ e−r(T−t)

[

W (T )− ζ

(

(1− η)w(T ) + η
θ

θ − 1
h(T )

)]}

, (48)

Following the solution to the firm problem in Section 3.1, the first order condition is

∂V (z, t)|(πex=0)

∂T

∣
∣
∣
∣
(T=t,z=h(t))

= (g − r)

[

W0 − ζ

(

(1− η)w0 + η
θ

θ − 1
h0

)]

+ k4Y0λ = 0. (49)

Now we have two equations (46) and (49) in W0 and g for which we can solve for the value of

search and the growth rate on the BGP. As t has dropped out of equations 46 and 49, W0 and

g are not functions of time, confirming the guess that the value of search grows geometrically

along the balanced growth path at constant rate g (W (t) = W0e
gt).

�

The addition of fixed exporting costs introduces complications that prevent much analytical

analysis of the affect parameters have on growth rates. In the following section, we demonstrate

the mechanisms at work in the model by using a calibrated model to explore the link between

openness to trade, growth, and welfare.

4. Comparative Statics

In this section, we calibrate the model and solve for the balanced growth path. We then perform

several comparative statics to illustrate the workings of the model.

Table 1 outlines the parameterization of the model. One set of parameters we calibrate based on
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Table 1: Parameterization

Parameter Source or Target

σ = 2 Assumption 3 (consistent with Broad and Weinstein (2006))

θ = 4 Simonovska and Waugh (2012)

r = 0.10 —

N = 10 —

η = 1 search cost all in goods

Search cost, ζ match 2 percent growth rate

Fixed export cost, κ match 10 percent of firms exporting

Iceberg trade cost, d match 80 percent home trade share

previous work or introspection. These are described in the top panel. The curvature parameter

σ is pinned down by Assumption 3. However, we should note that this assumption is not

inconsistent with the best available evidence. Estimates of this CES parameter from Broda and

Weinstein (2006) find a median estimate of σ near two. Inferences from high-frequency changes

in trade flows and relative prices support a value of two as well, see, e.g., the discussion in Ruhl

(2008).

The θ parameter is set equal to four as a baseline. There are various ways to get at this param-

eter, i.e. by looking at the distribution of sales or sizes across firms or from how trade flows

respond to various shocks. The specific value of four is from Simonovska and Waugh (2012),

who use price and trade flow data to estimate the heterogeneity parameter in the Eaton and

Kortum (2002) trade model. In our comparative statics, we illustrate how θ affects the response

of growth to changes in trade flows.

We picked the interest rate to equal ten percent and set the number of countries equal to ten.

There is nothing deep about these choices, though we do explore scale effects and how the

number of countries in the economy affects the growth rate.

The bottom panel of Table 1 outlines the remaining parameters are the cost to search for a

new technology, ζ , the fixed cost to export, κ, and the iceberg trade cost, d. We jointly pick

these parameters to match a two percent growth rate, ten percent of all firms exporting, and an
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Figure 1: Openness Increases Growth: Growth Rate vs. Imports

80 percent home trade share. These targets are roughly consistent with properties of the U.S.

economy.

To illustrate how growth depends on openness, we started from the baseline calibration and

varied the iceberg trade costs to trace out how growth responds on the balanced growth path.

Figure 1 plots the results. The vertical axis reports the growth rate in percent. The horizontal

axis reports the import share for a country, i.e., 1− λii, which grows as trade costs decrease. As

an orientation device, note that when the import share equals 20 percent, the growth rate is 2

percent as calibrated.

Figure 1 shows that the growth rate of the economy increases as countries trade more and

become open. For example, when trade costs are lowered such that the trade share increases

from 20 percent to 40 percent, the growth rate increases from 2 percent to 3 percent. At the other

extreme, when the economy is closed and countries do not trade with each other, the growth

rate is about 1.6 percent.

What drives this result is that reductions in trade costs change the relative value of being a

firm with productivity level z. This in turn changes the incentives for a firm to draw a new

productivity, which in turn changes the growth rate of the economy. While these forces are

complex, there are essentially two forces at work changing the relative value of a firm. First, all

domestic firms face more competition from foreign firms which reduces the market share for

domestic firms and reduces their profits. Second, high z firms are able to expand and export
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Figure 2: Value Functions and Openness

increasing profits for high z firms. The net effect of these two forces is to change the relative

value of a high z firm versus a low z firm. This provides an incentive for a low z firm to draw

a new technology term soon than later. Since growth is generated by search, as can be seen in

the BGP relationship S(t) = θg, greater incentives to search generates higher growth.

Figure 2 illustrates this by plotting the value function of a firm (normalized by the average

value) versus the log of its productivity level under different levels of openness. The blue

line plots the value functions when the economy is closed. The red and black line plot the

value function when the economy is open. Notice that as the economy opens up, the value

functions as a function of z begin to rotate counterclockwise, becoming increasingly convex.

