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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now widely used for empirical

research in macroeconomics as well as for forecasting and quantitative policy analysis in

central banks. In these models, decision rules of economic agents are derived from assump-

tions about agents’ preferences and production technologies and some fundamental principles

such as intertemporal optimization, rational expectations, and competitive equilibrium. In

practice, this means that the functional forms and parameters of equations that describe

the behavior of economic agents are tightly restricted by equilibrium conditions. Conse-

quently, a careful evaluation of the DSGE model-implied restrictions is an important aspect

of empirical research.

In the past, much of the empirical work was based on linearized DSGE models which,

from an econometric perspective, take the form of restricted linear state space models. A

natural benchmark for the evaluation of such models is provided by vector autoregressions

(VARs) that relax the cross-coefficient restrictions. In fact, there exists an extensive litera-

ture that develops and applies methods to evaluate DSGE models based on comparisons with

VARs, e.g., Cogley and Nason (1994), Christiano, Eichenbaum, and Evans (2005), Del Ne-

gro, Schorfheide, Smets, and Wouters (2007), and Fernández-Villaverde, Rubio-Ramı́rez,

Sargent, and Watson (2007).

Starting with the work of Fernández-Villaverde and Rubio-Ramı́rez (2007), an increasing

number of papers that estimate nonlinear, as opposed to linearized DSGE models have been

written. Linear approximations tend to be inadequate in settings where risk matters, e.g.

asset pricing, welfare comparisons, exposure to potentially large shocks, and in environments

with non-convexities, such as occasionally binding constraints. While nonlinear DSGE mod-

els can, in principle, be compared to linear vector autoregressions, such a comparison only

reveals whether the nonlinear model captures means and autocovariance patterns of observed

macroeconomic data. The comparison is unable to shed light on the question whether the

nonlinearities generated by the structural model coincide with the nonlinearities apparent in

the data.
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The objective of this paper is to develop a class of time series models that nest non-

linearities of DSGE models and can serve as a benchmark for model evaluations. More

specifically, motivated by the popular second-order perturbation approximations of DSGE

model dynamics, we consider autoregressive models that involve quadratic terms of lagged

endogenous variables as well as interactions between current period innovations and lagged

endogenous variables. While our ultimate goal is to develop structural multivariate nonlin-

ear autoregressive models, we focus in this paper on a class of univariate models, that we

refer to as QAR(p,q) models, where “Q” stands for quadratic.1 We document some of the

theoretical properties of the QAR models and fit them to U.S. output growth, inflation, and

interest rate data. Based on the same time series we are estimating a small-scale New Key-

nesian DSGE model that has been solved by second-order perturbation methods. Finally,

a posterior predictive check is conducted. We simulate multiple trajectories from the fitter

DSGE model and estimate the QAR model on each of the trajectories. The predictive check

amounts to assessing how far the QAR estimates obtained from the actual data lie in the

tails of the predictive distribution.

The main empirical findings are the following. Our predictive checks indicate that output

growth exhibits conditional mean dynamics that our estimated DSGE model is unable to re-

produce. Moreover, we find strong evidence for conditional variance dynamics in the interest

rate series that the DSGE model is unable to generate. These deficiencies cannot be detected

by comparing the nonlinear DSGE model to linear autoregressive models, highlighting the

limitations of existing methods of evaluating DSGE models.

Our work is related to several branches of the literature. There exists a large body of

work on nonlinear time series models, including regime switching models, e.g. Hamilton

(1989) and Sims and Zha (2006), time-varying coefficient models, e.g. Cogley and Sargent

(2002) and Primiceri (2005), threshold and smooth-transition autoregressive models, e.g.

Tong and Lim (1980) and Teräsvirta (1994), and bilinear models, e.g. Rao (1981) and

Granger and Andersen (1978). However, none of these model classes seems to be directly

useable for our purposes since the nonlinearities do not match the nonlinearities of DSGE

1The abbreviation QAR has previously been used for Quantile Autoregressive Models.
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models solved with higher-order perturbation methods. The proposed QAR family shares

with the family of bilinear models that the process depends on interactions between its own

lagged values and the innovations. However, our model class also allows for quadratic forms

of lagged dependent variables. The model evaluation used on this paper is based on posterior

predictive checks. A general discussion of the role of predictive checks in Bayesian analysis

can be found in Lancaster (2004) and Geweke (2005). Canova (1994) is the first paper

that uses predictive checks to assess implications of a DSGE model. While Canova (1994)’s

checks were based on the prior predictive distribution, we use posterior predictive checks in

this paper as, for instance, in Chang, Doh, and Schorfheide (2007).

The remainder of the paper is organized as follows. The QAR models are introduced in

Section 2. We discuss some of their theoretical properties as well as a Metropolis-within-

Gibbs sampler that can be used to implement posterior inference for the parameters of the

QAR model. Section 3 reviews the simple New Keynesian model studied in this paper. The

empirical analysis is presented in Section 4. First we estimate the QAR model on output

growth, inflation, and interest rate data for the U.S. and discuss evidence for nonlinearities.

Second, we implement the predictive checks and examine the extent to which the nonlin-

earities generated by the DSGE model mimic the nonlinearities in the U.S. data. Finally,

Section 5 concludes. An online Appendix contains detailed derivations of the properties

of the QAR model, as well as details of the Markov-Chain-Monte-Carlo (MCMC) methods

employed in this paper.

2 A New Class of Nonlinear Autoregressive Models

While the goal of this research is to develop a nonlinear generalization of the widely used

structural VAR models, the analysis in this paper is restricted to the univariate case. Suppose

that yt follows a nonlinear process that can be described by

yt = f(yt−1, σut), ut ∼ N(0, 1). (1)
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Moreover, assume that the process has a unique deterministic steady state that solves the

equation

y∗ = f(y∗, 0).

Roughly speaking, the idea of higher-order approximations of DSGE model solutions is to

replace the nonlinear law of motion (1) by a Taylor series approximation around y∗

yt − y∗ = f (1,0)(y∗, 0)(yt−1 − y∗) + f (0,1)(y∗, 0)σut (2)

+
1

2
f (2,0)(y∗, 0)(yt−1 − y∗)2 + f (1,1)(y∗, 0)(yt−1 − y∗)σut

+
1

2
f (0,2)(y∗, 0)(σut)

2 + higher order terms,

where f (i,j)(y, u) denotes the (i, j)’th derivative of f(y, u). In this approximation the scale

of the fluctuations of yt − y∗ is proportional to σ, which means that the higher-order-terms

are of order σ3 and dominated by the first- and second-order terms as σ −→ 0. The terms in

the first line of (2) correspond to the right-hand-side of an AR(1) model, whereas the terms

in the second and third line add nonlinear dynamics.

