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Abstract

Financial innovation and overconfidence about asset values and the riskiness of new financial
products were important factors behind the U.S. credit crisis. We show that a boom-bust cycle
in debt, asset prices and consumption characterizes the equilibrium dynamics of a model with a
collateral constraint in which agents learn “by observation” the true riskiness of the new envi-
ronment. Early realizations of states with high ability to leverage assets into debt turn agents
overly optimistic about the probability of persistence of a high-leverage regime. Conversely,
the first realization of the low-leverage state turns agents unduly pessimistic about future credit
prospects. These effects interact with the Fisherian deflation mechanism, resulting in changes in
debt, leverage, and asset prices larger than predicted under either rational expectations without
learning or with learning but without Fisherian deflation. The model predicts large, sustained
increases in net household debt and in residential land prices between 1997 and 2006, followed
by a sharp collapse in 2007.
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“I fancy that over-confidence seldom does any great harm except when, as, and if, it

beguiles its victims into debt.” Fisher (1933)

1 Introduction

The U.S. financial crisis was preceded by sharp increases in household credit, residential land

prices, and leverage ratios. Between 1996 and 2006, the year in which the crisis started with the

collapse of the sub-prime mortgage market, the net credit assets of U.S. households and non-profit

organizations fell from -35 to -70 percent of GDP (see the top panel of Figure 1). By contrast, this

ratio had remained very stable in the previous two decades. During 1996-2006, the market value

of residential land as a share of GDP also surged, from about 45 percent to nearly 75 percent (see

the bottom panel of Figure 1).1 Debt grew much faster than land values, however, because the

ratio of net credit assets to the market value of residential land, a macroeconomic measure of the

household leverage ratio, rose from 0.64 to 0.93 in absolute value.

As the timeline in Figure 2 shows, the rapid growth of household credit, land values, and

leverage started with a period of significant financial innovation, which was characterized by two

central features: First, the introduction of new financial instruments that “securitized” the payment

streams generated by a wide variety of assets, particularly mortgages. Second, far-reaching reforms

that radically changed the legal and regulatory framework of financial markets.

The gradual introduction of collateralized debt obligations (CDOs) dates back to the early 1980s,

but the securitization boom that fueled the growth of household debt started in the mid 1990s with

the introduction of collateralized mortgage obligations (CMOs). This process was greatly amplified

by the introduction of credit default swaps (CDSs) on the payments of CMOs by the mid 2000s.

In addition, synthetic securitization allowed third parties to trade these securities as bets on the

corresponding income streams without being a party to the actual underlying loan contracts. By

the end of 2007, the market of CDSs alone was worth about $45 trillion (or 3 times U.S. GDP).

The financial reforms introduced in the 1990s were the most significant since the Great Depres-

sion, and in fact aimed at removing the barriers separating bank and non-bank financial intermedi-

aries set in 1933 with the Glass-Steagall Banking Act. Three Acts were particularly important for
1Following Davis and Heathcote (2007), we decided to focus on residential land and fluctuations in its price,

instead of focusing on housing prices. Davis and Heathcote decomposed U.S. housing prices into the prices of land and
structures, and found that between 1975 and 2006 residential land prices quadrupled while prices of physical structures
increased only by 33 percent in real terms. Furthermore, land prices are about three times more volatile than prices
of structures. Thus, land prices are more important than the prices of residential dwellings for understanding the
evolution of housing prices.
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Figure 1: Net Credit Market Assets and Value of Residential Land
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Notes: This figure plots the net credit market assets to GDP ratio for the U.S. households and non-profit organiza-

tions. Sources: Net Credit Market Assets: Flow of Funds Accounts of the U.S. provided by the Board of Governors

of the Federal Reserve System. Value of Residential Land: Davis and Heathcote (2007).

the housing and credit booms: The 1995 New Community Reinvestment Act, which strengthened

the role of Fannie Mae and Freddie Mac in mortgage markets and facilitated mortgage securiti-

zation; the 1999 Gramm–Leach–Bliley Act, which removed the prohibition that prevented bank

holding companies from owning other financial companies; and the 2000 Commodity Futures Mod-

ernization Act, which stipulated that financial derivatives such as CDSs would not be regulated as

futures contracts, securities, or lotteries under federal law.

We show in this paper that financial innovation of this magnitude, interacting with credit

constraints linking credit to asset values, can lead to a “natural” underpricing of the risk associated

with the new financial environment, and that this can produce a surge in credit and asset prices,

followed by a collapse. Undervaluing the risk was natural because of the lack of data on the default

and performance records of the new financial instruments, and on the stability of the financial

system under the new regulatory framework. In line with this argument, the strategy of “layering

of risk” justified the belief that the new instruments were so well diversified that they were virtually

2



Figure 2: Timeline of Events During the Run-up to the U.S. Credit Crisis

1987 Issuance of the first CDO •

• 1995 New Community Reinvestment Act1995 Net credit assets-GDP starts falling •
• 1997 Issuance of the first CDS at JPMorgan

1999 Gramm-Leach-Bliley Act • • 2000 Commodity Futures Modernization Act

2006 Peak of stock and housing markets •
• 2008 Net credit assets-GDP bottoms

2010 Dodd-Frank Wall St. Reform Act •

risk free. The latter was presumably being attained by using portfolio models that combined top-

rated tranches of assets with tranches containing riskier assets–under the assumption that the risk

of the assets was priced correctly. As Drew (2008) described it: “The computer modelers gushed

about the tranches. The layers spread out the risk. Only a catastrophic failure would bring the

structure crashing down, and the models said that wouldn’t happen.”

We recognize that several factors were at play in causing the credit boom that ended with the

financial crash, including excessive leverage and exposure to counterparty risk amongst financial

intermediaries, moral hazard in financial markets and rating agencies, reckless lending practices,

growing global financial imbalances, and the lack of government supervision and regulation. In

this paper, however, we focus exclusively on the role of financial innovation affecting households’

ability to leverage assets into debt in an environment with imperfect information and imperfect

credit markets. Our aim is to show how these frictions alone can result in a pronounced boom-

bust cycle in household debt and housing prices. In particular, we propose a model in which the

true riskiness of the new financial environment can only be discovered with time, and this learning

process interacts with a collateral constraint that limits households’ debt not to exceed a fraction

of the market value of their holdings of a fixed asset (i.e., land).

Financial innovation is modelled as a structural change that increases the leverage limit, thus

moving the economy to a “high-leverage” state. Agents know that in this new environment one

of two financial regimes can materialize in any given period: one in which high ability to leverage

continues, and one in which there is a switch back to the pre-financial-innovation leverage limit

(the “low-leverage” state). They do not know the true riskiness of the new financial environment,

because they lack data with which to estimate accurately the true regime-switching probabilities
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Figure 3: Banks’ Willingness To Lend
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Notes: This figure plots the net percentage of domestic banks that reported tightening standards for mortgage loans

and credit card loans; and increased willingness to make consumer installment loans. The banks can choose from

five answers, 1) tightened significantly, 2) tightened somewhat, 3) remained unchanged, 4) eased somewhat, 5) eased

significantly. Net percentages are calculated by subtracting the number of banks that chose 4 or 5 from those that

chose 1 or 2, and then dividing by the total number of respondents. Source: Willingness to Lend Survey of the U.S.,

provided by the Board of Governors of the Federal Reserve System.

across high- and low-leverage states. They are Bayesian learners, however, and so they learn

over time as they observe regime realizations, and in the long-run their beliefs converge to the

true regime-switching probabilities. Hence, in the long-run the model converges to the rational

expectations (RE) solution, with the risk of the financial environment priced correctly. In the

short-run, however, optimal plans and asset prices deviate from the RE equilibrium, because beliefs

differ from those of the RE solution, and this leads to a mispricing of risk.

The collateral constraint introduces into the model the well-known Fisherian debt-deflation

mechanism of financial amplification, but the analysis of the interaction of this mechanism with the

learning dynamics is a novel feature of our work.2 In particular, the deviations of the agents’ beliefs

from the true RE regime-switching probabilities distort asset pricing conditions. The resulting

over- or under-pricing of assets translates into over- or under-inflated collateral values that affect

the debt-deflation dynamics.
2Interestingly, the debt-deflation framework as originally envisaged by Fisher (Fisher (1933)) gave a prominent

role to changes in optimism and gloom of economic agents, but modern formulations of financial accelerators typically
abstract from fluctuations in beliefs. It is also interesting to note that Fisher assigned a limited role to changes in
beliefs except when they interact with the debt-deflation mechanism (as evident in our opening quote).
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Quantitative analysis shows that the process of discovery of risk in the presence of collateral

constraints has important effects on macroeconomic aggregates, and leads to a period of booming

credit and land prices, followed by a sharp, sudden collapse. We conduct an experiment calibrated

to U.S. data in which we date the start of financial innovation in the first quarter of 1997 and the

beginning of the financial crisis in the first quarter of 2007. Hence, from 1997 to the end of 2006

we assume that the economy experienced the high-leverage regime, followed by a switch to the

low-leverage regime in the first quarter of 2007. The outstanding stock of net credit assets did not

rise sharply then (see Figure 1), but the fraction of banks that tightened standards for mortgage

and credit card loans jumped from nearly zero to over 50 percent (see Figure 3). The initial priors

of the Bayesian learning process are calibrated to match observed excess returns on Fannie Mae

MBS at the beginning of 1997, and the high- and low-leverage limits are set equal to the observed

leverage ratios before 1997 and at the end of 2006.

Under these assumptions, our model predicts that agents became optimistic about the proba-

bility of persistence of the high-leverage regime very soon after 1997, and remained so until they

observed the switch to the low-leverage regime. During this “optimistic phase,” debt, leverage and

collateral values (i.e., land prices) rise significantly above what the RE equilibrium predicts.3 In

fact, the model accounts for 63 percent of the rise in net household debt and 44 percent of the rise

in residential land prices during 1997-2006. Conversely, when agents observe the first realization of

the low-leverage regime, they respond with a sharp correction in their beliefs and become unduly

pessimistic, causing sharp downward adjustments in credit, land prices and consumption.4

The results also show that the interaction between the debt-deflation mechanism and the learn-

ing mechanism is quantitatively significant. The model predicts effects on debt and asset prices

that are nearly twice as large when we allow for these two mechanisms to interact than when we

remove either one.

Although we focus on the recent U.S. credit crisis and the financial innovation that preceded it,

our framework applies to many episodes of credit booms and busts associated with large changes in

the financial environment. It is well-known, for instance, that many of the countries to which the
3The degree of optimism generated in the optimistic phase is at its highest just before agents observe the first

realization of the low-leverage regime. This occurs because, when the new financial environment is first introduced,
agents cannot rule out the possibility of the high-leverage regime being absorbent until they experience the first
realization of the low-leverage state.

4The transition to the low-leverage regime is exogenous and accounts for part of these corrections in credit and
prices. One can think of the switch of regimes as being due to a disruption in financial intermediation as in Gertler
and Kiyotaki (2010). Note, however, that the equilibriium declines in credit and prices in the model also reflect the
endogenous amplification channel operating through the interaction of the collateral constraint and the pessimistic
beliefs. As we show later, the amplification mechanism at work in the model is very strong.
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financial crisis spread after hitting the U.S. displayed similar pre-crisis features, in terms of a large

expansion of the financial sector into new instruments under new regulations, and also experienced

large housing booms (e.g., the United Kingdom, Spain, Iceland, Ireland). There is also evidence

of a similar process at work before the Great Depression, specifically the securitization boom

in the commercial mortgage market in the 1920s (Goetzmann and Newman (2010)). Moreover,

Mendoza and Terrones (2008) found that 33 (22) percent of credit booms observed in the 1965-2006

period in developed (emerging) economies occurred after periods of large financial reforms. Looking

at specific countries, the credit booms of Central and Eastern European transition economies in

the aftermath of their financial liberalization, and those observed in the Baltic states in the mid

2000’s, just before they entered the European Union, are good examples.5 In both cases there was

significant financial innovation, and since these countries had not liberalized financial markets or

been in the EU before, there was little relevant history on which to base expectations.

We model learning following the approach proposed by Cogley and Sargent (2008b). They offer

an explanation of the equity premium puzzle by modelling a period of persistent pessimism caused

by the Great Depression. They assume high and low states for consumption growth, with the true

transition probabilities across these states unknown. Agents learn the true probabilities over time

as they observe (without noise) the realizations of consumption growth. Similarly, in our setup, the

true probabilities of switching across leverage regimes are unknown, and agents learn about them

over time.

This paper is also related to the broader macro and finance literature studying models with

learning. The finance literature on learning and asset pricing, particularly on the implications

of learning for stock price volatility, is quite vast. Earlier works on this subject include Bulkley

and Tonks (1989), Barsky and Long (1993), Timmermann (1993) and Timmermann (1996). On

the macro side, most of the literature focuses on learning from noisy signals (see, for example,

Blanchard, L’Huillier, and Lorenzoni (2008), Boz (2009), Boz, Daude, and Durdu (2008), Edge,

Laubach, and Williams (2007), Lorenzoni (2009), Van Nieuwerburgh and Veldkamp (2006), and

the survey by Evans and Honkapohja (1999)). The informational friction in models like ours

and Cogley and Sargent (2008b) is fundamentally different, because there is no signal extraction

problem. Agents observe realizations of the relevant variables without noise. Instead, there is

imperfect information about the true transition probability distribution of these variables. The
5See Lipschitz, Lane, and Mourmouras (2002) for a discussion of capital flows to transition economies and the

resulting policy challenges.
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financial innovations that led to the U.S. credit crisis provide a natural laboratory to study the

effects of this class of learning models, because the new financial products and the new regulatory

regime under which they were traded clearly lacked the time-series data needed to infer the true

probability of “catastrophic failure” of credit markets (i.e., the probability of switching to a low-

leverage regime).

