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Abstract

Skepticism toward traditional identifying assumptions based on exclusion restrictions has

led to a surge in the use of structural VAR models in which structural shocks are identified

by restricting the sign of the responses of selected macroeconomic aggregates to these shocks.

Researchers commonly report the vector of pointwise posterior medians of the impulse responses

as a measure of central tendency of the estimated response functions, along with pointwise 68

percent posterior error bands. It can be shown that this approach cannot be used to characterize

the central tendency of the structural impulse response functions. We propose an alternative

method of summarizing the evidence from sign-identified VAR models designed to enhance their

practical usefulness. Our objective is to characterize the most likely admissible model(s) within

the set of structural VAR models that satisfy the sign restrictions. We show how the set of

most likely structural response functions can be computed from the posterior mode of the joint

distribution of admissible models both in the fully identified and in the partially identified case,

and we propose a highest-posterior density credible set that characterizes the joint uncertainty

about this set. Our approach can also be used to resolve the long-standing problem of how

to conduct joint inference on sets of structural impulse response functions in exactly identified

VAR models. We illustrate the differences between our approach and the traditional approach

for the analysis of the effects of monetary policy shocks and of the effects of oil demand and oil

supply shocks.
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1 Introduction

One of the most widely studied questions in empirical macroeconomics is to what extent an

unanticipated monetary tightening reduces real output. It is widely recognized that answering

this question requires the estimation of structural models in which cause and effect are clearly

differentiated. Much of the literature since the 1980s has relied on structural vector autoregres-

sive models in which exclusion restrictions on the instantaneous feedback from monetary policy

shocks to macroeconomic aggregates ensure the identification of the policy shock. Skepticism

toward these traditional identifying assumptions in recent years has made increasingly popular

an alternative class of structural VAR models in which policy shocks are identified by restricting

the sign of the responses of selected macroeconomic aggregates to policy shocks. For example,

Uhlig (2005) postulated that an unexpected monetary policy contraction is associated with an

increase in the federal funds rate, the absence of price increases and the absence of increases in

nonborrowed reserves for some time following the policy shock. This approach is considerably

more agnostic than traditional identification approaches in some dimensions, while more restric-

tive in others. Uhlig showed that sign-identified models may produce substantially different

results from conventional structural VAR models.

Although the original applications of this approach were to models of monetary policy, sign-

identified VAR models have become increasingly popular in other areas as well and are now

part of the mainstream of empirical macroeconomics. They have been used to study fiscal

shocks (e.g., Canova and Pappa 2007; Mountford and Uhlig 2009, Pappa 2009; Caldara 2011),

technology shocks (e.g., Dedola and Neri 2007; Peersman and Straub 2009), and various other

shocks in open economies (e.g., Canova and De Nicolo 2002; Scholl and Uhlig 2008), in oil

markets (e.g., Baumeister and Peersman 2009; Kilian and Murphy 2010, 2011), and in labor

markets (e.g., Fujita 2011), for example.

In all these applications, the cost of remaining agnostic about the structural model is that the

data are potentially consistent with a wide range of structural models that are all admissible in

that they satisfy the identifying restrictions. An unresolved question in the literature is how to

represent the results of such agnostic identification procedures when the set of admissible models

includes a range of models with conflicting interpretations. One early approach, exemplified by

Faust (1998), has been to focus on the model that is most favorable to the hypothesis of interest.

This allows us to establish the extent to which this hypothesis could potentially explain the data.

It may also help us to rule out a hypothesized explanation, if none of the admissible models

supports this hypothesis. The problem is that this approach is not informative about whether

any one of the admissible models is a more likely explanation of the data than some other model.

More commonly, researchers have reported the vector of pointwise posterior medians of the

impulse responses as a measure of the central tendency of the impulse response functions, along
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with pointwise 68% posterior error bands. This approach suffers from two distinct shortcomings.

The first shortcoming is that the vector of pointwise posterior median responses will have no

structural economic interpretation unless the pointwise posterior medians of all impulse response

coefficients in the VAR system correspond to the same structural model, which is highly unlikely

a priori (see, e.g., Fry and Pagan 2011). In other words, in practice, none of the models in the set

of admissible structural models constructed by the researcher will exhibit the impulse response

dynamics embodied in the median response function obtained by connecting the dots between

the pointwise posterior medians. The second shortcoming is that median response functions

are not a valid statistical summary of the admissible set of impulse response functions. It is

well known that the median of a vector variable is not the vector of the medians, rendering the

vector of pointwise medians inappropriate as a statistical measure of the central tendency of

the impulse response functions (e.g., Chauduri 1996; Koltchinskii 1997; Liu, Parelius and Singh

1999). This means that even if there were an admissible structural model with the same impulse

response function as the median response function, there would be no compelling reason to focus

on this model in interpreting the evidence.1

Similar problems arise in the construction of pointwise impulse response error bands in

sign-identified models based on the quantiles of the marginal posterior distributions of the

impulse responses. Moreover, these error bands do not take account of the dependence of

the impulse response estimates across horizons and across response functions and hence may

overstate or understate the true uncertainty about the dynamics of the system. The latter

problem is well known, but there are no alternative methods in the literature that address these

limitations, leaving researchers with little choice, but to rely on potentially misleading measures

of uncertainty.

In this paper, we propose a new method of summarizing the evidence from sign-identified

VAR models that addresses these shortcomings and is designed to enhance the practical useful-

ness of sign-identified models. Our objective is to identify the most likely admissible model(s)

within the set of structural VAR models that satisfy the sign restrictions. A structural VAR

model is defined by the set of structural impulse response functions associated with a given

set of reduced-form VAR parameters and a given structural impact multiplier matrix. There is

a one-to-one mapping from the joint posterior density of these model parameters to the joint

posterior density of the corresponding set of structural impulse response functions, allowing us

to derive the latter density analytically by the change-of-variable method. This enables us to

assign a posterior density value to each structural model. The most likely or modal model by

1This second point is also relevant for a recent proposal by Fry and Pagan (2011) designed to overcome the lack of

structural interpretation of median response functions. Their idea is to search for the admissible structural model with

impulse response functions closest to the median response functions. This proposal deals with the first shortcoming,

but not the second. Because the median vector is not well defined statistically, there is no compelling reason to focus

on a structural model with response functions close to the vector of medians.
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construction is the admissible model that maximizes the joint posterior density of the admissi-

ble structural VAR models. A 100(1− )% highest posterior density credible set of admissible

models may be formed by ranking the admissible models based on the value of this joint density.

In practice, we proceed in two steps. Under the conventional assumption of a diffuse

Gaussian-inverse Wishart prior, we begin by generating repeated draws from the joint pos-

terior distribution of the reduced-form VAR parameters and of the rotation matrices used in

constructing the structural impact multiplier matrix. For each candidate structural VAR model,

we first compute the posterior density value associated with that model; we then evaluate the

set of implied structural impulse response functions. We discard the structural models that

are inadmissible in that they do not satisfy the identifying sign restrictions. We then rank the

remaining structural models by the value of their posterior density, making it straightfoward to

determine the most likely admissible model and to characterize its impulse response dynamics.

The set of structural impulse response functions associated with the modal admissible model

by construction will be economically interpretable and statistically well defined, addressing the

two main critiques of traditional median response functions.