The approximation (2) suggests to generalize the standard AR(1) model as follows

yt − φ0 = φ1(yt−1 − φ0) + φ2(yt−1 − φ0)
2 + (1 + γ(yt−1 − φ0))σut, ut ∼ N(0, 1). (3)

Here we omitted the term (σut)
2 to preserve the conditional Normal distribution of yt. Unfor-

tunately, (3) has some undesirable features. First, the quadratic model has two deterministic

steady states:

y∗ = φ
(1)
0 and y(2)∗ = φ0 +

1− φ1

φ2

.

Second, the model has explosive dynamics even for |φ1| < 1. Consider the special case of

φ0 = γ = 0 and let φ2 > 0. Suppose that yt−1 = y
(2)
∗ + ỹ, where ỹ > 0. Then

∆yt = (φ1 − 1)yt−1 + φ2y
2
t−1 = (1− φ1)ỹ + φ2ỹ

2 > 0 ∀ỹ > 0.

Depending on the parametrization, even moderate shocks can push yt above the second

steady state and trigger the explosive dynamics.

The undesirable features of (3) had been recognized in the literature that discusses the

simulation of DSGE models that have been solved with second-order perturbation methods.
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In particular, Kim, Kim, Schaumburg, and Sims (2008) proposed a method that eliminates

higher-than-second-order terms that arise in the forward simulation of (3). Their so-called

pruning amounts to replacing (3) by the following state-space model

yt = φ0 + φ1(yt−1 − φ0) + φ2s
2
t−1 + (1 + γst−1)σut (4)

st = φ1st−1 + σut.

The latent state st is supposed to capture the dynamics associated with the first-order

approximation of the nonlinear model (1) and replaces the second-order terms in (3). While

Kim, Kim, Schaumburg, and Sims (2008) used (4) as a device to simulate second-order

approximated DSGE models, we treat it as a nonlinear time series model that generalizes

the linear dynamics of an AR(1) model. We refer to this model as QAR(1, 1), where the

first number indicates the number of lags in the conditional mean function and the second

number indicates the number of lags that interact with the innovation ut. Notice that the

AR(1) model can be obtained from the QAR(1,1) model by setting φ2 = γ = 0. In the

remainder of this section we characterize some of its properties (Section 2.1), describe an

MCMC algorithm to implement Bayesian inference (Section 2.2), and discuss generalizations

of the basic specification (Section 2.3).

2.1 Some Properties of the QAR(1,1) Model

To complete the specification of the QAR(1,1) model in (4) we assume that the distribution

of the initial values have distribution F0, that the innovations ut are normally distributed,

and that |φ1| is less than one:

(y0, s0) ∼ F0, ut
iid∼ N(0, 1), |φ1| < 1. (5)

If the marginal distribution of s0 is N
(
0, σ2/(1− φ1)

2
)
, then the process st, t ≥ 0, is strictly

stationary under the restriction |φ1| < 1. In turn, the vector process zt = [st−1, s
2
t−1, ut]

′ is

strictly stationary and we can rewrite the law of motion of yt in (4) as

yt = φ0 + φ1(yt−1 − φ0) + g(zt) = φ0 +
∞∑
j=0

φj1g(zt−j).
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This representation highlights that yt is a stationary process. Since g(zt) is a nonlinear

function of ut and its history, the process is, however, not linear in ut anymore. The time-

invariant mean of yt has to satisfy

E[yt − φ0] = φ1E[yt−1 − φ0] + φ2E[s2t−1] + (1 + γE[st−1])σE[ut].

Using the formulas for the unconditional mean and variance of st and recognizing that ut

and st−1 are independent, we deduce that

E[yt] = φ0 +
φ2σ

2

(1− φ1)(1− φ2
1)
. (6)

Thus, the nonlinearity creates a wedge between the mean of the process and its determin-

istic steady steady state limσ−→0 E[yt] = φ0. If φ2 > 0 and 0 ≤ φ1 < 1 then E[yt] > φ0.

Overall, the modification of (2) has eliminated its two undesirable properties: our QAR(1,1)

model has a unique time-invariant mean and it exhibits stationary dynamics provided the

parameters satisfy the typical stationarity conditions for linear autoregressive models. Ex-

plicit formulas for the variances and covariances of the yt process are derived in the online

Appendix.

2.2 Posterior Inference for the QAR(1,1) Model

We will estimate the QAR(1,1) model using Bayesian methods, which requires us to specify

a joint distribution for parameters and observations. The QAR(1,1) model can be viewed as

a nonlinear state-space model, where the first equation in (4) is the measurement equation

and the second equation is the state-transition equation. However, this state-space model

has a special structure that simplifies the analysis: the innovations in the measurement and

state-transition equation are perfectly correlated.

Let θ = [φ0, φ1, φ2, γ, σ
2]′, Yt1:t2 = {yt1 , . . . , yt2}, and St1:t2 = {st1 , . . . , st2}. The joint

distribution of observation and state in period t conditional on time t − 1 information is

given by

p(yt, st|Y0:t−1, S0:t−1, θ) = p(yt|Y0:t−1, S0:t−1, θ)p(st|yt, Y0:t−1, S0:t−1, θ). (7)
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Since we assumed ut
iid∼ N(0, 1), the first density on the right-hand-side is a Normal density,

whereas the second density is simply a pointmass at

st = φ1st−1 +
(yt − φ0)− φ1(yt−1 − φ0)− φ2s

2
t−1

1 + γst−1
, (8)

because conditional on (yt, Y0:t−1, S0:t−1) the latent state st is known. By induction, if s1 is

known conditional on (y1, y0, s0), it follows that S1:t is known conditional on (Y0:t, s0). Thus,

the likelihood function can be computed recursively given (y0, s0):

p(Y1:T |y0, s0, θ) = (2π)−T/2|σ2|−T/2
(

T∏
t=1

|1 + γst−1|−1
)

(9)

× exp

{
− 1

2σ2

T∑
t=1

(yt − φ0 − φ1(yt−1 − φ0)− φ2s
2
t−1)

2

(1 + γst−1)2

}
,

st = φ1st−1 +
yt − φ0 − φ1(yt−1 − φ0)− φ2s

2
t−1

1 + γst−1
, t = 1, . . . , T

In principle, one can integrate out (y0, s0) numerically using the model implied conditional

distribution p(s0|y0, θ). In our empirical analysis we decided to take the short cut of condi-

tioning on the observation y0 and setting s0 = y0 − φ0.

