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Abstract

This paper presents a model of aggregative investment. In the model, the business

sector expands by adding new establishments. Costs of investment are linear but, in the

case of net investment, depend upon the risk of entry failure. We can measure the risk, and

time-series variations in it, from micro data. We show that average entry-failure rates are

sufficiently high that entry risk alone can explain about one-half of the intangible capital

stock of the US. Despite linear costs, we show that our model has potentially interesting

dynamic implications.
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Abstract: This paper presents a model of aggregative investment. In the model, the busi-

ness sector expands by adding new establishments. Costs of investment are linear but, in

the case of net investment, depend upon the risk of entry failure. We can measure the risk,

and time-series variations in it, from micro data. We show that average entry-failure rates

are sufficiently high that entry risk alone can explain about one-half of the intangible capital

stock of the US. Despite linear costs, we show that our model has potentially interesting

dynamic implications.

1 Introduction. We propose a new model of the cost of investment. In the model,

the business sector expands by adding new establishments, and a part of the cost of

net investment arises from entry-failure risk. The new cost component enters business

profit calculations linearly, as seems consistent with several recent findings (Hall [2004],

Shapiro [1986])1. An advantage of the new approach is that we can calibrate entry-failure

rates directly from micro data. We show that entry-failure rates in the data are quite high,

and that they can explain a value of Tobin’s q noticeably above 1. Second, we show that

time series variations in risk are a possible explanation for the positive correlation between

investment spending and Tobin’s q described in the original literature (e.g., Hayashi [1982],

Summers et al [1981]). Third, although our data series on entry is too short, at this point,

to reveal trends, it hints that temporary changes in entry-failure probabilities tend to

accompany macro shocks. Analysis of the model shows that short-lived changes in risk

may have large impacts on both interest rates and investment.

In our model, the physical capital of existing business establishments is subject to wear

and tear depreciation, and establishments themselves are subject to obsolescence and death

according to an exogenous Poisson process with parameter ϕ. New establishments arise

from new investment to take the place of those that terminate.2,3 The new establishments

have new characteristics, which determine their appeal. We assume that the only sure way

to verify the workability of a new investment-project design is to have an entrepreneur

undertake the project, opening production at normal operating scale.4 Successful entry,

1 See also Abel and Blanchard [1986] and others
2 A “firm” can include many establishments (i.e., plants). In our model, an existing

firm expands by adding new establishments.
3 An earlier draft of this paper allowed a fraction of successful entrants the opportunity

to duplicate themselves a given number of times, while avoiding startup costs. That oppor-

tunity corresponds to a favorable cost-function parameter in, for example, Jovanovic [1982]

or Hopenhayn [1992]. This draft drops such features for simplicity.
4 As in Jovanovic [1982] (Hopenhayn [1992] and Hopenhayn and Rogerson [1993]),

prospective investment projects know only the overall probability of successful entry. In

our model, once they attempt entry, they learn their potential quickly.
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having probability θ, creates a new business establishment. Failure leads to immediate

scrapping of a project’s physical capital.

Roughly speaking, a dollar’s worth of new investment must have a market value that

exceeds 1 in the event of success. Otherwise, attempted entry would cease. This creates an

equilibrium value, in most time periods, of Tobin’s average q higher than 1. Recent work

(e.g., Laitner and Stolyarov [2003], Hall [2001], McGrattan and Prescott [2000]) suggests

a value of q in the range of 1.50, and this paper shows that the substantial entry-failure

rate evident in US data can, by itself, explain about one-half of the total. (The model

attributes the balance of q to entry-planning costs.)

Despite linear costs, our formulation’s general equilibrium structure makes dynamic

analysis possible. We show that variations in entry risk can lead to a positive correlation

over time between the aggregative investment-to-capital ratio and Tobin’s average q – as

the literature has tended to find.

Our last section shows that temporary increases in the riskiness of investment can

have large elasticities. We argue that macro disruptions, such as the advent of a new

general purpose technology (Laitner and Stolyarov [2003, 2004]), an oil price shock (Baily

et al [1981]), or a financial crisis, can raise entry risks for short intervals. The possibility

of infrequent, yet sometimes sharp, short-term, simultaneous declines in interest and net

investment rates is one of the most interesting implications of the model.

The organization of this paper is as follows. Section 2 presents the model. Section 3

focuses on the model’s implications for intangible capital. Section 4 calibrates parameters,

using Census data on establishments to determine θ and ϕ. Section 5 considers permanent

changes in θ, and Section 6 examines changes in entry risk that are temporary. Section 7

concludes.

2 Model. The production sector consists of a continuum of business “establishments,”

each with its own “location” in the space of characteristics.5 Each establishment pro-

duces units of output that is useful either for consumption or investment. Output from

one location is a perfect substitute for that of any other.6 Suppose the capital stock of

establishment i, started at time t, and currently age s is X(i , t , s). We assume that

each location supports X(i , t , s) ≤ 1. A prospective establishment constructs a “plan of
operations,” including a scale X(i , t , 0) ∈ [0 , 1]. Constructing a plan costs ξ ≥ 0. After
developing a plan of operations, a prospective establishment invests and begins production.

With probability θ, the project survives entry; with probability 1 − θ, it fails. At failure,

the scrap value of the project’s investment is η ·X(i , t , 0) , η ∈ [0 , 1). With success, the
5 A “firm” could consist of one “establishment,” or many. Our data, see below, as well

as our analysis, is based upon establishments.
6 If the output of establishment i is Y (i , t , s) and aggregate output at time t is Yt,

Dixit-Stigliz aggregation, with one establishment per niche (i , t− s , s), would yield

Yt = [Y (i , t− s , s)]ω di ds
1/ω

, ω ∈ (0 , 1) .

One could think of our model as an approximation for ω → 1.
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project can continue with X(i , t , s) = X(i , t , 0) until its “death.” Establishment death

follows a Poisson process, with death rate ϕ. The Poisson processes are independent across

establishments.7

A prospective entrant cannot know whether it will succeed or fail until it implements

its plan of operations and begins production. Implementing a plan of operations requires

testing at the full scale of eventual operation. Entrepreneurs can diversify their holdings

of new projects. There is no reason for X(i , t , 0) < 1; hence, we assume X(i , t , 0) = 1.

A successful entrant subsequently endures wear and tear depreciation at rate δ ∈
(0 , 1). It must invest to cover this depreciation in order to stay in business. Such invest-

ment is not subject to entry risk.