The value of having a low z firm is becoming worse relative to a closed economy. As trade

barriers decrease, foreign competition increases. Additionally, increased labor demand by high

productivity firms to increase exports causes domestic wages to rise. Ultimately, lower trade

costs increase the value of having a high z relative to having a low z.

This change in the relative profitability of firms is best illustrated in Figure 3, which plots the

static profits of a firm on the vertical axis and the log of firm productivity on the horizontal

axis, for different values of the iceberg trade costs. The profits from exporting are more than

offsetting any loss in domestic profits from foreign competition and increased labor costs. This

then provides an incentive for the low z firm to draw a new technology level sooner rather than

later.
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Figure 3: Static Profits and Openness

The positive relationship between growth and openness—in the absence of cross-country idea

diffusion—is a unique feature of the model. Alvarez, Buera, and Lucas (2012) generate an

increase in growth from openness in a model with equilibrium technology diffusion because

opening to trade changes the number of ideas/productivity that (exogenously) an agent has an

opportunity to meet in a given instant. In our model, the number of ideas sampled per instant is

fixed. Independent of whether the country is open or closed, a firm has the opportunity to draw

one new productivity from the distribution of domestic firms, once the cost is paid. The critical

force is the dynamic, forward looking nature of firms in our model. Firms choose to draw a

new productivity more frequently in response to opening to trade as higher productivity levels

associated with exporting have become relatively more valuable.

A critical parameter in this model is θ. Figure 4 plots the relationship between growth and

openness under several parameterizations of θ. In all the parameterizations of θ, we recalibrate

the other parameters to match the same targets discussed above. As Figure 4 illustrates, the

relationship between growth and openness becomes steeper. For example, when θ is three, a

move to a 40 percent trade share increases growth to about 3.5 percent (compared to 3 when θ

is two). Similarly, a move to autarky decreases growth to about 1.25 percent versus 1.6 percent

when θ equals four.

This observation is related to the standard role θ plays in idea flow models (i.e. Alvarez, Buera,
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Figure 4: Higher θ, More Elastic Growth

and Lucas (2008), Lucas (2009), Perla and Tonetti (2012), Lucas and Moll (2012), Alvarez, Buera,

and Lucas (2012). A lower θ is associated with a thicker right tail of the idea distribution, mean-

ing draws from the idea distribution lead to larger jumps in productivity and, in equilibrium,

faster growth rates. The same force is present here. Holding everything else constant, a smaller

θ will lead to a faster growth rate. However, Figure 4 is saying something more. The response

of growth to a change in trade costs is more sensitive the thicker the tail of the underlying idea

distribution.

Figure 5 plots how the results depend upon the number of countries. Here we did not recali-

brate or change the parameters. We kept all parameters from the baseline parameterization the

same and doubled the number of countries from ten to 20. As Figure 5 shows, doubling the

number of countries does not change the relationship between the scale of the economy and

the growth rate.

This result is suggestive about the workings of the model. First, this result suggests that the key

mechanism behind the relationship between growth and openness in our model is not coming

through a scale effect per-se. What we mean by the previous sentence is the intuition that firms

simply upgrade faster because markets and profits are larger. If this were true, then we would

expect to see a relationship between the scale of the economy and growth. Because scale seems

to be absent, this result reinforces the idea that the driving force is how openness changes the

relative value of firms across different productivity levels.
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Figure 5: More Countries, No Change in Growth Rates

This result differs substantially from Alvarez, Buera, and Lucas (2012). Scale effects play a

prominent role with the number of ideas a country has access to depending upon the number

of countries. The growth rate on a balanced growth path with symmetric countries is linear in

the number of countries in the economy. The critical difference is that our economy does not

have cross-country idea diffusion as the Alvarez, Buera, and Lucas (2012) economy does.

Even without cross-country idea diffusion, the absence of growth scale effects does seem sur-

prising. In fact, endogenous growth models have previously emphasized scale effects and

openness as a way to increase scale and hence growth (see, e.g., the discussion of scale effects in

Jones (2005a) and Ramondo, Rodriguez-Clare, and Saborio-Rodriguez (2012)). We should note

that scale effects in newer models of knowledge diffusion are not well understood and we hope

to explore more in the future.

One of the most important determinants of the effect of openness on growth is whether the

process of technology adoption requires more labor or more goods. Figure 6 repeats the exercise

of reducing iceberg trade costs as featured in Figure 1, but now varies the composition of labor

and goods in the search cost.