While the dimension of θ is small enough such that one could use a single-block random-

walk Metropolis (RWM) algorithm to generate draws from the posterior of θ, we decided to

consider a Metropolis-within-Gibbs algorithm that groups the parameters into three blocks

and is likely to perform better if further lags are added to the model specification. Let

θ1 = [γ, σ]′, θ2 = [φ1, φ2], and θ3 = φ0. Thus, the first subvector collects the conditional vari-

ance parameters, the second subvector the autoregressive parameters, and the last subvector

describes the deterministic steady state. Our prior density can be factorized as follows

p(θ) = p(θ1)p(θ2)p(θ3|θ1, θ2) = p(γ)p(σ)p(φ1, φ2)p(φ0|σ, φ1, φ2),

where

γ ∼ N(γ, V γ), σ ∼ IG(s, ν), φ1 ∼ I{|φ1| < 1}N(φ
1
, V φ1

),

φ2 ∼ N(φ
2
, V φ2

), φ0|(σ, φ1, φ2) ∼ N
(
φ
0
(σ, φ1, φ2), V φ0

)
.

I{a < b} denotes the indicator function that is one if a < b and zero otherwise. The prior

distribution for φ1 is truncated to ensure stationarity of the QAR(1,1) model. Further details

on the parametrization of the prior will be provided in Section 4.
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We now describe the Metropolis-within-Gibbs sampler that is used to generate draws from

the posterior distribution of θ, iterating over the conditional distributions of the subvectors

θ1, θ2, and θ3.

MCMC Algorithm for QAR(1,1): For i = 1 to n, generate draws θ
(i)
1 , θ

(i)
2 , and θ

(i)
3 as

follows.

(i) Draw θ
(i)
1 |(θ

(i−1)
2 , θ

(i−1)
3 ). We use a random-walk Metropolis step based on a candidate

draw ϑ1 from the proposal distribution N(θ
(i−1)
1 , κ1Ω11).

(ii) Draw θ
(i)
2 |(θ

(i)
1 , θ

(i−1)
3 ). Based on (θ

(i)
1 , θ

(i−1)
2 , θ

(i−1)
3 ), compute S0,T according to (8).

Omitting the i and i− 1 superscripts, we specify the auxiliary regression

ỹt =
yt − φ0

1 + γst−1
= [φ1, φ2]

′

 yt−1−φ0
1+γst−1

s2t−1

1+γst−1

+ σvt = x′tϑ2 + σvt. (10)

Using the obvious matrix notation, let ϑ̄2 = (X ′X)−1X ′Ỹ be the OLS estimator of

ϑ2 in (10) and V̄ϑ2 = (σ(i))2(X ′X)−1. We use a Metropolis-Hastings step based on a

candidate draw ϑ2 from the proposal distribution N(ϑ̄2, κ2V̄ϑ2).

(iii) Draw θ
(i)
3 |(θ

(i)
1 , θ

(i)
2 ). Based on (θ

(i)
1 , θ

(i)
2 , θ

(i−1)
3 ), compute S0,T according to (8). Omitting

the i and i− 1 superscripts, we specify the auxiliary regression

ỹt =
yt − φ1yt−1 − φ2s

2
t−1

1 + γst−1
= φ0

1− φ1

1 + γst−1
+ σvt = x′tϑ3 + σvt. (11)

Using the obvious matrix notation, let ϑ̄3 = (X ′X)−1X ′Ỹ be the OLS estimator of

ϑ3 in (11) and V̄ϑ2 = (σ(i))2(X ′X)−1. We use a Metropolis-Hastings step based on a

candidate draw ϑ3 from the proposal distribution N(ϑ̄3, κ3V̄ϑ3). �

The constants κ1, κ2, and κ3 scale the variance of the proposal distributions in the three

steps of the algorithm and can be used to fine-tune the acceptance rates. The covariance

matrix Ω11 is obtained as follows. Prior to running the algorithm we use a maximization

routine to find the mode θ̃ of the posterior distribution. We then use numerical second

derivatives to obtain the Hessian at the posterior mode. Let Ω be the negative of the inverse

Hessian and Ω11 the submatrix corresponding to the subvector θ1 of θ. We choose the initial

values θ
(0)
2 and θ

(0)
3 in the neighborhood of θ̃.



This Version: October 3, 2011 9

2.3 Generalizations

The QAR(1,1) model has a straightforward generalization in which we include additional lag

terms:

yt = φ0 +

p∑
l=1

φ1.l(yt−l − φ0) +

p∑
l=1

p∑
m=l

φ2.lmst−lst−m (12)

+

(
1 +

q∑
l=1

γlst−l

)
σut

st =

p∑
l=1

φ1.lst−l + σut.

We refer to (12) as QAR(p,q) model. As in the standard AR(p) model, the stationarity

of yt is governed by the roots of the lag polynomial 1 −
∑p

l=1 φ1.lz
l. The quadratic terms

generate an additional p(p + 1)/2 coefficients in the conditional mean equation for yt. The

MCMC Algorithm described in Section 2.2 can be extended to handle posterior inference for

the QAR(p,q) model in a straightforward manner. However, since the number of coefficients

grows at rate p2, a careful choice of prior distributions is required even for moderate values

of p to cope with the dimensionality problem. The QAR model can also be extended to the

vector case, which is an extension that we are pursuing in ongoing research. The empirical

analysis presented in Section 4 is based on the QAR(1,1) specification.

3 The DSGE Model

The DSGE model we consider is the small-scale New Keynesian model studied in An and

Schorfheide (2007). The model economy consists of a final good producing firm, a continuum

of intermediate goods producing firms, a representative household, and a monetary as well

as a fiscal authority. This model has become a benchmark specification for the analysis of

monetary policy and is analyzed in detail, for instance, in Woodford (2003). To keep the

model specification simple, we abstract from wage rigidities and capital accumulation.
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3.1 The Agents and Their Decision Problems

Final Good Producers. The perfectly competitive, representative, final good producing

firm combines a continuum of intermediate goods indexed by j ∈ [0, 1] using the technology

Yt =

(∫ 1

0

Yt(j)1−νdj
) 1

1−ν

. (13)

The firm takes input prices Pt(j) and output prices Pt as given. Profit maximization implies

that the demand for intermediate goods is

Yt(j) =

(
Pt(j)

Pt

)−1/ν
Yt. (14)

The relationship between intermediate goods prices and the price of the final good is

Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

. (15)

Intermediate Goods Producers. Intermediate good j is produced by a monopolist who

has access to the following linear production technology:

Yt(j) = AtNt(j), (16)

where At is an exogenous productivity process that is common to all firms and Nt(j) is the

labor input of firm j. Labor is hired in a perfectly competitive factor market at the real

wage Wt. Firms face nominal rigidities in terms of quadratic price adjustment costs

ACt(j) =
ϕ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j), (17)

where ϕ governs the price stickiness in the economy and π is the steady state inflation rate

associated with the final good. Firm j chooses its labor input Nt(j) and the price Pt(j) to

maximize the present value of future profits

IEt

[
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sNt+s(j)− ACt+s(j)

)]
. (18)

Here, Qt+s|t is the time t value of a unit of the consumption good in period t + s to the

household, which is treated as exogenous by the firm.
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Representative Household. The representative household derives utility from consump-

tion Ct relative to a habit stock and disutility from hours worked Ht. We assume that the

habit stock is given by the level of technology At. This assumption ensures that the economy

evolves along a balanced growth path even if the utility function is additively separable in

consumption and hours. The household maximizes

IEt

[
∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ
− χHHt+s

)]
, (19)

where β is the discount factor, 1/τ is the intertemporal elasticity of substitution, and χH is

a scale factor that determines the steady state level of hours worked. Since we do not use

data on hours we set χH = 1. The household supplies perfectly elastic labor services to the

firms taking the real wage Wt as given. The household has access to a domestic bond market

where nominal government bonds Bt are traded that pay (gross) interest Rt. Furthermore,

it receives aggregate residual real profits Dt from the firms and has to pay lump-sum taxes

Tt. Thus, the household’s budget constraint is of the form

PtCt +Bt + Tt = PtWtHt +Rt−1Bt−1 + PtDt + PtSCt, (20)

where SCt is the net cash inflow from trading a full set of state-contingent securities. The

usual transversality condition on asset accumulation applies, which rules out Ponzi schemes.

Monetary and Fiscal Policy. Monetary policy is described by an interest rate feedback

rule of the form

Rt = R∗ 1−ρRt RρR
t−1e

εR,t , (21)

where εR,t is a monetary policy shock and R∗t is the (nominal) target rate. Our specification

of R∗t implies that the central bank reacts to inflation and deviations of output growth from

its equilibrium steady state γ:

R∗t = rπ∗
( πt
π∗

)ψ1
(
Yt

γYt−1

)ψ2

. (22)

Here r is the steady state real interest rate, πt is the gross inflation rate defined as πt =

Pt/Pt−1, and π∗ is the target inflation rate, which in equilibrium coincides with the steady

state inflation rate. The fiscal authority consumes a fraction ζt of aggregate output Yt, where
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ζt ∈ [0, 1] follows an exogenous process. The government levies a lump-sum tax (subsidy) to

finance any shortfalls in government revenues (or to rebate any surplus).

Exogenous Processes. The model economy is perturbed by three exogenous processes.

Aggregate productivity evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + εz,t. (23)

Thus, on average technology grows at the rate γ and zt captures exogenous fluctuations of

the technology growth rate. Define gt = 1/(1− ζt). We assume that

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t. (24)

Finally, the monetary policy shock εR,t is assumed to be serially uncorrelated. The three

innovations are independent of each other at all leads and lags and are normally distributed

with means zero and standard deviations σz, σg, and σR, respectively.

3.2 Equilibrium Relationships and Model Solution

We consider the symmetric equilibrium in which all intermediate goods producing firms

make identical choices so that the j subscript can be omitted. Since the non-stationary

technology process At induces a stochastic trend in output and consumption, it is convenient

to express the model in terms of detrended variables ct = Ct/At and yt = Yt/At. The model

economy has a unique steady state in terms of the detrended variables that is attained if the

innovations εR,t, εg,t, and εz,t are zero at all times. The steady state inflation π equals the

target rate π∗ and

r =
γ

β
, R = rπ∗, c = (1− ν)1/τ , and y = g(1− ν)1/τ .



This Version: October 3, 2011 13

Let x̂t = ln(xt/x) denote the percentage deviation of a variable xt from its steady state x.

Then the model can be expressed as

1 = βIEt

[
e−τ ĉt+1+τ ĉt+R̂t−ẑt+1−π̂t+1

]
(25)

1− ν
νϕπ2

(
eτ ĉt − 1

)
=

(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
− β IEt

[(
eπ̂t+1 − 1

)
e−τ ĉt+1+τ ĉt+ŷt+1−ŷt+π̂t+1

]
eĉt−ŷt = e−ĝt − ϕπ2g

2

(
eπ̂t − 1

)2
R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (∆ŷt + ẑt) + εR,t

ĝt = ρgĝt−1 + εg,t

ẑt = ρz ẑt−1 + εz,t

∆ŷt = yt − yt−1.

The equilibrium conditions can be re-parameterized in terms of κ = τ(1− ν)/(νπ2ϕ), which

corresponds to the slope of the New Keynesian Phillips curve in the context of a first-order

approximation of the equilibrium conditions.

We use a second-order perturbation to solve for the policy functions of the model char-

acterized by the equilibrium conditions (25). The state variables of the model are st =

[sendt , sexot ] = [ŷt−1, R̂t−1, εR,t, ĝt, ẑt]
′, while the control variables are ct = [ĉt,∆ŷt, π̂t]

′.2 The

approximate solution of the model has the form:

ci,t = C1i(θ) + C2ij(θ)sj,t +
1

2
C3ijk(θ)sj,tsk,t (26)

sendi,t+1 = Send
1i (θ) + Send

2ij (θ)sj,t +
1

2
Send
3ijk(θ)sj,tsk,t

sexoi,t+1 = Sexo
2i (θ)sexoi,t + Sexo

3i (θ)εi,t+1.

Here we are using tensor notation which expresses the product of n × n matrices A = BC

as Aij = BikCkj =
∑n

k=1 bikckj, where bik and ckj denote individual elements of the matrices

B and C. The system matrices are intended to be functions of the vector of structural

2This is a slight abuse of notation. Note that the st here is different from the st associated with QAR

model in Section 2. Moreover, we are now using ct to denote the vector of control variables instead of

detrended consumption.
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parameters θ, while εt = [εR,t, εg,t, εz,t]
′ is the vector of structural shocks. The last equation

in 26 reflects the restriction that the exogenous disturbances follow independent univariate

processes.

Real GDP growth, the Inflation rate and the Interest rate can be expressed as linear

functions of state and control variables of this model. For example, real GDP growth can

be written in terms of model variables as:

∆ lnYt = γ + ∆ŷt + ẑt.