Let aggregate physical investment in new projects be Jt ≥ 0. If the climate for

production becomes very adverse, some establishments may voluntarily close and scrap

their capital. Let JSt ≤ 0 be the aggregate flow of voluntarily scrapped capital.
We normalize the price of output to 1. Then the unit price of investment goods for

prospective new projects is

P0t = 1 all t . (1)

Let P1t be the unit value of capital in successful projects. Let

P ∗ ≡ 1− η
θ

+ η +
ξ

θ
. (2)

Assuming an elastic supply of prospective new projects at all times and free entry, we have

P0t + ξ = θ · P1t + (1− θ) · η ⇐⇒ P1t =
1 + ξ − (1− θ) · η

θ
= P ∗ for Jt > 0 , (2I)

η = θ · P1t + (1− θ) · η ⇐⇒ P1t = η for JSt < 0 , (2II)

θ · P1t + (1− θ) · η ∈ [η , 1 + ξ]⇐⇒ P1t ∈ [η , P ∗] for Jt = 0 = J
S
t . (2III)

Letting Xt be the active physical stock at time t, Yt be national output, and Ct
aggregate consumption, we have

Yt − Ct + η · ϕ ·Xt + η · (1− θ) · Jt − η · JSt = Jt + ξ · Jt + δ ·Xt . (3)

The left-hand side sums sources of physical capital for investment: Yt − Ct is the flow of
new units of investment good; η · ϕ · Xt is the flow of scrap from dying establishments;

η · (1 − θ) · Xt is the flow of scrap from failed entrants; and, −η · JSt (recall JSt ≤ 0) is
the flow of scrap from voluntary disinvestment. On the right-hand side, Jt is the flow of

investment for new entry, ξ · Jt is the product of the planning cost per entry attempt and
the number of entry attempts (recall that the scale of each attempt is 1), and δ ·Xt is the
7 See Laitner/Stolyarov [2009] for a specification with endogenous life spans.
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flow of capital to cover wear and tear depreciation. Since η < 1, we should not observe

voluntary scrapping and positive net investment simultaneously. In other words, there will

be one, and only one, of the following:

Jt > 0 and J
S
t = 0 ; Jt = 0 = J

S
t ; or , Jt and J

S
t < 0 . (4)

We assume that the national income and product accounts do not (properly) treat

entrant planning costs as a final good, and as a part of gross investment It. Thus, if Y
NIPA
t

and INIPAt are NIPA GDP and gross investment, respectively, we have

Yt = Y
NIPA
t + ξ · Jt and It = I

NIPA
t + ξ · Jt . (5)

Consider the evolution of Xt. The flow of investment in new projects is Jt, of which

θ ·Jt leads to increments in Xt. Voluntary scrapping depletes Xt at flow rate JSt . Similarly,
the year-by-year death of active projects at Poisson rate ϕ leads to an exit flow ϕ · Xt.
Hence,

Ẋt = θ · Jt + JSt − ϕ ·Xt . (6)

It will be convenient to index active establishments at time t with j ∈ Jt. We

constantly renumber the indices as necessary to keep Jt an interval. Since Xjt = 1 in our
model, we use, in fact,

Jt = [0 , Xt] . (7)

If the time-t output of establishment j is Yjt and its labor input is Njt, and if the

common TFP level is eg·t , g > 0 , we assume

Yjt = A · [Xjt]α · [Ejt]1−α , A > 0 , α ∈ (0 , 1) , (8)

where

Ejt ≡ Njt · eg·t .
We have

Yt =
Jt
Yjt dj , (9)

Xt =
Jt
Xjt dj , (10)

Et =
Jt
Ejt dj . (11)

Our model has a representative household. The household inelastically supplies

Nt = N0 · en·t , n > 0 , (12)
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units of labor every t, and it seeks to maximize

∞

0

e−ρ·t ·Nt · u(Ct/Nt) dt , (13)

with

ρ > 0 , u(c) ≡ c
β

β
, β < 1 , β W= 0 .

Equilibrium. This section defines equilibrium and then proves existence and uniqueness.

We have

Definition: An “equilibrium” is a time path

{Nt; Xt; Jt; JSt ; P0t; P1t; (Njt,Xjt, Yjt) all j ∈ Jt; Yt; Ct} all t ≥ 0 ,

with X0 given and

(i) Free entry and P1t is as in (2);

(ii) Profit maximizing choices for Njts on the part of establishments, taking the wage as

given; Xjt = 1 all j ∈ Jt; and, establishment output from (8);

(iii) Representative household maximization of (13), subject to the household’s income con-

straint;

(iv) Labor supply (12); and, full employment.

We also have

Definition: A “steady-state equilibrium” (SSE) is an equilibrium in which all endogenous

variables grow geometrically and rt is constant.

Turning to analysis, we have

Lemma 1. If all establishments hire labor to maximize their profit, taking the wage, Wt,

as given, we have an aggregate production function

Yt = F (Xt , Et) ≡ A · [Xt]α · [Et]1−α . (14)

We have

∂F (Xt , Et)

∂Et
=Wt , (15)
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and, if MPXjt is the marginal product of X for active establishment j, we have

∂F (Xt , Et)

∂Xt
=MPXjt all j t . (16)

Proof: See Appendix.

Then

Proposition 1. Our model has a unique equilibrium for any X0 > 0. The equilibrium

converges to a SSE.

Proof: See Appendix.

Letting

xt ≡ Xt
Et
, ct ≡ Ct

Xt
, jt ≡ Jt

Et
, jSt ≡

JSt
Et
,

Proposition 1 yields a phase diagram as in Figure 1 in the Appendix. There is a stationary

point at a. The equations of motion from analysis of the Hamiltonian (see the Appendix)

make a a saddlepoint.

There are three “regimes” implicit in Figure 1: regime 1 occurs when xt ∈ (0 , xb);
regime 2 when xt ∈ (xb , xc); and, regime 3 when xt ∈ (xc , xd).

Regime 1. For any xt ∈ (0 , xb), the unique equilibrium time path is coincident with the

saddle’s stable arm. In this range, jt > 0, with jt = j
∗ > 0 at a; jSt = 0; and,

P1t = P
∗ . (17)

The last follows from (2’). If rt is the real interest rate, free entry implies

P1t =
∞

t

ϕ · e−ϕ·(s−t) ·
s

t

R(t , u) · [∂F (Xu , Eu)
∂Xu

− δ] du+ η ·R(t , s) ds , (18)

where

R(t , u) ≡ e−
u

t
rz dz .

For regime 1, the derivative of (18) yields

∂F (Xu , Eu)

∂Xu
= P1t · rt + [δ + ϕ · (P1t − η)] . (19)

Expression (19) is the model’s version of Jorgenson’s familiar cost of capital formula.

The left-hand side is the marginal product of capital at any active establishment (see
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Lemma 1). Units of capital in active establishments are worth P1t = P
∗. The opportunity

cost of financial investments in the latter is P1t · rt. Wear and tear depreciation, at rate δ,
can be covered with new investment goods, for which the cost is P0t = 1. Establishment

death leads to a financial loss per unit of X of P1t − η.

Regime 2. Returning to Figure 1, if the stable arm never reaches the dashed consumption

curve, xb =∞.8 In our calibrated examples, however, the stable arm cuts the consumption
curve at xb < ∞. Then for xt ∈ (xb , xc), the equilibrium growth trajectory is coincident

with the consumption curve. Proposition 1 shows that jt = 0 = j
S
t in regime 2. Likewise,

condition (2”) shows that P1t ∈ [η , P ∗]. We can pin P1t down precisely from the proof of

Proposition 1. The costate variable μt is the value, in units of utility, of the marginal unit

of Xt; hence,

P1t =
μt

uI(ct)
. (20)

We can derive rt from (18).

Regime 3. The proof of Proposition 1 shows that equilibrium growth may follow arc cd

after xc. In our calibrations, a finite xc always, in fact, emerges, and the equilibrium

growth path never intersects the dashed consumption curve thereafter. For xt > xc, we

have jt = 0; jSt < 0; and, P1t = η (see (2III)). This is the only regime in which some
establishments voluntarily scrap their capital.