In the macro and finance learning literature, the work of Zeira (1999) is closest in spirit to

the analysis we conduct here. Zeira argued that financial liberalization or structural changes in

productivity could be followed by booms and crashes because of “informational overshooting.”

The key similarity between our work and Zeira’s is the idea that agents need to learn the true

characteristics of a new asset pricing environment. In Zeira’s model, this is captured by an increase

in dividend growth with an unknown duration and by assuming that agents update their beliefs

about a future time in which high dividend growth will end. So long as they observe high dividend

growth, their beliefs about future dividend realizations increase leading to a boom in stock prices.

Then when agents finally observe the end of the dividends’ boom, expectations of future profts

fall and hence asset prices collapse. In more recent related work, Lansing (2009) also studies asset

pricing bubbles in an endogenous growth model with technological shocks, and Adam, Kuang, and

Marcet (2011) study housing booms and current account imbalances in G7 countries using a learning

model with a collateral constraint in which Bayesian learning about housing prices amplifies the

effects of interest rate cuts.

The credit constraint used in our model is similar to those widely examined in the macro liter-

ature on financial frictions and in the international macro literature on Sudden Stops. When these

constraints are used in RE stochastic environments, precautionary savings reduce significantly the

long-run probability of states in which the constraints are binding (see Mendoza (2010) and Durdu,

Mendoza, and Terrones (2009)). In our learning model, however, agents have significantly weaker

incentives for building precautionary savings than under rational expectations, until they attain

the long-run equilibrium in which they have learned the true riskiness of the financial environment.

Since agents borrow too much during the optimistic phase, the economy is vulnerable to suffer a

large credit crunch when the first switch to a regime with low leverage occurs.

Our credit constraint also features the “systemic” pecuniary externality present in several mod-

els of financial crises. In particular, agents do not internalize the implications of their individual

actions on credit conditions because of changes in equilibrium prices, and this leads to “overbor-

rowing” relative to debt levels that would be acquired without the externality. The studies on
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overborrowing like those by Uribe (2006), Korinek (2008), and Bianchi (2009) explore whether

credit externalities can generate excessive borrowing in decentralized equilibria relative to a con-

strained social optimum. Our paper makes two contributions to this line of research. First, we

show that the discovery of risk generates sizable overborrowing (relative to the RE decentralized

equilibrium), because of the unduly optimistic expectations of agents during the optimistic phase of

the learning dynamics. This remains the case even in variants of our model with credit constraints

that do not include the credit externality. Second, we provide the first analysis of the interaction

between the credit externality and the underpricing of risk driven by a process of “risk discovery.”

Our work is also related to the literature on credit booms. The stylized facts documented by

Mendoza and Terrones (2008) show that credit booms have well-defined cyclical patterns, with

the peak of credit booms preceded by periods of expansion in credit, asset prices, and economic

activity followed by sharp contractions. Most of the models of financial crises, however, emphasize

mechanisms that amplify downturns and explain crashes but leave booms unexplained. In this

regard, our model aims to explain both the boom and the bust phase of credit cycles.

Finally, our paper is also related to some of the recent macro/finance literature on the 2008

financial crisis that emphasizes learning frictions and financial innovation, particularly the work of

Howitt (2010) and Favilukis, Ludvigson, and Van Nieuwerburgh (2010). Howitt studies the inter-

action of expectations, leverage and a solvency constraint in a representative agent setup similar

to ours, and he shows that adaptive learning about asset returns leads to periods of “cumulative

optimism” followed by “cumulative pessimism,” and this can lead to a crisis. Our analysis differs

in that we study Bayesian learning, instead of adaptive expectations, and we model learning about

the persistence of a financial regime, defined in terms of the maximum leverage ratio specified by

a collateral constraint.6 Favilukis, Ludvigson, and Van Nieuwerburgh (2010) analyze the macroe-

conomic effects of housing wealth and housing finance in a heterogenous agents, DSGE model with

credit constraints. They study transition dynamics from an environment with high financial trans-

action costs and tight credit limits to one with the opposite features. Our analysis has a similar

flavor, but we focus on the effects of imperfect information and learning on macro dynamics, while

they study a rational expectations environment.
6There is also an interesting contrast across the two studies in terms of the motivation for focusing on learning to

study the financial crisis. Howitt argues that the learning friction matters because agents learn in adaptive fashion
about the behavior of asset returns, in a financial regime that is in fact unchanged, while we argue that it matters
because agents learn gradually the true persistence of a new financial regime, while they have perfect information
about the random process that drives dividends.
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The remainder of this paper proceeds as follows: Section 2 describes the model and the learning

process. Section 3 examines the model’s quantitative implications. Section 4 concludes.

2 A Model of Financial Innovation with Learning

We study a representative agent economy in which risk-averse individuals formulate optimal plans

facing exogenous income fluctuations. The risk associated with these fluctuations cannot be fully

diversified because asset markets are incomplete. Individuals have access to two assets: a non-

state-contingent bond and an asset in fixed supply (land). The credit market is imperfect, because

individuals’ ability to borrow is limited not to exceed a fraction κ of the market value of their land

holdings. That is, κ imposes an upper bound on the agents’ leverage ratio.

The main feature that differentiates our model from typical macro models with credit frictions

is the assumption that agents have imperfect information about the regime-switching probabilities

that drive fluctuations in κ.7 Specifically, we model a situation in which financial innovation starts

with an initial shift from a low-leverage regime (κl) to a regime with higher ability to leverage (κh).

Agents do not know the true regime-switching probabilities between κl and κh in this new financial

environment. They are Bayesian learners, so in the long-run they learn these true probabilities

and form rational expectations. In the short-run, however, they form their expectations with the

posteriors they construct as they observe realizations of κ. Hence, they “discover” the true riskiness

of the new financial environment only after they have observed a sample with enough regime

realizations and regime switches to estimate the true regime-switching probabilities accurately.

We assume that the risk-free interest rate is exogenous in order to keep the interaction between

financial innovation and learning tractable. At the aggregate level, this assumption corresponds

to an economy that is small and open with respect to world capital markets. This is in line with

recent evidence suggesting that in the era of financial globalization even the U.S. risk-free rate has

been significantly influenced by outside factors, such as the surge in reserves in emerging economies

and the persistent collapse of investment rates in South East Asia after 1998 (see Warnock and

Warnock (2006), Bernanke (2005), Durdu, Mendoza, and Terrones (2009), Mendoza, Quadrini, and

R̀ıos-Rull (2009)). Moreover, post-war U.S. data from the Flow of Funds published by the Federal

Reserve show that, while pre-1980s the United States was in virtual financial autarky, because the
7In previous work we studied a similar informational friction but in a setup in which the credit constraint does

not depend on market prices. In that scenario, the distortions produced by the learning process in the aftermath of
financial innovation do not interact with the credit externality present in the model we study here.
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fraction of net credit of U.S. nonfinancial sectors financed by the rest of the world was close to

zero, about one half of the surge in net credit since the mid-1980s was financed by the rest of the

world (see Mendoza and Quadrini (2010)). Alternatively, our setup can be viewed as a partial

equilibrium model of the U.S. economy that studies the effects of financial innovation on household

debt and residential land prices, taking the risk-free rate as given, as in Corbae and Quintin (2009)

and Howitt (2010).

2.1 Agents’ Optimization Problem

Agents act atomistically in competitive markets and choose consumption (ct), land holdings (lt+1)

and holdings of one-period discount bonds (bt+1), taking as given the price of land (qt) and the

gross real interest rate (R) so as to maximize a standard intertemporal utility function:

Es
0

[ ∞∑

t=0

βtu(ct)

]
(1)

It is critical to note that Es
t represents expectations conditional on the representative agent’s beliefs

formulated with the information available up to and including date t. As we explain below, these

beliefs will differ in general from the rational expectations formulated with perfect information

about the persistence of the financial regime, which are denoted Ea
t .

The agents’ budget constraint is:

ct = ztg(lt) + qtlt − qtlt+1 − bt+1

R
+ bt (2)

Agents operate a concave neoclassical production function g(lt) subject to a stochastic TFP shock

zt. Since land is in fixed aggregate supply, a linear production technology could also be used. We

will use the curvature of g(lt), however, to calibrate the model so that the condition that arbitrages

returns across bonds and land is consistent with U.S. data on the risk-free interest rate and the

value of residential land as a share of GDP (see Section 3 for details).

TFP shocks follow an exogenous discrete Markov process (which can be enriched to include

also interest rate shocks). For these shocks, we assume that agents know their true Markov process

without informational frictions. That is, they know the Markov transition matrix π(zt+1 | zt) and

the corresponding set Z of M possible realizations of z at any point in time (i.e., zt ∈ Z = {z1 <

10



z2 < .... < zM )). Alternatively, we could assume that TFP shocks are also affected by imperfect

information.

Frictions in the credit market force agents to comply with a collateral constraint that limits the

value of debt (given by bt+1/R since 1/R is the price of discount bonds) to a time-varying fraction

κt of the market value of their land holdings:

bt+1

R
≥ −κtqtlt+1 (3)

In this constraint, κt is a random variable that follows a “true” Markov process characterized by a

standard two-point, regime-switching process with regimes κh and κl, with κh > κl, and transition

probabilities given by F a = pa(κt+1 | κt).8 The continuation transition probabilities are denoted

F a
hh ≡ pa(κt+1 = κh | κt = κh) and F a

ll ≡ pa(κt+1 = κl | κt = κl), and the switching probabilities

are F a
hl = 1 − F a

hh and F a
lh = 1 − F a

ll . The long-run probabilities of the high- and low-leverage

regimes are Πh = F a
lh/(F a

lh + F a
hl) and Πl = F a

hl/(F a
lh + F a

hl) respectively, and the corresponding

mean durations are 1/F a
hl and 1/F a

lh. The long-run unconditional mean, variance, and first-order

autocorrelation of κ are:

Ea[κ] = (F a
lhκh + F a

hlκ
l)/(F a

lh + F a
hl) (4)

σ2(κ) = Πh(κh)2 + Πl(κl)2 − (E[κ])2 (5)

ρ(κ) = F a
ll − F a

hl = F a
hh − F a

lh (6)

As explained earlier, agents know κh and κl but do not know F a. Hence, they make decisions

based on their individual beliefs characterized by Es which evolve over time. Using µ to denote

the Lagrange multiplier on the credit constraint, the agents’ optimality conditions for bonds and

land are:

u′(ct) = βREs
t

[
u′(ct+1)

]
+ µt (7)

qt(u′(ct)− µtκt) = βEs
t

[
u′(ct+1)

(
zt+1g

′(lt+1) + qt+1

)]
. (8)

8One could also specify a continuous AR(1) process for κ such as κt = mt +κt−1 + εt. The different regimes could
be captured with a shift in the mean: m ∈ {mh, ml} and the agents could learn about the process governing m. We
conjecture that this specification would yield similar results as agents could turn optimistic about the persistence of
the high mean regime for κ.

11



With the key caveat that agents use subjective beliefs to form expectations, these conditions are

standard from models with credit constraints. Following Mendoza (2010), we can show that the

second condition implies a forward solution for land prices in which the future stream of land

dividends is discounted at the stochastic discount factors adjusted for the shadow value of the

credit constraint:

qt = Es
t



∞∑

j=0

(
j∏

i=0

M t+1+i
t+i

)
zt+1+jg

′(lt+1+j)


 , M t+1+i

t+i ≡ βu′(ct+1+i)
u′(ct+i)− µt+iκt+i

(9)

Defining the return on land as Rq
t+1 ≡ (zt+1g

′(lt+1) + qt+1)/qt and the period marginal utility

of consumption as λt+1 ≡ βu′(ct+1), the excess return on land can be expressed as:

Es
t

[
Rq

t+1 −R
]

=
(1− κt)µt − covs

t (λt+1, R
q
t+1)

Es
t [λt+1]

(10)

Thus, as in Mendoza (2010), the borrowing constraint enlarges the standard premium on land

holdings, driven by the covariance between marginal utility and asset returns, by introducing di-

rect and indirect effects. The direct effect is represented by the term (1−κt)µt. The indirect effects

are represented by the fact that the credit constraint hampers the agents’ ability to smooth con-

sumption, which reduces covs
t (λt+1, R

q
t+1), and tilts consumption towards the future, which lowers

Es
t [λt+1] . Moreover, since the expected land returns satisfy qtE

s
t [R

q
t+1] ≡ Es

t [zt+1g
′(lt+1) + qt+1],

we can rewrite the forward solution for the agents’ land valuation as:

qt = Es
t



∞∑

j=0

(
j∏

i=0

(
1

Es
t [R

q
t+1+i]

))
zt+1+jg

′(lt+1+j)


 . (11)

The expressions in (10) and (11) imply that the collateral constraint lowers land prices because

it increases the rate of return at which future land dividends are discounted. Note also that land

valuations are reduced at t not just when the constraint binds at t , which increases Es
t [R

q
t+1], but

also if agents expect that the constraint can bind at any future date, which increases Es
t [R

q
t+1+i]

for some i > 0. While these effects are at work even when expectations are formed rationally with

knowledge of the true Markov process of κ, condition (11) also suggests that the learning process and

the collateral constraint interact in an important way. For instance, suppose the credit constraint

was binding at t. Pessimistic beliefs such that agents expect higher future land returns because
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of tight credit conditions will depress more current land prices than under rational expectations,

which will tighten more the collateral constraint.

