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1. Introduction

For the past thirty years the unobserved-components (UC) model has been an infor-

mative lens through which economists have viewed US inflation dynamics. That statistical

model decomposes inflation into permanent and transitory components. The permanent

component or trend usually (and in this paper) is identified with the Beveridge-Nelson

(1981) decomposition meaning that it is a random walk. This decomposition then sheds

light on inflation history. For example, Stock and Watson (2007) use it to isolate changes

in the variances of the components and hence in the overall persistence and forecastability

of inflation over time. Cogley, Primiceri, and Sargent (2010) examine time-variation in

the persistence of the ‘inflation gap’, defined as the transitory component from this de-

composition. A key feature of this model is that the trend component serves as a measure

of long-horizon inflation expectations, a key indicator of the Fed’s credibility as well as a

constraint on the effect of policy.

Extracting the two unobserved components — the trend and the cycle in inflation —

requires statistical assumptions on correlations and information: a filter. In turn, a filter

allows estimation of parameters and then yields forecasts of inflation one step or many

steps ahead. In this study we explore reversing this process. We begin with professional

forecasts and show how they can be used to estimate the parameters of the UC model (with

random-walk trend) and hence extract the components. Thus we start with the forecasts

and end with a filter.

This approach requires a view on the connection between unobservable, h-step-ahead,

inflation forecasts, denoted Etπt+h, and mean, reported, inflation forecasts, denoted

Ftπt+h, from the Survey of Professional Forecasters. We consider two possibilities. First,

one way to extract information from the SPF is to assume that the mean forecast coincides

with a prediction from the UC model with some information set. We first estimate and

test under that assumption. But, second, considerable, recent research on panels of pro-

fessional forecasts suggests that they are not full-information, rational expectations but

rather exhibit clustering or herding. One way to describe the evidence is that there is

too much consensus given how inaccurate the forecasts are. Capistrán and Timmermann
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(2009), Andrade and Le Bihan (2010), and Coibion and Gorodnichenko (2011) provide

evidence of this pattern. How can professional forecasts be useful if they are biased? Pre-

cisely because the pattern of forecast clustering is systematic, it provides information on

true expectations. Coibion and Gorodnichenko suggest a parametric model of stickiness

in reported forecasts that allows us to link them to actual conditional expectations. We

estimate the parameter describing stickiness along with those of the UC model. Under

either assumption, then, one can link reported forecasts to the UC model.

We also study whether we can reconcile the two statistical models jointly with the

time-series properties of actual inflation and the mean h-step-ahead prediction of inflation

from the SPF. This procedure comes with several consistency tests: joint tests of the link

between reported SPF forecasts and unobserved expectations and of the econometrician’s

statistical model of inflation. For example, we can test whether the implied stochastic trend

in inflation follows a martingale, whether persistence in the implied inflation gap matches

that estimated indirectly through the properties of forecasts, and whether forecasts are

unbiased or not (or the extent to which they are sticky). Consistency implies a sort of

fixed point, in that the parametric models of inflation and of inflation forecasts can be

reconciled. If we find such consistency [and we have yet to work out the sampling theory

for this by the way] then we have an easy and informative way to filter US inflation, by

out-sourcing much of the work to the participants in the Survey of Professional Forecasters.

The estimated components (innovations to the trend and cycle in inflation) depend only

on observed forecasts and so automatically are available in real time.

If we do not find consistency then either (a) forecasters are not using the UC model

(with any information set; this is not a test of a particular coincidence between the in-

formation sets of economists and forecasters), or (b) we do not have the correct model of

forecast reporting, and so cannot yet reliably use it to extract information from the SPF.

We cannot know which of these conclusions hold because the approach jointly relies on the

UC model and the assumptions about forecasts.

There are three main, preliminary findings. First, detrending after assuming the

mean forecast coincides with the rational expectation leads to a trend-cycle decomposition
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with trend and cycle shocks that are indeed unpredictable, consistent with the underlying

assumptions of the UC model. Hence this method provides a direct way to track the

historical mixture of these shocks, with time-varying volatilities.