Discussion. Aggregative data implies that the US economy has spent most of the post

WWII era in regime 1. We can see that as follows.

In our stylized model, Yt−Ct corresponds to gross investment, say, It.9 Equation (3)
shows

It = 1− η · (1− θ) · Jt + ξ · Jt + η · JSt + (δ − η · ϕ) ·Xt . (21)

Let Dt be NIPA depreciation. We assume

Dt = (1− η) · ϕ ·Xt + δ ·Xt . (22)

In other words, NIPA measured depreciation includes the write-down to scrap of the plant

and equipment at establishments reaching the end of their lives, plus replacement needed

to offset wear and tear.10

NIPA net investment would be

8 Parameter values could yield η ·ϕ− δ > 0, for example, with the dashed consumption
curve rising for all xt.
9 We would include government spending on goods and services in Ct, and ignore gov-

ernment investment.
10 An alternative would add losses from entry failure, including lost planning investments.

Then

7



INIPA −Dt = 1− η · (1− θ) · Jt + η · JSt − ϕ ·Xt . (23)

US NIPA data shows positive aggregate gross investment for all t ≥ 1929. Net invest-
ment has sometimes been negative. However, most of the latter instances occurred before

the post WWII era: net private domestic fixed investment was negative 1931-34 and 1943-

45, net private nonresidential investment was negative 1931-35, 38-39, and 42-44; and, net

private domestic business investment (only presented since 1960) was negative in 2009. In

our model, JSt < 0 implies Jt = 0, so that (23) implies I
NIPA
t −Dt < 0. Even with Jt > 0

(so that JSt = 0), on the other hand, I
NIPA
t −Dt ≤ 0 is possible. If INIPAt −Dt > 0, (23)

implies Jt > 0.

Jt > 0 puts the economy in regime 1, and Section 4 calibrates on the basis of that

case.

3 Intangible Capital. Section 2 argues that the US economy has spent virtually the

full post WWII period in regime 1. The present section examines the implied aggregate

stock of intangible capital and the value of Tobin’s q.

In regime 1, new entry replenishes the economy’s stock of active capital, replacing

dying establishments and, in a SSE, enabling the aggregate capital stock Xt to grow in-

step with Et. A prospective entrant buys a unit of new investment good, for price 1, and

starts production, implementing its plan of operations. If the plan of operation succeeds,

the economy gains a new business establishment. Otherwise, the prospective entrant must

scrap its capital. Successful entry reveals information, namely, it shows a particular “plan

of operations” to be a good one. The amount by which the value of the new establishment

exceeds the book value of its capital, (P1t− 1) ·Xjt = P1t − 1, is a measure of the value of
the information. The economy’s corresponding aggregate intangible capital stock is

(P1t − 1) ·
Jt
Xjt dj = (P1t − 1) ·Xt . (24)

Similarly, Tobin’s average q equals the ratio of the market value of active capital, say,

Kt = P1t ·Xt, to its book value, Xt:

qt =
Kt

Xt
=
P1t ·Xt
Xt

= P1t . (25)

In regime 1, Proposition 1 shows

P1t = P
∗ =

1− η
θ

+ η +
ξ

θ
> 1 . (26)

Formally, we have then established

Dt = (1− η) · (1− θ) · Jt + (1− θ) · ξ · Jt + (1− η) · ϕ ·Xt + δ ·Xt .
This alternative does not seem as plausible in terms of the description of NIPA depreciation

– and it tends to yield unsatisfactory calibration values for δ and η.
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Proposition 2: Equilibrium growth eventually leads to regime 1, in which

P1t = P
∗ > 1 .

In regime 1, the aggregate value of intangible capital is

(P ∗ − 1) ·Xt > 0 .
And, Tobin’s average q is

qt = P1t = P
∗ > 1 .

Proposition 2 implies that Tobin’s average q should have exceeded 1 for the US econ-

omy in most post WWII years. The next section attempts to gauge the part of Tobin’s

average q that risk of entry-failure can explain.

4 Calibration. This section calibrates the model’s vector of parameters

(θ , ϕ , η , ξ , δ , α , A , n , g , ρ , β) . (27)

We try values β = 0 , −1 , ... , −5. We use standard values for α, A, n, and g; microe-
conomic data sources to calibrate the key new parameters θ and ϕ; and, macroeconomic

data to determine η, ξ, δ, and ρ.

Standard values. Assume α = 0.30, n = 0.01, and g = 0.02. Without loss of generality,

normalize A = 1.

Microeconomic data. We use microeconomic data shown in the diagram on the next page

to calibrate θ and ϕ. Our preliminary estimates are θ = 0.80 and ϕ = 0.11.

Macroeconomic data. We assume r∗ = 0.10;11 set the SSE ratio Dt/Y NIPAt to d∗ = 0.11
using NIPA data 1950-2010; and, set the SSE ratio INIPAt /Y NIPAt to i∗ = 0.17 using

NIPA data over the same years.12

Section 3 shows that in regime 1, Tobin’s average q equals P ∗. Laitner and Stol-
yarov [2003, p.1258] estimate q = 1.48 for US nonresidential capital. Hall [2001, fig.13] re-

ports similar numbers for US nonfinancial corporations.13 McGrattan and Prescott [2000,

tab 1] estimate 1.62 for the corporate sector. Nonresidential private fixed assets are slightly

11 See Laitner and Stolyarov [2003].
12 Note that we combine aggregate private consumption and government spending on

goods and services in our Ct.
13 Hall’s data shows peak values for q of 1.5-1.7 around 1970 and again for 1995. Laitner

and Stolyarov’s [2003] model implies that the peaks yield the best estimates of q.
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less than half of private fixed assets, on average, in the NIPA “All Fixed Asset Table 1.1.”

Assuming that intangible capital is zero for residential capital, we set14

P ∗ = (0.47) · (1.48) + (0.53) · (1.00) ≈ 1.23 . (28)

Parenthetically, we think that measuring Tobin’s average q on a year-to-year basis

is very difficult. The numerator is a market value, potentially observable in the Flow

of Funds, for example. The BEA constructs a version of Xt, a potential denominator,

from a perpetual inventory equation. Laitner/Stolyarov [2003, Figure 1], presents ratios

from these sources. The period 1974-85 seems inconsistent with the present paper’s model

because Jt > 0 yet apparently P1t < 1. Laitner and Stolyarov [2003] argue, however, that

standard figures for Xt can be misleading. They suggest that the steep decline in asset

prices about 1970 occurred because of the advent of a new general purpose technology

(namely, microprocessor chips) and that it caused significant, abrupt obsolescence. Old

capital was not immediately scrapped, but its resale value precipitously declined. New

capital gradually replaced it, at the rate of net investment. In the interim, the BEA’s Xt,

constructed using a constant depreciate rate, was too high. In other words, if technological

progress is vintage specific, average q can be a poor proxy for marginal q in some time

periods.