This baseline procedure is designed for fully identified structural VAR models. Many struc-

tural VAR models, however, are only partially identified in that only a subset of the structural

shocks are identified. Such models are sometimes also referred to as semi-structural VAR mod-

els. For example, in the model of Uhlig (2005) only the responses to monetary policy shocks

are identified. In this case, responses to unidentified shocks become irrelevant in constructing

the modal model. Instead the mode and credible set must be based on the marginal posterior

density of the subset of impulse response functions of interest. We propose a modification of

our baseline procedure that accomplishes this task. Marginalizing the joint density requires

Monte Carlo integration, which renders this procedure computationally more challenging than

the baseline procedure for fully identified models.

Although our approach was designed to aid in the interpretation of impulse response dy-

namics in sign-identified models, essentially the same approach can also be used to resolve the

long-standing problem of how to conduct joint inference on sets of structural impulse response

functions in exactly identified models. It is well known that the pointwise error bands commonly

attached to the structural impulse response functions in exactly identified VAR models fail to

convey the true uncertainty surrounding these impulse response functions. This problem has

been long recognized, but few practical alternatives have been proposed in the literature and

none of these alternative methods are applicable to sign-identified models.2 Our final contribu-

tion is to show how a simplified version of our proposed procedure may be used to construct

2Sims and Zha (1999), for example, caution against connecting the dots representing pointwise error bands and

discuss possible alternative strategies for exactly identified models. Related work based on joint asymptotic approx-

imations for exactly identified models includes Lütkepohl (1990) and Jorda (2009).
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credible sets for the structural impulse response functions for exactly identified structural VAR

models, providing a convenient alternative to traditional pointwise error bands that is easy to

implement. As in the earlier analysis, our approach can accommodate both fully identified and

partially identified models.

Table 1 summarizes the four distinct types of structural VAR models considered in this

paper. The remainder of the paper is organized as follows. In section 2, we describe the

proposed procedure and its implementation in more detail. Although Uhlig’s model focuses on

identifying only the monetary policy shock, many related studies have used sign restrictions

to identify simultaneously a variety of macroeconomic shocks (e.g., Canova and Paustian 2007;

Gambetti, Pappa and Canova 2008). Our analysis allows for that situation. Our analysis also

allows for refinements of the sign restriction approach in the form of additional bounds on

elasticities, for example, or of bounds on cross-correlations (e.g., Canova and De Nicolo 2002;

Kilian and Murphy 2011). These modifications do not affect the substance of our method and

can be easily incorporated.

In section 3, we contrast the proposed modal model responses with traditional median re-

sponses. We demonstrate that median response functions can be quite misleading in practice.

We illustrate how this problem may arise in practice and provide a simple analytical example

which shows that even in simple settings the median response is likely to be biased away from

the responses associated with the most likely or modal model. The median responses not only

tend to be biased relative to the modal response, but, in models with richer dynamics, the me-

dian response function may have the opposite sign of the response function in the modal model.

This observation suggests that there is a need to reexamine the findings of earlier studies based

on median responses from sign-identified VAR models.

The empirical relevance of these insights is demonstrated in section 4. In section 4a, we

pursue this question in the context of a fully identified structural VAR model. We focus on

the example of a model of the global market for crude oil in the tradition of Baumeister and

Peersman (2009) and Kilian and Murphy (2011). We show that the modal model generates

economically plausible responses. The 68 percent joint credible sets tend to be wider than

conventional 68 percent pointwise impulse response error bands, but many responses are fairly

precisely estimated nevertheless with credible sets that exclude the zero line at some or all

horizons. We demonstrate that the responses in the modal model can be substantially different

from conventional median response functions. The bias in the median response functions can

be upward or downward. In many cases, the responses of the modal model are outside of the

conventional 68 percent pointwise posterior error bands.

In section 4b, we consider a partially identified structural VAR model, building on the

analysis of U.S. monetary policy in Uhlig (2005). We explore in particular the question of what
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the effect is of an unanticipated monetary policy tightening on real U.S. output. We show that

the method of summarizing the evidence matters. For example, Uhlig reported a peak median

output response of 0.15 for this model. For the same data, we obtain a peak response of almost

0.5 based on the modal model. Moreover, that modal model estimate is near the upper end of

the credible set and outside the conventional pointwise posterior error band.

Both the median estimate and the response estimate based on the modal model are counter-

intuitive in that a monetary tightening would be expected to cause a decline in real output over

time rather than an increase. This outcome reflects the fact that the identifying assumptions

are not overly informative. Even in Uhlig’s original analysis, there was substantial pointwise

probability mass on both negative and positive responses of real output. Our 68 percent credible

set further widens the set of probable responses. The explicit reason that Uhlig (2005) did not

impose further restrictions is that he wished to be as agnostic as possible about the response

of real output. It has been shown that this approach is valid only to the extent that we view

models in which real output increases in response to a monetary tightening as equally plausible

a priori as models in which real output declines (see Kilian and Murphy 2011). In an effort to

relax that assumption, we also considered an alternative set of models that impose an additional

sign restriction on the response of real GDP after 6 months (and only at that horizon). This

identifying assumption leaves the short-run as well as the longer-run response of real output

unrestricted.

The resulting modal model produces substantially different and more economically plausi-

ble results, including a cumulative drop in real GDP of -0.3 percentage points in the second

quarter. The response estimate for the modal model is at the lower end of the credible set and

again outside the conventional pointwise posterior error band. It also is substantially different

from the response estimate obtained from the traditional Cholesky decomposition. Even in

this alternative model, however, the 68 percent credible set includes many positive real output

responses, suggesting that the data are not very informative about the response of real output.

We conclude that there remains substantial uncertainty about the effects of monetary policy

shocks on real output, whereas there is strong evidence of the effects of oil demand shocks on

the real price of oil in the earlier example.

In section 5, we show that our approach of constructing joint credible sets for the structural

impulse response functions can also be adapted to exactly identified structural VAR models,

providing a convenient alternative to traditional pointwise error bands that is easy to implement.

For standard semi-structural monetary policy VAR models of the type considered by Uhlig

(2005) as a benchmark, we show that properly accounting for the joint uncertainty about all

impulse responses renders the impulse response estimates less informative than conventional

pointwise error bands suggest. For example, evidence of the price puzzle vanishes. On the other
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hand, several of the response functions including that of real GDP remain precisely enough

estimated for the VAR model to be economically informative. In addition, we illustrate that,

for the reasons already discussed, commonly used posterior median response functions may differ

from the response functions in the modal posterior model. The concluding remarks are in section

6. Some technical details of the proposed procedure can be found in the technical appendix.

2 Evaluating the Posterior of Sign-Identified VARModels

2.1 Preliminaries

Consider the -variate reduced-form VAR(p) model:

 = +1−1 +2−2 + · · ·+− +  (1)

for  = 1   where 
∼ (0×1Σ) and Σ is positive definite. Write (1) as

 =  +  (2)

where  = [1 2 · · ·  ]0,  = [1 2 · · ·  ]
0,  = [1 

0
−1 · · · 0−]0,  = [ 1 · · · ]

0,

and  = [1 2 · · ·  ]0.
Throughout this paper, we follow the conventional approach of specifying a normal-inverse

Wishart prior distribution for the reduced-form VAR parameters and a Haar distribution for

the rotation matrix. This approach ensures that all admissible models are a priori equally likely

(see Uhlig 2005, p. 389):

vec()|Σ ∼ (vec(̄0)Σ⊗−10 )

Σ ∼ (00 0)

where 0 is an ×  positive definite matrix, 0 is an ×  covariance matrix, and 0  0.