The economy has a fixed unit supply of land, hence market clearing in the land market implies

that the land holdings of the representative agent must satisfy lt = 1 for all t, and the rest of the

equilibrium conditions reduce to the following:

u′(ct) = βREs
t

[
u′(ct+1)

]
+ µt (12)

qt(u′(ct)− µtκt) = βEs
t

[
u′(ct+1)

(
zt+1g

′(1) + qt+1

)]
(13)

ct = ztg(1)− bt+1

R
+ bt (14)

bt+1

R
≥ −κtqt1 (15)

2.2 General Features of the Learning Setup

Following Cogley and Sargent (2008b), our learning setup features two-point passive learning with-

out noise, so that the belief transition probability matrix denoted by ps
t (κt+1 | κt) converges to its

true value ps
t (κt+1 | κt) → pa(κt+1 | κt) for sufficiently large t. With this setup, agents learn about

the transition probability matrix only as they observe realizations of the shocks. In particular, they

learn about the true regime-switching probabilities of κ only after observing a sufficiently long set

of realizations of κh and κl. 9

This learning setup fits nicely our goal of studying a situation in which financial innovation

represents an initial condition with a state κh but with imperfect information about the true

riskiness of this new environment. Agents are ignorant about the true transition distribution of κ,

since there is no data history to infer it from. Over time, if they observe a sequence of realizations of

κh for a few periods, they build optimism by assigning a probability to the possibility of continuing

in κh that is higher than the true value. We refer to this situation as the “optimistic phase.” Such

optimism by itself is a source of vulnerability, because it is quickly reversed into a “pessimistic

phase” with the opposite characteristics as the first few realizations of κl hit the economy. In

addition, during the optimistic phase, the incentives to build precautionary savings against the risk

of a shift in the ability to leverage are weaker than in the long-run RE equilibrium. This increases

the agents’ risk of being caught “off-guard” (i.e., with too much debt) when the first shift to the

low-leverage regime occurs.
9Time alone does not determine how fast agents learn. The order in which κ realizations, and switches between

realizations, occur also matters.
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Modeling imperfect information in this fashion implies a deviation from rational expectations

in the sense that agents form expectations having only “partial” knowledge of the true stochastic

process driving fluctuations in κ.10 This is a key feature of our model, because it highlights the role

of the short history of a new financial regime in hampering the ability of agents to correctly assess

risk. This approach seems better suited for studying the role of financial innovation in causing the

financial crisis, as opposed to a standard signal extraction problem.

Since κ is exogenous, we are modeling a passive learning structure from and about exogenous

variables, which facilitates significantly the analysis and numerical solution of the model. In partic-

ular, it allows us to separate the formation and evolution of beliefs from the dynamic optimization

problem that agents solve, because agents cannot benefit from experimenting with the latter in

order to improve the former. In light of this, we follow a two-stage solution strategy to analyze the

model.

In the first stage, we use Bayesian learning to generate the agents’ sequence of posterior density

functions {f(F s | κt)}T
t=1. Each of these density functions (one for each date t) is a probability

distribution over possible Markov transition matrices F s. Since agents do not know the true

transition matrix F a, the density function changes with the sequence of realizations observed up

to date t (i.e.,
{
κt, κt−1, ..., κ1

}
where κt = (κt, κt−1, ..., κ1)) and with the initial date-0 priors, as

we explain below. If date T is high enough to accommodate sufficient sampling of regime switches

across κh and κl, the sequence {f(F s | κt)}T
t=1 converges to a distribution with all its mass in F a.

The second part of the solution characterizes the agent’s optimal plans and the recursive equi-

librium by adopting Kreps’s Anticipated Utility (AU) approach to model dynamic optimization

with Bayesian learning. The AU approach focuses on combining the sequences of posterior densi-

ties obtained in the first part, {f(F s | κt)}T
t=1, with chained solutions from a set of “conditional”

AU optimization problems. These problems are conditional on the posterior density function of

F s that agents form with the history of realizations up to each date t. In contrast, full Bayesian

dynamic optimization takes into account projections of the effect of future κ realizations on the

evolution of beliefs. This is generally of limited tractability, however, because it requires a large

state space that includes counters carrying the observed number of switches across regimes. Cogley

and Sargent (2008a) show that the optimal consumption plans and asset prices obtained using AU

are very accurate approximations of those obtained with full Bayesian optimization, even in an
10In a more general sense, however, agents in our model are rational inasmuch as Bayesian expectations are rational

given the incomplete information on which they are based.
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environment with incomplete markets, CRRA preferences (which induce precautionary savings),

and large regime-switching income shocks.11 The remainder of this Section examines in more detail

the Bayesian learning setup and the construction of the model’s recursive AU equilibrium.

2.3 Learning and the Sequence of Beliefs

The learning framework takes as given an observed history of realizations of T periods of leverage

regimes, denoted by κT , and a prior of F s for date t = 0, p(F s), and it yields a sequence of posteriors

over F s for every date t, {f(F s | κt)}T
t=1.

12 At every date t, from 0 to T , the information set of the

agent includes κt as well as the possible values that κ can take (κh and κl).

Agents form posteriors from priors using a beta-binomial probability model. Since agents know

the realization vector of κ, information is imperfect only with regard to the Markov transition matrix

across κ′s, and, because κ can only take two values, this boils down to imperfect information about

F a
hh and F a

ll . The other two elements of the transition matrix of κ are recovered using F a
ii +F a

ij = 1,

where F a
ij denotes the true probability of switching from state i to state j.

The agents’ posteriors about F s
hh and F s

ll have Beta distributions as well, and the parameters

that define them are determined by the number of regime switches observed in a particular history

κt. As in Cogley and Sargent (2008b), we assume that the priors for F s
hh and F s

ll included in p(F s)

are independent and determined by the number of transitions assumed to have been observed prior

to date t = 1. More formally,

p(F s
ii) ∝ (F s

ii)
nii

0 −1(1− F s
ii)

nij
0 −1 (16)

where nij
0 denotes the number of transitions from state i to state j assumed to have been observed

prior to date 1.

The likelihood function of κt conditional on F s
hh and F s

ll is obtained by multiplying the densities

of F s
hh and F s

ll:

f(κt | F s
hh, F s

ll) ∝ (F s
hh)(n

hh
t −nhh

0 )(1− F s
hh)(n

hl
t −nhl

0 )(1− F s
ll)

(nlh
t −nlh

0 )(F s
ll)

(nll
t −nll

0 ). (17)
11The quality of the approximation begins to deteriorate when the CRRA coefficient is set higher than 5. In our

calibration it will be set at 2.
12In describing the learning problem, we employ the notation used by Cogley and Sargent (2008b).
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Multiplying the likelihood function by the priors delivers the posterior kernel:

k(F s | κt) ∝ (F s
hh)(n

hh
t −1)(1− F s

hh)(n
hl
t −1)(1− F s

ll)
(nlh

t −1)F s
ll

(nll
t −1), (18)

and dividing the kernel using the normalizing constant M(κt) yields the posterior density:

f(F s | κt) = k(F s | κt)/M(κt) (19)

where

M(κt) =
∫∫

(F s
hh)(n

hh
t −1)(1− F s

hh)(n
hl
t −1)(1− F s

ll)
(nlh

t −1)(F s
ll)

(nll
t −1) dF s

hhdF s
ll.

The number of transitions across regimes is updated as follows:

nij
t+1 =





nij
t + 1 if κt+1 = κj and κt = κi,

nij
t otherwise.

Note that the posteriors are of the form F s
hh ∝ Beta(nhh

t , nhl
t ) and F s

ll ∝ Beta(nlh
t , nll

t ), and that

the posterior means satisfy:

Et[F s
hh] = nhh

t /(nhh
t + nhl

t ), Et[F s
ll] = nll

t /(nll
t + nlh

t ) (20)

These properties are important because they show that the posteriors and posterior mean of the

continuation probability of a particular regime change only when at date-t that same regime is

observed. Since in a two-point, regime-switching setup continuation probabilities also determine

mean durations, it follows that both the persistence and the mean durations of leverage regimes

can be learned only as the economy actually experiences κl or κh.13

We illustrate the learning dynamics of this setup by means of a simple numerical example. We

choose a set of values for F a
hh, F a

ll , and initial priors, and then simulate the learning process for

300 quarters (75 years) using a hypothetical sequence of κ realizations produced by a stochastic

simulation of the true Markov-switching process. The results are plotted in Figure 4, which shows
13 If priors, as well as F a

hh and F a
ll , are correlated, learning would likely be faster, because agents would update their

beliefs about both F s
hh and F s

ll every period, instead of updating only one or the other depending on the regime they
observe. But this is akin to removing some of the informational friction by assumption. In an extreme case, imagine
that F a

hh = F a
ll and that the agents know about this property of the model. In this case, agents know an important

characteristic of the transition probability matrix (i.e. that is symmetric), which weakens the initial premise stating
that they do not know any of its properties. Agents would learn about the persistence of both regimes no matter
which one they observe.
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Figure 4: Evolution of Beliefs
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Notes: This figure plots the evolution of beliefs about F s
hh (top panel), F s

ll (middle panel), and the associated realiza-

tions of κ (lower panel). The horizontal red lines in the upper two panels mark the true values of the corresponding

variables.

the time paths of Et[F s
hh] and Et[F s

ll] based on the beliefs formed at each date t in the horizontal

axis, after observing the corresponding κt shown in the bottom panel. The true regime-switching

probabilities are set to F a
hh = 0.95 and F a

ll = 0.5. These values are used only for illustration

purposes (they are not calibrated to actual data as in the solution of the full model in Section 3).

In addition, the date-0 priors are set to F s
hh ∼ Beta(0.7, 0.7) and F s

ll ∼ Beta(0.7, 0.7). With these

priors, the agents update their beliefs about the persistence of the high-leverage regime to around

0.708 after observing κ1 = κh.

The most striking result evident in Figure 4 is that financial innovation can lead to significant

underestimation of risk. Specifically, the initial sequence of realizations of κh observed until just

before the first realization of κl (the “optimistic phase”) generates substantial optimism. In this

example, the optimistic phase covers the first 30 periods. The degree of optimism produced during

this phase can be measured by the difference between Et[F s
hh] and F a

hh (shown in the horizontal

line of the top panel). As the Figure shows, the difference grows much larger during the optimistic

phase than in any of the subsequent periods. For example, even though the economy remains in κh
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from around date 40 to date 80, the magnitude of the optimism that this period generates is smaller

than in the initial optimistic phase. This is because it is only after observing the first switch to

κl that agents rule out the possibility of κh being an absorbent state. As a result, Et[F s
hh] cannot

surge as high as it did during the initial optimistic phase. Notice also that the first realizations of

κl generate a “pessimistic phase,” in which Et[F s
ll] is significantly higher than F a

ll , so the period of

unduly optimistic expectations is followed by a period of unduly pessimistic expectations.

Figure 4 also reflects the result showing that the beliefs about Et[F s
hh] and Et[F s

ll] are updated

only when the economy is in the high- (low-) leverage state. This is evident, for example, in the

initial optimistic phase (the first 30 periods), when Et[F s
ll] does not change at all. This feature of

the learning dynamics also explains why in this example Et[F s
hh] converges to its RE counterpart

faster than Et[F s
ll]. Given that the low-leverage regime is visited much less frequently, it takes

longer for the agents to learn about its persistence.

2.4 Recursive Anticipated Utility Competitive Equilibrium

We define the model’s AU competitive equilibrium in recursive form. Since in the quantitative

analysis we solve the model by policy function iteration on the equilibrium conditions (12)-(15), we

formulate the recursive equilibrium using these conditions instead of a Bellman equation (Appendix

A describes the solution method in detail). The state variables in the recursive equilibrium are

defined by the triple (b, z, κ).

The solution strategy works by breaking down the problem into a set of AU optimization

problems (AUOP) that are conditional on the beliefs agents have each period. We add time indices

to the policy and pricing functions in the recursive equilibrium so as to identify the date of the

beliefs that match the corresponding AUOP. This solution strategy works because the law of iterated

expectations still holds (see Appendix B in Cogley and Sargent (2008b)).

In each AUOP, agents form expectations about the future conditional on the information and

beliefs they have in the current planning period. As noted before, however, this is not the same

as full Bayesian optimization, because under each AUOP the agents do not take into account

how future estimates of continuation probabilities will vary as future realizations of κ change the

counters.14 To take this into account requires integrating the updating of beliefs into the agent’s

optimization problem, and carrying as a state variable for date t the four-dimensional vector nt

14Intuitively, the AU approach captures the risk of fluctuations in future κ′s but not the uncertainty about future
changes in their transition probabilities, while the Bayesian optimization captures both.
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that includes every possible permutation of the counters that can be observed up to date t. By

contrast, the AUOPs are analogous to solving a sequence of policy functions and Bellman equations

one for each set of beliefs obtained at each date t = 1, ..., T . This is still a demanding computational

problem, but less vulnerable to the curse of dimensionality than the full Bayesian problem.

Consider the date-t AUOP. At this point agents have observed κt , and use it to update their

beliefs. Thus, we pull f(F s | κt) from the sequence of posterior density functions solved for in

the first part of our solution strategy. This is the posterior about the distribution of F s that

agents form, given that they have observed κt and given their initial priors. Using (20), we

compute Et[F s
hh] and Et[F s

ll] and construct the date-t transition probability matrix Es
t [κ

′|κ] ≡
 Et[F s

hh] 1−Et[F s
hh]

1−Et[F s
ll] Et[F s

ll]


 . The solution to the date-t AUOP is then given by policy functions

(b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ)) and a pricing function qt(b, z, κ) that satisfy the equilibrium con-

ditions (12)-(15) rewritten in recursive form:

u′(ct(b, z, κ)) = βR


∑

z′∈Z

∑

κ′∈{κh,κl}
Es

t [κ
′|κ]π(z′|z)u′(ct(b′, z′, κ′))


 + µt(b, z, κ) (21)

qt(b, z, κ)(u′ (ct(b, z, κ))− µt(b, z, κ)κ) = (22)

β


∑

z′∈Z

∑

κ′∈{κh,κl}
Es

t [κ
′|κ]π(z′|z)u′(ct(b′, z′, κ′))

(
z′g′(1) + qt(b′, z′, κ′)

)



ct(b, z, κ) = zg(1)− b′t(b, z, κ)
R

+ b (23)

b′t(b, z, κ)
R

≥ −κqt(b, z, κ)1 (24)

The time subscripts that index the policy and pricing functions indicate the date of the beliefs used

to form the expectations (which is also the date of the most recent observation of κ, which is date

t in this case). Equations (21)-(24) incorporate the market-clearing condition in the land market,

which requires l = 1. Moreover, given (21)-(22), the pricing function qt(b, z, κ) satisfies the asset

pricing equation (11).