We develop estimates of η, ξ, and δ as follows. Let yt ≡ Yt/Et. From Lemma 1,

yt = A · [xt]α .
At the SSE, (6) implies

θ · j∗ = (ϕ+ n+ g) · x∗ . (29)

Then at the SSE, (22) implies

d∗ · A · [x∗]α−1 − ξ

θ
· (ϕ+ n+ g) = (1− η) · ϕ+ δ ; (30)

(2) implies

P ∗ =
1− η
θ

+ η +
ξ

θ
; (31)

(19) implies

α ·A · [x∗]α−1 = P ∗ · r∗ + δ + ϕ · (P ∗ − η) ; (32)

and, (3), after substituting from (31) and dividing by x∗, implies

14 An alternative approach (i.e., Laitner and Stolyarov [2003]) would remove residential

capital and investment (and corresponding consumption service flows) from the model. The

present approach has the advantage of maintaining a close connection to the aggregative

data.
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ξ

θ
· (ϕ+ n+ g) + i∗ · A · [x∗]α−1 − ξ

θ
· (ϕ+ n+ g) = (P ∗ − η) · ϕ+ δ + P ∗ · (n+ g)

⇐⇒ (1− i∗) · ξ
θ
· (ϕ+ n+ g) + i∗ ·A · [x∗]α−1 = (P ∗ − η) · ϕ+ δ + P ∗ · (n+ g) . (33)

Expressions (30)-(33) constitute 4 linear equations in (η , ξ , δ , A · [x∗]α−1). Given
our A and α, we can extract (η , ξ , δ , x∗).

Let

ζ ≡ ρ− n− β · g . (34)

The proof of Proposition 1 shows that at the stationary point (x∗ , c∗), the first-order
condition for the costate variable μt yields

P ∗ · (ζ + ϕ+ n+ g) = α ·A · [x∗]α−1 − δ + η · ϕ .
The latter expression, in combination with (32), yields

r∗ = ρ+ (1− β) · g , (35)

from which we determine ρ. Finally, (3) and (29) yield c∗:

c∗ = A · [x∗]α − P ∗ · (ϕ+ n+ g) · x∗ + (η · ϕ− δ) · x∗ . (36)

Table 1. Calibrations of (η , ξ , δ , ρ)

given θ = 0.80, ϕ = 0.11, and various values of β

β P ∗ η ξ δ ρ x∗ c∗

0.000 1.230 0.565 0.097 0.035 0.080 1.451 0.908

-1.000 1.230 0.565 0.097 0.035 0.060 1.451 0.908

-2.000 1.230 0.565 0.097 0.035 0.040 1.451 0.908

-3.000 1.230 0.565 0.097 0.035 0.020 1.451 0.908

-4.000 1.230 0.565 0.097 0.035 0.000 1.451 0.908

-5.000 1.230 0.565 0.097 0.035 -0.020 1.451 0.908

Source: see text.

Table 1 presents results. Expression (2) shows if ξ = 0, the risk of entry failure alone

explains almost half of the economy’s intangible capital:

1− η
θ

+ η = 1.11 .
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We can use (5) to compute the implied difference between the SSE yt ≡ Yt/Et and yNIPAt ≡
Y NIPAt /Et and between it ≡ It/Et and iNIPAt ≡ INIAt :

yNIPA∗

y∗
= 0.98 and

iNIPA∗

i∗
= 0.88 .

5 Permanent Changes in the Entry-failure Rate. The original idea of Tobin’s q

was that a high marginal q signaled a favorable moment for investment (Tobin [1969],

Hayashi [1982], Summers et al [1981], Abel and Blanchard [1986], and many others). This

section shows that the connection between q and investment will tend to be opposite to

this when changes in q result from variation in θ. Nevertheless, we show that a positive

correlation between I/K and q, which was the specific focus of the existing literature, is

also consistent with our analysis.

Investment and q. Suppose that the economy resides in a SSE for t ≤ 0 but that the

entry-success rate θ is subject to an exogenous, permanent decline at time t = 0+.

Taking a general equilibrium perspective, although the decline in θ causes P1t = P
∗ to

rise, it ultimately makes physical capital accumulation more arduous, as waste from entry

failures is greater. The increase in P1t reflects the fact that entry is more difficult, rather

than signaling that prospects for future profits are brighter. In the end, we find that x∗

should decline. Formally,

Proposition 3: An increase in P ∗ stemming from a permanent decline in θ causes x∗

to fall.

Proof: See Appendix.

Consider the perspective of agents within the economy. First, think about en-

trepreneurs. Although in Proposition 3 a higher P1t indicates a higher reward for successful

entry, the corresponding lower θ means a greater risk of entry failure. The expected value

of the reward for attempting entry does not, on balance, change. In other words, a decline

in θ need neither damp nor abet entrepreneurs’ enthusiasm for new investment.

In the case of creditors, the story is different. In our model, the SSE real interest rate,

say, r∗ does not change when θ does: we have r∗ = ρ + (1 − β) · g = r̄∗. As θ declines,
the price of a unit of investment in active capital rises to, say, P̄ ∗ > P ∗. In other words,
the financial investment needed to purchase a given stream of interest payments now costs

more. In response, creditors reduce the supply of financing for new investment projects.

This leads to the lower x∗ of Proposition 3.
Although Proposition 3 suggests that SSE investment will decline, the result refers to

x∗ rather than i∗. Our simulations below, however, show that a permanent decline in θ
does lower i∗.

More subtly, while we detrend variables with Et, other normalizations can yield dif-

ferent outcomes. For example, to circumvent aggregation problems stemming from convex

adjustment costs (Hayashi [1982]), the existing literature focuses on the relationship of

It/Xt = it/xt and P1t. Surprisingly,

12



Proposition 4: An increase in P ∗ stemming from a permanent decline in θ causes i∗/x∗

to rise.

Proof: See Appendix.

The intuition is as follows. Suppose a decline in θ causes P ∗ to rise. If i∗ and x∗

decline equally, equilibrium will not be restored. When the entry-failure rate increases, x∗

must decline more than i∗. As the latter occurs, the ratio i∗/x∗ rises.
Conceivably the impact effect of a permanent change matters more, in practice, than

the long-term consequences. Figures 2a-b show that the impact effect on consumption of

a permanent drop in θ can be either positive or negative. At time t = 0+, ct jumps to

the stable arm of the saddle at ā. Let the jump be dc+. On the other hand, xt moves at

the finite rate of investment, so that x0+ = x0 = x
∗. Geometrically, dc+ depends on the

slope of the phase diagram’s stable arm at point ā relative to the slope of the line segment

connecting the old and new stationary points, dc∗/dx∗ .
The proof of Proposition 1 yields

ẋt =
A · [xt]α + (η · ϕ− δ) · xt − ct

P ∗
− (ϕ+ n+ g) · xt ,

ċt =
ct

1− β · [
α ·A · [xt]α−1 + (η · ϕ− δ)

P ∗
− ζ − ϕ− n− g] .

Linearizing the right-hand sides with respect to xt and ct about (x
∗ , c∗), form a matrix

M . One eigenvalue will be positive, and the other negative. Call the negative eigenvalue

ν, and the corresponding eigenvector (vx , vc).15 Figures 2a-b show

dc+ = −( dx
∗

dP ∗
dP ∗) · [ v

c

vx
− dc

∗

dx∗
]⇐⇒ dc+

dP ∗
= − dx

∗

dP ∗
· [ v

c

vx
− dc

∗

dx∗
] .