Then the posterior is given by

vec()|Σ ∼ (vec(̄ )Σ⊗−1 ) (3)

Σ ∼ (   ) (4)

where  =  + ,  = 0 + 0, ̄ = −1 (0̄0 + 0̂),

 =
0


0 +




Σ̂+

1


(̂ − ̄0)

00
−1
  0(̂ − ̄0)
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̂ = ( 0)−1 0 and Σ̂ = ( −̂)0( −̂) .

Consider a set of ×  matrices consisting of orthonormal column vectors:

U =
©
 = [1 2 · · · ]0 :  ∈ <×1     = 1( = ) ∀   = 1 2  ª 

where  · ·  denotes the inner product and 1(·) is the indicator function. Let  denote a draw
from the uniform distribution over U . By construction,  0 = . Define  =  where  is

the Cholesky decomposition of Σ, such that 0 = Σ. Note that 
0
=  00 = 0 = Σ.

When all structural shocks in the model are identified, we say that the model is fully identified;

when only a subset of the structural shocks is identified, we say that the model is partially

identified. For further discussion see, e.g., Rubio-Ramirez, Waggoner and Zha (2010) and Fry

and Pagan (2011). The discussion in section 2.2 focuses on sign-identified models in which all

structural shocks are jointly identified (corresponding to case 1 in Table 1). Partially identified

structural VAR models based on sign restrictions (corresponding to case 2 in Table 1) are

discussed in section 2.3.

2.2 Fully Identified Models

2.2.1 The Posterior Mode of Sign-Identified Structural Impulse Responses

Let () denote the ( + 1)2 × 1 vector that consists of the on-diagonal elements and
the below-diagonal elements of  and let () denote the ( − 1)2 × 1 vector that con-
sists of above-diagonal elements of  . Ignoring the intercept for notational convenience, let

 = [1 · · · ]
0. As shown in the appendix, because there is a one-to-one mapping between

 and the reduced-form vector moving average coefficient matrices Φ,  = 1 2   (see equa-

tion 10.1.19 of Hamilton, 1994, p. 260, for example) and because Σ is nonsingular and  is

orthonormal, there is a one-to-one mapping between the first +1 structural impulse responses

Θ̃ = [ Φ1 Φ2 · · ·  Φ]0 on the one hand and the tuple formed by the reduced-form VAR
parameters and the rotation matrix, ( vech() veck()), on the other. The nonlinear func-

tion eΘ = ( vech() veck()) is known. Using the change-of-variables method, the posterior

density of eΘ can be written as
(Θ̃) =

¯̄̄̄
[vec()0 vech()0 veck()0]

vec(Θ̃)

¯̄̄̄
()

=

Ã¯̄̄̄
¯ vec(Θ̃)

[vec()0 vech()0 veck()0]

¯̄̄̄
¯
!−1 ¯̄̄̄

Σ



¯̄̄̄
(Σ )

=

Ã¯̄̄̄
¯ vec(Θ̃)

[vec()0 vech()0 veck()0]

¯̄̄̄
¯
!−1 ¯̄̄̄

Σ



¯̄̄̄
(|Σ)(Σ) (5)
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where , Σ = 0 and  are the unique values that satisfy the nonlinear function eΘ =

( vech() veck()). Here  ’s denote posterior densities whose conditioning on the data is

omitted for notational simplicity. Because  is uniformly distributed on U the following result
holds:

Proposition 1. The posterior density of Θ̃ is

(Θ̃) ∝
Ã¯̄̄̄
¯ vec(Θ̃)

[vec()0 vech()0 veck()0]

¯̄̄̄
¯
!−1 ¯̄̄̄

Σ



¯̄̄̄
(|Σ)(Σ) (6)

The Jacobian matrix and its construction are discussed in the technical appendix.

Let × denote the set of structural impulse responses Θ̃ that satisfy the sign restrictions.

The modal model by construction is the admissible model that maximizes the posterior density

of the sign-identified structural impulse responses. Because the impulse responses that do not

satisfy the sign restrictions are discarded, the posterior density of the sign-identified impulse

responses can be written as

(Θ̃) =

⎧⎨⎩
(Θ̃)

 (Θ̃∈Θ) if Θ̃ ∈ Θ
0 if Θ̃ ∈ Θ

(7)

where  (Θ̃ ∈ Θ) is the posterior probability that Θ̃ ∈Θ. Because  (Θ̃ ∈ Θ) does not depend on
Θ, finding the mode of the posterior of the sign-identified structural impulse responses reduces to

finding the maximum of the right hand side of (6) subject to the sign restrictions. In particular,

it is not necessary to reweight  (Θ̃ ∈ Θ) to account for draws from the posterior that have

been rejected.

In practice we proceed as follows:

Step 1. Take a random draw, (Σ), from the posterior of the reduced-form VAR parameters.

Step 2. For each (Σ), consider  random draws of the rotation  , and for each combination

(Σ ) compute the set of implied structural impulse responses Θ̃.

Step 3. If Θ̃ satisfies the sign restrictions, store the value of Θ̃ and the value of (Θ̃). Otherwise

discard Θ̃.

Step 4. Repeat steps 2 and 3  times and find the element of Θ that maximizes (6).

2.2.2 Credible Sets for Structural Impulse Response Functions

Define the 100(1− )% highest posterior density (HPD) credible set by

 = {Θ̃ ∈ Θ : (Θ̃) ≥ } (8)

8



where (Θ̃) is the posterior density of Θ̃ and  is the largest constant such that

 () ≥ 1− 

(see Definition 5 of Berger, 1985, p. 140).

In practice, we compute the 100(1− )% HPD credible set as follows:

Step 1. Take a random draw, (Σ), from the posterior distribution of the reduced-form VAR

parameters.

Step 2. For each (Σ), consider  random draws of the rotation  , and for each combination

(Σ ) compute the set of implied structural impulse responses Θ̃.

Step 3. If Θ̃ satisfies the sign restrictions, store the value of Θ̃ and the value of (Θ̃). Otherwise

discard Θ̃.

Step 4. Repeat Steps 2 and 3  times and sort the pairs {(Θ̃ (Θ̃))} in descending order by the
value of (Θ̃). The 100(1 − )% HPD credible set consists of the set of Θ̃’s contained in

the first (1− ) sorted pairs, where  refers to the number of models among the  ·
draws that satisfy the sign restrictions.

Credible sets differ from conventional error bands for impulse responses in that the elements

of the credible set are vectors representing the impulse response functions up to some prespecified

horizon. There is no reason for credible sets to be dense necessarily. Rather a plot of the credible

set will typically exhibit a shot-gun pattern.