As η decreases, labor becomes a larger component of the cost of technology adoption. For small

η, the growth rate actually decreases as iceberg trade costs fall. Thus, opening to trade does not

always increase growth rates. This is the result of strong general equilibrium effects on the

wage rate. Decreased trade costs lead to increased demand for labor, as exporting firms want
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to produce more to sell abroad and more firms become exporters. Wages increase in response

to the increased labor demand, and thus the larger the labor component in the search cost the

larger the increase in the cost of upgrading technology. The economy continues to grow as

trade costs fall, but the economy grows more slowly for low η, as the cost of search increases

more rapidly. Given that the empirical literature on the relationship between growth and trade

has found mixed evidence, this theory suggests future research into the costs of technology

adoption and technological progress across countries may prove insightful.

Using the representative consumer’s utility function, we can analyze the welfare implications

of these growth patterns. Although growth rates can increase or decrease in response to re-

duced trade costs, there exist welfare gains from trade even if growth rates decline. Table

4 presents the welfare costs of autarky for an economy where the cost of search is in goods

(η = 1). In the open economy, welfare is 1.13 times higher than under autarky. Moreover, the

change in welfare can be decomposed into two components, static and dynamic. The static

component captures the time zero change in the level of consumption while the dynamic com-

ponent accounts for the change in the growth rate. The static gain of 1.07 results from the more

standard increase in varieties exported and increase in quantities produced for a given variety

as in Chaney (2008). Real GDP is 9 percent higher with international trade, with most of the

increased production going to increase consumption, and some going to lay for higher technol-

ogy adoption costs as firms upgrade more frequently. The dynamic gains of 1.05 come from the
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Table 2: Welfare Cost of Autarky, η = 1 (cost of search in goods)

Open Autarky Ratio
Welfare 13.45 11.86 1.13
Dynamic Component 12.50 11.86 1.05
Static Component 1.07 1.00 1.07
Imports/GDP 0.20 0 —
Real GDP 1.09 1.00 1.09
Growth rate 2.00 1.57 1.27

increased growth rate under openness and multiplies the static gains of 1.07 to generate total

welfare improvements of 1.13.

Table 4 documents the welfare gains from openness when the cost of search is in labor (η =

0). Even though growth rates increase in autarky from 2 percent to 2.6 percent, there are still

welfare gains of 1.04 percent from openness. Initially, real GDP is 12 percent larger in the open

economy due to increased production and exports, which more than offsets the drag small

growth rates to increase overall welfare.

Table 3: Welfare Cost of Autarky, η = 0 (cost of search in labor)

Open Autarky Ratio
Welfare 14.05 13.51 1.04
Dynamic Component 12.50 13.51 0.93
Static Component 1.12 1.00 1.12
Imports/GDP 0.20 0 —
Real GDP 1.12 1.00 1.12
Growth rate 2.00 2.60 0.77

5. Conclusion

This paper contributes a novel dynamic model of growth and international trade, driven by

technology diffusion based on Perla and Tonetti (2012). Firms choose to upgrade their produc-

tivity through technology adoption to remain competitive and profitable, with the incentives

to upgrade dependent on the shape of the endogenously determined productivity distribution.

Highly productive firms benefit from a decline in trade costs, as they are the exporters who can

take advantage of increased sales abroad. Low productivity firms only sell domestically and are

hurt by the increased competition from foreign firms and by increased wages. Under most cal-

ibrations, in equilibrium this leads lower productivity firms to upgrade their technology more

frequently, which increases aggregate growth. The increased pace of technology adoption has
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aggregate benefits beyond those to the individual firm, since in the future upgrading firms

may adopt its improved technology. However, aggregate growth rates do not always increase

in response to reduced trade costs, since the growth response to increased openness depends

on the cost of technological improvement and the strength of general equilibrium wage effects.

Nonetheless, while the gains and losses from reduced trade barriers are not distributed evenly

across firms, the representative consumer who owns all firms benefits from openness.
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A. Appendix

1.1. Dynamic Problem

Let the aggregate price index, Pi, be the numeraire. Then the firm solves the following dynamic

programming problem, that’s solution is a sequence of search thresholds, hi(t), and export

thresholds for each destination, φji(t) ∀j 6= i.

Vi(z, t) = max
Tji≥t

Ti≥t

{
∫ Ti

t

e−r(τ−t)πii(z, τ)dτ +
∑

j 6=i

∫ Tji

t

e−r(τ−t)πji(z, τ)dτ + e−r(Ti−t) [Wi(Ti)− xi(Ti)]

}

(50)

where

Wi(t) :=

∫

Vi(z, t)dFi(z, t|z > hi(t)) (51)

Define the search and exporter thresholds as these indifference points:

hi(t) := max{ z | Ti(z, t) = t } (52)

φji(t) := max{ z | Tji(z, t) = t } (53)

The function hi(t) maps time into the largest productivity level such that the firm with that pro-

ductivity level is upgrading its technology. Given this definition, the function h−1
i (z) defines the

time at which a firm with productivity level z will draw a new technology. Then, since a draw

comes from the equilibrium distribution of producers, the expected value of the new technology

level, Wi(T ), is defined in (5). Notice that the value of the new technology is integrated with

respect to the conditional productivity distribution Fi(z, t|z > hi(t)) and hence is a function of

the choices of the individual firms.

