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ABSTRACT 

 

We study an economy in which firms use labor and various vintages of capital in a CES 

production function for the final good. We explicitly solve for the investment in capital of a given 

vintage as a function of its age, and for the resulting stocks of capital. We show that for 

reasonable parameter values, inverted-U-shaped dynamics of investment and S-shaped dynamics 

for capital arise in equilibrium.  

 

 

1. Introduction 

 

Vintage-capital models describe the optimal investment and replacement of technology-

specific capital under technical progress. Early vintage-capital models of Johansen (1959), 

Solow (1960), and Arrow (1962) entailed no interaction among capital of different vintages.  In 

models of that type, all investment flows into capital of the latest vintage, and none into any 

earlier vintage.  A second generation of vintage-capital models Domar (1963), Jorgenson (1966), 

Greenwood, Hercowitz and Krusell (1997), Xepapadeas and Zeeuw (1999), and Goetz, 

Hritonenko and Yatsenko (2008), assumes that while capital of different vintages can participate 

in the same production process, the elasticity of substitution in production between capital of 

different vintages is infinite so that, again, all investment is in the latest-vintage capital where the 

efficiency of investment is highest.   
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The implication that all investment should flow into capital of the latest vintage is in 

conflict with experience. Old structures are refurbished, old machines are repaired, old workers 

are retrained.  In other words, firms invest in old capital while also investing in new, more 

efficient capital. Evidently, old and new capitals interact and the productivity of one depends on 

the quantity of the other. Prescott and Boyd (1987) and Chari and Hopenhayn (1991) model old 

and new capital as complements in production, and Boddy and Gort (1971) estimate a production 

function including equipment and structures the average ages of which differ.    

 

In this paper we study an economy in which firms face a CES production function whose 

inputs are labor and different vintages of capital.  We solve the model completely; in other words 

we solve analytically for each type of capital and for investment in that capital as a function of its 

age. Chari and Hopenhayn allow for a maximum of two adjacent vintages of (human) capital to 

enter the production function whereas we allow for an arbitrary number of vintages. We find that 

to obtain S-shaped diffusion of capital one must introduce a growth in the user-friendliness of 

technology or, rather, of capital as a function of its age. This point was established numerically 

by Cooley, Greenwood and Yorukoglu (1997) and Atkeson and Kehoe (2005).  It remains to be 

seen whether similar results would emerge if learning depended on cumulative output as in 

Arrow (1962) or Klenow (1998). 

 

We also find that an economy in which technological progress is faster and the elasticity 

of substitution in production is higher, will have an age-distribution of capital that first-order 

dominates the age-distribution of capital in other economies.  These results are analytical and 

pertain to steady states. 

 

The model stands in contrast to models in which capital combines with a fixed resource 

such as labor (Solow 1960, Arrow 1962, Jovanovic 1998), land and labor (Cooley Greenwood 

and Yorukoglu 1997) or management and labor (Atkeson and Kehoe 2005), and in which that 

resource can work with only one technology, one type of capital, or one vintage of plant. In such 

models new capital must necessarily drive out the old since only a limited number of its vintages 

can physically be in use at any time.  Our model imposes no such limitation; an unlimited 

number of vintages can coexist in production.  While the approach of Greenwood, Hercowicz 
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and Krusell (1997) also allows for such coexistence, it also imposes an infinite elasticity of 

substitution on the various vintages of capital with the result that all investment flows into the 

latest vintage.   

 

Chari and Hopenhayn (1991), in a closely related paper, derive a coexistence of investment in 

capital of many vintages from a complementarity of old and new capital.   In contrast to our 

model in which an arbitrary array of vintages take part in the same production function, their 

aggregate production function is a sum of production processes each of which combines at most 

two capital vintages. A second, less important difference is that in their model capital of a given 

vintage is created not with goods but with inexperienced labor and capital of the same vintage. 

We confirm analytically the numerical result in Figure 1 of Chari and Hopenhayn (1991), which 

is that a decrease in the elasticity of substitution in production between the various vintages of 

capital delays investment in old capital. In particular, we solve for the age of a vintage at which 

peak investment occurs, and it is a decreasing function of the elasticity of substitution between 

old capital and new capital.  Closer to our paper is the model of Kredler (2008) extends this 

model by allowing a continuum of vintages and a continuum of human-capital inputs in each 

technological vintage. 