It is critical to note that solving for date-t policy and pricing functions means solving for a full

set of optimal plans over the entire (b, z, κ) domain of the state space and conditional on date-t

beliefs. Thus, we are solving for the optimal plans agents “conjecture” they would make over the

infinite future acting under those beliefs. For characterizing the “actual” equilibrium dynamics

to match against the data, however, the solution of the date-t AUOP determines optimal plans
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for date t only. This is crucial because beliefs change as time passes, and each subsequent κt is

observed, which implies that the policy and pricing functions that solve each AUOP also change.

Thus, history matters for the “full solution” of the model because assuming different histories κt

yields different sequences of beliefs, and hence different sets of policy functions. If at any two dates

t and t + j we give the agents the same values for (b, z, κ), they in general will not choose the same

bond holdings for the following period because Es
t [κ

′|κ] and Es
t+j [κ

′|κ] will differ.

We can now define the model’s recursive AU equilibrium as follows:

Definition Given a T -period history of realizations κT = (κT , κT−1, ..., κ1), a recursive AU compet-

itive equilibrium for the economy is given by a sequence of policy functions [b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ)]Tt=1

and pricing functions [qt(b, z, κ)]Tt=1 such that: (a) b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ) and qt(b, z, κ)

solve the date-t AUOP conditional on Es
t [κ

′|κ]; (b) Es
t [κ

′|κ] is the conjectured transition probabil-

ity matrix of κ produced by the date-t posterior density of F s determined by the Bayesian passive

learning process summarized in Equation (19).

Intuitively, the complete solution of the recursive equilibrium is formed by chaining together the

solutions for each date-t AUOP. That is, the equilibrium dynamics at each date t = 1, ...T for a par-

ticular history κT are given by [b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ), qt(b, z, κ), Es
t [κ

′|κ]]Tt=1. At each date

in this sequence, b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ), qt(b, z, κ), are the recursive functions that solve the

corresponding date’s AUOP using Es
t [κ

′|κ] to form expectations. Hence, the sequence of equilibrium

decision rules for bond holdings that the model predicts for dates t = 1, ..., T would be obtained by

chaining the relevant decision rules as follows: b2 = b′1(b, z, κ), b3 = b′2(b, z, κ), ..., bT+1 = b′T (b, z, κ).

3 Quantitative Analysis

In this section we calibrate the model to U.S. data and study its quantitative predictions for the

following financial innovation experiment: At t = 1, financial innovation begins with the first

realization of κh, followed by an optimistic phase in which the same regime continues for J periods.

At date J + 1 the first realization of κl occurs, and the financial regime remains in state κl from

dates J + 1 to T . In short, the experiment assumes κt = κh for t = 1, ..., J and κt = κl for

t = J + 1, ..., T .
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3.1 Baseline Calibration

The functional forms for preferences and technology are standard: u(ct) = c1−σ
t
1−σ and g(lt) = lαt . The

calibration requires setting values for the parameters (α, β, σ,R), the Markov process for z, and the

parameters of the learning setup, which include κh, κl, nhh
0 , nhl

0 , nll
0 , nlh

0 , J and T . We propose a

set of baseline calibration parameters based on U.S. data, and later we conduct sensitivity analysis

to evaluate the robustness of the results to changes in the baseline calibration.

We calibrate the model to a quarterly frequency at annualized rates. The beginning of the

financial innovation experiment is dated as of 1997Q1. This is in line with the observations that

1997 was the year in which the first CDS was issued at JPMorgan and the first publicly-available

securitization of loans under the New Community Reinvestment Act took place. Moreover, 1997 is

also the year in which the net credit assets-GDP ratio shown in Figure 1 started on its declining

trend. We date the start of the financial crisis as of 2007Q1, to match the early stages of the

subprime mortgage crisis after the Fall of 2006. This is in line with the observation that the net

fraction of banks reporting tighter standards for mortgage loans jumped significantly to 16 percent

in 2007Q1, as shown in Figure 3.15

The above timing assumptions imply that the first realization of κh occurred in 1997Q1 and κh

continued to be observed trough 2006Q4. Hence, the optimistic phase lasts J = 40 quarters. The

first realization of κl occurred in 2007Q1 and κl continued to be observed through 2008Q4. Thus,

the learning period has a total length of T = 48 quarters, in which the first 40 realizations of κ are

κh and the remaining 8 are κl.

In the pre-financial-innovation period, before 1997, we assume that there was only one financial

regime with κ = κl, and hence the only source of uncertainty were TFP shocks. The values

of (α, β, σ,R) and κl are then set so that the model’s stochastic stationary state under these

assumptions is consistent with various averages from U.S. data from the pre-financial-innovation

period.

We set the real interest rate to 2.66 percent annually. This is the average ex-post real interest

rate on U.S. three-month T-bills during the period 1980Q1-1996Q4.

Our data proxy for b are the net credit market assets of U.S. households and non-profit organi-

zations in the Flow of Funds dataset, and our proxy for ql is the series on the value of residential
15 These dates are broadly in line with those assumed by Campbell and Hercowitz (2009), who study the welfare

implications of a transition from a high- home-equity-requirement regime to a low-equity-requirement regime. They
assume that the former corresponds to the 1982-1994 period, while the latter starts in 1995.
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land estimated by Davis and Heathcote (2007). These are the data plotted in Figure 1 as shares of

GDP. The 1980Q1-1996Q4 average ratios of the value of residential land and net credit market as-

sets relative to GDP are 0.477 and -0.313 respectively. The two ratios are fairly stable around these

averages throughout the 1980Q1-1996Q4 period, in contrast with the sharp trends they display

after 1996.

As described in the Introduction, we construct a macro estimate of the household leverage

ratio, or the loan-to-value ratio, by dividing net credit market assets by the value of residential

land. Then, we set the value of κl by combining the 1980Q1-1996Q4 average of this ratio with the

calibrated value of R (assuming also that the collateral constraint was binding in the pre-financial-

innovation era). This yields κl = 0.659/1.0266 = 0.642. The fact that net credit assets and land

values were fairly stable prior to 1997, as shown in Figure 1, supports the idea of using this constant

value of κl to characterize the pre-financial-innovation regime.

The value of κh is set equal to the 2006Q4 leverage ratio, hence κh = 0.926. This represents the

largest leverage ratio that the economy was able to support in the new financial regime just before

the financial crisis hit. Note, however, that κh does not always bind in the new regime. First, as

the economy moves from the pre-financial-innovation regime to the regime with stochastic κ, agents

build up debt over time, and hence the equilibrium leverage ratio does not jump to its new ceiling

immediately as the new regime begins. Second, the new regime features two possible realizations

of κ that are occasionally binding, so κh only binds with some probability in the long-run.16

The value of σ is set to σ = 2.0, the standard value in quantitative DSGE models, and β is set

so that the pre-financial-innovation model matches the observed standard deviation of consumption

relative to output over the 1980Q1-1996Q4 period, which is 0.8. This procedure yields β = 0.91.

Notice that, given the calibrated value of R, the rate of time preference exceeds the real interest

rate (i.e., βR = 0.934 < 1). This is important because it ensures the existence of an ergodic

distribution of bond holdings given that asset markets are incomplete. Intuitively, this occurs

because of the interaction between the precautionary savings motive, which pushes for increasing

bond holdings, and the incentive to tilt consumption towards the present, and hence reduce bond

holdings, because βR < 1. Consumption tilting and precautionary savings will also play a key role

later in our analysis of the macro dynamics induced by financial innovation.
16 Our calibrated values of κh and κl are in line with the parameter values that Favilukis, Ludvigson, and Van

Nieuwerburgh (2010) chose to calibrate their collateral constraint (0.75 in their tight credit regime and 1 in their
loose credit environment).
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Table 1: Baseline Parameter Values

β Discount factor (annualized) 0.91

σ Risk aversion coefficient 2.0

c Consumption-GDP ratio 0.670

A Lump-sum absorption 0.321

r Interest rate (annualized) 2.660

ρ Persistence of endowment shocks 0.869

σe Standard deviation of TFP shocks 0.008
α Factor share of land in production 0.025
L Supply of land 1.0
κh Value of κ in the high securitization regime 0.926

κl Value of κ in the low securitization regime 0.642

F a
hh True persistence of κh 0.964

F a
ll True persistence of κl 0.964

nhh
0 ,nhl

0 Priors 0.0205

Using the 1980Q1-1996Q4 average of the value of residential land to GDP, the value of R, and

the condition that arbitrages the returns on land and bonds, which follows from the optimality

conditions (12)-(13), we obtain and implied value for α.17 This yields α = 0.0251.

We normalize mean output to 1 (since L = 1 and the unconditional mean of z also equals 1), and

calibrate the model so that the observed average pre-financial-innovation ratios of consumption (c̄)

and bonds (b̄) to GDP are consistent with the resource constraint in the average of the stochastic

stationary state for that financial regime.18 The observed average ratio of net credit assets to

GDP in the 1980Q1-1996Q4 period yields b̄ = −0.313. In the case of the consumption-GDP ratio,

the data show a slight trend, so we use the last observation of the pre-financial-innovation regime

(1996Q4). This implies c̄ = 0.670. To make these values of b̄ and c̄ consistent with the resource

constraint in the average of the stochastic steady state, we need to take into account the fact that

investment and government absorption are included in the data but not in the model. To adjust

for this discrepancy, we introduce a fixed, exogenous amount of autonomous spending A, so that

the long-run average of the resource constraint is 1 = c̄ + A − b̄(R − 1)/R . Given b̄ = −0.313,

c̄ = 0.6707 and R = 1.0266 the value of A follows as a residual A = 1− c̄ + b̄(R− 1)/R = 0.321.

17 Since the model with a single financial regime set at κl (i.e., the pre-financial-innovation regime) yields a collateral
constraint that is almost always binding and a negligible excess return on land, we use the approximation E[Rq] ≈ R,
and then conditions (12) and ( 13) imply: α = (ql/zlα)[R− 1 + β−1(1− βR)(1− κl)]

18 Consumption and GDP data are from the International Financial Statistics of the IMF.
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The Markov process for z is set to approximate an AR(1) process (ln(zt) = ρ ln(zt−1)+et) fitted

to HP-filtered real U.S. GDP per capita using data for the period 1965Q1-1996Q4. The estimation

yields ρ = 0.869 and σe = 0.00833, which imply a standard deviation of TFP of σz = 1.68 percent.

We use Tauchen and Hussey (1991)’s quadrature method to construct a Markov approximation to

this process assuming a vector of 9 realizations. The transition probability matrix and realization

vector are available on request.

The counters of the beta-binomial distribution that determine the initial priors of F s
hh and F s

ll

are calibrated as follows: First, for simplicity, we impose the symmetry condition n0 = nhl
0 = nhh

0 =

nll
0 = nlh

0 , so that there is only one counter to calibrate. Second, we calibrate n0 so that the model

matches an estimate of the observed excess return on land relative to the risk free rate for 1997Q2,

which corresponds to the one-period-ahead expected excess return in the first date of the financial

innovation experiment (date 1 in the experiment corresponds to 1997Q1). The data proxy for this

excess return is the 1997Q2 spread on the Fannie Mae residential MBS with 30-year maturity over

the T-bill rate. This excess return was equal to 47.6 basis points.19 The model matches this excess

return with n0 = 0.0205.

Since the model calibration is at a quarterly frequency, ideally we would like to use excess returns

for securities with a quarterly maturity. However, residential MBSs do not have such short-term

maturities, because the underlying assets tend to be long-term mortgages. Still, using the spread

for the 30-year Fannie Mae MBS is useful because it actually makes it harder for the model to

generate optimism. This is because securities with a quarterly maturity would likely have sharply

lower spreads than the 30-year securities, and thus the latter can be taken as an upper bound

for the more accurate spreads. But higher spreads imply higher values of n0, which weaken the

mechanism generating optimism and pessimism in the learning process. Thus, by calibrating the

priors to match the excess returns of the 30-year MBS we are looking at a “lower bound” of the

optimism that the model can generate.

Figure 5 shows the density functions of the initial priors of F s
hh and F s

ll for Beta distributions with

three different (nii
0 , nij

0 ) pairs. The Beta(0.0205, 0.0205) distribution corresponds to the baseline

calibration. In this case, the priors have a U-shaped distribution with most of the mass concentrated

around 0 and 1. Since this case assumes n0 = nii
0 = nij

0 , the distribution is symmetric with a mean

19 The source of this excess return quote is Bloomberg. One complication that arises with using the 30 year MBS
is the prepayment risk that tends to widen spreads. We use “option-adjusted spreads” from the same source that
are adjusted for prepayment risk. The unadjusted spread is 117.6 basis points. We use the adjusted spread since we
do not explicitly model prepayment risk, and hence we cannot expect the model to capture the portion of the spread
due to this risk.
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of 0.5 (and a variance of 0.240). By contrast, consider the Beta(1, 1) distribution, which implicitly

assumes that at least one observation of switch and continuation of each κ regime has been observed.

This distribution also has a mean of 0.5, but the distribution is uniform over the (0,1) range, and

it has a much lower variance than the Beta(0.0205, 0.0205) distribution (0.083 v. 0.240).