We have yt = ct + it and dy
+/dP ∗ = 0; so, di+/dP ∗ = −dc+/dP ∗. The half-life for

convergence to the new SSE is ln(0.50)/ν.

Simulations. Our numerical analysis utilizes the calibrations from Table 1. P ∗ varies
monotonically with θ, and we present results in the form di∗/dP ∗.

The first-order conditions for regime 1 in the proof of Proposition 1 yield (36) and

α ·A · [x∗]α−1 + (η · ϕ− δ)
P ∗

= ζ + ϕ+ n+ g . (37)

We can solve for (x∗ , c∗). Table 1 shows the solution. We can also differentiate to find
∂x∗/∂P ∗ and ∂c∗/∂P ∗. Table 2 presents outcomes.

The first column of Table 2 bears out our conjecture based upon Proposition 3: we

find that the lower x∗ accompanying a decrease in θ leads to a lower i∗ as well, given our

15 We are working with infinitesimal changes dx∗ = (∂x∗/∂P ∗) dP ∗ and dc∗. In this
case, the stable arm at a has the same slope as the stable arm at ā.

13
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Table 2. Long-run Consequences for Investment of a Change in P ∗

Stemming from a Change in θ

(Table 1 Parameters Values)

β
dx∗/x∗

dP∗/P∗
dc∗/c∗

dP∗/P∗
dy∗/y∗

dP∗/P∗
di∗/i∗

dP∗/P∗
diNIPA∗/iNIPA∗

dP∗/P∗

all
values -1.596 -0.495 -0.479 -0.409 -0.497

Source: see text.

Table 3. Impact Consequences for Investment of a Change in P ∗

Stemming from a Change in θ

(Table 1 Parameters Values)

Elasticities

β ν Half- vc

vx
dc∗
dx∗

dc+

dP∗

life
di+/i∗

dP∗/P∗
diNIPA+/iNIPA∗

dP∗/P∗

0.000 -0.226 3.066 0.364 0.194 0.320 -1.871 -2.023

-1.000 -0.151 4.583 0.272 0.194 0.147 -0.859 -0.990

-2.000 -0.118 5.854 0.232 0.194 0.071 -0.415 -0.536

-3.000 -0.099 7.001 0.208 0.194 0.026 -0.153 -0.268

-4.000 -0.086 8.072 0.192 0.194 -0.004 0.025 -0.087

-5.000 -0.076 9.089 0.180 0.194 -0.027 0.155 0.046

Source: see text.

calibrations. We can see that the elasticity d ln(i∗/x∗)/d ln(P ∗) will be slightly larger than
1.

Table 3 presents impact outcomes.

We can see that the slope of the stable arm depends upon β. A low β implies a

low intertemporal elasticity of substitution. If the economy starts at x0 < x∗, a low
intertemporal elasticity makes the representative agent desire a relatively flat consumption

trajectory. Hence, a low β tends to lead to a low vc/vx.

With β = 0 (i.e., u(c) = ln(c)), Table 3 shows di+/dP ∗ < 0. For β ≤ −5, on the other
hand, diNIPA+/dP ∗ > 0. Since xt is a non-jump variable, the elasticities of i+/x0 and i+

are the same.

A comparison of Tables 2-3 shows that the impact elasticity on investment can be

larger or smaller than the long-run elasticity, or it can have the opposite sign. Since

Table 3 shows half-lives for convergence to the permanent new solution of 3-9 years, the

impact effects are potentially important. For β ≤ −5, they would tend to generate a
positive correlation between iNIPAt /xt and qt.

Discussion. Our model is not antithetical to the traditional literature (e.g.,

Hayashi [1982], Summers et al [1981]). It is rather a special case, with a linear cost function

14



for investment. The earlier papers looked for an empirical correlation generated by a convex

cost-of-adjustment specification. Possibly shocks that shifted the cost function – as with θ

changing – were playing an important role in the data studied. In that case, Proposition 4

and Table 3 suggest that linear costs might account for the positive correlation that the

literature found.

6 Temporary Changes in the Entry-failure Rate. This section considers changes in

θ that are temporary. We find that elasticities can be much larger than those for permanent

changes. Section 4’s data suggests that a substantial, presumably temporary, decline in θ

occurred during the recent recession. We turn briefly to empirical evidence below.

Model. We model a temporary change in θ as follows. For t ≤ 0, the economy rests at
(x∗ , c∗). At t = 0+, θ drops to θ̄ ≡ θ + d θ. P ∗, therefore, rises to P̄ ∗ = P ∗ + dP ∗.
Agents know that the underlying change in θ is temporary, yet they are unsure of exactly

how long it will persist. There is a Poisson process with parameter λ such that the first

Poisson event is a (permanent) restoration of the original θ. If λ is large, the period with

dθ < 0 is likely to be brief – the period’s expected duration is 1/λ. If λ = 0, the change

lasts forever – reinstating the analysis of Section 5.

Intuitively, the equilibrium response of it and rt may be larger when 1/λ is smaller.

As in Section 5, entrepreneurs are indifferent to changes in θ: the entry-failure risk rises

at t = 0+, but a corresponding upward adjustment in P1t fully compensates potential

entrants. Creditors, on the other hand, will dislike increases in the failure rate, and they

may be especially wary of temporary increases. At t = 0+, (19) shows that rt must fall: the

left-hand side is unchanged, but P1t rises on the right. Equation (18) shows the situation

may be even worse than for a permanent change. P1t will fall after the temporary change

ends, giving creditors a capital loss. The rate of the loss will be greater the sooner it

transpires – i.e., the sooner the Poisson event occurs. Prior to restoration of the status

quo, rt must be low enough to compensate entrepreneurs making new investments for

the coming loss. Creditors end up paying more (i.e., P̄ ∗ > P ∗) for a stream of interest

payments that is lower – perhaps, much lower.

Let V (xt) be the value, in time-0 units of utility, of the maximized problem of Propo-

sition 1. Then the representative agent’s criterion is

∞

0

λ · e−λ·s · [
s

0

e−ζ·t · u(ct) dt+ V (xs) · e−ζ·s] ds

=
∞

0

∞

t

λ · e−λ·s · e−ζ·t u(ct) ds dt+
∞

0

λ · e−λ·s · e−ζ·s · V (xs) ds

=
∞

0

e−(λ+ζ)·t · [u(ct) + λ · V (xt)] dt .

Assume we stay in regime 1. Put a bar over the variables of the new model to distinguish

them from the model of Proposition 1. Start the analysis at t = 0+.

Write (x̄t , c̄t) = (x̄t(P ) , c̄t(P )) to show the dependence of the new variables on P .