2.3 Partially Identified Models

A common situation in VAR models of monetary policy is that the structural model is only

partially identified in that we are concerned with identifying the policy shock, but no other

structural shocks. If we are concerned with a subset of impulse response functions only, what

matters for constructing the posterior mode is not the joint impulse response distribution, but

the marginalized distribution obtained by integrating out responses to shocks that are not

identified. To simplify the exposition we will focus on the case in which only impulse responses

to one structural shock are identified. The method proposed below can be modified to allow for

impulse responses to more than one shocks.

The sign-identified structural impulse responses, 1 = Φ1, ...,  = Φ, where  = , do

not single out a unique value of Φ1 Φ. That is because any Φ that satisfies

Φ =   = 1   (9)

is consistent with  and there are infinitely many of such Φ. Given  restrictions of the form
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(9), one therefore needs to integrate out the joint posterior distribution of  with respect to

(− 1) of the parameters in . Our approach exploits the following proposition.

Proposition 2:

(0 1  ) ∝
Z

(0 1  |̃Φ(2) Σ̃)(Φ(2) Σ̃)(̃Φ(2) Σ̃)

=

Z
|1||̃| (Φ(1)|(2) eΣ)((2) Σ̃)(̃ (2) Σ̃)

=

Z
|1||̃| ((1)|(2) Σ̃)((2)|Σ̃)(eΣ)(̃ (2) Σ̃) (10)

A heuristic proof of Proposition 2 may be constructed as follows. Consider a random draw of Σ̃

from the posterior distribution of Σ and condition on its Cholesky decomposition, say ̃. Given

̃, the sign-identified impulse responses in the impact period, 0, uniquely pin down the value

of ̃.3 Conditional on Σ̃, we draw the second through last columns of ,  = 1  , from the

unconstrained posterior distribution. Postmultiplying

Φ1 = 1 (11)

by  yields

1 = 1 (12)

Because  has a continuous distribution under our assumptions, 1 6= 0 with probability one.

Thus it follows from (12) that the first column of 1 is obtained from

11 =
1 −

P
=2 1

1
for  = 1   (13)

with probability one, where  and  denote the ( )th element of  and the th element

of  , respectively. We now have a value of 1 that is consistent with (9).

Next, we postmultiply

Φ2 = 1Φ1 +2 (14)

by  to obtain

2 = 11 +2 (15)

from which we obtain

21 =
2 −

P
=2 2

1
for  = 1   (16)

3Because ̃ is nonsingular, ̃ = ̃−10 is uniquely defined and satisfies ̃0̃ = 00̃−10̃−1 = 00−1 =
0 = 1 where  is the original Cholesky decomposition of Σ from which  is obtained.
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where

2 = 2 −11

This provides a value of the first column of 2 that is consistent with (9). This process may be

repeated recursively until we reach . In the last step, we postmultiply

Φ = 1Φ−1 +2Φ−2 + · · ·+ (17)

by  to obtain

 = 1−1 +2−2 + · · ·+ (18)

from which we obtain the first column of  as:

1 =
 −

P
=2 

1
for  = 1   (19)

where

 =  −1−1 − · · ·−−11

Therefore, given Σ̃ and the second through last columns of  for  = 1 2  , the value of

1,...,  implies a unique value of ̃ and of the first columns of each  (and vice versa).

Let (1) denote the ( − 1) column vector obtained by stacking the first columns of the
’s,  = 1   and let 

(2) denote the corresponding second through last columns. Then the

marginal posterior density of the subset of structural impulse responses of interest is

(0 1  ) ∝
Z

(0 1  |Φ(2) Σ̃)(Φ(2) Σ̃)(Φ(2) Σ̃)

=

Z
|1||̃| (Φ(1)|(2) Σ̃)((2) Σ̃)((2) Σ̃)

=

Z
|1||̃| ((1)|(2) Σ̃)((2)|Σ̃)(Σ̃)((2) Σ̃) (20)

where the first equality follows because the distribution of  is uniform, the second equality

follows from applying the change-of-variables method to (13), (16),...,(19), and the last equality

follows from using the block diagonality of the Jacobian matrix and applying the change-of-

variables method to (11), (14),...,(17), |̃| follows from 0 = ̃̃, (16),...,(19) and the last
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equality follows from applying the change-of-variables method to (11), (14),...,(17).4Q.E.D.

Proposition 2 allows us to estimate the posterior density of 0 1   (up to scale) by Monte

Carlo integration (see, e.g., Robert and Casella 2004).

To summarize:

Step 1. Generate  draws of (Σ), from the posterior distribution of the reduced-form VAR

parameters with  independent draws each of the rotations  .

Step 2. For each of the · draws compute the set of sign-identified structural impulse responses

of interest, 0 1  

Step 2a For each of these sets of structural impulse response functions use (13),(16),...,(19) to

construct  draws of (2) and Σ, from which  draws of (1) are constructed. Evaluate

the value of

|1||̃| ((1)|(2) Σ̃) (21)

Step 2b Compute the average of (21) across the  draws considered in step 2a. This Monte Carlo

integration yields (up to scale) an estimate of the density (0 1  ).

Given the marginal posterior density of the structural response functions of interest, we may

then compute the mode and credible sets as outlined earlier.

2.4 Implementation

In practice, we specify a diffuse Gaussian prior for the VAR slope parameters such that the pos-

terior mode of the slope parameters equals the least-squares estimator. For expository purposes,

we follow the literature in setting  = 032. The mode and the credible set of course may be

computed from the same loop. The procedures were implemented in MATLAB or FORTRAN,

depending on the computational requirements.

3 Posterior Modes versus Posterior Medians

Before discussing the extent to which median response functions differ from response functions

of the modal model in practice, it is useful to develop some intuition about the limitations of

median response functions. Let Θ denote the response of variable  to structural shock  at

4 In the fully identified case, the interpretation of the density (Θ0 Θ) as a posterior density is immediate

given that there is a one-to-one mapping from (()0 ()0 ()0) to (Θ0 Θ). In the partially identified

case, the argument that (0 1  ) is a posterior density is more involved. Note that marginalizing the joint

posterior of the reduced-form parameters with respect to (2) and the Σ that satisfies the identifying restrictions

yields the marginal posterior of (1) conditional on the identifying restrictions being satisfied. Because the mapping

between this (1) and the impulse responses characterized in equation (20) is one-to-one conditional on (2) and Σ,
it follows that equation (20) is the posterior distribution of 0 1  .
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horizon . One situation in which the vector of pointwise posterior medians is misleading as

a measure of the central tendency of a structural impulse response function is when posterior

draws of Θ   = 1  for given  and  cross one another. This situation is illustrated in

Figure 1. The figure focuses on the response of real GDP to an unanticipated monetary policy

shock for a horizon of up to 36 months. This example was constructed by plotting a randomly

chosen subset of nine admissible response functions for the Uhlig (2005) model discussed in

section 4.2. It is evident that, for different horizons, the pointwise posterior median responses

coincide with responses of different admissible models. Specifically, the median response function

coincides with the response function of model 1 at horizons 4, 12-13, and 17-25; with the response

function of model 2 at horizon 9 and 15-16; with that of model 3 at horizon 16; with that of

model 5 at horizons 5-8, 10 and 27; with that of model 6 at horizons 0-3, 11 and 15, and with

that of model 9 at horizons 28-36. There is, in fact, no structural model in the admissible set

that could replicate the response pattern implied by the posterior median response function,

rendering this statistic economically meaningless. Note that it is not sufficient to show that

there are no cross-overs between impulse response functions. Similar problems may arise even

in the absence of cross-overs when the order of the models differs for two response functions

at some horizon . Verifying the absence of these problems is not practically feasible, given

the thousands of admissible models implied by typical sign-identified VAR models. A key

advantage of the approach discussed in section 2 is that it avoids both of these problems by

construction. Moreover, as discussed in the introduction, median response functions are not

appropriate measures of the central tendency of the vector of impulse responses, making them

difficult to intepret not only from an economic, but even from a purely statistical point of view.