Second, though, when we allow for forecast stickiness, and either estimate it using

reported forecasts or use Coibion and Gordonichenko’s estimate, the joint model no longer

passes the consistency tests. The combined model cannot reproduce unpredictability in

the two components of the UC model along with the predictable pattern in forecast errors.

So far, then, we cannot reconcile these two perspectives on US inflation.

Third, we show how to separately identify forecast stickiness and persistence in the

inflation gap. There is very little evidence of such persistence implicit in the SPF.

2. The Trend-Cycle Model

The first element in our study is a variation on the Beveridge-Nelson-type decomposi-

tion of inflation. For simplicity we refer to this as the unobserved components (UC) model

or the SW (for Stock and Watson) UC model. Suppose that inflation, πt, evolves as a sum

of two components, a stochastic trend τt and a stationary component εt. In this environ-

ment the stochastic trend component follows a driftless random walk, with innovation ηt.

Thus:
πt = τt + εt

τt = τt−1 + ηt

(1)

The stationary component εt and the trend-innovation ηt are martingale difference series.

But they may be correlated and may have time-varying volatilities.

This decomposition has been fruitful in studies of several aspects of inflation dynamics.

For example, Ireland (2007) estimates the Federal Reserve’s implicit, time-varying inflation

target with a Beveridge-Nelson trend. Cogley and Sbordone (2008) use a similar, stochastic

trend around which to estimate a New Keynesian Phillips curve. Stock and Watson (2007)

interpret the changing persistence and forecastability of US inflation with the UC model

with changes in shock variances. Cogley, Primiceri, and Sargent (2010) use the model to

identify changes in the persistence of the inflation gap, εt.
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Estimation and forecasting with the UC model requires one to use the Kalman filter

to extract the unobserved components. The filter is applied beginning with orthogonality

assumptions (for example a zero covariance between ηt and εt) and a set of covariates in ob-

servation equations. Examples of studies that apply the Kalman filter to this model include

Cogley and Sargent (2005), Nason (2006), Stock and Watson (2007), Cogley, Primiceri,

and Sargent (2010), and Mertens (2011). To take one example, Mertens (2011) applies

the Kalman filter to a wide-range of macroeconomic data with the assumption that actual

inflation, inflation surveys, and nominal interest rates share a common stochastic trend.

He allows for a correlation between the trend and gap shocks as well as stochastic volatility

in the trend-shock, ηt, that itself follows a random walk.

The filter allows the joint estimation of parameters (through the prediction-error de-

composition of the likelihood function) and extraction of the components. In familiar

notation, we denote by τt|t the estimate of τt with information at time t (i.e. the filtered

value) and similarly for εt|t. The h-step-head forecast of inflation then is:

Etπt+h = τt|t, (2)

for h ≥ 1. This formula yields the Beveridge-Nelson (1981) result that:

Etπt+∞ = τt|t, (3)

so that the trend estimate also is the estimate of expected inflation at the infinite horizon.

We reverse the last steps of this sequence. Beginning with forecasts Etπt+h (or a

sticky function of them described below) we use the martingale property of τt to estimate

τt|t and εt|t. It is obvious that we cannot then continue and uncover a unique, under-

lying information set and set of orthogonality assumptions. But we also do not require

a zero covariance between the shocks or restrictions on their variances to estimate the

two components and inflation-gap persistence. For example, any pattern of time-varying

volatility in σ2
η is possible, so that the importance of the non-stationary component can

vary over the sample. Moreover, inflation will be more volatile than its trend provided the

covariance between the trend and the inflation gap is not too negative. Our method uses
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only reported, professional forecasts and actual inflation. It is possible to study inflation

forecasting and trend-cycle decomposition without any covariates because their assessment

and selection implicitly are out-sourced to the forecasters.