The event that we wish to study has P = P̄ ∗. Notice that since x is a non-jump variable,

15



we have x̄0(P ) = x
∗. If P = P ∗, the new problem is identical to the one of Proposition 1,

for which (x∗ , c∗) is the stationary solution. Hence, x̄t(P ∗) = x∗ all t.
Following a temporary change in θ, the representative agent solves

max
c̄t
(P )

∞

0

e−(λ+ζ)·t · [u(c̄t(P )) + λ · V (x̄t(P ))] dt , (38)

subject to: ˙̄xt(P ) =
A · [x̄t(P )]α + (η · ϕ− δ) · x̄t(P )− c̄t(P )

P
− (ϕ+n+g) · x̄t(P ) , (39)

x̄0(P ) = x
∗ , (40)

where P = P̄ ∗.
Suppose the Poisson event (governed by λ) occurs at T . When the duration uncer-

tainty is resolved at T , we jump to the stable arm of the model of Proposition 1. In other

words, at the moment T of resolution, consumption jumps from c̄T to c
a
t , with (x

a
T , c

a
T ) on

the equilibrium path of Figure 1. Since x is a non-jump variable, we have xaT = x̄T (P̄
∗).

This behavior is implicit in the definition of V (.).

As in Section 5, if we linearize Proposition 1’s first-order conditions at (x∗ , c∗), i.e.,
at point a in Figure 1, one eigenvalue, ν, will be negative and the other positive. The

corresponding eigenvector is (vx , vc). For infinitesimal changes, the stable arm at point a

is locally determined by the (vx , vc). Thus, for t ≥ T , we have
cat (P )− c∗
xat (P )− x∗

=
vc

vx
⇐⇒ cat (P ) = c

∗ +
vc

vx
· (xat (P )− x∗) . (41)

Defining a Hamiltonian

H̄ ≡ u(c̄t(P )) + λ · V (x̄t(P ))+
μ̄t(P ) · [A · [x̄t(P )]

α + (η · ϕ− δ) · x̄t(P )− c̄t(P )
P

− (ϕ+ n+ g) · x̄t(P )] , (42)

we have first-order conditions

uI(c̄t(P )) =
μ̄t(P )

P
, (43)

˙̄μt(P ) = (λ+ ζ) · μ̄t(P )− λ · V I(x̄t(P ))−
μ̄t(P ) · [α ·A · [x̄t(P )]

α−1 + (η · ϕ− δ)
P

] + μ̄t(P ) · (ϕ+ n+ g) .

Using the notation zt ≡ żt/zt, and noting that V I(x̄t) = μt, where μt is the costate from

the model of Proposition 1, we can rewrite the latter as

16



μ̄t(P ) = λ · (1− μt

μ̄t(P )
) + ζ − α ·A · [x̄t(P )]α−1 + (η · ϕ− δ)

P
+ (ϕ+ n+ g) . (44)

Equations (39) and (43) are exactly as those in the proof of Proposition 1. Equa-

tion (44) differs only in the addition of a new term

λ · (1− μt

μ̄t(P )
) . (45)

If λ = 0, so that the change in θ is permanent, this term disappears – and the analysis of

Section 5 emerges. Likewise, if dθ = 0, the Poisson event does not announce a change –

so, the analysis of Proposition 1 re-emerges.

We expect μt < μ̄t(P̄
∗) because the costate is the value (in units of utility) of one

more unit of active capital, and active capital is harder to obtain in the new problem.

Thus, the stationary point in the phase diagram of the new problem should lie to the left

of point a from Figure 1: x̄∗(P̄ ∗) ≡ x̄∗ < x∗. Because P̄ ∗ > P ∗, the isocline from (39) will

be lower; hence, we also expect c̄∗(P̄ ∗) ≡ c̄∗ < c∗. Since (45) involves multiplication by λ,
we would, in general, expect more dramatic results for a larger λ – that is to say, for a

shorter duration change in θ – as we reasoned above.

In manipulating (44), the first-order condition for c shows

λ · (1− μt

μ̄t(P )
) = λ · (1− P ∗ · uI(cat )

P · uI(c̄t(P )) ) . (46)

We can then compute dc̄∗(P )/dx̄∗(P ) and the eigenvector v̄(P ) ≡ (v̄x(P ) , v̄c(P ))

locally characterizing the stable arm for problem (38).

The temporary increase in P begins at t = 0+. At that moment, we must jump to the

stable arm for point ā, determined by (x̄∗ , c̄∗). The jump, illustrated in Figure 3, must be
vertical – since c, but not x, is a jump variable. The analysis resembles that for impact

effects in Section 5. We can compute di+(P )/dP and diNIPA+(P )/dP as in Section 5.

Let r̄t(P ) be the interest rate corresponding to (x̄t(P ) , c̄t(P )). Over the time interval

(t , t + dt], an establishment has probability ϕ dt of death, λ dt of seeing an end to the

temporary period with dθ < 0, and 1− ϕ dt− λ dt of continuing with P . Hence,

P = (α ·A · [x̄t(P )]α−1 − δ) dt+ η · (1− r̄t(P ) dt) · ϕ dt+ P ∗ · (1− r̄t(P ) dt) · λ dt
+ P · (1− r̄t(P ) dt) · (1− ϕ dt− λ dt) . (47)

Dropping terms of order [dt]2,

P = (α ·A · [x̄t(P )]α−1 − δ) dt+ η · ϕ dt+ P ∗ · λ dt+ P − P · (ϕ+ λ) dt− P · r̄t(P ) dt
⇐⇒ α ·A · [x̄t(P )]α−1 − δ = P · r̄t(P ) + P · (ϕ+ λ)− ϕ · η − P ∗ · λ . (48)
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Let r∗ be the interest rate at stationary point a in Figure 1. Because x̄t(P ∗) = x∗ all t,
we have

r̄t(P
∗) = r∗ all t ≥ 0 .

We want the differential of r̄t(P ) with respect to P to be

dr̄t(P ) = r̄t(P
∗) +

∂r̄t(P
∗)

∂P
dP = r∗ +

∂r̄t(P
∗)

∂P
dP . (49)

Differentiating (48) with respect to P ,

α · (α− 1) ·A · [x̄t(P )]α−2 · ∂x̄t(P )
∂P

= r̄t(P ) + P · ∂r̄t(P )
∂P

+ (ϕ+ λ)

⇐⇒ ∂r̄t(P
∗)

∂P
=
α · (α− 1) ·A · [x̄t(P ∗)]α−2

P ∗
· ∂x̄t(P

∗)
∂P

− r
∗ + ϕ+ λ

P
.

To find the impact change in r̄t(P ), recall that x is a non-jump variable. Hence,

dr+

dP
=
∂r̄0(P

∗)
∂P

= −r
∗ + ϕ+ λ

P ∗
. (50)

Table 4 presents impact outcomes. The top section examines impact effects on invest-

ment. The first column characterizes a permanent change in P . Columns 2-6 investigate

changes of average duration of 5 years, 2 years, 1 year, 2 quarters, and 1 quarter, respec-

tively. The elasticity magnitudes rise as we move to temporary changes of shorter duration.

Not surprisingly, the elasticities for net investment are appreciably larger.

The bottom part of Table 4 considers the impact on the (real) interest rate. The

elasticities are very large. A 5 percent drop in θ, which raises P ∗ from 1.23 to 1.29, drives

r∗ = 0.100 below 0 for λ ≥ 2.0, and more than halfway to 0 for λ = 1.0.

Empirical record. Laitner and Stolyarov [2003, 2004] argue that improvements in the

micro processor created a new general purpose technology in the early 1970s, leading to

abrupt obsolescence for existing capital, and excellent opportunities for new investment.16

In the context of the present paper, coordination problems for the new technology – i.e.,

need for a common operating system, for service and support, for software, etc. – might

have lowered θ in the short run.