Focusing instead on the impulse response functions of the most likely structural model therefore

seems natural in our context.5

It is important to understand the implications of this choice. Even if we focus on one impulse

response coefficient at a time, the posterior mode will differ systematically from the posterior

median. To illustrate these differences, consider a scalar process  = −1 + , 
∼ (0 1),

where  = 1   . In population,  = 0. We generate a random draw of length  = 200

from this process and postulate a diffuse Gaussian prior for . Consider the impulse response

at horizon  defined as + =  We focus on  = 1 for illustrative purposes. The

left panel of Figure 2 shows the posterior density of  in the absence of sign restrictions. The

distribution is centered on the least-squares estimate, which for this sample is slightly positive.

5Our emphasis on the mode of the joint distribution of models is not without precedence. The same approach

is used in classical maximum likelihood estimation, for example. Likewise, there is precedence for focusing on the

peak of the posterior in Bayesian analysis (see, e.g., Rubio-Ramirez, Waggoner and Zha 2009). There clearly are

situations in which the use of the mode may be problematic (such as for bimodal distributions with equally high

peaks in both tails and little probability mass in the center), but in that case the median or the mean would not be

adequate summary statistics either. In any case, our empirical analysis below suggests that such extreme examples

are not practically relevant.
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By construction, the least-squares estimate is both the mode and the median of the posterior

distribution of . The right panel shows the corresponding posterior density after imposing the

restriction   0, which is equivalent to restricting all impulse responses to be positive. The

dotted line is the posterior median; the dashed line is the mode. The right panel illustrates

that the posterior median in the sign-identified model by construction implies a larger impulse

response than the posterior mode, which is the most likely value of  by construction. In other

words, the posterior median is a biased estimator of the response associated with the most likely

model even when dealing with one impulse response at a time.

This intuition carries over to impulse responses in sign-identified VAR models. The problem

of using median responses is not merely one of overstating (or understating) the magnitude of

the impulse responses. As we will illustrate in section 4.2, in higher-dimensional models with

richer dynamics it is even possible to find examples in which impulse responses of the most likely

admissible model are of a different sign than the pointwise posterior median. Such examples

suggest that there is a need more generally to reexamine the findings of earlier studies that were

based on posterior median responses from sign-identified VAR models. In the next section, we

consider one fully identified model and one partially identified model for illustrative purposes.

4 Sign-Identified Models

4.1 Fully Identified Case: Oil Demand and Supply Shocks

There is a growing literature of models of the global market for crude oil based on fully identified

structural VAR models. Here we follow Kilian and Murphy (2011) in specifying a monthly

VAR(24) model with intercept for 1973.2-2008.9. The set of variables consists of monthly data

for the percent change in global oil production, a measure of global real activity (in deviations

from trend), and the real price of crude oil. The variables are defined and discussed in detail in

Kilian (2009). We combine some of the key identifying assumptions from the existing literature.

We first impose sign restrictions on the impact responses of each variable to each structural

shock. An unanticipated oil supply disruption causes oil production to fall, the real price of

oil to increase, and global real activity to fall on impact. An unanticipated increase in the

flow demand for oil driven by the global business cycle causes global oil production, global real

activity and the real price of oil to increase on impact. Other positive demand shocks (such

as shocks to oil inventory demand driven by forward looking behavior) cause oil production

and the real price of oil to increase on impact and global real activity to fall. Second, we

bound the impact price elasticity of oil supply by 0.025, as suggested by Kilian and Murphy

(2011). This elasticity can be expressed as the ratio of two impact responses. This identifying

restriction is consistent with widely held views among oil economists that the short-run price
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elasticity of oil supply is close to zero. Very similar results would be obtained if we doubled

that bound. Finally, we follow Baumeister and Peersman (2009) in restricting the real price of

oil to be positive for the first year in response to unanticipated oil supply disruptions and in

response to positive oil demand shocks. We construct the posterior distribution of the impulse

responses estimates based on  = 5000 draws from the reduced-form posterior distribution

with  = 20 000 rotations each.

Figure 3 displays the responses of each variable to each shock in the modal model along

with the corresponding 68% credible sets. The responses have been normalized such that each

structural shock implies an increase in the real price of oil. All structural response function

estimates are consistent with standard economic intuition. For example, a negative flow supply

shock is associated with a persistent decline in oil production, a modest increase in the real price

of oil, and a gradual modest decline in global real economic activity. A positive flow demand

shock is associated with a persistent and hump-shaped response in both global real activity

and the real price of oil and with little response in global crude oil production. Other demand

shocks (such as shocks to oil inventory demand) cause a temporary increase in the real price of

oil, a temporary decline in global real activity for about 20 months and little response in global

crude oil production. The corresponding credible sets indicate considerable uncertainty about

the price responses and to a lesser extent for the responses in real activity, whereas the credible

sets for oil production responses are quite narrow. Nevertheless, several response functions are

precisely enough estimated to conclude that the response differs from zero.

There also are important differences between the most likely estimates provided by the modal

model and the conventional median response functions. Figure 4 demonstrates that the median

response function may be closer to zero or further away from zero than the responses of the

modal model. For example, median response functions overestimate the magnitude of the price

response to other demand shocks, but underestimate the response of global real activity to the

same shock. Moreover, pointwise 68% posterior error bands provide little protection against

mis-characterizing the impulse response dynamics, as shown in Figure 5. In many cases, the

response functions of the modal model are outside the pointwise error bands for at least some

horizon. Figure 5 also illustrates that pointwise intervals tend to understate the estimation

uncertainty compared with credible sets that capture the joint uncertainty over all impulse

response functions. This example illustrates that the way estimates of sign-identified VAR

models are represented matters for the interpretation of the data.

4.2 Partially Identified Case: Monetary Policy Shocks

Whereas the preceding example dealt with a fully identified model, this section considers an

example of a partially identified model. We focus on the model of U.S. monetary policy proposed
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by Uhlig (2005). Our focus in this section is not so much on whether this specific model is an

appropriate model of U.S. monetary policy, but whether the method of statistical evaluation

makes a difference for the economic interpretation of the results. The central question in Uhlig

(2005) is what the effects of an unanticipated monetary contraction are on real output. We

follow Uhlig in constructing a VAR(12) model without intercept. The set of variables consists of

monthly U.S. data for the log of interpolated real GDP of the US, the log of the interpolated GDP

deflator, the log of a commodity price index, total reserves, non-borrowed reserves and the federal

funds rate. The sample period is 1965.1-2003.12 to ensure compatibility with Uhlig’s original

analysis.6 The numerical stability of the results requires a fairly large number of draws, especially

for  and . We construct the posterior distribution of the impulse responses estimates based

on = 5 000 draws from the reduced-form posterior distribution with  = 500 rotations each.