 

 

  

2. The model 

 

The economy consists of a unit measure of agents each endowed with a unit of labor and 

with preferences  

dtCeU tt∫
∞

−
−

−
=

0

1

1 η

η
ρ , 

where Ct is consumption at date t. The agents receive income from wages and from the dividends 

of perfectly competitive firms that rent their labor and own their capital of various vintages. 

 

Firms have access to constant-returns-to-scale production functions 
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αα −= 1NKy                                                                    (1) 

where  y  is output of the only consumption good, N  denotes labor services rented, and K 

denotes an aggregate of capital stocks that the firms own.  That aggregate is given by the CES 

form 

  ( )      
/1 

 ,

β
β ⎟

⎠
⎞⎜

⎝
⎛= ∫ ∞− −

t

tvvvtt dvkzAK                    (2) 

in which kv,t is the amount of capital at date t embodying technology of vintage v, zv is the unit 

efficiency of the capital of vintage v, At-v is the age-dependent “learning curve” for the capital of 

vintage v, t∈[0,∞), v∈(-∞,t]. The parameter 0 < α ≤1 describes the return to scale and β∈(0,1] 

indexes substitution possibilities yielding the elasticity of substitution σ = 1/(1-β).1 The case 0 < 

β < 1, i.e., σ > 1 is realistic, because then no vintage of capital is essential: Positive output can be 

produced with any subset of vintages.  We shall maintain this assumption throughout 

 

      Let xt  denote investment in new capital of vintage t and uv,t  investment in old capital of 

vintage v<t (of the age t-v). Let capital depreciate at the constant rate δ  > 0. Then the law of   

motion for capital of vintage v is    .,,
,

tvtv
tv uk

t
k

+−=
∂

∂
δ   This ordinary differential equation has 

the solution 
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for v > 0, and 

        
 

0 ,
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0,
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, ∫ −−−− +=
t

sv
st

v
vt

tv dsuekek δδ                       (4) 

for -∞ < v < 0, where 0,vk ,  v ∈ (-∞,0],  is a distribution of capital over past vintages at date zero 

that is given.  

                                                 

1 The function in (2) generalizes the traditional vintage aggregation functions of the form 

 
 

 ,∫ ∞− −=
t

tvvvtt dvkzAK , which occurs at β = 1 (i.e.,  σ = ∞) and assumes that vintages of capital are 

perfect substitutes as, for instance, in Arrow (1962). Models that feature At are Cooley et al. 
(1997) and Atkeson and Kehoe (2005) who assume that A grows exogenously in each plant as a 
function of its age. Estimates of  A  are provided by Bahk and Gort (1993). 
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        The firm solves the following profit maximization problem  

 

  dtdvuxNwye
t

tvtttt
rt

Nxu
⎟
⎠
⎞⎜

⎝
⎛ −−− ∫∫ ∞

∞ −  

- ,

 

0 ,,
max ,      x≥0,   u≥0,                      (5) 

 

subject to (1), (2), (3), and (4) and subject to the initial conditions. The decision variables in (5) 

are xt, the investments in new capital, uv,t, investments in the various vintages of old capital, and 

Nt. The unknown capital amount kv,t and product output yt are determined from (2) and (1) 

respectively  for  0<t<∞,  -∞<v≤t.   

 

Definition and standard properties of the equilibrium 

 

The problem (1)-(4) entails no uncertainty so the solution of the model will be a perfect-

foresight equilibrium for both firms and consumers.  Wages must clear the labor market and 

interest rates must be such that representative consumer is happy to consume his wages and 

dividends at each date.  The analysis simplifies if we assume that technological change occurs at 

a constant rate, so that efficiency of capital vintages is exponential:  

       zv = veγ ,        γ>0.                                                         

 

In this case, a constant-growth equilibrium has the following three well-known properties: 

 

First, the rate of interest, r, is constant, and the isoelastic utility function U implies that 

consumption must grow at a constant rate which we shall denote by  g.   In the consumer’s 

optimal savings problem, it is known (e.g., Rebelo 1991, p. 504) that the relation between the 

rate at which consumption grows ad the rate of interest is 

 

η
ρ−

=
rg .                                                                   (6) 
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Second, the fraction of income invested is constant, and (3) implies that  K  grows at the 

rate  γ + g.  Taking logs of both sides of (1) and taking the time derivative yields the solution for 

the growth rate 

 

α
γα
−

=
1

g .                                                                   (7) 

 

Third, the labor market is frictionless and all workers are always employed at a common 

wage.  In other words, the markets for labor clear at the wage sequence (wt). The equilibrium 

wage at each date equals the marginal product of labor evaluated at the equilibrium capital-labor 

ratio at that date:   

 

wt = (1 – α)yt  =   (1 – α)Kt
α .                  (8) 

 

This is because the representative firm sets Nt = 1 so that  yt = Kt
α.                