This project is related to two recent studies that also jointly analyze survey-based

inflation expectations and time-series models of actual inflation. Clark and Davig (2011)

include 1-year-ahead and 10-year-ahead inflation expectations (from the SPF) in a VAR

with time-varying parameters and stochastic volatility. They document the decline in the

volatility of long-term inflation expectations and find that this is due largely to shocks

to expectations themselves. Del Negro and Eusepi (2010) examine whether the observed

properties of professional forecasts are consistent with a New Keynesian DSGE model.

They find the closest match when there is time–variation in the Fed’s implicit target for

inflation. But their test of over-identifying restrictions shows there is not a complete

reconciliation between the forecast data and the expectations predicted in the economic

model.

3. Inflation Forecast Data

The forecast data come from the Survey of Professional Forecasters conducted by the

Federal Reserve Bank of Philadelphia. We use the mean forecast for the annualized rate of

CPI inflation, measured quarterly from 1981:3 to 2012:3, yielding 124 observations. The

survey reports forecasts from 0 (the nowcast) to 4 quarters ahead.

Figure 1 shows actual US inflation, given by the annualized quarter-to-quarter growth

rate in the CPI for all urban consumers and all items, series cpiaucsl from FRED at the

Federal Reserve Bank of St. Louis. Figure 2 shows the mean SPF forecasts at a common

date of origin (rather than for a common target) with the five different horizons. As the

horizon rises the volatility of the forecast decreases strikingly.

4. Mean Forecasts as Rational Expectations: The Basics

The second element in our study is a description of forecast data, and we begin with

the simplest assumption: the cross-forecaster mean coincides with the rational expectation

of future inflation. Unbiasedness of professional forecasts constitutes indirect evidence
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in favor of this coincidence. Keane and Runkle (1990) provided early evidence of the

unbiasedness of price forecasts using disaggregated data from the Livingston Survey. Ang,

Bekeart, and Wei (2007) describe an inflation-forecasting tournament in which the median

professional forecast is the best predictor of annual inflation. Gil-Alana, Moreno, and Pérez

de Gracia (2011) find similarly favorable results for survey-based expectations of quarterly

inflation and specifically the mean CPI inflation forecasts from the SPF. As Faust and

Wright (2011, p 2) note, “subjective forecasts of inflation seem to outperform model-based

forecasts in certain dimensions, often by a wide margin.” Winning tournaments based on

mean-squared error of course does not imply unbiasedness, but it at least rules out some

systematic biases, for otherwise a time-series model would incorporate those and improve

upon the professional forecasts. Section 6 adopts a more general description of survey-

based expectations that admits some bias in forecasts, but meanwhile we first show how

to apply our method using the preliminary assumption that the mean forecast coincides

with the unobserved expectation of inflation.

Suppose that the unobserved expectation of inflation 1 period ahead coincides with

the mean professional forecast, denoted Ftπt+1. From the trend-cycle model then,

τ1t|t = Ftπt+1, (4)

so

ε1t|t = πt − Ftπt+1. (5)

Of course, the UC model also implies that Ftπt+h = τt, for all h > 1. The UC model

implies a singlarity that is not present in the forecasts. In this preliminary exercise we

appeal informally to measurement error perhaps due to differences in the composition of

the SPF panel reports across horizons, to suggest an alternate estimator:

τ2t|t =
1
4

4∑

h=1

Ftπt+h, (6)

with ε2t|t again given by subtraction (5). (Another possibility would be to inverse weight

the multi-step forecasts by their variances.)
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Figure 3 shows the CPI inflation rate along with τ1t|t (in blue) and τ2t|t (in red). Both

estimated trends are smoother than the actual inflation rate and centered on it. (In the

next version we hope to compare it to trends estimated by Cogley, Primiceri, and Sargent

(2010) and Mertens (2011).) The trend estimated only from the one-horizon forecast is

more volatile than the one based on averaging forecasts over horizons, but it is striking

that they are very similar for substantial periods of time.