We set  = 20 000.

Figure 6 demonstrates that there are important differences between the median response

estimates of the response of real output and the response in the modal model. Whereas Uhlig

reported a peak median output response of 0.15 percentage points, for the same data, we obtain

a peak response of almost 0.5 percentage points based on the modal model. Moreover, that peak

value is near the upper end of the credible set and outside the conventional pointwise posterior

error band. It should be noted that both the median estimate and the response estimate based

on the modal model are counterintuitive in that a monetary tightening would be expected to

cause a decline in real output over time rather than an increase. This outcome reflects the fact

that the identifying assumptions are not overly informative. Even in Uhlig’s original analysis,

there was substantial pointwise probability mass on both negative and positive responses of real

output. Our 68% credible set further widens the set of probable response functions.

The explicit reason why Uhlig (2005) did not impose further restrictions is that he wished to

be as agnostic as possible about the response of real output. It has been shown that this approach

is appropriate only to the extent that we view models in which real output increases in response

to a monetary tightening as equally plausible a priori as models in which real output declines

(see Kilian and Murphy 2011). In an effort to relax that assumption, in Figure 7 we consider

an alternative set of models that impose an additional sign restriction on the response of real

GDP after 6 months (and only at that horizon). This identifying assumption leaves the short-

run as well as the longer-run response of real output unrestricted. The resulting modal model

produces substantially different and more economically plausible results, including a cumulative

drop in real GDP of -0.3 percentage points in the second quarter. The response estimate for the

modal model is at the lower end of the credible set and again outside the conventional pointwise

posterior error band. It also is substantially different from the response estimate obtained

6For a more detailed description of the data the reader is referred to Uhlig (2005). The data set was provided by

Harald Uhlig.

16



from the traditional Cholesky decomposition. One difference is that the reduction in real GDP

in Figure 7 is temporary, whereas traditional Cholesky models imply a much more persistent

decline in real GDP. Even in this alternative model, however, the 68% credible set includes many

positive real output responses, suggesting that the data are not informative about the response

of real output. Likewise the other response functions are estimated only very imprecisely. We

conclude that there remains substantial uncertainty about the effects of monetary policy shocks

on real output, whereas there is strong evidence of the effects of oil demand shocks on the real

price of oil in the earlier example.

Figures 8 and 9 elaborate further on the results in Figure 7. Figure 8 illustrates that there

can be substantial differences between the median response function estimates and the response

function estimates based on the modal model. For example, the decline in real GDP caused

by an unanticipated monetary contraction is much larger in the modal model, at least in the

short run. In some cases, the median and the modal response of real GDP differs not only in

magnitude, but in sign. Finally, Figure 9 demonstrates that the modal model response may be

outside the conventional pointwise 68% error bands. This is true in particular for the response

of real GDP and to a lesser extent for the response of commodity prices and the own-response

of the federal funds rate.

5 Exactly Identified Models

Our approach is not limited to sign-identified models. It can also be applied to exactly identified

models. A case in point is a recursively identified model, in which the policy reaction function is

ordered last in the system of equations. This type of model is commonly used in the monetary

policy literature and indeed is the point of departure for the analysis in Uhlig (2005). The only

difference to the earlier model is that the order of the variables matters. We follow Uhlig in

ordering the variables of the VAR(12) model as real GDP, GDP deflator, commodity prices,

federal funds rate, nonborrowed reserves and total reserves. The model in question is only

partially identified. The object of interest are the responses to an orthogonalized federal funds

rate shock.

Uhlig (2005) reports the posterior median impulse response functions. As in the sign-

identified model, this measure of the central tendency of the structural impulse responses is

valid only pointwise and need not correspond to the impulse response functions implied by the

most likely structural model. Uhlig also reports pointwise 68% posterior error bands for this

model. It is well known that these pointwise error bands fail to convey the true uncertainty

surrounding these impulse response functions. This problem has been long recognized, but few

practical alternatives have been proposed in the literature, which explains why these methods

have remained the standard in the structural VAR literature (see, e.g., Lütkepohl 1990, Sims
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and Zha 1999, Jorda 2009).

A solution to this problem is provided by a simplified version of our baseline procedure for

sign-identified models. In the fully identified case, corresponding to case 3 in Table 1, it suffices

to replace the rotation matrices in the procedure outlined in section 2.2 by the identity matrix

and to modify the Jacobian of the transformation accordingly. We obtain

(Θ̃) ∝
⎛⎝¯̄̄̄¯̄[vech(Θ̃0)0 vec(

h
Θ̃1 Θ̃2  Θ̃

i
)0]

[vec()0 vech()0]

¯̄̄̄
¯̄
⎞⎠−1 ¯̄̄̄Σ



¯̄̄̄
(|Σ)(Σ)

where Θ̃0 is the impulse response matrix in the impact period and Θ̃1, Θ̃2,...,Θ̃ are the impulse

response matrices at higher horizons. It follows from Θ̃ = Θ for  = 1   and equation (29)

in the appendix that the determinant of the Jacobian reduces to || |0[(⊗ ) + ( ⊗)2 ]|,
where  is defined in the appendix. On the basis of this result, we can evaluate the posterior as

discussed earlier. This simplified procedure could be applied, for example, to the fully structural

oil market VAR model in Kilian (2009).

The partially point-identified case considered by Uhlig (2005) corresponding to case 4 in

Table 1 is more involved. Suppose that only impulse responses to the th shock are considered

(e.g., monetary policy shocks). Because the impulse responses in the impact period correspond

to the th column of the Cholesky decomposition, we need to draw Σ conditional on the th

column of its Cholesky decomposition when marginalizing the joint posterior density. We write

the Cholesky decomposition as

 =

⎡⎢⎢⎢⎣
11 0 0

21 22 0

31 32 33

⎤⎥⎥⎥⎦ 

where 11, 21, 22, 31, 32 and 33 are 1×1, 1× 1, 2×1, 2× 1 and 2×2 matrices,

1 + 1 + 2 = , and [0 022 032]
0 corresponds to the th column of . Then

Σ =

⎡⎢⎢⎢⎣
11

0
11 11

0
21 11

0
31

21
0
11 21

0
21 +22

0
22 21

0
31 +22

0
32

31
0
11 31

0
21 +32

0
22 3131 +32

0
32 +33

0
33

⎤⎥⎥⎥⎦ 

Because⎡⎣ 21
0
21 +22

0
22 21

0
31 +22

0
32

31
0
21 +32

0
22 3131 +32

0
32 +33

0
33

⎤⎦−
⎡⎣ 22

0
22 22

0
32

32
0
22 32

0
32 +33

0
33

⎤⎦
=

⎡⎣ 21
0
21 21

0
31

31
0
21 3131 +33

0
33

⎤⎦ (22)
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is positive definite and 21, 31 and 33 are unconstrained, one can draw eΣ from the posterior

distribution of eΣ conditional on the th Cholesky decomposition by drawing eΣ from the uncon-

ditional posterior distribution of Σ and retaining the draws in which (22) is positive definite.