 

 

A firm’s investment decision 

  

The firm faces no convex adjustment costs of capital, only a constant cost of buying each 

type of capital.  Therefore we would expect the optimal policy to result in the firm setting the 

marginal product of each type of its capital to its user cost.  Since the price of each type of 

capital is normalized to unity, the various vintages of capital all have the same user cost of r + δ 

per unit.  The Appendix shows that at an interior solution for investment in vintage v (i.e., at  uv,t 

> 0) the marginal product of  kv,t must indeed equal its user cost; that is 

 

  δα βαβαβ +=−
−

− rkAyz tvvttv
1

,
/)( ,          0<v≤t, 0< t<∞.       (9) 

 

If the left-hand side of (9) is less than its right-hand side, then uv,t = 0, which means that at date t 

the firm does not invest in capital of vintage v. 
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The aim of this paper is to (i) characterize the evolution of each type of capital as it ages,  and (ii) 

derive the optimal investment policy uv,t.  If we can assume that the solution is always interior 

(and this assumption we shall return to), then (i) and (ii) are straightforward.  It will turn out, 

however, that when σ is sufficiently large (i.e., when β is close to unity),  uv,t  becomes zero after 

some point.  

 

A diminishing rate of growth of A.--- If we allow arbitrary learning functions A then interiority 

will sometimes hold and sometimes not. However, we shall assume throughout that the growth 

of learning is a diminishing function of a vintage’s age.  That is, if we define s = t-v  to denote 

the age of vintage-v capital, we shall assume that 
s
A

A ∂
∂1  is a monotonically declining function, 

then the problem is well behaved in the sense that there is an interval of age of each capital stock 

on which investment is positive, and then  when a critical age is reached, investment ceases and 

the capital is allowed to gradually depreciate to zero. That critical age may, however, be infinity 

in which case investment in each vintage continues for ever.  Whether investment continues for 

ever or not depends on whether the parameter  κ  defined by   

 

( ) ( ) ( )β
α

γαβδγβ
σ

δσγκ −
−

−−−=
−−−

= 1
1

11 g  

 

is positive or negative, and on whether 
s
A

A ∂
∂1  remains positive for ever, as it will be, for 

example, if  ( ) sesA ϕ−−= 1  or if  ( ) ϕssA = . 

  

Proposition 1: Investment in a vintage continues (i.e., uv,t > 0) up to the point where 

 

         
s
A

A ∂
∂1  =   κ       (P1) 

 

If κ < 0 so that the left-hand side of (P1) always exceeds the right-hand side, then investment in a 

vintage continues for ever. Capital  kv,t  peaks at the age s  that satisfies  
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σ
σγ 11 −

=
∂
∂

s
A

A
.                 (P2) 

 

  

 We shall prove this proposition in the process of deriving the optimal capital stocks and 

investment levels. Before proving it, we make a few remarks about it.   

 

First, investment continues beyond the point where capital peaks.  This is illustrated in Figure 1, 

which is drawn on the assumption that  ( )
( ) .0
0
0'

>> κ
A
A   Since investment in old capital eventually 

ends, presumably this is the realistic case.  Then  k  peaks at date t1 whereas investment ends at 

date t2 > t1.  After investment ceases, capital simply depreciates to zero, hence ( )2

2,,
tt

tvvtv ekk −−
+= δ  

for  t > t2.   

 Second, in accord with the intuition contained in Figure 1 of Chari and Hopenhayn 

(1991), the higher the elasticity of substitution, the earlier investment stops, and the earlier the  

 

 

 
 

Figure 1:  Investment and capital as a function of age when  κ > 0. 

( ) ( )
σ

δσγ g+−−1  

 

( )
σ

σγ 1−  

s
A

A ∂
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uv, t kv, t 

v t t1 t2 
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capital stock peaks.  This is because the right-hand-sides of (P1) and (P2) are both increasing in 

σ.   