1.1.A. Derivation of Law of Motion and Searchers

Now we will derive the law of motion for the distribution, which is a function of the mass

of searchers and the evolution of the firms dynamic control hi(t). One key issue, that may be

particularly relevant at the beginning of time, is whether hi(t) is continuous. The law of motion

for Fi(z, t) is written for continuous and discontinuous regions. Recall that hi(t) is defined as

the reservation value below which agents search. As a tie-breaking rule, it is assumed that

agents at the threshold search, and hence the function is right-continuous. Define Si(t) as the

mass of searchers at time t. At points of continuity in hi(t) it should be equal to 0. Define
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Si(t) as the flow of searchers at time t, which is not defined at points of discontinuity of hi(t).

It is important to recognize that hi(t) may not be continuous, particularly at “special times,”

that reset the economy like time 0 or potentially when a closed economy unexpectedly opens

to foreign trade. A discontinuity can be introduced by unexpectedly discretely changing the

value of search or cost of search, i.e., a sudden change in iceberg trade costs.

The search technology of the environment is that agents only match other agents in the produc-

ing region, as in Perla and Tonetti (2012). Therefore, agents searching at time t only meet agents

strictly above hi(t), when thinking of the evolution of the distribution hi(t) is an absorbing

barrier, and the minimum of support of the productivity density is

lim
∆→0

inf support{Fi(·, t+∆)} = hi(t) (54)

inf support{Fi(·, t)} = hi(t), at points of continuity (55)

Thus fi(z, t+∆) equals fi(z, t) at points of continuity in hi(t).

1.1.B. Mass of Searchers

The mass of agents searching at time t are agents below the hi(t) threshold

Si(t) := Fi(hi(t), t) (56)

Note from equation 55, at points of continuity,

Si(t) = Fi(inf support(·, t), t) = 0

1.1.C. Flow of Searchers

A key determinant of the growth rate of the economy and of the evolution of the productivity

distribution is the flow of searchers upgrading their technology. At points of continuity of hi(t),

there exists a flow of searchers during each infinitesimal time period. The flow of searchers is

net flow of the probability current through the search threshold, hi(t).
7 To derive this, at time t

fix the reference frame of the probability distribution of z with respect to the search threshold

hi(t). That is, consider the change of variables z̃ := z − hi(t). Let the transformed probability

distribution function be f̃i(z̃, t). Note that the only time a firms productivity changes is when

they search, i.e., z does not change in the continuation region, and hence the process is dZ = 0·dt

while the firm is producing. Using a special case of Ito’s lemma with no diffusion (or more basic

methods with a Taylor series), the process for Z̃ is dZ̃ = −h′
i(t)dt. Equation 5.1.3 in Gardiner

7Equivalently, this is the flux of a vector field through the barrier (of 1 dimension, z in this case).
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(2009) gives the more general case of the probability current with diffusion at z̃, t:

Ji(z̃, t) = −h′
i(t)f̃i(z̃, t)

We are interested in the flow of searchers at the search threshold hi(t), and thus the flow at

z̃ = 0. This flow of searchers is given in equation 5.1.13 of Gardiner (2009). Since this is a simple

1 dimensional problem, the surface integral is trivial and the normal is n = −1. Note that since

this is just a translation of z, the probability current at z̃ = 0 and z = hi(t) are identical

Si(t) = −1× Ji(0, t) (57)

= h′
i(t)f̃i(0, t) (58)

= h′
i(t)fi(hi(t), t) (59)

1.1.D. Law of Motion at Points of Discontinuity

At points of discontinuity in hi(t), a mass Si(t) “exit” and draw from lim∆→0 Fi(·, t + ∆). The

law of motion at t+ := lim∆→0 t+∆ is therefore

Fi(z, t+) = Fi(z, t)
︸ ︷︷ ︸

Was below z

− Si(t)
︸︷︷︸

Searched

+ Si(t)Fi(z, t+)
︸ ︷︷ ︸

Searched and drew ≤ z

, for z ≥ hi(t+) (60)

Fi(z, t+)− Fi(z, t) = −(1− Fi(z, t+))Fi(hi(t), t) (61)

1.1.E. Law of Motion at Points of Continuity

The flow of “exiting” firms is defined by equation 59. These agents have an equal probability

to draw any z in fi(z, t + ∆), which equals fi(z, t) at points of continuity in hi(t). Hence, since

dZ = 0 · dt, the Kolmogorov forward equation for z > hi(t) is simply the flow of searchers who

draw z:

∂fi(z, t)

∂t
= Si(t)fi(z, t) (62)

Using equation 59

∂fi(z, t)

∂t
= fi(z, t)fi(hi(t), t)h

′
i(t) (63)

In words, this says that the absorbing barrier (i.e., the search threshold) is sweeping across the

density at rate h′
i(t) and as the barrier sweeps across the density from below, it collects fi(hi(t), t)

amount firms. Then fi(hi(t), t)h
′
i(t) is the flow of searchers to be distributed back into the dis-

tribution. Since the economic environment is such that searchers only meet existing producers
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above hi(t), but hi(t) is the minimum of support of fi(z, t), then the searchers are redistributed

across the entire support of fi(z, t). Since agents draw directly from the productivity density,

they are redistributed throughout the distribution in proportion to the density and thus, the

flow of searchers fi(hi(t), t)h
′
i(t) multiplies the density fi(z, t).