Reverse filtering comes with three consistency tests. First, the extracted, stochastic

trend should follow a random walk, so its difference should be unpredictable by its own past

values: Δτt|t should be white noise. Second, the extracted inflation gap, εt|t, should also

be white noise. Third, the mean forecast should be unbiased, so πt+h − Ftπt+h should be

unpredictable for all horizons h. (Notice that this forecast error differs from the estimated

inflation gap, which is πt − Ftπt+h.)

Figure 4 shows the trend and cycle innovations for the first estimation, η1t|t = Δτ1t|t

(the solid, black line) and ε1t|t (the blue, dashed line). (The graph of η2t|t and ε2t|2 is quite

similar.) Little persistence is evident in either series.

Table 1 gives the sample variances s2 of each innovation, as well as Q(j), the Ljung-

Box Q-statistic with j lags and its p-value. For each detrending method the correlation

between εit|t and ηit|t, denoted r(ε, η), is 0.35. (Recall that is is not restricted by the

reverse Kalman filter.) That finding naturally fits with the observation in figure 3 that the

trend is smoother than the cycle. In the top line of table 1, the main difference between the

two trend-estimates is the greater volatility of η1t|t than η2t|2. By averaging over horizons,

the second method produces a smoother trend, as figure 3 shows.

The variances of εt|t and ηt|t are comparable to the estimates Stock and Watson (2007)

report using their UC model. But notice that the variance of ηt|t rises and the variance of

ηt|t falls as we include information at longer horizons, which suggests that there is more

uncertainty about transitory inflation shocks than permanent ones at a moment in time

at the longer forecast horizons.
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Table 1: Trend and Cycle Moments
1981:3–2012:2

ε1t|t η1t|t ε2t|t η2t|t

s2 3.02 0.24 3.47 0.10

r(ε, η) 0.35 0.35

Q(4) 5.43 8.76 6.32 8.24
(p) (0.25) (0.06) (0.18) (0.08)

Q(8) 6.46 13.9 7.10 15.6
(p) (0.60) (0.09) (0.52) (0.05)

Next, the Q-statistics show that there is little evidence of autocorrelation in the in-

flation gap (as seen in figure 4) but some evidence of autocorrelation in the innovation to

the trend. We did not impose the martingale-difference-series property on these series in

estimation, so these statistics provide tests of the consistency of the UC model with the

SPF data (assuming that Ftπt+h = Etπt+h), something which does not automatically hold.

Overall, these two widely-used ways of studying inflation forecasts do seem to be approx-

imately consistent. The exception is some evidence of persistence in the inflation-trend

innovations, ηit|t.

The reverse filtering also allows us to comment on the pattern in squared innovations,

roughly speaking quarterly ‘realized volatility’ or the things we would average over periods

of time to estimate time-varying volatilities. Squared ε can be much larger than squared

η so, for ease of viewing, figure 5 graphs the square root of the squared values i.e. the

absolute value of the two series, again for the first detrending method. (Again results for

the other trend method are quite similar and so are not shown.) There is variation over

time: the inflation-gap (the blue, dashed line) is relatively more volatile prior to 1990 and

again after 2005.

To document the changes over time, table 2 shows sample variances s2 for both the

inflation gap and the difference in the trend, for each detrending method, but now for three

sub-samples of approximately a decade each. The break dates are 1 quarter after NBER-
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dated troughs and roughly line up with the break dates implied by rolling estimates of

the Stock-Watson UC model by Nason (2006). Table 2 also reports the sample correlation

r(ε, η) for each time period.

Table 2: Sub-Sample Trend and Cycle Variances

Time Span→ 1981:III–1991:I 1991:II–2002:II 2002:III–2012:II
Statistic

↓

s2(ε1t|t) 2.71 0.72 5.59

s2(η1t|t) 0.46 0.04 0.27

r(ε1t|t, η1t|t) 0.35 0.15 0.49

s2(ε2t|t) 3.27 0.79 6.34

s2(η2t|t) 0.24 0.03 0.05

r(ε2t|t, η2t|t) 0.35 0.13 0.49

The volatility of each component (and under each detrending method) declines from

the 1980s to the 1990s then increases after 2002. Grassi and Proietti (2010) and Creal

(2012) estimate the SW UC model with stochastic volatility. They find that the volatility

of CPI inflation has increased recently, with the increased volatility attributed by the

estimates to the transitory rather than the permanent component of the SW UC model.