Figure 5: Beta Distributions
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Figure 5 also plots the Beta(40, 0.0205) distribution, which matches the beliefs about F s
hh

that the learning process generates at period 40 of the financial innovation experiment. At this

point, agents have observed 40 transitions from κh to κh and thus form beliefs characterized by a

distribution that is highly skewed to the right, with most of the mass concentrated around 1. This

reflects the high degree of optimism that the learning process can create.

We illustrate further how the initial priors yield optimistic and pessimistic beliefs by studying

the evolution of Et[F s
hh] and Et[F s

ll] over time as the sequence of realizations of κ is observed. Setting

symmetric initial priors for F s
hh and F s

ll with a low value of n0, as with the Beta(0.0205, 0.0205)

baseline, implies that agents conjecture that there are four “most likely” scenarios before the first

realization of κ is observed: a) Both the high- and low-leverage regimes are extremely persistent,

i.e., F s
hh ≈ 1 and F s

ll ≈ 1; b) The high-leverage regime is extremely persistent and the economy

switches to the low-leverage regime rarely and for a short time, i.e., F s
hh ≈ 1 and F s

ll ≈ 0; c) The

low-leverage regime is extremely persistent and the high- leverage regime occurs rarely and has a

short duration, i.e., F s
hh ≈ 0 and F s

ll ≈ 1, d) Neither regime is persistent and the economy constantly
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moves between the two, i.e., F s
hh ≈ 0 and F s

ll ≈ 0 . After observing the first few realizations of κh,

however, the agents can rule out scenarios c) and d).

Figure 6: Evolution of Beliefs under Alternative Priors
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uniformly distributed.

Figure 6 plots the values of Et[F s
hh] and Et[F s

ll] corresponding to the beliefs in each of the 48

periods of the learning experiment, using both Beta(0.0205, 0.0205) and Beta(1, 1) as date-0 priors.

The plots start at date 1 after the first realization κh has been observed. The bottom panel shows

that, as discussed before, unless the economy switches to the low-leverage state, the agents cannot

learn about the persistence of that state. Hence, their beliefs about this state remain unchanged at

the initial prior of 0.5 for the first 40 periods. In contrast, the top panel shows that observing the

long spell of κh leads agents to update their beliefs about the persistence of this regime, and they

become optimistic very quickly. In the baseline Beta(0.0205, 0.0205) case, the average F s
hh moves

very close to 1 in just one quarter, while with the Beta(1, 1) priors the buildup of optimism is more

gradual, but still after 8 quarters the average F s
hh approaches 90 percent. This rapid adjustment

of beliefs also occurs with the surge of pessimism that follows the first observation of κl in period

41: With Beta(0.0205, 0.0205) priors, agents update their average average F s
ll from 0.5 to almost 1

in period 41, and with the Beta(1, 1) priors the change is slower but again by period 48, the mean

of F s
ll is approaching 90 percent.
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It is important to note that neither Beta(0.0205, 0.0205) or Beta(1, 1) introduce bias in the

initial priors in favor of optimism or pessimism. This differs from the approach followed by Cogley

and Sargent (2008b), who studied the implications of inducing initial pessimism into the agents’

priors. In our calibration, agents are not optimistic prior to period 1 because Beta(0.0205, 0.0205)

yields initial beliefs such that Et[F s
hh] = Et[F s

ll] = 0.5. This Beta distribution does imply that

agents’ initial beliefs consider as “most likely” one of the four initial scenarios a)-d) mentioned

above (i.e., they believe that either the switches in κ will be infrequent, as in scenarios a)-c), or

that there will be a switch every period, as in scenario d)), but there is no initial bias in favor of

either κh or κl.

A second important feature of the beliefs illustrated in Figure 6 is that, even tough the changes

in Et[F s
hh] between periods 1 and 40 are small, they still imply nontrivial changes in the agent’s

perceived riskiness of the financial environment. For example,for t = 1 we obtained E1[F s
hh] = 0.98,

which implies that the perceived mean duration of κh is 50 quarters and the coefficient of variation

of κ is about 5.9 percent. In contrast, for t = 40 we have E1[F s
hh] = 0.999, which is not that

different from 0.98, but implies a perceived mean duration of κh of 1000 quarters and a coefficient

of variation of κ about 1.3 percent. Hence, the small change in Et[F s
hh] increases the perceived mean

duration of κh and lowers sharply the variability of κ. As we show below, this reduces incentives

for precautionary savings significantly. Moreover, these effects are very nonlinear, with the mean

duration diverging towards ∞ as Et[F s
hh] approaches 1 from below.

At this point we have calibrated all of the parameters that are needed for solving the model.

Notice in particular that the true transition probability matrix F a is not needed. Solving the

AUOPs requires the sequence of beliefs about the transition probability matrix ({f(F s | κt)}T
t=0),

which is determined with the parameters we already set. Still, calibrating the true transition

probability matrix is necessary if we want to evaluate the macroeconomic effects of the imperfect

information friction by comparing the solutions against the standard RE solution in which the

“true” transition matrix of the financial regimes is known.

We calibrate F a
hh so that the mean duration of high-leverage regimes is in line with the estimated

duration of credit boom episodes in industrial economies, which Mendoza and Terrones (2008)

estimated at about 7 years. This implies F a
hh = 0.964. With this calibration of F a

hh and conditional

on observing κh at date 1, the probability of observing κh the following 39 periods is 0.241. Thus,

the “true” probability of observing the long spell of κh that we assume in our financial innovation
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experiment, and that produces substantial optimism, is about 1/4. We assume a symmetric process

by setting F a
ll = 0.964.

An interesting implication of calibrating the “true” process of κ in this way is that the model

features a long-run credit cycle consistent with average duration features of actual credit cycles,

so that agents eventually learn that the economy will display a credit cycle with the duration and

frequency that is typical of industrial countries. In the short-run, however, their expectations can

deviate sharply from these regularities, along the lines of Reinhart and Rogoff (2009) “this-time-

is-different” argument.

3.2 Quantitative Findings

The quantitative analysis is based on four sets of results derived from the numerical solutions:

Long-run distributions of bond positions, forecast functions of macroeconomic aggregates, average

changes in these aggregates at the “turning points” of the learning experiment, and expected excess

returns. We compare the results of the learning model with the RE model (i.e., a model which

retains the collateral constraint with its credit externality and debt deflation mechanism, but does

not have a learning friction) and with a fixed price-learning (FPL) model in which land in the

collateral constraint is valued at a constant price set to the long-run average (i.e., a model that

retains the learning friction but removes the credit externality and the Fisherian deflation channel).

In this case, the collateral constraint becomes bt+1

R ≥ −κtq̄lt+1.

3.2.1 Ergodic distributions

Figure 7 plots “conjectured” ergodic distributions of b for dates 1, 8, 40, 41 and 48 in the learning

model and the true ergodic distribution of the RE model. We label the former as “conjectured”

because the actual ergodic distribution of the learning model is the same as the one of the RE

model, since in the long-run agents learn the true regime-switching process F a, and thus the long-

run equilibrium is the same as under rational expectations. The “conjectured” ergodic distributions

for the other dates in the learning experiment are the agents’ projections, or conjectures, of what

the long-run equilibrium would look like if they forecast the dynamics of the financial regime using

their current beliefs. Plotting the conjectured and RE long-run distributions together is useful for

illustrating the impact of the optimism and pessimism driving the model’s dynamics on the agents

“willingness” to borrow or save. Appendix B provides details on the computation of these long-run

distributions.
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Figure 7: Ergodic Distributions of Bond Holdings
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Notes: This figure plots the ergodic distribution of bond holdings implied by the learning model in periods 1 (initial

period), 8, 40 (peak of optimism), 41, and 48 as well that of the rational expectations model marked by “RE.”

Consider first the conjectured distribution for period 1. Recall that the mean of bond holdings

pre-financial-innovation was -0.31. Hence we can tell that already by period 1 agents conjecture

that the support of the long-run distribution of bonds will shift sharply to the left (i.e. support

higher debt levels). But comparing the period-1 distribution with the new RE distribution for the

regime-switching κ process post-financial-innovation, it is clear that agents are also projecting to be

saving much less than they eventually will in the new stochastic steady state. The RE distribution

is a bimodal distribution because of the high persistence of the two κ regimes in the true Markov

process, and agents are thus assessing the risk of the financial environment correctly.

Compare now the RE ergodic distribution with the conjectured ergodic distribution for period

40. Large debt ratios (bond holdings in the interval [-0.59, -0.45]) are never a long-run equilibrium

outcome in the RE model, but they take most of the mass of the long-run distribution of bond

holdings that is projected on the basis of the agents’ period-40 beliefs. Something similar happens

also much earlier than date 40 because, as shown before, it takes observing only the first few

realizations of κh for agents to turn very optimistic relative to the RE transition probabilities. By

period 8 agents already conjecture that debt positions as high as 0.54 range are probable long-run

equilibria, while in the RE ergodic distribution they have zero probability.
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As optimism builds, the highest debt conjectured to have positive long-run probability rises,

and the mass of probability assigned to debt levels larger than the largest debt under rational

expectations also rises. This process peaks at the peak of the optimistic phase in date 40. In short,

during this phase, agents are willing to “overborrow” (take on more debt at the averages of the

conjectured ergodic distributions of b) than what is ever optimal in the RE model, and “undersave”

(build less precautionary savings, or conjecture they can attain a lower average of b) than what is

optimal in the RE model. When the first realization of κl hits and the pessimistic phase starts,

the opposite effects take over and they peak at date 48. By then, agents are “underborrowing” and

“oversaving” substantially.

3.2.2 Forecast functions

Forecast functions are useful for illustrating the model’s equilibrium dynamics during the 48 periods

of the learning experiment. We construct these forecast functions by using the sequence of beliefs

and decision rules of each AUOP to trace the dynamics of the expected values of the endogenous

variables along the model’s AU recursive equilibrium path. Intuitively, the algorithm that computes

the forecast functions uses a law of motion for the evolution of the probability of the economy being

in each triple (b, z, κ) as we move from date 0 to date 48. This law of motion can be computed for

any triple of initial conditions (b, z, κ) in the state space, but we are interested in the triple that

approximates the state of the U.S. economy in 1996Q4 (i.e. the initial conditions at the beginning

of date 1 in the financial innovation experiment). Thus, we start at date 1 with all the probability

concentrated in the coordinate of initial conditions (b1, z1, κ
h) where b1 = −0.345 (the observed

net credit assets as a share of GDP for 1996Q4) and z1 = 1. Then, for each subsequent date, the

value of κ is set to the corresponding realization in the κT sequence (κh for t = 2, ..., 40 and κl for

t = 41, ..., 48), the transitions across values of z are computed with the Markov process of z, and

the transitions across points in the state space of b are governed by the policy function b′t(b, z, κ) of

the date-t AUOP. The procedure is similar to the standard forecast functions of a RE model, except

that the policy function is time-varying because it varies with each set of beliefs in the sequence
[
f(F s | κt)

]48

t=1
(see Appendix B for details).

Figure 8 plots the forecast functions for the choice of bond holdings as a share of output (b′/y),

consumption, the price of land, and the savings rate (GSF/y) as percent deviations from their long-

run means in the learning, RE and FPL models. Recall that long-run means in the learning and

RE models are identical because the ergodic distributions of the two are the same. The solid (blue)
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Figure 8: Forecast Functions
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Notes: This figure plots the forecast functions of bond holdings-output ratio, price of land, consumption, and

gross saving flow-output ratio (GSF/y) as percentage deviations from their long run means implied by the rational

expectations scenario. GSF/y is calculated as ((b′/R) − b)/y. Realizations of κ are as described in the text, κh in

the first 40 periods and κl in the remaining 8. Date-0 b′/y is the 1996:Q4 observation from data (since debt data

are end of period basis), so that the date-1 b′/y is the first endogenous choice of b′ under κh, given an initial state

determined by the data point from 1996:Q4. “Fixed q” refers to the scenario with the asset price on the right hand

side of the credit constraint fixed at 0.456 which is the long run average of prices.
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lines correspond to the learning model, the dashed (green) lines are for the FPL model, and the

dotted (red) lines represent the RE model. Note that even the RE model generates some dynamics

in this exercise, because the initial condition b1 is not the long-run mean of the new financial

regime with stochastic κ, and also because we are using a particular time series of realizations of κ

(instead of averaging across possible κ realizations at each date t). Thus, these forecasts functions

are conditional on the particular history κT that we assumed.

The forecast functions for bonds in the top-left panel show that during the optimistic phase

agents consistently borrow more in the learning model than in both the RE and the FPL models.

In the first two periods after financial innovation is introduced, the three models predict similar

debt dynamics, but after that the optimism and the debt-deflation feedback loop at work in the

learning model produce a much larger decline in bond holdings, while the bond dynamics in the

RE and FPL models are similar.20 Bond holdings as a share of output decline by as much as

21 percentage points below the long-run average at the peak of optimism of the learning model

in period 40. These dynamics are in line with the downward trend in net credit market assets

observed in the data. Interestingly, the combination of the learning friction and the debt-deflation

channel delivers a much stronger decline in assets than the alternatives that retain only one of the

two mechanisms. In the RE model there is no buildup of optimism to push for overborrowing, and

in the FPL model there is no endogenous feedback from higher land prices into higher collateral

and thus higher borrowing ability.