1.1.F. Solving the KFE

A solution to equation (63) is a truncation for any hi(t) and Fi(0)

fi(z, t) =
fi(z, 0)

1− Fi(hi(t), 0)
. (64)

That is the distribution at date t is a truncation of the initial distribution.

Note by properties of the Pareto distribution, given that the distribution evolves by repeated

truncations, if Fi(z, 0) is Pareto with tail index θ and minimum of support hi(0), then Fi(z, t)

remains Pareto with tail index θ and minimum of support hi(t).

1.1.G. Solving the Firm Dynamic Problem

The steps to solving (4) consists of jointly finding an optimal waiting policy function, hi(t), and

the expected value of search, Wi(t), given a productivity distribution Fi(z, t) and it’s law of

motion. Below, we describe the general steps to finding this solution.

Recall that the equilibrium search threshold hi(t) is the minimum of the productivity distri-

bution. Given parameter constraints (particularly the fixed cost of exporting) such that not

all firms export, the exporter threshold is greater than the search threshold. Thus, only non-

exporters would want to search, and the FOC that determines the optimal search time is the

derivative of the value function with respect to the search timing decision, where the dis-

counted stream of export profits earned before searching is 0 with certainty:

Vi(z, t)|(πji=0) = max
Ti≥t

{∫ Ti

t

e−r(τ−t)πii(z, τ)dτ + e−r(Ti−t) [Wi(Ti)− xi(Ti)]

}

,

Taking the derivative of the value function of a non-exporting firm with respect to T yields

∂Vi(z, t)|(πji=0)

∂Ti

=
∂
∫ Ti

t
e−r(τ−t)πii(z, τ)dτ

∂Ti

+
e−r(Ti−t)∂Wi(Ti)

∂Ti

−
∂e−r(Ti−t)xi(Ti)

∂Ti

(65)

= e−r(Ti−t) [πii(z, Ti)− rWi(Ti) +W ′
i (Ti) + rxi(Ti)− x′

i(Ti)] (66)
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Setting Ti = t, i.e., where the firm is just indifferent between switching technologies and pro-

ducing, and recognizing that the productivity level of the indifferent firm is z = hi(t) by defini-

tion, we have the first order condition

0 = πii(hi(t), t)− rWi(t) +W ′
i (t) + rxi(t)− x′

i(t) (67)

Now equation (67) gives us one equation in hi(t) and Wi(t). We now want to find another

equation in hi(t) and Wi(t) essentially giving us two equations in two unknowns.

The second equation we focus on is the expected value of acquiring a new technology:

Since hi(t) is the minimum of support of Fi(z, t) as stated in equation 55, we can rewrite equa-

tion 51 as

Wi(t) =

∫

Vi(z, t)dFi(z, t)

=

∫ ∞

hi(t)

{∫ h−1
i (z)

t

e−r(τ−t))πii(z, τ)dτ +
∑

j 6=i

∫ φ−1
ji (z)

t

e−r(τ−t)πji(z, τ)dτ

+ e−r(h−1
i (z)−t)

[
Wi(h

−1
i (z))− xi(h

−1
i (z))

]
}

dFi(z, t) (68)

The first integral in the inside bracket is the discounted value of domestic profits until the

next change of technology. Here we substituted for the time Ti with the function h−1
i (z). The

second integral in the inside bracket is the discounted value of profits from exporting. Again,

we substituted for the final exporting time, Tji, for the function φji(z), which is defined in (53).

The function φji(z) is the largest z such that a firm stops exporting to market j. Thus the inverse

of this function defines the time when the firm stops exporting to market j. The final term in

the inside bracket is the discounted value of the new technology net of search costs evaluated

at the date h−1
i (z).

Outside the brackets, we then integrate over productivity levels with the existing (equilibrium)

productivity distribution Fi(z, t). This defines the expected value of acquiring a new technol-

ogy.

Equations (67) and (68) give us two equations from which we can solve for the policy function

hi(t) and the value of search Wi(t) for a given a law of motion for the productivity distribution

Fi(z, t).
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1.2. Static Problem

This derivation is for the specification where the fixed cost of exporting is wjκj .

We suppress dependence on time for clarity of notation.