Table 2 leads to a similar conclusion. It also shows that the correlation between the

two components follows a similar pattern over time — falling then rising— but remains

positive.

The results so far assume that mean forecasts coincide with conditional expectations.

One can examine this assumption indirectly by looking at the persistence in h-step-ahead

forecast errors. The idea is that the unobserved forecast error relative to the true, condi-

tional expectations, πt+h−Etπt+h, will not be persistent, so that persistence in the forecast

error relative to the mean SPF prediction casts doubt on the equivalence of Etπt+h and
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Ftπt+h. Table 3 provides the Q-statistics for multi-step SPF forecast errors, along with

their p-values. The horizons run from the current quarter to 4 quarters ahead.

Table 3: Forecast-Error Persistence
1981:3–2012:2

h → 0 1 2 3 4

Q(4) 4.62 7.59 10.5 13.1 12.8
(p) (0.33) (0.11) (0.03) (0.001) (0.01)

Q(8) 6.01 9.77 12.7 15.0 13.9
(p) (0.64) (0.28) (0.12) (0.06) (0.08)

There is evidence of forecast-error persistence, at conventional levels of significance,

for horizons h = 2, 3, 4. Table 3 thus offers some evidence against treating the mean SPF

forecast as the conditional expectation. In addition, recall the counter-factual prediction

of this basic UC model (combined with the assumption that Ftπt+h coincides with Etπt+h)

that forecasts are the same at all horizons. The next section introduces sticky information,

which addresses both of these shortcomings of the basic model.

5. Sticky Forecasts

Notwithstanding our earlier citations to research that shows professional forecasts are

unbiased, a number of statistical studies (now including table 3 above) have found that

forecast errors contain predictable components. Next, a specific pattern of predictabil-

ity, using forecast revisions, leads to an alternative, parametric model of observed, mean

forecasts.

We work with the sticky-information model, as introduced by Mankiw and Reis (2002)

and Reis (2006) and applied to professional forecasters by Coibion and Gorodnichenko

(2011). Suppose that forecasters update their information with probability 1−λ, so that λ

measures the degree of stickiness in information. Recall that Ftπt+h is the cross-forecaster

mean forecast at time t for inflation h steps ahead. Coibion and Gorodnichenko (2011)
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show that this average forecast is a weighted average of the rational expectation and the

previous period’s mean, reported forecast:

Ftπt+h = (1 − λ)Etπt+h + λFt−1πt+h (7)

Define the non-sticky information forecast error:

νt+h = πt+h − Etπt+h. (8)

Subtracting each side of this pattern in reported, mean forecasts (7) from realized inflation

gives:
πt+h − Ftπt+h = λ(Etπt+h − Ft−1πt+h) + (πt+h − Etπt+h)

=
λ

1 − λ
(Ftπt+h − Ft−1πt+h) + νt+h

(9)

Because νt+h has the properties of an econometric error, this link (9) can be used to

estimate λ, by regressing the observed forecast error on the forecast revision. Coibion and

Gorodnichenko do this using SPF inflation forecasts and find λ̂ = 0.55, which implies that

forecasters update every 6-7 months on average. They also find that additional regressors,

in the form of past, realized values of macroeconomic variables, are not significant in

explaining forecast errors once these revisions are included.