We draw ’s that are consistent with the impulse responses 1 2   in the same way as

in Proposition 2 except that we condition on the th columns of  rather than the first column

of . This is because the first element of 0 is zero (unless the first shock is considered).

Let (1) denote the last columns of ’s and let 
(2) denote their first through second-to-last

columns. Then we can summarize our approach in the following proposition:

Proposition 3:

(0 1  ) ∝
Z

(0 1  |̃Φ(2) Σ̃)(Φ(2) Σ̃)(Φ(2) Σ̃)

=

Z
|| (Φ(1)|(2) eΣ)((2) Σ̃)((2) Σ̃)

=

Z
|| ((1)|(2) Σ̃)((2)|Σ̃)(eΣ)((2) Σ̃) (23)

where the integration is taken over (2) and the eΣ whose (2+1)×(2+1) lower-right submatrix
satisfies the restriction (22).

The resulting procedure allows the user to construct credible sets for the structural impulse

response functions for exactly identified structural VAR models that account for the joint uncer-

tainty in the set of structural impulse response functions. It provides a convenient alternative

to traditional pointwise error bands that is easy to implement. We illustrate this point for the

responses to an unanticipated monetary tightening in the (partially) recursively identified VAR

model used as a benchmark in Uhlig (2005). Uhlig’s Figure 4 reported the pointwise median

response functions and pointwise 68% posterior error bands for this model. We instead report

the response functions of the modal model and the corresponding 68% joint credible set. All

results are based on  = 5 000 and  = 20 000. Figure 10 shows that, even after accounting

for the full uncertainty about the impulse response dynamics, the response functions of real

GDP, of the federal funds rate and of nonborrowed reserves are precisely enough estimated to

be economically informative at least at some horizons. The price puzzle and the puzzling initial

increase in real GDP in response to an unanticipated monetary tightening, in contrast, can

be attributed to estimation uncertainty. This result highlights the importance of simultaneous

inference for all structural impulse responses. A user of pointwise 68% posterior error bands

would have concluded that these puzzles cannot be explained merely by estimation uncertainty.

Figure 10 also illustrates that the median response functions may differ substantially from

the response functions of the modal model. For example, the response of total reserves in the

modal model differs not only in magnitude, but also in sign. The negative response of commodity
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prices doubles in magnitude compared with the results in Uhlig (2005) and the response of the

GDP deflator turns negative after only 24 months rather than 48 months. These differences

highlight that accounting for the dependence across impulse response estimates is important

even in point-identified models.

6 Concluding Remarks

Conventional approaches to summarizing the evidence from sign-identified impulse response

functions based on quantiles of the pointwise posterior distribution of impulse responses lack a

clear economic interpretation and fail to convey the uncertainty about the structural responses

functions. We proposed an alternative approach based on a characterization of the most likely

models in the set of admissible structural models. The approach discussed in this paper is

explicitly Bayesian in nature. The use of Bayesian methods facilitates the interpretation of

sign-identified VAR models and is standard in this literature. In fact, it is not clear how to

extend our approach to evaluating sign-identified VAR models to frequentist settings.7

For exactly identified VAR models, in contrast, one could construct joint asymptotic normal

approximations of the distribution of the impulse responses (see, e.g., Lütkepohl 1990, Mittnik

and Zadrozny 1993). This allows joint inference based on the Bonferroni principle, although

that method is impractical given its low power (see Lütkepohl 1990). As an alternative, Jorda

(2009) recently proposed the construction of joint confidence intervals based on Scheffé’s method.

Likewise, our approach in this paper could be adapted to provide joint confidence sets for

structural impulse response functions in exactly identified models based on the conventional

asymptotic normal approximation.

Finally, in related work, Sims and Zha (1999) proposed a joint impulse response error band

based on the mean and variance of the joint posterior distrubution of the structural impulse

responses in exactly identified models. Their Bayesian error band could also be computed for

impulse response functions in sign-identified models, but has no obvious rationale in the absence

of normality. The reason is that only under normality the first two moments provide an adequate

characterization of the distribution. It is well known that the finite-sample posterior distribution

of impulse responses tends to be highly nonnormal. In the case of exactly identified models, the

joint impulse response distribution is at least aymptotically normal. In the sign-identified model,

in contrast, asymptotic normality breaks down, as shown by Moon, Schorfheide, Granziera, and

Lee (2009), making this approach less appealing. In either case, the probability content of

the 68% joint error band of Sims and Zha (1999) will be at best approximately 68% in finite

7Moon, Schorfheide, Granziera, and Lee (2009) recently proposed pointwise frequentist confidence intervals for

impulse response estimates obtained from sign-identified VAR models. They showed that Bayesian and classical

inference do not coincide even asymptotically in sign-identified VAR models. Moon et al. do not address the question

of how to construct joint confidence regions or the question of which response estimates are most likely.
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samples. In contrast, our credible set has exactly 68% probability content in finite samples by

construction. An interesting question for future research would be to see how well the error

band proposed by Sims and Zha approximates its nominal probability content in the exactly

identified and in the sign-identified case.

Two empirical examples illustrated that the way information from structural VAR model

estimates is represented matters. Responses based on the modal model and the associated

credible sets can generate very different assessments of the evidence than traditional methods.

It may seem that there could be alternatives to the use of the posterior mode in characterizing the

structural impulse responses of the most likely model. We motivated our analysis by observing

that posterior median response functions are not appropriate for characterizing the central

tendency of structural impulse response functions. The use of the mode of the posterior is

not without precedent in Bayesian analysis (see, e.g, Rubio-Ramirez, Waggoner and Zha 2010,

p. 684). One obvious alternative statistic might seem to be the vector of posterior means.

The posterior mean is statistically well-defined in the vector case and does not suffer from the

second shortcoming discussed in the introduction. Given a finite set of admissible posterior

draws, the posterior mean in general will not correspond to any one structural model in the

set of admissible models, however, making it vulnerable to the first shortcoming. One way of

addressing this concern would be to search for the admissible structural model that produces

impulse responses closest to those of the posterior mean response functions, building on an idea

in Fry and Pagan (2011).8 We do not pursue this idea in this paper. One disadvantage of the

posterior mean approach compared with focusing on the most likely or modal model is that there

is no natural way of constructing joint credible sets in the sign-identified model. In contrast,

our approach in this paper has the advantage of allowing for a unified treatment of estimation

and inference in both the exactly identified and the sign-identified VAR model.

8Fry and Pagan (2011) suggested to minimize the distance to the median response function. That idea is not

advisable because the posterior median response function is not a well defined statistical object, as discussed earlier,

but the same idea could be applied without problems to the posterior mean response function.
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Technical Appendix

Proof of the result that the mapping between the first  + 1 structural impulse responses Θ̃ =

[̄Φ1̄ · · · Φ̄]0 and [ vech() veck()] is one-to-one: Because there is a one-to-one map-
ping between and the reduced-form vector moving average coefficient matrices Φ,  = 1 2  

(see equation 10.1.19 of Hamilton, 1994, p.260, for example), establishing this result comes down

to showing that the mapping between ̄ and the pair vech() and veck() is one-to-one. We

prove this result in two steps. Recall that - because the orthonormality restriction  0 = 

imposes ( + 1)2 restrictions on the  ×  matrix  - one can recover all elements of 

from its upper diagonal elements, (). First, suppose that ̄1 6= ̄2 but 1 = 2. Then

̄̄
0
 = 

0


0
 = 

0
 regardless of the value of  because 

0
 =  for  = 1 2. Be-

cause 1 = 2 this implies ̄1̄
0
1 = ̄2̄

0
2 which contradicts the assumption that ̄1 6= ̄2.