The switch to the pessimistic phase in period 41 brings about a large correction in bond holdings,

which bounce back about 54 percentage points in the learning model. An adjustment of this

magnitude is an equilibrium outcome, despite CRRA preferences and incomplete markets, because

the arrival of the first realization of κl at date 41 is almost like a large, unexpected shock, in

the sense that by date 40 agents believed that the state κh in which they had been living was

almost absorbent (i.e., the average of F s
hh at date 40 was very close to 1). Moreover, this large κ

shock triggers a large Fisherian deflation effect (see below), which contributes to enlarge the debt

adjustment. Bond holdings also jump up in the RE and FPL models, because of the switch from

κh to κl in a state in which the collateral constraint was binding. But the adjustments are much

smaller. The debt reversal in the RE case is about half the size of that in the learning model, and it
20 This occurs because (a) in the FPL model the price is fixed at the long-run average that is very similar to the

RE model, and (b) the RE price displays very small deviations from its long-run average. As a result, and since the
values of κ are the same in both models, the debt allowed by the collateral constraint in both models is about the
same.
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reflects the effect of the debt-deflation mechanism in the absence of a switch to pessimistic beliefs.

The FPL model yields the smallest correction, which isolates the effect of the switch to pessimistic

beliefs without amplification due to the Fisherian deflation channel.

As agents overborrow during the optimistic phase in the learning model, they also bid more

aggressively for the risky asset. This increases the price of land significantly, as shown in the top-

right plot of Figure 8. This contrasts with the RE case, in which the price of land declines relative to

the pre-financial-innovation price that prevailed at date 0. This occurs because the price of land in

the RE model is falling to a lower long-run average in the financial innovation regime. In turn, the

mean price of land in the RE model (with stochastic κ) is lower than in the pre-financial-innovation

regime (with a constant κl) because, even though agents know the true distribution of κ, they now

face uncertainty about κ, since it is now a random variable. Hence, financial innovation implies a

higher mean κ but also a higher variance of κ. The former enables the agents to borrow more, and

therefore demand more of the risky asset and bid up its price, but the latter gives them an incentive

to hold less of the risky asset, because the new financial environment is riskier and they are risk

averse. We find that, if the gap between κh and κl is small, the “mean effect” dominates leading to

higher land prices in the RE model, but as the gap widens, the “variance effect” becomes stronger

and the mean land price in the RE model is lower than in the pre-financial-innovation equilibrium

(as is the case in our baseline calibration).

The FPL model generates a larger asset price boom during the optimistic phase and a smaller

price crash compared with the other two models. This is because the FPL model rules out the

Fisherian deflation by construction, and hence at date 41 the downward spiral on land prices,

collateral values, and debt that is at work in the other two models is not active. Moreover, the

fixed land price for collateral valuation also serves as a limited asset price guarantee, which produces

a larger price boom during the optimistic phase than in the learning and RE models. The guarantee

is limited in the sense that it is not a guarantee on the price at which land is traded, but only on

the price at which land is valued for collateral. Accordingly, the FPL model produces a smaller

reversal in debt in period 41, as agents are able to borrow more than in the other two models

because of the constant land price for collateral. For the same reason, the larger land price increase

in the optimistic phase does not feed back into a large debt expansion.

The center and bottom panels of Figure 8 show the forecast functions for the savings rate and

consumption. Because of the large magnitude of the changes that occur at date 41, we split these

plots into two pairs. The center pair shows dynamics for the full 48 periods of the experiment.
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The bottom pair shows only the first 30 periods. In studying these plots, it is critical to recall that

the forecast functions show the effects of the learning experiment on macro variables for the given

history of realizations κT , averaging across TFP shocks, and starting from average productivity

and the 1996Q4 observation of b.

Consider first what consumption dynamics would look like in a perfect-foresight model where we

switch from the constrained pre-financial innovation steady state with κl to a hypothetical financial

innovation deterministic steady state for a regime with κh. The two steady states are well-defined

because βR < 1, and hence the steady state of bonds is b = −κq (κ), where q(κ) is the steady

state land price, which is increasing in κ.21 Thus, the increase in κ yields a lower steady state

for b (higher steady state debt) because both κ and q(κ) increase. But higher steady state debt

means lower steady state consumption, since the non-financial wealth of the economy is invariant

to changes in κ and the debt has to be serviced. Thus, financial innovation tilts the time profile of

consumption. On impact, when κ is first increased, and for a few periods after that, consumption

rises above the pre-financial-innovation level, but then it drops monotonically until it reaches its

new steady state below the pre-financial-innovation level. This consumption tilting effect is also

at work in the stochastic model, but is weaker because of the precautionary savings motive, which

implies a smaller decrease in bond holdings and a smaller drop in consumption.

Now consider the forecast functions of the learning, RE and FPL models showing consumption

dynamics in the center- and bottom-right plots of Figure 8. The fact that the dynamics for the first

40 periods are similar in all three models indicates that the consumption tilting effect dominates

those dynamics. This is because consumption converges quickly to its new long-run average (which

is identical in the learning and RE models, and very similar in the FPL model). There is over-

consumption in the learning model relative to the RE and FPL models in the early stages after

the switch to κh, because of the larger increase in debt (i.e., decline in bond holdings). In the first

two periods, consumption is about the same in all three models, but the overconsumption in the

learning model is clear between the 3rd and 10th periods. After period 10, however, the dynamics

driven by consumption tilting dominate in all three models. Consumption then remains smooth

(as we are averaging across TFP and keeping κ constant at κh), until we arrive at date 41 and κ

switches to κl.
21 The closed-form solution for the steady state land price with the collateral constraint binding is: q(κ) =

(αβ)/ [β(R− 1) + (1− βR)(1− κ)] .
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At date 41, as explained earlier, the κ switch is almost like a large, unexpected shock in the

learning and FPL models. In the learning model, which also has the Fisherian deflation, this

produces a dramatic collapse in consumption. This is in line with the findings in Mendoza (2010)

and Mendoza and Smith (2006), showing that in Fisherian deflation models there are equilibria

outside the ergodic distribution of wealth, where the economy could land as a result of unexpected

shocks, in which the impact response of consumption can be around -80 percent. In those models,

however, precautionary savings and perfect information about the Markov processes of shocks rule

out consumption drops of that magnitude from the equilibrium dynamics, while in our model the

learning friction allows us to support them as short-run AU equilibria.

The RE and FPL models also produce large consumption declines when the economy switches

to κl, but both are significantly smaller than in the learning model. In the RE model this is again

because precautionary savings and the lack of overborrowing prevented a large accumulation of

debt in the optimistic phase. In the FPL model the smaller consumption drop occurs because there

is no Fisherian deflation of collateral values, which yields the smallest correction in debt, and hence

implies the smaller consumption drop.

Figure 9 shows the evolution of the shadow value of the collateral constraint, expressed in

terms of an implicit endogenous interest rate premium that measures the difference between the

stochastic intertemporal marginal rate of substitution in consumption (u′(ct)/βEs
t [u

′(ct+1)]) and

the real interest rate R. Using condition (12), we can express this premium as µt/(u′(ct) − µt).

Thus, if the constraint does not bind, there is no interest rate premium, and when it binds the

premium rises as the constraint becomes more binding.

The dynamics of the interest premium confirm our previous argument stating that, when finan-

cial innovation starts, the constraint becomes nonbinding, and then it begins to bind after some

time. In particular, in the baseline learning model the constraint begins to bind after period 5.

Then it increases monotonically, at a decreasing rate, to converge to about 5.5 percent at the peak

of the optimistic phase. In contrast, the FPL model generates a larger premium of up to 7 percent,

while the RE model generates a premium of just above 2 percent in the optimistic phase. This is

natural because in the FPL model rising land prices do not contribute to relax the borrowing limit,

and in the RE model the constraint is less binding because individuals desire to save more with

rational expectations than with optimistic beliefs.

When the switch to the pessimistic phase takes place at date 41, there is a large jump in

interest premia, in line with the large reversals in debt and consumption. The correction is the
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Figure 9: Interest Rate Premium
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Notes: This figure plots the interest rate premium that represents the difference between the intertemporal MRS

and the risk-free rate, which can be simplified to µt
u′(ct)−µt

. The premium in period 41 is 3803, 199, and 81 percent

in baseline, RE, and FPL scenarios, respectively.

largest in the learning model, followed by the RE model, and the FPL model last. After date 41,

however, the constraint becomes nonbinding for 4 periods in the learning model and for 1 period in

RE. Afterwards the interest premia become positive, hovering around 7 percent in the FPL model

throughout the rest of the experiment and gradually increasing to reach 8.9 and 8.2 percent in the

learning and RE models respectively.

3.2.3 Turning Points

Table 2 lists changes in average bond-output ratios and land prices, calculated with the data of

the forecast functions, at the key turning points: the peak of optimism at date 40 relative to the

pre-financial-innovation initial conditions, and at the end of the learning experiment relative to

the peak of optimism (which we label as financial crisis). The figures shown in this table are

the differences in the levels of b/y and q projected by the forecast functions, but not expressed in

deviations from long-run means (as was the case in the plots of Figure 8).

This table illustrates two main results. First, the learning model can explain a significant part

of the increases in debt and land prices before the financial crisis. Second, the learning model
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Table 2: Average Changes at the Turning Points

Data RE FPL Baseline

Peak of Optimism:

E[(b/y)40 − (b/y)0] -0.355 -0.083 -0.089 -0.223

E[(ql/y)40 − (ql/y)0] 0.280 -0.025 0.305 0.122

Financial Crisis:

E[(b/y)48 − (b/y)40] 0.023 0.122 0.133 0.254

E[(ql/y)48 − (ql/y)40] -0.149 0.013 -0.305 -0.121

Note: Data column reports the difference between 2006Q4 and 1996Q4 observations in the top panel and the

difference between 2008Q4 and 2006Q4 observations in the bottom panel. In columns 2-4 the realizations of κ are

set to the path described in the text. Period 0 in all three scenarios corresponds to the 1996Q4 data observations,

which are the initial conditions. qL/y is the aggregate market value of residential land divided by output.

generates significantly higher debt in the optimistic phase than the RE or FPL models, and a much

larger land price increase than the RE model.

The learning model can explain 63 percent of the increase in household debt observed in the

data (in the model b/y falls by almost 23 percentage points v. 36 percentage points in the data).

Moreover, the decline in bond holdings in the learning model is about 14 percentage points of

GDP larger than in the RE or FPL models. The comparison with the RE model shows again

that financial innovation, when agents are uncertain about the true nature of the new financial

environment, produces significant overborrowing relative to what RE predicts. The comparison

with the FPL model shows, also in line with our previous findings, that the interaction of the

learning friction with the debt-deflation channel has significant quantitative implications for the

size of the credit boom that the model can produce.

Comparing the changes in land prices, we find that the baseline learning model accounts for

about 44 percent of the land price boom observed in the data (the increase in q in the model reaches

almost 13 percentage points at date 40, v. 28 percentage points in the data). In line with what

we noted in the comparison of forecast functions, the RE model yields a slight fall, instead of an

increase, in q the optimistic phase, and the FPL model generates a larger price increase than the

learning model.

Consider now the changes in bond holdings and land prices during the financial crisis. The

baseline learning model generates a large debt reversal of about 25 percentage points (and this
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after an even larger reversal between periods 40 and 41, as shown in Figure 8). By contrast, in the

data the correction was only 2.3 percentage points. The model clearly overestimates the reversal in

debt, but part of the discrepancy is due to the fact that bonds in the model are one-period bonds

while the average maturity of household debt data is significantly higher than a quarter. Thus,

agents in the model repay and re-finance their debt every period, but in the data this is not the

case, particularly with long-term debt contracts such as 30-year mortgages. As a result, the switch

to κl leads to an abrupt decline in debt in the model, while in the data this has an effect that is

spread over time. Indeed, as shown in the top panel of Figure 1, the reversal in the household debt

ratio has continued, and by the second quarter of 2010 it reached about 10 percentage points of

GDP.

The model does a nice job at matching the observed decline in land prices during the financial

crisis (12.1 and 14.9 percentage points in model and data respectively). This is after an initial

price collapse between periods 40 and 41 that is significantly larger than what the model predicts

between periods 40 and 48. In contrast, the FPL model now produces a larger price decline, about

twice as large as in the data, and the price change in the RE model is again small and in the

opposite direction from both the learning and FPL models.

3.2.4 Projected Excess Returns on Land

Next we investigate the projections of future excess land returns that underlie the discounting of

future land dividends for the computation of q at key dates in the model’s dynamics. Looking at

these projections helps us illustrate further the agents’ perception of the riskiness of land during the

optimistic and pessimistic phases. Figure 10 plots the t + j-period-ahead expected excess returns

for up to 50 periods ahead of three initial dates t =1, 40, and 41. These are expectations that

agents form looking into the future given beliefs and decision rules as of periods 1, 40 or 41. In

each scenario, we set the initial state of nature so that b is at the mean bond holdings predicted

by the forecast function in Figure 8 for the corresponding date, κ to its corresponding value in the

history κt, and TFP to its mean value.

Focusing on expected excess returns projected as of date 1, in the top-left panel of Figure 10,

the excess returns in the RE model exceed slightly those of the baseline learning setup up to the

10th period, and aftewards the ordering reverses and the learning model projects slightly higher

returns. This pattern justifies the result showing that the land price at date 1 is slightly lower in

the RE model than in the baseline learning model (because agents in the latter expect relatively
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lower excess land returns in the first 10 periods, which carry more weight in discounting land

dividends–and recall that land dividends are simply driven by the exogenous TFP process, which is

the same in all three models). The FPL model yields expected excess returns that lie significantly

below both the RE and baseline models, and this is consistent with the sharply higher date-1 land

price produced by the FPL model. The FPL model has lower excess returns because the removal

of the debt-deflation channel weakens the direct and indirect effects of the collateral constraint on

excess returns shown in Equation (10).

Figure 10: Excess Returns
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Notes: Expected excess returns for 50 periods ahead of initial dates t =1, 40, and 41, computed using the beliefs and

associated equilibrium pricing function of the each date’s optimization problem. The expected returns are conditional

on the bond holdings predicted for each initial date by the forecast functions of Figure 8, the mean value of TFP

(z = 1), and the value of kappa indicated in the history of realizations for each date t. The one period ahead

expected excess return in period 41 (bottom panel) is 1418, 74, and 30 percent in baseline, RE, and FPL scenarios,

respectively.