Define xt = [c′t, s
′
t]
′. and let INFLt and FFRt denote net inflation and interest rates. The

measurement equation for the vector of observations yt = [∆ lnYt, INFLt, FFRt]
′ takes the

form:3

yi,t = A1i(θ) + A2ij(θ)xj,t + ei,t, (27)

where et is a vector of iid Gaussian measurement errors. Thus, (26) and (27) form a nonlinear

state-space model.

4 Empirical Analysis

The empirical analysis proceeds in three steps. First, we present estimates of the QAR(1,1)

model for U.S. output growth, CPI inflation, and the Federal Funds Rate (Section 4.1).

Second, the small-scale New Keynesian DSGE model is estimated based on the same output

growth, inflation, and interest rate data, that were used in the first step (Section 4.2). Finally,

posterior predictive checks are implemented to assess whether the nonlinearities captured in

the second-order-approximated DSGE model are commensurate with the nonlinearities in

U.S. data captured by the QAR(1,1) model (Section 4.3). The data are quarterly and

collected from a variety of sources. The data for inflation come from the Bureau of Labor

Statistics (CPI-U: All Items, seasonally adjusted, 1984=100). The data on the Federal Funds

Rate come from the Board of Governors of the Federal Reserve System. We average reported

3In slight abuse of notation we now use yt to denote the vector of observables instead of detrended output

in the DSGE model.
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monthly figures in order to obtain a quarterly counterpart. Finally, data on real GDP per

capita (chained 2005 dollars) come from the Bureau of Economic Analysis. Throughout this

analysis, the estimation sample ranges from 1984:Q1 to 2010:Q4. Our priors are based on

the inspection of a pre-sample from 1974:Q1 to 1983:Q4.

4.1 Estimation of QAR(1,1) Model on U.S. Data

We begin by fitting the QAR(1,1) model to U.S. time series of real GDP growth (GDP),

inflation rates (INFL), and the Federal Funds rate (FFR). The prior distribution is sum-

marized in Table 1. We use standard normal distributions for the parameters that govern

the nonlinearities, φ2 and γ. The prior distributions for φ1, the first-order autoregressive

coefficient, are centered at the pre-sample first-order autocorrelations of the three time se-

ries. The location parameter s for the inverse Gamma distribution of σ corresponds to the

residual standard deviation associated with the pre-sample estimation of an AR(1) model.

Finally, the prior mean of φ0 is specified such that the implied E[yt] of the QAR(1,1) model,

see (6), corresponds to the pre-sample mean of the respective time series.

The MCMC algorithm described in Section 2.2 is used to implement the posterior infer-

ence. Table 2 summarizes the posterior distributions for the QAR(1,1) parameters. Recall

that φ1 captures the first-order autocorrelation of the observed time series. The posterior

mean estimates are 0.28 for GDP Growth, 0.88 for Inflation, and 0.99 for the Federal Funds

Rate. Most important for our analysis are the parameters φ2 and γ, which cover nonlinear-

ities in the conditional mean as well as conditional heteroskedasticity. Only GDP growth

seems to exhibit nonlinear conditional mean dynamics with a 90% posterior credible set for

φ2 that ranges from -0.55 to -0.22. The most pronounced conditional heteroskedasticity is

captured by the estimate of γ for the Federal Funds rate. The posterior credible set ranges

from 0.09 to 0.34. According to this estimate interest rate volatility is larger in episodes of

high interest rates. GDP growth also exhibits conditional heteroskedasticity. The posterior

mean of γ for output growth is -0.09, meaning that output growth volatility increases in

recessions, when the hidden state st of the QAR(1,1) model is less than zero and the growth

is below its long-run average level.
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In order to shed light on the role of the nonlinear terms for the dynamics of GDP growth

and interest rates, we construct posterior statistics for two functionals of the QAR(1,1)

parameters. We begin with the elasticity

Et
[
∂yt+1

∂ut

]
= φ1(1 + γst−1)σ + 2φ2stσ.

This elasticity measures the impact of a one-standard deviation shock ut on yt in the following

quarter. For a simple AR(1) this elasticity is constant. In our QAR(1,1) the elasticity is

time-varying for two reasons: the conditional heteroskedasticity generated by γ 6= 0 as well

as the nonlinear conditional mean dynamics due to φ2 6= 0. The elasticity is plotted for GDP

growth in Figure 1 and peaks in the early periods of recessions. Recessions are periods in

which GDP growth is below average and the hidden state st is potentially large in absolute

value. The negative coefficient φ2 on s2t−1 implies that output growth is lower than predicted

by the linear dynamics of an AR(1) model. Moreover, the negative value of γ combined

with a negative st−1 amplifies the impact of the shock. Thus, the parameter estimates can

generate a deep and fast recession.

Figure 2 depicts the time path of the conditional heteroskedasticity of GDP growth and

the Federal Funds rate, given by (1 + γst−1)σ. While the variation in the volatility of the

GDP innovations is modest, it is in general larger during recessions than during expansions.

(*** insert a discussion of recent literature on stochastic volatility ***) The volatility of the

interest rate innovation exhibits a clear downward trend, which in part captures the extended

period of low interest rates in recent years.

4.2 DSGE Model Estimation on U.S. Data

The second step in the empirical analysis consists of estimating the DSGE model based on

the same data that was used to estimate the QAR(1,1) data. The prior distribution for the

DSGE model parameters is summarized in Table ??. The parameters ν and 1/g are fixed

at 0.10 and 0.85, respectively. Neither parameter is identifiable from the estimation sample.

We use pre-sample evidence to quantify a priori beliefs about the average growth rate of the

economy as well as average inflation and real interest rates. Our prior for κ encompasses
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values that imply an essentially flat as well as a fairly steep New Keynesian Phillips curve.

One notable feature of the prior distribution is the fairly small prior standard deviation for

ψ, the inflation coefficient in the interest rate equation. It has been documented in the

literature that this coefficient is not very well identified. A tight prior tends to stabilize the

posterior simulator.

As discussed in Section 3, a second-order approximation is used to solve the DSGE model,

which leads to the nonlinear state-space representation given by (??) and (27). We use

the particle filter developed in Fernández-Villaverde and Rubio-Ramı́rez (2007) to evaluate

the likelihood function of the DSGE model. To facilitate the likelihood evaluation with

the particle filter the measurement equation contains mean-zero iid Gaussian measurement

errors. The measurement error variances are set equal to 10% of the sample variances of GDP

growth, inflation, and interest rates. Posterior inference is implemented with a single-block

Random-Walk Metropolis algorithm, described in detail in An and Schorfheide (2007).