Rising oil prices at the same time, may have contributed to entry risk (Baily et

al [1981]). There was uncertainty about the permanence of the change. Beyond that,

there were multiple possible national responses (i.e., conservation, biofuels, hybrid auto-

mobiles, green energy sources, off-shore oil drilling, nuclear power, etc.). Given network

externalities, the number of credible options would itself, as in the preceding paragraph,

tend to raise entry risk.

16 See the discussion of general purpose technologies in Helpman, ed., General Purpose

Technologies and Economic Growth. Cambridge, MA: MIT Press, 1998.
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Table 4. Impact Effect of a Temporary Change in P ∗

Stemming from a Change in θ

(Table 1 Parameters Values)

λ =

β

0.00 0.20 0.50 1.00 2.00 4.00

Elasticity:
diNIPA+/iNIPA∗

dP∗/P∗

0.000 -2.023 -3.027 -3.587 -3.945 -4.192 -4.342

-1.000 -0.990 -1.618 -1.907 -2.073 -2.181 -2.244

-2.000 -0.536 -1.074 -1.294 -1.414 -1.490 -1.533

-3.000 -0.268 -0.780 -0.974 -1.076 -1.139 -1.175

-4.000 -0.087 -0.596 -0.778 -0.871 -0.927 -0.959

-5.000 0.046 -0.469 -0.644 -0.732 -0.785 -0.815

Elasticity:
dinet NIPA+/inet NIPA∗

dP∗/P∗

0.000 -5.732 -8.577 -10.164 -11.177 -11.879 -12.302

-1.000 -2.805 -4.585 -5.404 -5.875 -6.180 -6.357

-2.000 -1.520 -3.042 -3.667 -4.007 -4.221 -4.343

-3.000 -0.760 -2.211 -2.760 -3.050 -3.228 -3.328

-4.000 -0.247 -1.689 -2.203 -2.467 -2.627 -2.717

-5.000 0.129 -1.330 -1.825 -2.075 -2.225 -2.308

Elasticity:
dr+/r∗

dP∗/P∗

all
values -2.100 -4.100 -7.100 -12.100 -22.100 -42.100

Source: see text.

The next page presents a figure showing net investment as a fraction of GDP. The

period of the 1970s as a whole yielded low real returns to financial investors, whereas the

reverse followed for the next 20 years (e.g., Smithers and Wright [2000, chart 3.1]).

Both the investment and real-return evidence for the 1970-95 period seem broadly

consistent with Table 4. Our argument is that creative destruction in the early 1970s

led to the 1972-74 stockmarket crash, and, in turn, created potential new investment

opportunities. Coordination problems, however, may have temporarily increased P1t –

i.e., marginal q. (Average q, on the other hand, would have been low, due to measurement

problems – see below.) Creditors preferred to delay new investment until the problems

were resolved. In the interim, the rate of return on financial investments was low. By

the early 1980s, the temporary episode was over. In ensuing years, investment was high.

While P1t would have actually been somewhat below its temporary high during the 1970s,

the marginal product of (new) capital was great enough to deliver large financial returns to

creditors. Measured average q rose steadily as new capital replaced plant and equipment

made obsolete in the early 1970s.

In 2008, financial-market turmoil from the subprime mortgage crisis made almost all
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businesses struggle. Our micro data was available by this time, and Section 4 shows that

entry risk rose. Again, our model predicts a reduction in interest rates and in net invest-

ment. The net business investment figure on the preceding page confirms that investment

dropped very sharply.17

Information on Treasury Inflation Protected Securities (TIPS), available after 1997,

provides a general indication of the time path of real interest rates. The US Treasury

provides data on 5, 10, and 20 year TIPS yield to maturities.18 Graphs of January data

show a flat yield curve with r ≈ 0.02 in 2006-07. By 2008, however, the yield on 5-year
TIPS was 0.01, whereas the 20-year yield remained at the 2006 level. By 2011, the 5-year

yield was just 0.0025, while the 20-year remained almost as before, at about 0.016.19 The

data is, therefore, consistent with a temporary reduction in real interest rates.

Again, investment and interest rates both follow patterns roughly consistent with the

model’s implications for a temporary increase in entry risk.

Discussion of the earlier literature. Section 5 noted the literature’s finding of a positive

correlation in aggregative time series data of average q and I/K. Proposition 4 and/or

Table 3 may be part of the answer. Another part may be as follows.

We have suggested that after a macro shock, coordination problems sometimes lead

to a temporary spell in which marginal q is high. Table 4 implies that during the spell,

short-term interest and net investment rates may be quite low. Section 4 argues that

measured average q may be severely biased downward at the same time, due to unusually

great obsolescence of older capital that the denominator of measured average q will tend

to overlook. If investment and measured average q are low at the same time, a spurious

positive correlation between the two may emerge.

7 Conclusion. This paper presents an equilibrium theory of investment that stresses

the role of risk as a determinant of aggregate investment expenditure. In the model, net

investment, for new and old firms, takes the form of adding new establishments. We mea-

sure risk from establishment failure rates. We do not invoke a convex cost-of-adjustment

function.

We show that risk of failure is empirically large and can explain about one-half of the

intangible capital in the US. (Planning costs account for the remainder in our model.)

We suggest several ways in which our model can explain the positive correlation of

investment and average q characterized in the existing literature.

Increases in risk that are temporary have the largest elasticities in our model, poten-

tially leading to sharp downturns in investment and short-term interest rates. We argue

17 In our model, part of NIPA “depreciation” covers replacement of establishments that

die from obsolescence. Replacement investment for this component of “depreciation” must

breakeven. In other words, having NIPA net investment fall to 0 is insufficient, by a

considerable margin, to thrust the economy out of what Section 2 calls “regime 1.”
18 See http : //www.treasury.gov/resource− center/ .
19 Note that the 2010 yield curve is very similar to 2011. The January 2, 2009, curve,

however, is erratic.
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that the most recent recession provides evidence consistent with this analysis, and that

our model may help to interpret aggregative-data patterns from the earlier periods as well.
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Appendix

Proof of Lemma 1. Firm maximization requires

Wt =
@Yjt
@Njt

; (A1)

which implies
Xjt

Ejt
=
X0t

E0t
all j 2 Jt : (A2)

Then

Xt = [from (9)] =
Z
Jt

Xjts

Ejt
Ejtdj = [from (A2)] =

X0t

E0t

Z
Jt
Ejtdj = [from (10)] = Et �

X0t

E0t
:

So,

X0t

E0t
=
Xt

Et
(A3)

Hence,

Yt = [from (8)] =
Z
Jt
Yjtdj = [from (7)] =

Z
Jt
A

�
Xjt

Ejt

��
Ejtdj = [from (A2)] =

A

�
X0t

E0t

�� Z
Jt
Ejtdj = [from (10)] = A

�
X0t

E0t

��
Et = [from (A3)] = AX�

t E
1��
t :

The envelope theorem establishes (14). Euler�s formula then establishes (15).