Hence, ̄1 6= ̄2 implies vech()1 6= vech()2. Second, suppose that [1 1] 6= [2 2] but

̄1 = ̄2. Because 1
0
1 = ̄1̄1 = ̄2̄

0
2 = 2

0
2 and the Cholesky decomposition is uniquely

determined for positive definite matrix Σ, it has to be the case that 1 = 2 and 1 6= 2.

Because  is nonsingular for  = 1 2, however, 1 = −11 ̄1 = −12 ̄2 = 2, which is a

contradiction. Hence, [1 1] 6= [2 2] implies ̄1 6= ̄2.

Derivation of the Jacobian matrix in Proposition 1: Let denote the 
2×(+1)2 duplication

matrix of zeros and ones such that vec() = vech() for  ×  symmetric matrix  (see

Magnus and Neudecker, 1999, pp.49). +
 denotes the Moore-Penrose inverse of  so that

we can write vech() = +
 vec().  denotes the 

2 × 2 communication matrix such that

vec( 0) = vec() for ×  matrix  (see Magnus and Neudecker, 1999, pp.46—47).

Let Φ = [Φ01 Φ
0
2 · · · Φ0]0 and 1 = [

0
Φ01 

0
Φ02 · · · 

0
Φ0]

0 where Φ is the th

reduced-form vector moving average coefficient matrix. Because 1 = Φ ,



⎡⎣ vec()

vec(1)

⎤⎦
[vec()0 vec()0 vec(Φ)0]

=

⎡⎣  0 ⊗   ⊗ 2×2

 0 ⊗Φ  ⊗Φ ⊗ 

⎤⎦  (24)

We need to replace the partial derivatives with respect to vec() and vec() in (24) with

those with respect to vech() and veck(). It follows from  0 =  that

[( ⊗ ) + ( ⊗ )]() = 02×1 (25)

from which we obtain

+
 [( ⊗ ) + ( ⊗ )]() = 0(+1)2×1 (26)

22



Let  and  denote the (
2 × (+ 1)2) and (2 × (− 1)2) matrices of zeros and ones

such that

() = [ ]

⎡⎣ vech()

veck()

⎤⎦ 
Then (26) can be written as

+
 [( ⊗ )+ (⊗)]vech()++

 [( ⊗ )+ (⊗)]veck() = 0(+1)2×1

(27)

Applying the implicit function theorem to (27), the Jacobian of vec() with respect to veck()

can be written as

 =  −

©
+
 [( ⊗ ) + ( ⊗ )]

ª−1
+
 [( ⊗ ) + ( ⊗ )] (28)

Thus, it follows from (24) and (28) that

1 ≡


⎡⎣ vec()

vec(̃)

⎤⎦
[vech0 veck()0 vec(Φ)0]

=

⎡⎣ ( 0 ⊗ ) ( ⊗) 2×2

( 0 ⊗Φ) ( ⊗Φ) 0 ⊗ 

⎤⎦  (29)

Because (29) is block-diagonal, its determinant is given by the product of determinants:

|1| = |( 0 ⊗ ) ( ⊗) | |0 ⊗ |
= |( 0 ⊗ ) ( ⊗) | ||  (30)

Because of the recursive relationships (11), (14),...,(17) between  and Φ, the Jacobian matrix

of  with respect to  is block-diagonal and each diagonal block has unit determinant. Thus

|2| ≡
¯̄̄̄
vec(Φ)

vec()

¯̄̄̄
= 1 (31)

Since the Jacobian of vec(Σ) with respect to vec() is

[(⊗ ) + ( ⊗)] (32)

the determinant of the Jacobian of vech(Σ) with respect to vech() is given by

|3| ≡ |0
[(⊗ ) + ( ⊗)]| (33)

Therefore it follows from (30), (31) and (33) that the determinant of the Jacobian in (6) is given

by the product of |1| in (30) and |3| in (33) subject to sign.
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Table 1: Four Types of Structural VAR Models 
 

 Fully Identified Partially Identified 
Sign-Identified Case 1 Case 2 
Exactly Identified  Case 3 Case 4 
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Figure 1: Randomly Selected Response Functions from a Sign-Identified VAR Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
NOTES: Based on nine randomly selected responses from the posterior of the model used as an empirical 
example in section 4.2. The median response function is constructed from the pointwise posterior medians. 
It coincides with responses from six different admissible structural models depending on the horizon.
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Figure 2: Posterior Mode versus Posterior Median for a Scalar Impulse Response Coefficient 
Posterior Density of the AR(1) Slope Parameter   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: Based on a draw of length 200T  from the process 1 , 1,..., ,t t ty y t T     where ~ (0,1)
iid

t N  
and 0.   The posterior of   is based on a conventional diffuse Gaussian prior for .  .h

t h ty      We 
focus on horizon 1 for expository purposes. 
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Figure 3: Structural Responses in the Sign-Identified Oil Market Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: The data and model are described in the text. All shocks have been normalized to imply an increase in the real price of oil.
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Figure 4: Structural Responses in the Sign-Identified Oil Market Model 
Response Functions in the Modal Model and Pointwise Median Responses 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: See Figure 3.
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Figure 5: Structural Responses in the Sign-Identified Oil Market Model 
Response Functions in the Modal Model and Pointwise 68% Posterior Error Bands 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: See Figure 3.
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Figure 6: Responses to a Monetary Policy Tightening in the Uhlig (2005) Sign-Identified Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: The model specification and sign restrictions are the same as in Figure 6 of Uhlig (2005).
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Figure 7: Responses to a Monetary Policy Tightening in the Modified Sign-Identified Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: Relative to the model in Figure 5, an additional scalar restriction has been imposed that real GDP must have declined  
    6 months after the monetary policy tightening. 



0 12 24 36
-0.5

0

0.5
Real GDP

 

 
Pointwise Median
Modal Model

0 12 24 36
-2.5

-2

-1.5

-1

-0.5

0

0.5
GDP Deflator

0 12 24 36

-3

-2

-1

0

Months

Commodity Price Index

0 12 24 36
-0.5

0

0.5

Months

Federal Funds Rate

0 12 24 36
-1.5

-1

-0.5

0

0.5

1
Nonborrowed Reserves

0 12 24 36
-1.5

-1

-0.5

0

0.5

1
Total Reserves

Figure 8: Responses to a Monetary Policy Tightening in the Modified Sign-Identified Model 
Response Functions in the Modal Model and Pointwise Median Responses 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: See Figure 7. 
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Figure 9: Responses to a Monetary Policy Tightening in the Modified Sign-Identified Model 
Response Functions in the Modal Model and Pointwise 68% Posterior Error Bands 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: See Figure 7.
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Figure 10: Responses to a Monetary Policy Tightening in the Partially Identified Cholesky Model 
Response Functions in the Modal Model and 68% Joint Regions of High Posterior Density 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The model specification and identifying restrictions are the same as in Figure 5 of Uhlig (2005). 