Posterior summary statistics for the DSGE model parameters are reported in 4. In the

second and third column we report posterior means and credible intervals based on the

estimation of the nonlinear version of the DSGE model, whereas the last column contains

posterior means based on a linearized version of the DSGE model. (*** the estimated

standard deviations for the linearized model seem to large ***) By and large the parameter

estimates are similar to estimates that have been reported elsewhere in the literature. The

estimated slope of the Phillips curve is fairly small, implying that monetary policy shocks

tend to have a large effect on output. The estimate of τ implies that households have

approximately logarithmic preferences. The estimated serial correlation of technology shocks

is small, ρ̂z = 0.26, which is consistent with the small autocorrelation of output growth. The

government spending shock is more persistent, but its autocorrelation is not as close to unity

as in many estimated DSGE models. Due to the tight prior distribution, the posterior mean

of the inflation coefficient in the monetary policy rule essentially equals its prior mean of

1.5. According to our estimates, the central bank reacts quite forcefully to output growth

movements, ψ̂2 = 1.51, and engages in moderate interest rate smoothing, ρ̂r = 0.54.
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4.3 Posterior Predictive Checks

The key part of the empirical analysis is a set of posterior predictive checks. The posterior

predictive checks is implemented with the following algorithm.

Posterior Predictive Checks. Let θ(i) denote the i’th draw from the posterior distribution

of the DSGE model parameter θ. For i = 1 to n

(i) Conditional on θ(i) simulate a pre-sample of length T0 and an estimation sample of

size T from the DSGE model. The second-order approximated is simulated using the

pruning algorithm described in Kim, Kim, Schaumburg, and Sims (2008). An Gaussian

iid measurement error is added to the simulated data. The measurement error variance

is identical to the one imposed during the estimation of the DSGE model. Denote the

simulated data by Y
(i)
−T0+1:T .

(ii) Based on the simulated trajectory Y
(i)
−T0+1:T compute sample statistics S

(
Y

(i)
−T0+1:T

)
.

These statistics include sample mean, sample variance, sample autocorrelation, as well

as posterior means for the coefficients of the QAR(1,1) model. The latter are obtained

by eliciting a prior for the QAR(1,1) model based on the presample Y
(i)
−T0+1:0 and

computing the posterior based on Y
(i)
1:T .

Use a nonparametric Kernel density estimator to approximate the predictive density p(S(·)|Y1:T )

and examine how far the actual value S(Y1:T ), computed from U.S. data, lies in the tail of

its predictive distribution. �

The results from the predictive checks based on the three sample moments are summa-

rized in Figure 3. The solid blue lines indicate the predictive densities and the dashed red

vertical lines signify the sample moments computed from the actual data. The estimated

nonlinear DSGE model is able to reproduce the observed sample means, standard deviations,

and autocorrelations of GDP growth and inflation. The sample moments computed from the

actual data lie in the center of the respective posterior predictive distributions. With respect

to the interest rate series the fit is not quite as good: the actual sample standard deviation

and autocorrelation of the Federal Funds rate lie in the far right tail of their predictive

distributions.
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We now turn our attention to the predictive checks based on the posterior means of the

QAR(1,1) coefficients, which are presented in Figures 4 to 6. In particular, we will focus on

the parameters φ2 and γ, which generate the nonlinearities in the QAR(1,1) model. Consider

the results for the GDP growth series, depicted in Figure 4. For U.S. data the posterior mean

of φ2 and γ are, respectively, -0.41 and -0.09. While the estimated New Keynesian model

assigns significant probability to values of γ̂ between 0 and -0.2, the value of φ̂2 obtained from

actual data lies far in the left tail of the predictive distribution generated by the estimated

DSGE model. Thus, there seem to be conditional mean dynamics present in the data that

the DSGE model is unable to capture.

The opposite result is obtained for the Federal Funds rate in Figure 6. The φ2 estimates

obtained from both actual as well as simulated data are essentially zero and the DSGE

model passes the φ̂2-based predictive check. With respect to γ, however, model-simulated

and actual data look quite different. There is strong evidence in the actual data for a positive

γ̂, but none in the simulated data. More precisely, γ̂ based on U.S. data lies far in the right

tail of its predictive distribution. The DSGE model is unable to generate the conditional

variance dynamics that appear to be present in the data. Finally, for inflation the estimates

of the QAR(1,1) based on actual data seem to line up fairly well with the estimates based

on the model generated data.

Our results highlight the limitations of linear time series model as tools to assess the

fit of DSGE models solved with higher-order perturbation methods. Indeed, we have seen

that the estimated model solved with second-order perturbation generates trajectories for

the variables of interests that respect the first and second moments of the data. But we

have also seen that the same trajectories do not always generate empirically plausible val-

ues for the QAR(1,1) model’s parameters. Indeed, the simple small-scale New Keynesian

model considered in this paper does not have any channel to generate secular and cyclical

movements in the conditional volatility of the Federal Funds and GDP growth series, and

the GDP growth series, nor can it generate asymmetric movements across the business cycle

in GDP growth. We were able to detect these problems after inserting quadratic terms into

a standard AR(1) model, and we believe that this result offers a strong rationale for our
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exercise.

5 Conclusion

This paper proposes a new class of nonlinear time series models that can be used to as-

sess nonlinear DSGE models. So far, we have explored a fairly restricted specification from

this class, the QAR(1,1) model. In future research we are planning to consider more com-

plex specifications that can replace multivariate vector autoregressive models. Using the

QAR(1,1) model to construct predictive checks, we found that GDP growth and the Fed-

eral Funds rate exhibit nonlinear dynamics that cannot be reproduced with a small-scale

nonlinear New Keynesian DSGE model. To some extent this result is not surprising as it

is well known in the literature that the dynamics of the canonical New Keynesian model

are essentially linear, provided the shocks are not too large, and that one would need to

introduce stochastic volatility processes for the structural shocks to generate conditional

heteroskedasticity. However, we think that the tools developed in this paper will be very

useful to evaluate other nonlinear DSGE models.
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Table 1: Prior Distribution for QAR(1,1) Model

GDP Growth Inflation Federal Funds Rate

φ1 I{|φ1| < 1}N(0.33, 1) I{|φ1| < 1}N(0.92, 1) I{|φ1| < 1}N(0.89, 1)

φ2 N(0, 1) N(0, 1) N(0, 1)

γ N(0, 1) N(0, 1) N(0, 1)

σ IG(0.65, 20) IG(0.43, 20) IG(1.44, 20)

φ0 N
(
0.27− g(φ1, φ2, σ), 2

)
N
(
8.44− g(φ1, φ2, σ), 2

)
N
(
9.71− g(φ1, φ2, σ), 2

)