 

 Third, as σ → ∞,  κ → γ, and therefore t1 and t2 are both positive.  Each generation of 

capital receives investment for a non-degenerate interval of time. 

 

(i) Optimal capital stocks 

 

Solving (9) we obtain 

  ( )
( )β

αβαβ
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we see that since ( ) ( ) ( ) ( )vtgtvtggtgvgt −−−=−
−

−−=
−

+⎟
⎠
⎞

⎜
⎝
⎛ − βγβ

α
αββ

α
αβ

α
βα 1)1(1)1(  , 

(10) takes on the form 
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is a quasi-stationary component that depends on the capital age s = t−v only, and where the 

constant can be shown to equal   
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Since output also grows at the rate g, the diffusion of capital relative to output is  

 

vt
t

tv

y
k

−∝ χ, ,     (14) 

and it peaks at age  s = t-v  at which  0/ =∂∂ − tvtχ , which implies that at the peak, βγ=
∂
∂

t
A

A
1 .  

Since the elasticity of substitution is σ = 1/(1-β), the peak occurs at the point where 

 

σ
σγ 11 −

=
∂
∂

t
A

A
,            (15) 

 

as claimed in (P2) of Proposition 1. 

 

(ii) Optimal investment. 

 

New capital.---Combining (11)-(13) with (3) at v=t, optimal investment in new capital is 

 

gtgt
ttt eAkekx βχ −=== 1

1

00, .                             (16) 

 

Since this quantity grows as fast as income, the fraction of income invested in new capital is 

constant. If A0=0 (as in the simulations below), there is no investment in new capital. 

 

Old capital.---Since ,,,
,

tvtv
tv uk

t
k
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∂

∂
δ  we differentiate (11) and use (12) to find that  
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     The exact condition for investment in the old, age-s capital to be positive is  
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1
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 as claimed in (P1) of Proposition 1. 

 

If learning is bounded, then the left-hand side converges to zero for large s, as drawn in Figure 1. 

 

Age distributions of capital and Investment 

 

 The age distributions of capital and first-order dominance---In order to compare the 

implications of our model to Chari & Hopenhayn (1991) and specifically in terms of their first 

figure, we normalize the capital age-distribution in the simulation below as 

 

∫∫ ∞
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χ

χ
.                                                  (20) 

The constant (13) is not presented in (20), so, sk̂ depends on parameters β  and  γ only.  

In terms of equations (10) and (11), the term egt  is common to technologies of all ages and does 

not affect the age distribution.  Rather, what affects the rate at which the equilibrium capital 

stock declines with age are the parameters  β  and  γ.  It follows from (20) that the age profile 

sk̂ of capital becomes more pushed towards zero as  γ  rises. Indeed, the numerator of (20) at a 

given s is smaller for a larger γ. In addition, the denominator of (20) is larger for larger γ (and 

tends to the infinity as γ strives to zero). Since A < 1,  a rise in  β  has the same effect on (20). 

This we have proved 

 

Proposition 2:   The age distributions of capital satisfy first-order stochastic dominance in γ, and 

when A(s) ≤ 1 for all s  (as in eq. (19) for example), in  β  as well.  That is, 
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( ) ( ) )',';(ˆ),;(ˆ',', γβγβγβγβ sksk <⇒> .                                           (21)   

 

This is quite intuitive – technological process makes old technologies obsolete, and this progress 

is measured by  γ.  Also, a higher  β  raises the elasticity of substitution and reduces the 

essentialness of old capital. 

 

To keep capital and investment in the same units, we apply the same normalization to the 

age-profile of investment in old capital:  

∫
∞

=  

0 

~
ˆ

du

u
u

u

s
s

χ
. 

 

Remarks.---In a related model without learning, Jovanovic (2009a) provides conditions 

for investment in old capital to be positive along a balanced-growth path. Such a characterization 

is quite limited for it says nothing about the investment profile. 