As agents reach the peak of the optimistic phase after observing κh for 40 periods, expected

excess returns ahead of date 40 (top-right panel) are significantly lower than they were predicted

to be as of date 1 in the two models that incorporate the learning friction (the baseline and FPL

models). As a result, these two models produce sharply higher land prices at date 40 than at

date 1. Moreover, comparing now the projected returns paths in the three models as of date 40

39



itself, projected returns in the baseline learning model become significantly smaller than in the RE

model, and the FPL model predicts even smaller excess returns than both the RE and the learning

model. This is because in the FPL model beliefs turn as optimistic as in the learning model, but

the removal of the debt-deflation mechanism reduces risk premia on holding land.

At date 41, when the switch to the low-leverage regime takes place, the ordering of projected

excess returns across RE and baseline models reverses (bottom panel of Figure 10). Projected

excess returns for period 42 are very high in all three models, because they reflect the strong direct

effect of the borrowing constraint tightening sharply as κ switches. This direct effect includes both

an exogenous effect, simplu because of the switch to κl, and an endogenous effect, because of the

shadow value of the borrowing constraint (for the excess return at t = 42 expected as of t = 41, the

direct effect in the right-hand side of (10) is given by (1 − κl)µ41). Moreover, this direct effect is

the strongest in the baseline model that combines both learning and Fisherian deflation, followed

by the RE model that retains Fisherian deflation, and with the FPL model last. This is also in line

with the size and ordering of interest rate premia displayed in period 41 in Figure 9.

After the initial severe tightening of the borrowing constraint, and the abrupt debt adjustment

that follows, the borrowing constraint is not projected to bind in the baseline and RE models for

a couple of periods, before enough debt is built up to make the constraint bind again. In the

FPL model the constraint is projected to remain binding, but still the debt adjustment reduces

the tightness of the constraint sharply and hence the projected returns. Beyond the adjustment

phase of the first 10 periods, projected returns in the baseline model exceed those of the other two

models, and those of the FPL model are sharply lower. This pattern of projected excess returns is

consistent with the results showing that at date 41 the value of q is the highest in the FPL model,

followed by the RE model, and with the baseline learning model price sharply lower than the other

two.

It is also interesting to note that during periods 2 to 7 ahead of date 41, the projected excess

returns of the RE model exceed those of the learning model. This reflects the fact that the

pessimistic expectations of the baseline model result in a slower build up of debt, so that the

collateral constraint is expect to start binding a period later than under RE, and then to bind with

lower shadow values (i.e. lower µ’s) than under RE until period 10. However, since as of date 41

beliefs still favor overborrowing over the long run relative to rational expectations (compare the

projected long-run debt distribution of bonds for period 41 with the ergodic RE distribution in

Figure (7)), agents project that the borrowing constraint will eventually become more binding in
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the baseline model than in the RE model, and hence they project that land returns will converge

to a higher level.

3.2.5 Sensitivity Analysis

We now conduct a sensitivity analysis to study how changing the model’s key parameters alters

the magnitude of the turning point effects we just discussed. We focus on changes in n0, κh, κl,

β and R. Columns 3 to 8 of Table 3 report the results, and Column 2 includes the results for the

baseline learning model. Note that, in general, the parameterizations that generate larger booms

during the optimistic phase also generate larger busts in the financial crisis.

The third column of the table shows the results resetting the initial priors to n0 = 1, which

corresponds to uniformly-distributed priors. In this scenario, debt dynamics are qualitatively the

same as in the baseline scenario but the debt buildup is smaller (9 percentage points v. 22 in the

baseline). The price of land, however, is about 2 percentage points lower in period 40 than in period

1, which is sharply at odds with the nearly 12 percentage points increase produced in the baseline

case. Moreover, we found that with uniform priors, the land price follows a u-shaped trajectory in

the optimistic phase, instead of the monotonically increasing path displayed in the baseline case.

The reason for this different trajectory is that, throughout the optimistic phase, the beliefs about

the persistence of the κh regime with the uniform priors are always lower than those in the baseline.

As explained before, the means of the two distributions of priors are the same (0.5), but, with the

baseline priors, agents turn optimistic more quickly after starting to observe κhs. The mean beliefs

are the same in period 0, but the differences in the shape of the distributions of priors induce agents

to become more optimistic, and at a faster pace, in the baseline scenario.

Table 3: Sensitivity

Baseline n0 = 1 n0 = 0.01 κl = 0.7 κh = 0.9 β = 0.92 R = 1.02

E[(b/y)40 − (b/y)0] -0.223 -0.087 -0.243 -0.230 -0.213 -0.226 -0.237

E[(ql/y)40 − (ql/y)0] 0.122 -0.020 0.142 0.130 0.130 0.126 0.141

E[(b/y)48 − (b/y)40] 0.254 0.137 0.274 0.205 0.244 0.232 0.228

E[(ql/y)48 − (ql/y)40] -0.121 -0.006 -0.141 -0.089 -0.129 -0.087 -0.071

Note: The first column reproduces the baseline scenario results. The exercise conducted is the same as that explained

in the note for Table 2 with different parameter values as indicated in column headings.
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The more gradual buildup of optimism with the uniform priors affects the relative magnitude

of the effects of higher mean and higher variance of κ on land prices post financial innovation.

This explains the u-shaped trajectory of prices under uniform priors, because the effect of higher

variance dominates that of higher mean, causing a decline in the price of land, until agents have

turned optimistic enough. As agents observe more κhs, and sufficient optimism builds up, the higher

mean dominates the higher variance, but under uniform priors this requires a longer sequence of

κh than in the baseline case. Hence, if we look at an optimistic phase of more than 40 periods with

the uniform priors, we again find that at the peak of the optimistic phase the price of land would

be higher than in period 1.

The financial crisis effects on land prices and debt are also much weaker under the uniform

priors than in the baseline scenario, again because of the more gradual adjustment of the priors

(now in the switch to pessimistic beliefs and the buildup of pessimism). Debt rises by 14 percentage

points instead of 25, and the price of land falls only by 0.6 of a percentage point, instead of nearly

12 percentage points.

Reducing the initial priors to n0 = 0.01, which moves the distribution further away from uniform

priors than in the baseline case, produces larger debt and land price booms. The size of the debt

buildup is about 24 percentage points and the boom in the price of land reaches 14 percentage

points. With these priors, the Beta distribution of initial priors has even more mass concentrated

around 0 and 1 than in the baseline Beta(0.0205, 0.0205) case. Consequently, when agents observe

the first κh they turn more optimistic than in the baseline case, and hence they borrow more and

demand more of the risky asset. Similar effects are at work, but in the opposite direction, in the

pessimistic phase, and hence with n0 = 0.01 we find a larger increase in bonds and a large drop in

land prices in the financial crisis.

In contrast with what we found when changing initial priors, the magnitude of the movements

in debt and land prices at the turning points in the baseline scenario are largely robust to changes

in κh, κl, β and R around their baseline values. Increasing κl (see the fifth column of Table 3)

increases the size of the debt buildup and land price boom slightly. These slight changes occur,

even though we still have the same sequence of 40 realizations of κh at the same value as in the

baseline, because agents take into account the fact that with the higher value of κl the low-leverage

regime is not as low as it was in the baseline. This results in both a higher mean and a lower

variance of κ, which support both larger debt and higher land prices.
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Reducing κh to 0.9 (sixth column of Table 3) reduces the size of the debt buildup slightly,

because of the tighter credit constraint in the high-leverage regime that the lower κh represents.

The land price boom is slightly larger, however, because the lower κh again reduces the variability

of κ. Thus, both higher κl and lower κh increase land prices more than the baseline because both

reduce the variance of κ, while they change the debt boom in opposite directions because higher κl

increases the mean of κ but lower κh reduces it (relative to the baseline case).

The last two columns of Table 3 show the results of the sensitivity analysis for higher β and

lower R. These two cases show similar implications, with both of them generating slightly larger

debt and land price booms than in the baseline case during the optimistic phase. In contrast, the

financial crisis effects with both higher β and lower R are slightly weaker than in the baseline.

4 Conclusion

The recent financial crisis in several industrial countries was preceded by a decade of fast growth in

household debt, residential land prices, and leverage ratios, accompanied by far-reaching financial

innovation in terms of the introduction of new financial products and changes in the legal and

regulatory framework of financial markets. In this paper, we argued that financial innovation in an

environment with imperfect information and credit frictions was a central factor behind the credit

and land price booms that led to the crisis, and in the transmission mechanism that drove the crisis

itself. To make these points, we examined the interaction between financial innovation, learning,

and a Fisherian collateral constraint in a stochastic equilibrium model of household debt and land

prices.

We used the model to study the quantitative implications of an experiment calibrated to U.S.

data in which financial innovation begins with a switch to a high-leverage regime, but agents do

not know the true regime-switching probabilities across high- and low-leverage regimes. Agents

are Bayesian learners, however, so in the long-run, after observing a long history of realizations

of leverage regimes, they learn the true regime-switching transition probabilities. The collateral

constraint introduces Fisher’s classic debt-deflation amplification mechanism, providing a vehicle

for the waves of optimism and pessimism produced by Bayesian learning to have amplification

effects on debt accumulation and land prices.

In our setup, a buildup of optimism is a natural consequence of financial innovation, because

agents start without a sufficiently long time series of data to correctly evaluate the riskiness of the

43



new financial environment. Calibrating the leverage regimes to data on the ratio of net household

debt to residential land values, and the initial priors to the excess returns on the 30-year Fannie Mae

MBS in early 1997, Bayesian learning predicts that agents would turn very optimistic, very quickly

between the mid-1990s and the mid-2000s, after observing only a few quarters of the high-leverage

regime.

The debt-deflation channel plays an important role because, as optimism built up and land

prices rose, the agents’ ability to borrow also grew. Similarly, when optimism turned to pessimism,

after the first observation of the low-leverage regime, which we dated to the beginning of 2007,

after the beginning of the sub-prime mortgage crisis in the Fall of 2006, the debt-deflation channel

amplified the reversals in debt and in asset prices. This occurs because fire-sales of land drive down

land prices and reduced the agents’ ability to borrow.

The interaction of the learning friction and the debt-deflation mechanism generates a substantial

amount of overborrowing, which accounts for almost two-thirds of the massive increase in net debt

of U.S. households, and about two-fifths of the boom in residential land prices, observed between

1997 and 2006. Moreover, the model also predicts a credit crunch, a crash in land values, a collapse

in consumption and a surge in private savings when the economy experiences the first realization

of the low-leverage regime. In contrast, the size of the debt and price booms, and the subsequent

collapses, are significantly smaller in variants of the model that remove the learning friction (i.e.,

assuming rational expectations so that agents know the true regime-switching process of leverage

regimes) or the debt-deflation mechanism (i.e., leaving the learning friction in place but assuming

that land prices used to value collateral are fixed at their long-run average).

Our work has important implications for the ongoing debate on financial reforms to prevent

future financial crises. First, since by definition the true riskiness of a truly brand-new financial

regime with new securities and new regulations cannot be correctly evaluated when the new regime

starts, and little or no data is available on its performance, exposure to the credit boom-bust process

we studied in this paper comes along with the potential benefits of financial innovation. Hence,

close supervision of financial intermediaries in the early stages of financial innovation is critical.

For example, capital requirements can be used to limit overborrowing, but they have to be used

carefully, because tight regulatory constraints introduce additional distortions that undermine the

benefits of financial innovation.

Second, our work suggests that there are limitations to the benefits of taxes or capital re-

quirements designed to manage “macroprudential risk.” The argument for these taxes is that they
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work to correct the overborrowing that results from a pecuniary externality in credit markets, by

which agents fail to internalize the effect of their individual actions on the market prices that de-

termine borrowing ability (by, for example, affecting the value of collateral assets). We showed

here, however, that overborrowing can also result from optimistic beliefs, in our case due to imper-

fect information about the persistence probability of a high-leverage regime under a new financial

environment. Assuming that policymakers are as uninformed as households about how financial

markets will perform after radical structural changes, taxes on debt can address overborrowing due

to the credit externality, but cannot address overborrowing due to optimistic beliefs. Still, we do

find that the overborrowing effect of learning without the credit externality is about one half of

that produced when both learning and the credit externality are at work.

Third, the ongoing financial reform process can be viewed as a new round of radical innovation in

capital markets, now tightening their legal and regulatory framework, which will affect the types of

securities that will be available and the size of the markets in which they will trade. Hence, agents

once again will have to evaluate the riskiness of the new financial environment with subjective

beliefs based on imperfect information. As a result, the risk exists that a few years of slow credit

growth and poor performance in asset markets can lead to the buildup of pessimistic expectations

that will hamper the recovery of financial markets.
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Appendix A Solution Method

We solve each AUOP using an Euler equation method that combines price and policy function

iterations using the land pricing equation and the general equilibrium conditions (12)-(15). By

proceeding in this way, instead of solving the agents’ Bellman equation, we avoid using aggregate

states and iterations to converge on the representative agent condition matching individual and

aggregate laws of motion for bond holdings.

The full algorithm for solving the recursive AU equilibrium proceeds in these steps:

1. Define a history of realizations κT and calculate the sequence of posteriors {f(F s | κt)}T
t=1.

2. Take κ1 and the date-1 posterior f(F s | κ1) from the sequence in Step 1 and compute

Es
1[κ

′|κ] ≡

 E1[F s

hh] 1− E1[F s
hh]

1−E1[F s
ll] E1[F s

ll]


.

3. Using Es
1[κ

′|κ] and a guess for the land pricing function q1(bt, zt, κt), solve for the date-1

equilibrium conditions using a policy function iteration algorithm.