Notes: The location parameters for the priors of φ0, φ1, and σ correspond to pre-sample

mean, autocorrelation, and AR(1) innovation standard deviation. The pre-sample ranges

from 1974:Q1 to 1983:Q4. For the estimation of the QAR(1,1) model based on simulated

data we parameterize the prior based on simulated pre-samples of 40 observations. The prior

for φ1 is truncated to ensure stationarity. The function g(φ1, φ2, σ) = φ2σ
2/[(1−φ1)(1−φ2

1)],

see (6). The IG distribution is parameterized such that pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.
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Table 2: Posterior Estimates for QAR(1,1) Model

Data φ0 φ1 φ2 γ σ

GDP Growth 0.55 0.28 -0.41 -0.09 0.53

[0.43,0.68] [0.11,0.44] [-0.55,-0.22] [-0.25,0.07] [0.47,0.60]

Inflation 3.16 0.88 -0.00 -0.02 0.71

[1.80,4.51] [0.76,0.98] [-0.05,0.03] [-0.08,0.03] [0.62,0.81]

Federal Funds Rate 2.58 0.99 0.00 0.23 0.30

[-1.59,4.79] [0.95,0.999] [0.00,0.00] [0.09,0.34] [0.23,0.41]

Notes: Estimation sample is 1984:Q1 to 2010:Q4. We report posterior means as well as 90%

equal-tail-probability credible sets.
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Table 3: Prior for Structural Parameters of DSGE Model

Parameter Distribution Para (1) Para (2)

τ Gamma 2.00 0.50

κ Gamma 0.30 0.20

ψ1 Gamma 1.50 0.05

ψ2 Gamma 0.50 0.25

ρr Beta 0.50 0.20

ρg Beta 0.80 0.10

ρz Beta 0.20 0.15

rA Gamma 0.80 0.50

πA Gamma 4.00 2.00

γQ Normal 0.40 0.20

100σr InvGamma 0.30 4.00

100σg InvGamma 0.40 4.00

100σz InvGamma 0.40 4.00

ν fixed 0.10

1/g fixed 0.85

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; the upper and lower bound of the support for the Uniform distri-

bution; and s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The effective prior is truncated at the boundary of the determinacy region.
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Table 4: Posterior Estimates for DSGE Model Parameters

Nonlinear Linearized

Parameter Mean 90% Interval Mean

τ 1.05 [0.80, 1.35] 0.75

κ 0.03 [0.02, 0.05] 0.01

ψ1 1.50 [1.43, 1.58] 1.74

ψ2 1.51 [1.29, 1,78] 2.15

ρr 0.54 [0.38, 0.68] 0.52

ρg 0.89 [0.85, 0.92] 0.93

ρz 0.26 [0.10, 0.47] 0.21

rA 0.70 [0.30, 1.08] 0.55

πA 2.76 [2.74, 2.79] 2.79

γQ 0.57 [0.46, 0.71] 0.48

100σr 0.33 [0.24, 0.45] 0.47

100σg 0.88 [0.67, 1.16] 2.48

100σz 0.75 [0.51, 1.04] 1.20

Notes: Estimation sample is 1984:Q1 to 2010:Q4. As 90% credible interval we are reporting

the 5th and 95th percentile of the posterior distribution.
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Figure 1: Elasticity Estimates: Et[∂yt+1/∂εt]
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Notes: Estimation sample is 1984:Q1 to 2010:Q4. The graphs depict the posterior median

and 60% credible intervals (equal tail probability) for Et[∂yt+1/∂ut] = φ1(1+γst−1)σ+2φ2stσ.

Shaded areas indicate NBER recessions.
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Figure 2: Volatility Estimates
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Notes: Estimation sample is 1984:Q1 to 2010:Q4. The graphs depict the posterior median

and 60% credible intervals (equal tail probability) for (1 + γst−1)σ. Shaded areas indicate

NBER recessions.
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Figure 3: Predictive Check Based on Sample Moments
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Notes: Vertical dashed lines indicate the sample means, standard deviations, and autocor-

relations of U.S. GDP growth (GDP), inflation (INFL), and the Federal Funds Rate (INT)

for the period 1984:Q1 to 2010:Q4. Solid lines are kernel density estimates of the DSGE

model-implied posterior predictive densities for these sample moments. StDev = standard

deviation, ACorr = autocorrelation.
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Figure 4: Predictive Checks: QAR(1,1) for GDP Growth
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Notes: Vertical dashed lines indicate posterior mean estimates of the QAR(1,1) parameters

based on U.S. data from 1984:Q1 to 2010:Q4. Solid lines are kernel density estimates of the

DSGE model-implied posterior predictive densities for these estimates.
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Figure 5: Predictive Checks: QAR(1,1) for Inflation
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Figure 6: Predictive Checks: QAR(1,1) for Federal Funds Rate
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A Moments of the QAR(1,1) Model

This section derives important moments for the QAR(1,1) model given by

yt = φ1yt−1 + φ2s
2
t−1 + (1 + γst−1)σεt, εt ∼ iidN(0, 1) (A.1)

st = φ1st−1 + σεt, |φ1| < 1. (A.2)

The process st in (A.2) is linear and has a moving average representation of the from

st = σ
∞∑
j=0

φj1εt−j.

The first two moments of st are given by

E[st] = 0 and E[s2t ] =
σ2

1− φ2
1

.

Since the innovations εt are iid standard normal variates, we obtain that

E[s3t ] =
∞∑
j=0

φ3j
1 E[ε3t−j] = 0, E[s4t ] =

∞∑
j=0

φ4j
1 E[ε4t−j] =

3σ4

1− φ4
1

.

We proceed by calculating the time-invariant mean of the process yt. Taking expectations

on both sides of (A.1) we obtain

E[yt] = φ1E[yt−1] + φ2E[s2t−1] + (1 + γE[st−1])σE[εt]

= φ1E[yt−1] +
φ2σ

2

1− φ2
1

.

Here we used the expression for E[s2t−1] obtained previously as well as the fact that εt and

st−1 are independent. In turn,

E[yt] =
φ2σ

2

(1− φ1)(1− φ2
1)
. (A.3)
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Before we can calculate the uncentered second moment of yt we need to derive E[yts
2
t ]:

E[yts
2
t ] = E

[
(φ1yt−1 + φ2s

2
t−1 + (1 + γst−1)σεt)(φ

2
1s

2
t−1 + 2φ1σst−1εt + σ2ε2t )

]
= E

[
φ3
1yt−1s

2
t−1 + φ2

1φ2s
4
t−1 + σφ2

1(1 + γst−1)s
2
t−1εt

+2φ2
1σyt−1st−1εt + 2φ1φ2σs

3
t−1εt + 2φ1σ

2(1 + γst−1)st−1εt

+φ1σ
2ε2t + φ2σ

2s2t−1ε
2
t + σ3(1 + γst−1)ε

3
t

]
= φ3

1E[yt−1s
2
t−1] + φ2

1φ2E[s4t−1] + 2φ1γσ
2E[s2t−1]

+φ1σ
2E[yt−1] + φ2σ

2E[s2t−1].