We shall use their estimator but also consider an alternate estimator that uses only

forecast data. Combining the forecast implication of the trend-cycle model (2) with the

description of forecast updating (7) gives:

Ftπt+h = (1 − λ)τt|t + λFt−1πt+h. (10)

Next, take differences over time to give estimating equations:

Ftπt+h − Ft−1πt+h−1 = λ(Ft−1πt+h − Ft−2πt+h−1) + (1 − λ)ηt, (11)

which can be used to estimate λ. Also notice that the reported forecasts are no longer

predicted to be equal at all horizons, although the shocks are still perfectly correlated in

(11).
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Table 4 shows the results of estimating λ horizon-by-horizon and pooled across hori-

zons, with HAC standard errors. The first row uses the Coibion-Gorodnichenko projection

(9), while the second row uses our forecast-only equation (11). (We also could combine

the two equations.) We conclude that there is considerable uncertainty about the value,

depending on the horizon and information used in estimation, so we present detrending

results for a several illustrative values for λ.

Table 4: Stickiness Estimates

Equation h →: 0 1 2 3 pooled
↓

(9) λ̂ 0.37 0.31 -0.12 0.35 0.00
(se) (0.07) (0.20) (0.78) (0.26) (0.11)

(11) λ̂: 0.11 0.16 0.13 -0.03 0.64
(se): (0.23) (0.13) (0.10) (0.10) (0.07)

Given λ̂ we can invert (10) to give the estimated trend based on forecasts at horizon

h:

τt|t =
Ftπt+h − λFt−1πt+h

(1 − λ)
. (12)

And again we can average over horizons to form an estimate, or use a weighted average

based on fit. Here we use the simple average and two trial values for λ, with τ3t|t denoting

the average for λ = 0.2 and τ4t|t the average for λ = 0.4. (The first subscripts distinguish

these from τ1 and τ2, the two trends studied in section 4.) Table 5 gives statistics for

the corresponding shocks to the inflation trend and inflation gap. The first two columns

pertain to λ = 0.2 and the last two to λ = 0.4.
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Table 5: Trend and Cycle Moments with Sticky Forecasts
1981:3–2012:2

ε3t|t η3t|t ε4t|t η4t|t

s2 2.57 0.27 2.79 0.32

r(ε, η) 0.51 0.37

Q(4) 6.63 18.9 5.78 26.9
(p) (0.17) (0.00) (0.21) (0.00)

Q(8) 7.95 25.8 9.34 36.4
(p) (0.43) (0.00) (0.31) (0.00)

It is clear that allowing for stickiness does not help with the borderline predictability

of the trend-innovation ηt|t in table 1 and in fact worsens this syndrome dramatically as λ

rises from 0. (Though the results are not shown, we also find that εt|t no longer has mean

0 as λ rises.) The trend that is jointly implied by the UC and sticky forecast models and

the SPF data does not have unpredictable changes.

Figure 6 graphs actual CPI inflation and the two implied trends, τ3t|t and τ4t|t cor-

responding to the two candidate values of λ. It is obvious from the figure that this trend

does not run through the middle of the realized inflation series. Indeed, the estimated

trend slopes up over time for large enough values of λ, whereas the slope of the path of

actual inflation is negative overall for these three decades. At higher frequency, figure 6

also shows that the estimated trends are very different during the recent recession, for

example, and so the inferences for expected inflation also are very sensitive to the value of

λ. The forecast ‘quasi-updates’ Ftπt+h − λ̂Ft−1πt+h that yield trend estimates of τt|t from

equation (12) do not appear to have a random walk component. The stickiness that fits

the partial predictability of forecast errors (at least for some horizons in table 4) leads to

properties that are inconsistent with the assumptions of the UC model. Although we have

not incorporated the requirements from table 5 in our estimator, it seems fairly clear so far

that no reasonable value of λ can allow the joint statistical model to pass the consistency

tests.
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6. Persistence in the Inflation Gap

One might wonder whether the parameter λ — when estimated strictly from forecasts

— is perhaps measuring persistence in the inflation gap rather than stickiness in forecasts.

We next show that these two features are separately identified and that stickiness is more

significant than inflation-gap persistence in the SPF data.