1.2.A. Prices, Quantities, and Profits

pii(z) =
mwi

z
(69)

pij(z) =
mdjiwi

z
(70)

qii(z) =
pii(z)

−σYi

P 1−σ
i

= zℓii(z) (71)

qji(z) =
pji(z)

−σYj

P 1−σ
j

=
z

dji
ℓji(z) (72)

Piπii(z) =
1

σ

(m wi

z

)1−σ Yi

P 1−σ
i

(73)

Piπji(z) = max{
1

σ

(
m dji wi

z

)1−σ
Yj

P 1−σ
j

− wjκj, 0} (74)

1.2.B. Exporter Threshold

φji solves πji(z) = 0.

(
m dji wi

φji

)1−σ

= σwjκj

P 1−σ
j

Yj

m dji wi

φji

=

(
σwjκj

Yj

) 1
1−σ

Pj

φji =
m dji wi

Pj

(
σwjκj

Yj

) 1
σ−1

Define k1 := m djiσ
1

σ−1

φji = k1
wi

Pj

(
wjκj

Yj

) 1
σ−1

(75)
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1.2.C. Aggregate Price Index

P 1−σ
i :=

∫ ∞

hi

pii(z)
1−σfi(z) dz +

∑

j 6=i

∫ ∞

φij

pij(z)
1−σfj(z) dz (76)

Let fi(z) = θhθ
i z

−1−θ. Recall, pii(z) =
mwi

z
and pij(z) =

mdjiwi

z
.

P 1−σ
i = (mwi)

1−σθhθ
i

∫ ∞

hi

z−1−θ

z1−σ
dz +

∑

j 6=i

(mdjiwj)
1−σθhθ

j

∫ ∞

φij

z−1−θ

z1−σ
dz

Define k2 :=
θ

θ+1−σ
.

P 1−σ
i = k2(mwi)

1−σhθ
ih

σ−1−θ
i +

∑

j 6=i

k2(mdjiwj)
1−σhθ

jφ
σ−1−θ
ij

P 1−σ
i = k2(mwi)

1−σhσ−1
i +

∑

j 6=i

k2(mdji)
1−σw1−σ

j hθ
j(m djiσ

1
σ−1 )σ−1−θ

(
wj

Pi

)σ−1−θ (
wiκi

Yi

)σ−1−θ
σ−1

Define k3 := k2σ
σ−1−θ
σ−1 .

P 1−σ
i = k2(mwi)

1−σhσ−1
i +

∑

j 6=i

k3(mdjiwj)
−θhθ

jP
θ+1−σ
i

(
wiκi

Yi

)σ−1−θ
σ−1

(77)

1.2.D. Aggregate Trade Shares

λji :=

∫ ∞

φji

pji(z)qji(z)

Yj

fi(z)dz (78)

Recall qji(z) =
pji(z)

−σYj

P 1−σ
j

.

λji =

∫ ∞

φji

pji(z)
1−σ

P 1−σ
j

fi(z)dz

λji =
1

P 1−σ
j

∫ ∞

φji

pji(z)
1−σfi(z)dz
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Recall from the derivation of the Aggregate Price Index,

∫ ∞

φij

pij(z)
1−σfj(z)dz = k3(mdjiwj)

−θhθ
jP

θ+1−σ
i

(
wiκi

Yi

)σ−1−θ
σ−1

(79)

so,

λji =
1

P 1−σ
j

[

k3(mdijwi)
−θhθ

iP
θ+1−σ
j

(
wjκj

Yj

)σ−1−θ
σ−1

]

(80)

substituting the aggregate price index from equation 77,

λji =
k3(mdijwi)

−θhθ
iP

θ+1−σ
j

(
wjκj

Yj

)σ−1−θ
σ−1

k2(mwj)1−σhσ−1
j +

∑

n 6=j k3(mdnjwn)−θhθ
nP

θ+1−σ
j

(
wnκn

Yn

)σ−1−θ
σ−1

(81)

Deriving λii.

Note
∑

i λji = 1. That is,
∑

i 6=j λji + λii = 1.

∑

i 6=j

λji =

∑

i 6=j k3(mdijwi)
−θhθ

iP
θ+1−σ
j

(
wjκj

Yj

)σ−1−θ
σ−1

k2(mwj)1−σhσ−1
j +

∑

n 6=j k3(mdnjwn)−θhθ
nP

θ+1−σ
j

(
wnκn

Yn

)σ−1−θ
σ−1

Define Γji :=
∑

i 6=j k3(mdijwi)
−θhθ

iP
θ+1−σ
j

(
wiκi

Yi

)σ−1−θ
σ−1

. Then,

∑

i 6=j

λji =
Γji

k2(mwj)1−σhσ−1
j + Γji

Since
∑

i 6=j λji + λii = 1

λii =
k2(mwj)

1−σhσ−1
j

k2(mwj)1−σhσ−1
j + Γji

By definition of Pj and Γji,

λii =
k2(mwj)