4. Use the resulting policy functions [b′1(b, z, κ), c1(b, z, κ), µ1(b, z, κ)] from Step 3 and the asset

pricing equation (11) to compute a new pricing function q̂1(bt, zt, κt).

5. Compare q̂1(bt, zt, κt) and q1(bt, zt, κt), if they satisfy a convergence criterion then the decision

rules [b′1(b, z, κ), c1(b, z, κ), µ1(b, z, κ)] and the pricing function q1(bt, zt, κt) are the solutions

of the date-1 AUOP. If not, construct a new guess of the pricing function using a Gauss-Siedel

rule and return to Step 3.

6. Move to the date-2 with history κ2 and posterior f(F s | κ2) from Step 1. Compute the

Markov transition matrix Es
2[κ

′|κ], and return to Step 3 in order to solve for the date-2

AUOP. Repeat for each date-t history κt and posterior f(F s | κt) for t = 1, ...T solving each

time for the corresponding date-t AUOP.

The passive Bayesian learning has important implications that can be useful in implementing

the above algorithm:

1. The solutions to each date-t AUOP are not functionally related (i.e., solving a particular date-

t problem does not require knowing anything about the solution for any other date). Thus,

the model can be solved by solving each date-t AUOP independently.22 Still, we can speed
22 This fact can be used to develop a strategy to speed up the full solution of the model, because in a computer

with n number of cores, we can solve n AUOPs for n different dates simultaneously.
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convergence if, whenever ||f(F s | κt+j)− f(F s | κt)|| is small enough under some metric, we

use for the date t + j AUOP initial guesses given by the date-t AUOP.

2. If j ≤ T is large enough for f(F s | κt+j) to converge to F a (for some convergence criterion),

the solutions for all dates t ≥ j collapse to a standard recursive RE equilibrium using the

true Markov process F a.

3. Since the full equilibrium solution of the intertemporal sequence of allocations and prices

from dates 1 to T is obtained by chaining the solutions of each date-t AUOP (for t = 1, ..T ),

one can think of solving the recursive equilibrium for a set of different histories
[
κT

i

]I

i=1
, each

supporting a different sequence of posterior densities f(F s | κt
i)

T
t=1. We consider only one

history κT because we take the stance that the financial innovation experiment we look at

in the data can be represented by a particular history κT , intended to match the observed

financial regimes between 1997 and 2007. The alternative would be to generate a set of I

“potential” histories
[
κT

i

]I

i=1
, which could be done using the true Markov process F a, solve

the model for each, and then take averages across these different solutions at each date t.

Appendix B Computation of Ergodic Distributions, Forecast Func-

tions, Excess Returns

B.1 Ergodic Distribution and Forecast Functions under Rational Expectations

Define the date t probability distribution over bonds, productivity and collateral coefficients in the

RE model as λt(b, z, κ). The law of motion that governs the evolution of this distribution over time

is:

λt+1(b′, z′, κ′) =
∑

z

∑
κ

∑

{b:b′=g(b,z,κ)}
λt(b, z, κ)π(z′ | z)p(κ′ | κ)

where g(b, z, κ) is the policy function that sets the optimal decision rule for bonds, π(z′ | z) is the

Markov transition probability for productivity shocks, and p(κ′ | κ) is the true Markov transition

probability of κ (with the two Markov processes assumed to be independent). The unconditional

limiting distribution of bonds, productivity and collateral coefficients is given by λ(b, z, κ), and

it represents the fixed point of the above law of motion. The algorithm computes the ergodic

distribution exactly in this way, by performing iterations of the law of motion until λt(b, z, κ) and

λt+1(b′, z′, κ′) satisfy a convergence criterion.
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Forecast functions are averages of the model’s endogenous variables computed at each date t

using the corresponding distribution λt(b, z, κ), starting from any initial condition (b0, z0, κ0) with

distribution λ0(b0, z0, κ0) = 1. By construction, just like iterations on the above law of motion

of probabilities converge to the long-run distribution, forecast functions converge to unconditional

long-run averages computed with the ergodic distribution, regardless of the initial conditions (as

long as the ergodic distribution itself is unique and invariant).

Given λt(b, z, κ), the date-t conditional probability distribution over κi for i = h, l is defined as

follows:

λ̃t(b, z | κi) =
λt(b, z, κi)∑

b

∑
z λt(b, z, κi)

Conditional forecast functions are averages for the models endogenous variables computed at

each date t using the corresponding distribution λ̃t(b, z | κi). By construction, as λt(b, z, κi) →
λ(b, z, κ), the date-t conditional distribution λ̃t(b, z | κi) converges to the corresponding long-run

conditional distribution λ̃(b, z | κi). Moreover, conditional forecast functions of any endogenous

variable converge to the corresponding conditional long-run average.

B.2 AU Forecast Functions in the Learning Model

The learning model has dynamics in the beliefs about the transition probability matrix of κ, and

hence the RE definitions of conditional and unconditional forecast functions do not apply. Intu-

itively, one can construct a set of forecast functions and ergodic distributions by using the corre-

sponding date−t beliefs to form all the expectations about future states. In light of this, we define

forecast functions in the AU learning model by averaging only over productivity shocks and tracking

the decision rules produced at each date by the corresponding set of beliefs and the corresponding

date’s AU optimization problem. Specifically, we compute forecast functions in the learning model

as follows: Take as given (b0, z0, κ0), then the relevant values of the forecast function of bonds in a
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learning period of length T with a sequence of realizations [κt]
T
t=0are:

b̂1 = E
[
b1 | (b0, z0, κ0), f(F s | κ0)

]
= h0(b0, z0, κ0; f(F s | κ0))

b̂2 = E
[
b2 | b0, f(F s | κ1)

]
=

∑

z1

∑

{b1:b2=h1(b1,z1,κ1)}
π(z1 | z0)h1

(
b1, z1, κ1; f(F s | κ1)

)

b̂3 = E
[
b3 | b0, f(F s | κ2)

]
=

∑

z2

∑

{b2:b3=h2(b2,z2,κ2)}
π(z2 | z0)h2

(
b2, z2, κ2; f(F s | κ2)

)

......

b̂T+1 = E
[
bT+1 | b0, f(F s | κT )

]
=

∑

zT

∑

{bT :bT+1=hT (bT ,zT ,κT )}
π(zT | z0)hT

(
bT , zT , κT ; f(F s | κT )

)

where π(zt | z0) = π(zt | zt−1)π(zt−1 | zt−2)...π(z1 | z0) is the probability of a particular history

of realizations of productivity up to date t (for t ≥ 0),
[
f(F s | κt)

]T

t=0
is the sequence of beliefs,

and ht

(
bt, zt, κt; f(F s | κt)

)
is the optimal decision rule for bonds determined by the date-t AUOP

using the date-t beliefs and evaluated for the states (bt, zt, κt). Note that because of the recursive

structure of the b̂′ts, the expectations that form these forecast functions are conditional not just on

date-0 states (i.e., (b0, z0, κ0),), but on the history of realizations [κt]
T
t=0 and the history of beliefs

[
f(F s | κt)

]T

t=0
.

The equivalent objects to compare with in the rational expectations model are:

b̃1 = E [b1 | (b0, z0, κ0)] = g(b0, z0, κ0)

b̃2 = E [b2 | b0] =
∑

z1

∑

{b1:b2=g(b1,z1,κ1)}
π(z1 | z0)g (b1, z1, κ1)

b̃3 = E [b3 | b0] =
∑

z2

∑

{b2:b3=g(b2,z2,κ2)}
π(z2 | z0)g (b2, z2, κ2)

......

b̃T+1 = E [bT+1 | b0] =
∑

zT

∑

{bT :bT+1=g(bT ,zT ,κT )}
π(zT | z0)g (bT , zT , κT )

We can also express the forecast functions of the learning model with a slight modification of

the treatment used under rational expectations. Define the probability distribution of TFP shocks

and bond holdings at date t in the learning model as χt(b, z). The law of motion for the evolution

of this probability over time, given the history κT of realizations of the leverage regimes, is defined

as follows:

χt+1(b′, z′) =
∑

b

∑
z

χt(b, z)π(z′ | z)It(b′, b, z, κt)
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where It(b′, b, z, κt) is a binary indicator such that It(b′, b, z, κt) = 1 ↔ b′ = ht

(
b, z, κt; f(F s | κt)

)

and zero otherwise.

At date-0, for example, we have χ0(b0, z0) = 1 for the particular initial conditions (b0, z0), and

χ0(b, z) = 0 for all other pairs (b, z). We also have that:

It(b′, b, z, κt) =





1 if b′ = ht

(
b, z, κt; f(F s|κt)

)
,

0 otherwise.

We could add the indicators for all other possible initial conditions, but since they satisfy χ0(b, z) =

0 they wash out from the law of motion from date 0 to 1. Hence we get χ1(h0

(
b0, z0, κ0; f(F s | κ0)

)
, z′)

=π(z′ | z0) for each z′ and zero otherwise (for all pairs (b′, z′) such that b′ 6= h0

(
b0, z0, κ0; f(F s | κ0)

)
).

Now we can compute the expected bonds chosen at date 1 for beginning of period 2 as:

b̂2 = E
[
b2 | b0, f(F s | κ1)

]
=

∑
b

∑
z χ1(b, z)h1

(
b, z, κ1; f(F s | κ1)

)
. At this point we can add

over all values of bonds in the state space because the probabilities already have incorporated the

information relevant for the “correct” bond positions that the system can land on in period 2 in

the learning model.

Alternatively, we can define the probability law of motion as:

χt+1(b′, z′) =
∑

z

∑

{b:b′=ht(b,z,κt;f(F s|κt))

χt(b, z)π(z′ | z)

In writing it this way, we take out the indicator function but keep track of only the relevant initial

states that can land in each b′ by constraining the set of b′s over which the summation is taken.

B.3 Expected Returns j Periods Ahead of Date t

Choose an initial triple (bt, zt, κt) with initial bond holdings set to bt = b̂t. t is the period for which

we are going to calculate the sequence of expected returns j periods ahead. b̂t stands for the mean

bond holdings at period t obtained from the forecast functions. zt is set equal to 1. κt is set to

its value used in the forecast function calculations for the corresponding period t. We calculate

expected returns for any date t + 1 + j as of date t . This calculation involves a numerator with

the sum of dividends and price of date t + 1 + j, [qt(bt+j+1, zt+j+1, κt+j+1) + d(zt+j+1)], and a

denominator with the price as of date t + j, qt(bt+j , zt+j , κt+j), all of which are projected as of the

initial date t .
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We proceed in two steps. First, we calculate the probability tree of possible states in which the

economy can land conditional on the initial triple (bt, zt, κt) up to J periods ahead. The events

that we are capturing in this probability tree are the combinations of TFP and κ shocks. Second,

we construct the Es
t [R

q
t+1+j ] sequence for j = 0, 1, ..., J . Finally, as a cross check we recover the

asset price in state (bt, zt, κt) of date t, i.e., qt(bt, zt, κt), using the sequence Es
t

(
1

Es
t+j [R

q
t+1+j ]

)
to

recalculate the date-t price as the present discounted value of dividends discounted by expected

returns.

In the first step to calculate the probability tree we put all the mass on the initial state that

we are conditioning our calculations on for j = 0. In other words,

λt
t(bt, zt, κt) = 1.

Going forward these distributions evolve according to:

λt
t+j+1(bt+j+1, zt+j+1, κt+j+1) =

∑
zt+j+1

∑
κt+j+1

∑

bt+j+1∈Ht+j+1

λt
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)E

s
t (κt+j+1 | κt+j)

for j = 0, 1, ..., J . Ht+j+1 is the set of bolding holdings chosen conditional on a triple (bt+j , zt+j , κt+j),

which is defined as Ht+j+1 = {bt+j+1 : bt+j+1 = ht

(
bt+j , zt+j , κt+j | f(F s | κt)

)}. The superscript

t of λt
t+j+1 highlights the fact that this is the date-t + j element for the law of motion that started

with initial conditions λt
t(bt, zt, κt) as of date t, so that the probabilities are conditional on date t.

In the second step, to compute the expected returns, we first take the date t + j element of the

sequence of λ′s, λt
t+j(bt+j , zt+j , κt+j). Intuitively, this is the equilibrium probability of landing in

a particular state (bt+j , zt+j , κt+j) in period t + j, j periods ahead of the initial period. We then

compute expected returns for any t + 1 + j conditional on date t as:

Es
t [R

q
t+1+j ] =

∑
zt+j+1

∑
κt+j+1

∑

bt+j+1∈Ht+j+1

∑
zt+j

∑
κt+j

λj
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)

×Es
t (κt+j+1 | κt+j)

qt(bt+j+1, zt+j+1, κt+j+1) + d(zt+j+1)
qt(bt+j , zt+j , κt+j)

where d(z) = zg′(l). Note that Es
t [R

q
t+1+j ] is in fact Es

t [R
q
t+1+j ](bt+j , zt+j , κt+j). In other words,

the one period ahead expected returns depend on the date-j triple (bt+j , zt+j , κt+j).

To confirm that the calculations in the first two steps are correct, in the third step we recalculate

qt(bt, zt, κt) as the sum of expected present discounted value of future dividends where discounting
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is done using the equity returns (see Equation 11 in the text):

qt(bt, zt, κt) =
J∑

j=0

∑
zt+j+1

∑
κt+j+1

∑

bt+j∈Hj+1

∑
zt+j

∑
κt+j

λj
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)

×Es
t (κt+j+1 | κt+j)

(
j∏

i=0

(
1

Es
t [R

q
t+1+i]

))
d(zt+j+1).

To discount date-t+j+1 dividend, we divide it by the sum of all one-period-ahead expected returns

up to that date. The calculation of expectations in this step utilizes the probability tree computed

in the first step.
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