Following Cogley, Primiceri, and Sargent (2010) we allow the stationary component

of inflation, also known as the inflation gap, to itself be persistent. For this edition, we

work with an AR(1) version:

εt = ρεt−1 + υt, (13)

where υt is a martingale difference series. But we do not allow time-variation in the per-

sistence parameter ρ, unlike Cogley, Primiceri, and Sargent. The infinite-horizon inflation

forecast remains τt, but in general

Etπt+h = τt + ρhεt. (14)

Faust and Wright (2011) note that subjective forecasts often have proved superior to

econometric forecasts of inflation because they do not simply extrapolate the current value

but allow for a gradual return to some medium-term pattern; the forecasts (14) allow for

that pattern.

First suppose that Ftπt+h = Etπt+h, as in section 4. Then we can annihilate the

stochastic trend, τt using the difference across horizons:

Ftπt+h+1 − Ftπt+h = FtΔπt+1 = ρh(ρ − 1)εt. (15)

Multiplying the difference equations (15) by (1 − ρL) then gives the quasi-differences over

time:

FtΔπt+h+1 = ρFt−1Δπt+h + ρh(ρ − 1)υt, (16)

which have innovation errors. The forecasts on the right-hand side are dated t−1 or earlier,

so it is natural to assume that the inflation-gap shock, υt, is uncorrelated with them. Thus

the persistence in the inflation gap, ρ, can be estimated by ordinary least squares in the
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estimating equations (16). Inflation-gap persistence coincides with the persistence over

time in the forecast of the change in inflation. The mean forecast data provide a simple

way to estimate the persistence in the inflation gap. Armed with ρ̂ we can invert (15) to

filter εt|t, then find τt|t from the original trend-cycle model.

Notice that the estimation again uses only forecast data; it does not use actual infla-

tion, πt. We interpret the estimated, stochastic trend as the filtered value τt|t, rather than

the smoothed one τt|T , because it is derived from forecasts observed at time t. Jain (2011)

also looks at the correlation of revisions, but with forecasts from individual forecasters

in the SPF, to measure perceived inflation persistence. Krane (2011) uses GDP forecast

revisions from the Blue Chip survey to identify forecasters’ implicit views of shocks to

GDP.

We first estimate the system (16) without restrictions on the error dispersion matrix

(even though those contain information on ρ). We also overlook the singularity in the

system for now i.e. the fact that a common υt appears in the equation for each horizon h.

Table 6 shows the estimates of the persistence in the inflation gap, ρ̂, found using forecasts

at individual horizons h and then from pooled estimation over all horizons. Brackets

contain robust standard errors. The main finding is that the values — pooled or individual

– are insignificantly different from zero. Thus allowing for persistence does not change the

findings from section 4.
Table 6: Persistence Estimates

h: 0 1 2 3 pooled

ρ̂: 0.206 -0.046 -0.189 0.004 -0.031
(se): (0.164) (0.133) (0.140) (0.097) (0.061)

Notes: Persistence is estimated from equations (16)
in SPF mean forecasts from 1981–2012.

Next, suppose that forecasts are sticky, as in section 5. Combining the forecast impli-

cation of the trend-cycle model (14) with the description of forecast updating (10) gives:

Ftπt+h − λFt−1πt+h

1 − λ
= τt + ρhεt, (17)
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or

Ftπt+h = λFt−1πt+h + (1 − λ)τt + (1 − λ)ρhεt. (18)

We again use the fact that forecasts at time t for any horizon involve the random walk

component τt and so difference out that unobserved variable over horizons. Leading the

horizon gives:

Ftπt+h+1 = λFt−1πt+h+1 + (1 − λ)τt + (1 − λ)ρh+1εt, (19)

so that the difference across horizons is:

FtΔπt+h+1 = λFt−1Δπt+h+1 + (1 − λ)(ρh+1 − ρh)εt. (20)

Suppose that the inflation gap, εt, follows the AR(1) process (13) so that εt(1−ρL) =

υt. Multiplying the difference equations (20) by (1 − ρL) gives:

FtΔπt+h+1 = λFt−1Δπt+h+1 + ρFt−1Δπt+h − ρλFt−2Δπt+h +(1−λ)(ρh+1 − ρh)υt. (21)

The forecasts on the right-hand side are dated t − 1 or earlier, so it is natural to assume

that the inflation-gap shock, υt, is uncorrelated with them. Thus the persistence in the

inflation gap, ρ, and the stickiness in inflation forecasts, λ, can be jointly estimated by

ordinary least squares in the estimating equations (21).