1−σhσ−1
j

P 1−σ
j

(82)

Deriving πii and πji in terms of trade shares.
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Using πii(z) derived in equation 73,

πii(z) = k4λii

(
z

hi

)σ−1

Yi, where k4 =
1

k2σ
(83)

Similarly, using πji(z) derived in equation 74,

πji(z) = k4λjjd
1−σ
ij

(
z

hj

)σ−1(
wi

wj

)1−σ

Yj − wjκj (84)

1.2.E. Aggregate Sales

The cost to draw a new productivity level is a convex combination of hiring domestic labor and

spending final goods, given by

x(t) = ζ

[

(1− η)
w(t)

P (t)
+ ηEt[zi]

]

. (85)

Yi = wiLi +

∫ ∞

hi

Piπii(z)fi(z)dz +
∑

j 6=i

∫ ∞

φji

Piπji(z)fi(z)dz (86)

Yi = wiLi + k4λiih
1−σ
i Yi

∫ ∞

hi

zσ−1fi(z)dz

+
∑

j 6=i

{

k4λjjd
1−σ
ij h1−σ

j

(
wi

wj

)1−σ

Yj

∫ ∞

φji

zσ−1fi(z)dz − wjκj

∫ ∞

φji

fi(z)dz

}

Yi = wiLi + k3k4λiiYi +
∑

j 6=i

{

k3k4λjjd
1−σ
ij

(
wi

wj

)1−σ

Yj

(
φji

hi

)σ−1−θ

− wjκj

(
φji

hi

)−θ
}

(87)

1.2.F. Goods Market Clearing

Yi

Pi

= Qi = Ci + ζηEt[zi] (88)
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1.2.G. Wages: Labor Market Clearing

For each producer, the quality of labor demanded to produce a good in country i for destination

i is

ℓii(z) =
pii(z)

−σYi

zP 1−σ
i

(89)

Aggregating the labor in market i used for domestic production

Li,d =

∫ ∞

hi

pii(z)
−σYi

zP 1−σ
i

fi(z)dz (90)

For each producer, the quality of labor demanded to produce a good in country i for destination

j is

ℓji(z) =
djipji(z)

−σYj

zP 1−σ
j

(91)

Aggregating the labor in market i used for export production

Li,ex =
∑

j 6=i

∫ ∞

φji

djipji(z)
−σYj

zP 1−σ
j

fi(z)dz (92)

Since the fixed cost of exporting from j to i requires units of i labor, the total amount of labor

from i used in the production of fixed costs equals

Li,κ =
∑

j 6=i

∫ ∞

φij

κifj(z)dz

Li,κ = κi

∑

j 6=i

(
hj

φij

)θ

(93)

Since the technology upgrade search decision is partially paid to hire labor, the search compo-

nent of labor demand is

Li,x = ζ(1− η)Si(t) (94)
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Equating aggregate labor supply, Li, with aggregate labor demand yields the labor market

clearing condition:

Li = Li,d + Li,ex + Li,κ + Li,S

Li =

∫ ∞

hi

pii(z)
−σYi

zP 1−σ
i

fi(z)dz +
∑

j 6=i

∫ ∞

φji

djipji(z)
−σYj

zP 1−σ
j

fi(z)dz + κi

∑

j 6=i

(
hj

φij

)θ

+ Li,x = ζ(1− η)Si(t)

(95)

1.3. BGP with Symmetry

Solving for a BGP given Assumptions 2, 3, 4 and Guesses 1, 2, and 3.

P (t)πd(z, t) = k4λ(t)

(
z

h(t)

)

Y (t)

= k4λ(t)

(
z

h0

)

Y0 (96)

P (t)πex(z, t) = k4λ(t)d
−1

(
z

h(t)

)

Y (t)− w(t)κ

= πd(z, t)d
−1 − egtw0κ. (97)

Imposing symmetry, the price index and trade share are

P (t)1−σ = k2(mw(t))1−σh(t)σ−1 + (N − 1)k3(mdw(t))−θh(t)θP (t)θ+1−σ

(
w(t)κ

Y (t)

)σ−1−θ
σ−1

(98)

λ(t) =
k3(mdw(t))−θh(t)θP (t)θ+1−σ

(
w(t)κ

Y (t)

)σ−1−θ
σ−1

k2(mw(t))1−σh(t)σ−1 + (N − 1)k3(mdw(t))−θh(t)θP (t)θ+1−σ

(
w(t)κ
Y (t)

)σ−1−θ
σ−1

. (99)

(100)

Given Guesses 1 and 2, the price index and trade share must be constant on a balanced growth

path.