Proof of Proposition 1: Let jt � Jt=Et and jSt � JSt =Et. We want to solve

max
ct;jt;jSt

Z 1

0

e�(��n���g)�t � u(ct) dt (A4)

_xt = � � jt + jSt � ('+ n+ g) � xt , x0 is given,

jt =

(
A�[xt]��ct+(��'��)�xt

1���(1��) , if A � [xt]� � ct + (� � '� �) � xt � 0
0; otherwise

; (A5)

jSt =

� A�[xt]��ct+(��'��)�xt
�

, if A � [xt]� � ct + (� � '� �) � xt < 0
0; otherwise

: (A6)

The variable jt registers the �ow of new investment projects. In a severe downturn, the
economy might actually scrap some establishments, and, in that case, jSt < 0 measures the
�ow of scrap investment usable for replacement investment.
(A6) yields a standard set of constraints:

� � jSt � A � [xt]� � ct + (� � '� �) � xt ;

jSt � 0 :

24



tx

tc 0ˆ=tc

0=tx&

( ) ttt xAxc δηϕα −+=

d

cb

a

−b

tx

tc 0ˆ=tc

0=tx&

( ) ttt xAxc δηϕα −+=

d

cb

a

−b

Figure 1: Phase diagram for the solution.

However, (A5) is conditional on A � [xt]� � ct + (� � ' � �) � xt � 0. We can remove the
conditionality as follows. Note that either jSt = 0 and [1� � � (1� �)] � jt = A � [xt]�� ct+(� �
'� �) � xt � 0 or jt = 0 and � � jSt = A � [xt]� � ct + (� � '� �) � xt. Thus, we can substitute

[1� � � (1� �)] � jt = A � [xt]� � ct + (� � '� �) � xt � � � jSt ;

jt � 0 ;
for (A5). The right-hand side of the �rst of these inequalities will always be nonnegative.
We form a current-value Hamiltonian,

H � u(ct) + �t � [� � jt + jSt � ('+ n+ g) � xt]
+
1t � [A � [xt]� � ct + (� � '� �) � xt � � � jSt � [1� � � (1� �)] � jt] + !1t � jt
+
2t � [A � [xt]� � ct + (� � '� �) � xt � � � jSt ]� !2t � jSt :

The Lagrange multipliers 
it and !
i
t should be nonnegative and follow continuous paths; the

costate �t should be positive and continuous; the controls are jt, j
S
t , and ct; and, the state

variable is xt. The Hamiltonian is concave in (xt ; ct ; jt ; jSt ).
Our solution follows Figure 1. The stationary point in the phase diagram is a. Initial

conditions x0 consistent with path ab or ab0 allow us to follow the solution of Proposition 1 in
the text. Larger initial conditions x0 require that we start on the arc bc where jt = 0 = jSt ,
so that there is neither new investment nor forced-closure disinvestment. Still larger initial
conditions require forced closures of existing establishments for optimality, along arc cd.
First-order conditions for the controls are

u0(ct) = 

1
t + 


2
t ; (A7)

� � �t � [1� � � (1� �)] � 
1t + !1t = 0 ; (A8)

�t � � � 
1t � � � 
2t � !2t = 0 : (A9)
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The costate equation is

�t = (�� n� � � g) � �t + ('+ n+ g) � �t (A10)

�(
1t + 
2t ) � (� � A � [xt]��1 + � � '� �):

When jt = 0 = jSt , we have

ct = A � [xt]� + (� � '� �) � xt (A11)

Step 1. Consider initial conditions that start us along ab.

As stated, this is the case of Proposition 1. We have a conventional saddlepoint phase
diagram. We have jSt = 0, !

1
t = 0, and 


2
t = 0. We solve equations

b�t = �+ (1� �) � g + '� � � A � [xt]��1 + (� � '� �)P1
;

_xt =
A � [xt]� � ct + (� � '� �) � xt

P1
� ('+ n+ g) � xt ;

�t
P1
= u0(ct) :

We set !2t = �t � � � u0(ct) > 0 all t.
Step 2. Suppose that the stable arm from a cuts the graph of (A11) at point b, as shown

in Figure 1. Terminal conditions from the stable arm determine !1b = 0; !
2
b = �b� � � u0(cb);


1b = u
0(ct); 
2t = 0; �b = P1 � u0(cb). We follow arc bc along the graph of (A11).

On bc we set

jt = 0 = j
S
t = A � [xt]� � ct + (� � '� �) � xt :

Using the terminal conditions above as starting values, solve

_xt = �('+ n+ g) � xt ;

ct = A � [xt]� + (� � '� �) � xt ;
�t = (�+ (1� �) � g + ') � �t � u0(ct) � (� � A � [xt]��1 + � � '� �) :

Solving these equations backward in time, we stop when we reach x0 - provided it lies on bc.
We solve for c using Figure 2. The graph of �t=� starts above u

0(ct) = �t=P1 because
P1 > �. At c, the graphs of u0(ct) and �t=� cross. If they never cross, xc = 1, and we are
done. Figure 2 presents these conditions. Conditions for the Lagrange multipliers are


1t + 

2
t = u

0(ct) ;

�t
P1
� 
1t +

!1t
� � P1

= 0 ;

�t
�
� 
1t � 
2t �

!2t
�
= 0 :

Substituting from the �rst into the third, we set !2t from

!2t
�
=
�t
�
� u0(ct) :
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Figure 2: Solving for c.

This starts at the terminal level from Step 1 and ends with !2t = 0. We set !
1
t = 0 and


1t =
�t
P1
:

Finally, we set


2t = u
0(ct)� 
1t :

Both 
1t and 

2
t start at the correct level.

If 
2t becomes negative on bc, we must adjust 

1
t downward to prevent this.

Step 3. We follow cd. We have jt = 0; � � jSt = A � [xt]� � ct + (� � '� �) � xt < 0; and,
!2t = 0.
The equations are

_xt =
A � [xt]� � ct + (� � '� �) � xt

�
� ('+ n+ g) � xt ;

�t = (�+ (1� �) � g + ') � �t � u0(ct) � (� � A � [xt]��1 + � � '� �) ;
�t
�
� u0(ct) = 0 :

For the Lagrange multipliers,

�t
P1
= 
1t ;

!1t = 0 ;


2t = u
0(ct)� 
1t :

Because we have jSt < 0, ct rises above the graph of (A11), as shown in Figure 1.

Proof of Proposition 3. Consider the isoclines in regime 1 of Figure 1. Let
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�(x) � A � [xt]� + (� � '� �) � xt :
Then

_xt = �jt � ('+ n+ g)xt = 0()
�jt = ('+ n+ g)xt ()

�(xt)� ct
P�

= ('+ n+ g)xt ()

�(xt)� P� ('+ n+ g)xt = ct (A12)

(A12) shows this isocline shifts downward when P � rises.
The other isocline is vertical. We have

_�t
�t
= 0()

P� (� + '+ n+ g) = �
0(xt) = �Ax

��1
t + (�'� �) (A13)

So, a higher P � causes this isocline to shift left.
Figure 1 then establishes Proposition 3.

Proof of Proposition 4. We have

i� = �P�j� � (�'� �)x� = ('+ n+ g)x�P� � (�'� �)x�

Thus, the long-run elasticity for i�=x� will, in fact, always be positive.
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