The stickiness and persistence parameters are separately identified, from distinct

sources of dynamics in forecasts. Persistence, ρ, is estimated from the role for lagged,

constant-horizon forecasts, while stickiness, λ, is identified from lagged, constant-target

(i.e. longer-horizon) forecasts. Identification also should be aided by the ‘common factor’

restriction, for there are three right-hand-side variables but only two parameters.

Using the timing in the estimating equations, the SPF thus allows us to study h = 0,

1, and 2, because each equation involves the change of inflation and several horizons.

Table 7 presents estimates of the stickiness parameter λ and the inflation-gap persistence

parameter ρ. The results are consistent with those already reported separately: some

evidence of stickiness but no evidence of inflation-gap persistence, at least of this first-

order Markov form.
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Table 7: Persistence and Stickiness Estimates

h: 0 1 2 pooled

ρ̂: -0.01 -0.05 -0.12 -0.02
(se): (0.17) (0.12) (0.14) (0.08)

λ̂: 1.49 0.71 0.69 0.77
(se): (0.37) (0.24) (0.13) (0.09)

Notes: Parameters are estimated from equations (21).

7. Conclusions

The unobserved-components model of inflation is not identified without auxiliary as-

sumption, as Morley, Nelson, and Zivot (2003) show. In this paper, we have illustrated

how to identify the model using the SPF, without necessarily assuming that mean, re-

ported forecasts coincide with conditional expectations (and without assuming anything

about shock correlations or volatilities). Both the widely-used, UC model of inflation and

recent descriptions of sticky forecasting restrict unobservable inflation forecasts Etπt+h.

We show how combining these statistical models provides a fast, inexpensive way to filter

US inflation into trend and cycle components, with the trend component interpretable

as long-term inflation expectations. It is interesting to see the parameter estimates for

inflation-gap persistence (ρ) and for information stickiness (λ) implied by estimation with

SPF forecast data only, as well as the implied, historical shock volatilities.

The approach features over-identification: we study whether we can reconcile the

two statistical models jointly with the time-series properties of actual inflation and mean

forecasts: {πt, Ft−hπt}. We find that we cannot. So far we do not find that the behavior

of mean SPF forecasts over multiple horizons can be viewed as consistent with the UC

model, where trend inflation follows a martingale. The forecast stickiness that seems to

be implied by forecast-error properties does not yield a trend-cycle decomposition with

unpredictable innovations to the two components.

The findings are reminiscent of those from modelling of the term structure of interest

rates, where researchers find, for example, that a one-factor model of the short-rate cannot
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fit both the persistence of that return and the average slope of the yield curve. Here we

find that, so far, we cannot fit all of (a) inflation dynamics, (b) the properties of forecast

errors, and (c) the term structure of professional inflation forecasts. Our next step is to try

to reverse engineer these properties or at least to better document the challenges involved

in fitting them jointly.
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Note: Inflation is the annualized quarterly growth in the CPI for all 
urban consumers and all items, series cpiaucsl from FRED.

Figure 1: US CPI Inflation
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Note:  Forecast series are the means of the 0-4 step-ahead forecasts of US quarterly 
CPI inflation, series CPI2 to CPI6 fromMean_CPI_Levl.xls from the Survey of
Professional Forecasters.   The colours change from dark red to dark blue as
the horizon increases.

Figure 2: Mean CPI Inflation Forecasts



Figure 3: CPI Inflation and Trends
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Figure 4: Trend (η) and Cycle (ε) Innovations
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Figure 5: Absolute Values of Trend (η) and Cycle (ε) Innovations
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Figure 6: CPI Inflation and Trends
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