BGP total sales is

Y (t) = w(t) + k3k4λY (t) + (N − 1)

[

k3k4λd
−1Y (t)

(
φ(t)

h(t)

)1−θ

− κw(t)

(
φ(t)

h(t)

)−θ
]

(101)
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From equation 97, the cutoff value for exporting is

φ(t) = χh(t) where χ :=
dκw0

k4Y0λ
(102)

Thus,

Y (t) = w(t) + k3k4λY (t) + (N − 1)
[
k3k4λd

−1Y (t)χ1−θ − κw(t)χ−θ
]

(103)

Then rearranging and collecting terms we have

Y (t) = w(t)k5, where k5 =
1− κχ−θ

1− [k3k4λ (1 + (N − 1)d−1χ1−θ)]
. (104)

Thus, Guess 2 is verified that wages are growing at the same rate as sales.

Summarizing,

λ(t) = λ(0) ∀ t, P (t) = P (0) ∀ t, and Y (t) = k5w0e
gt. (105)

1.3.A. Proof of Proposition 2

Normalize the numeraire such that P (t) = 1 ∀ t.

Proof

First, note that given the balanced growth path guess, h−1(z) equals

h−1(z) =

log

(
z

h0

)

g
. (106)

Second, using equation 102, φ−1(z) equals

φ−1
ji (z) =

log
(

z
χh0

)

g
(107)

Finally, recall Assumption 1 that the initial distribution is Pareto and hence, by the solution to

the Kolmogorov forward equation from equation 18, the pdf at time t is

fi(z, t) = θhi(t)
θz−1−θ. (108)

Starting from equation 68, substituting the profit functions from equations 96 and 97, using the
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search cost in equation 85, and using the guess W (t) = W0e
gt we have

W0e
gt =

∫ ∞

h(t)

∫ h−1(z)

t

e−r(τ−t)k4λ

(
z

h0

)

Y0 dτ dF(z, t) (109)

+ (N − 1)

∫ ∞

φji(t)

∫ φ−1
ji (z)

t

e−r(τ−t)k4d
−1λ

(
z

h0

)

Y0dτ dF(z, t)

− (N − 1)

∫ ∞

φji(t)

∫ φ−1
ji (z)

t

e−r(τ−t)κw0e
gτ dτ dF(z, t)

+

∫ ∞

h(t)

e−r(h−1(z)−t)

[

W0e
gh−1(z) − ζ((1− η)w0 + η

θ

θ − 1
h0)e

gh−1(z)

]

dF (z, t).

Computing integrals yields

W0 =
k4Y0θλ

(r + g(θ − 1))(θ − 1)
+

(N − 1)w0θκ
(

κdw0

k4λY0

)−θ

(r + g(θ − 1))(θ − 1)
(110)

−
(N − 1)w0κ

(
κdw0

k4λY0

)−θ

r + g(θ − 1)
+

gW0θ

r + g(θ − 1)
−

gζ((1− η)w0 + η θ
θ−1

h0)θ

r + g(θ − 1)
.

Combining terms and dividing by egt finally gives the initial value of search,

W0 =
(N − 1)w0κχ

−θ + θ(g(W0 − ζ((1− η)w0 − η θ
θ−1

h0))(θ − 1) + k4Y0λ)

(r + g(θ − 1))(θ − 1)
. (111)

Note that W0 is not explicitly a function of time, a key step in verifying the guess that g is

constant and W (t) = W0e
gt.

Given that the initial wage, w0, and initial sales, Y0, are solved from the sales and labor market

clearing equations we now have one equation in two unknowns, g and W0.
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The relevant value function for a marginal searcher is

V (z, t)|(πex=0) = max
T≥t

{∫ T

t

e−r(τ−t)πd(z, τ)dτ + e−r(T−t)

[

W (T )− ζ

[

(1− η)w(T ) + η
θ

θ − 1
hT

]]}

,

(112)

Taking the derivative of the value function of a non-exporting firm with respect to T yields

∂V (z, t)|(πex=0)

∂T
= egT−r(T−t)(g − r)W0 − egT−r(T−t)(g − r)ζ

[

(1− η)w0 + η
θ

θ − 1
h0

]

+
e−r(T−t)k4Y0zλ

h0

Setting T = t, i.e., where the firm is just indifferent between switching technologies and pro-

ducing, we have

0 =egt(g − r)(W0 − ζ

[

(1− η)w0 + η
θ

θ − 1
h0

]

) +
k4Y0zλ

h0

Finally recall that the productivity level of the indifferent firm, where T = t, is z = h(t) by

definition. Substituting z = h(t) = h0e
gt gives

0 = (g − r)(W0 − ζ

[

(1− η)w0 + η
θ

θ − 1
h0

]

) + k4Y0λ. (113)

Now we have two equations (46) and (49) in W0 and g for which we can solve for the value of

search and the growth rate on the BGP. As t has dropped out of equations 46 and 49, W0 and

g are not functions of time, confirming the guess that the value of search grows geometrically

along the balanced growth path at constant rate g (W (t) = W0e
gt). �
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