Plugging in the moments of st and solving for E[yts
2
t ] under the assumption that the moment

is time invariant, we obtain

E[yts
2
t ] =

1

1− φ3
1

[
3φ2

1φ2σ
4

1− φ4
1

+
σ2(φ2σ

2 + 2φ1γσ)

1− φ2
1

+
φ1φ2σ

4

(1− φ1)(1− φ2
2)

]
. (A.4)

We are now in a position to obtain the uncentered second moment of yt:

E[y2t ] = E
[
(φ1yt−1 + φ2s

2
t−1 + σ(1 + γst−1)εt)

2
]

= E
[
φ2
1y

2
t−1 + φ2

2s
4
t−1 + σ2(1 + γst−1)

2ε2t

2φ1φ2yt−1s
2
t−1 + 2φ2σs

2
t−1(1 + γst−1)εt + 2φ1σ(1 + γst−1)yt−1εt

]
= φ2

1E[y2t−1] + φ2
2E[s4t−1] + σ2(1 + γ2E[s2t−1]) + 2φ1φ2E[yt−1s

2
t−1].

Thus,

E[y2t ] =
1

1− φ2
1

[
φ2
2E[s4t−1] + σ2(1 + γ2E[s2t−1]) + 2φ1φ2E[yt−1s

2
t−1]

]
. (A.5)

Notice that no further restriction on φ1 is necessary to guarantee that the second moment

is time invariant. Interestingly,

E[ytst] = E
[
(φ1yt−1 + φ2s

2
t−1 + (1 + γst−1)σεt)(φ1st−1 + σεt)

]
= E

[
φ2
1yt−1st−1 + φ1φ2s

3
t−1 + φ1σ(1 + γst−1)st−1εt

φ1σyt−1εt + φ2σs
2
t−1εt + σ2(1 + γst−1)ε

2
t

]
= φ2

1E[yt−1st−1] + σ2

All other terms drop out because E[εt] = E[st] = E[s3t ] = 0. Thus, solving for E[ytst] leads

to the “first-order” variance expression

E[ytst] = E[s2t ] =
σ2

1− φ2
1

.
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The next step is to compute the (uncentered) autocovariances of yt. Consider E[ytyt−1]:

E[ytyt−1] = E
[
(φ1yt−1 + φ2s

2
t−1 + (1 + γst−1)σεt)yt−1

]
= φ1E[y2t−1] + φ2E[s2t−1yt−1].

In general, higher-order autocovariances can be computed recursively:

E[ytyt−h] = E
[
(φ1yt−1 + φ2s

2
t−1 + (1 + γst−1)σεt)yt−h

]
= φ1E[yt−1yt−h] + φ2E[s2t−1yt−h].

The expectation E[s2t−1yt−h] can also be calculated recursively:

E[s2tyt−h] = E
[
(φ1st−1 + σεt)

2yt−h
]

= φ2
1E[s2t−1yt−h] + σ2E[yt−h].

(*** Try to simplify some of the formulas by considering centered moments. ***)

In order to obtain a proposal distribution for γ and σ2 in the MCMC algorithm the

following calculation is useful. Let

ut = (1 = γst−1)εt.

Then,

E[u2t ] = σ2(1 + γ2E[s2t−1])

E[u2t s
2
t−1] = σ2(E[s2t−1] + γ2E[s4t−1])

This system of moment conditions can be solved for σ2 and γ2σ2: σ2

γ2σ2

 =

 1 E[s2t−1]

E[s2t−1] E[s4t−1]

−1  E[u2t ]

E[u2t s
2
t−1]

 .
Thus, preliminary estimates of σ2 and γ2σ2 can be obtained by estimating the auxiliary

regression

u2t = (σ2) + (σ2γ2)s2t−1 + residuals. (A.6)

The auxiliary regression does not determine the sign of γ. In order to choose the sign of γ

the following additional moment condition is helpful:

E[u2t st−1] = σ2E[(1 + 2γst−1 + γ2s2t−1)st−1] = 2σ2γE[s2t−1].

Thus, a negative correlation between u2t and st−1 indicates that γ should be negative.
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B MCMC Diagnostics

QAR(1,1) Model. We sample from the posterior of the QAR(1,1) model’s parameters

using the MCMC Algorithm described in Section 2.2 of the main paper. For GDP growth

and Inflation we generate 100,000 draws with the algorithm, while we simulate 150,000

draws for the Federal Funds rate series. For all three series, we use the last 80,000 draws

to compute the posterior summary statistics reported in Table 2 of the main paper. The

sequences of draws as well as the respective posterior means are plotted in Figures B-1 (GDP

growth), B-2 (Inflation), and B-3 (Federal Funds Rate). The performance of the algorithm

deteriorates with the persistence of the times series for which the model is estimated. We

are currently working on ways of improving the performance of the MCMC and applying it

to higher-dimensional QAR models.

DSGE Model. We first estimate a log-linearized version of the DSGE model using the

Random-Walk Metropolis (RWM) algorithm described in An and Schorfheide (2007). Using

the same covariance matrix for the proposal distribution as for the linearized DSGE model,

we then run the RWM algorithm based on the likelihood function associated with the second-

order approximation of the DSGE model. The covariance matrix of the proposal distribution

is scaled such that the RWM algorithm has an acceptance rate of approximately 50%. We use

80,000 particles to approximate the likelihood function of the nonlinear DSGE model, while

the variance of measurement errors is set to 10% of the sample variance of the observables.

We generate 10,000 from the posterior distribution of the nonlinear DSGE model. The

summary statistics reported in Table 4 in the main paper are based on the last 8,000 draws

of this sequence.
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Figure B-1: Posterior Draws: QAR(1,1) Parameters for GDP Growth
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Notes: Estimation is based on U.S. data from 1984:Q1 to 2010:Q4. Figure depicts the last

80,000 draws (blue) from the MCMC algorithm as well as the posterior mean estimate (red).
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Figure B-2: Posterior Draws: QAR(1,1) Parameters for Inflation
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Figure B-3: Posterior Draws: QAR(1,1) Parameters for Federal Funds Rate
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