 

An alternative formulation is to assume that there are many goods entering the utility 

function in the Spence-Dixid-Stiglitz tradition, but that each good is produced by a different 

vintage of capital, with new vintages coming on line over time, as in Jovanovic (2009b)    

 

     

3. Evidence and simulation 

  

 

Learning parameters.---We assume the learning function 

     sesA ϕ−−= 1)( ,      ϕ >0.                                                      (19) 

 

Bahk and Gort (1993, Sec. IV) find that most capital learning is over by the fifth or sixth year of 

the capital’s age. Assuming that exactly 95 percent of the learning occurs by the end of the fifth 

year, the equation 1-e-5φ = 0.95 must hold, and this gives us the value  φ = 0.6. 
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Share of capital and embodied technological progress.---Since real income per head tends 

to grow at roughly 1.5 percent per year, eq. (7) indicates that 

 

015.0
1

=
− α
γα .            

 

This is a joint restriction on  α  and  γ.  If we assume that  K  denotes a broad capital aggregate 

and that  L  denotes raw labor, then perhaps a value of   α  = 0.667 is reasonable.  In that case we 

must have  γ = 0.0075. 

 

 The elasticity of substitution.---The parameter  σ  = 1/(1-β)   is not precisely estimated in 

the literature and so we shall follow Chari and Hopenhayn (1991) and entertain various values of  

β  between zero and one (that imply values of  σ  between one and infinity).  

 

 The utility-function parameters.---The remaining parameters are the rate of utility 

discount,  ρ,  and the utility-curvature parameter η.  They determine the rate of interest in  (6).  

Since these parameters do not enter the other equations and the simulations, and since we are not 

sure what interest rate to apply to the discounting of the typical stream of incomes that 

investment in capital yields, we shall leave these two parameters unspecified.  

 

 The rate of depreciation is typically taken to be around 0.075, and so we shall assume this 

value for  δ.  Thus we may summarize our parameter-value choices as follows 

 
 
  α  β    γ    δ  φ 
 

          0.667       0 < β < 1            0.0075            0.075    0.6 

 

Finally, the parameter  κ  ranges from  -0.09  when  β = 0 (so that  σ = 1),  to  0.0075  when  β = 

1 (so that  σ = ∞). 
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 Figure 2A plots the age distribution of capital for selected values of  β  between zero and 

0.75.   
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Age ‐dependent capital stock

 
Figure 2A. Simulated age-distribution of capital for β = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75  

 

In Figure 2A, the curves must eventually cross since the area under them is the same.  These crossings do 

not show up in Figure 2A because they occur after the technologies are 50 years old.  The high-β  

densities peak early and then decay fairly rapidly.  The low-β  densities peak even earlier, but they do not 

decay as rapidly, and eventually overtake the densities pertaining to values of β  that are higher.  

 

 Figure 2B plots the corresponding densities of investment which peak around the inflection points 

of the densities of capital. 
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Figure 2B. Investment into the aged capital for β = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75  

 

 

Figures 2C and 2D deal with values  β  quite close to unity and, consequently, with high 

elasticities of substitution.    Here the crossing of the all the densities occurs within the first 50 years of 

the lives of the technologies.   
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Figure 2C. Simulated age-distribution of capital for β=0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 

0.95.   
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Figure 2D. Investment into capital for β = 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95.   
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In Figure 3 the black solid lines depict the case where  β = 0.95.  The lower bell-shaped 

curve is the investment rate, and the investment ceases when the technology is 9 years old. The 

peak of the capital-stock distribution occurs slightly before that. This is the case that corresponds 

most closely to the patterns depicted in Figure 1.   The two gray bell-shaped curves represent the 

distributions of capital and investment when  β = 0.90,  and in this case investment continues for 

ever, but becomes quite small beyond age 15.   

 

S-shaped diffusion of technology.---Both the capital stock and investment have an initial 

convex portion, and of course both distributions eventually reach a peak, so that both capital and 

investment have an initial S shape.  This follows because our simulations assume that learning 

takes the form given by equation (19), which implies that  A0 = 0.  This low initial level of a 

technology’s productivity discourages investment in that technology early on in its life.   
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Figure 3. Age-distribution of capital and investment for β = 0.95 (κ=0.00262, black solid lines) and for β 

= 0.9 (κ = -0.00225, gray lines) . The dotted line is 
t
A

A ∂
∂1

. 
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Figure 4: The diffusion of some of the historically most important technologies 

 

4.  Comparison to data 

 

A contrast between the calibrated version and the facts is that broad technologies diffuse more 

slowly. Peak investment is predicted to be somewhere between year 5 and year 10 following a 

technology’s introduction.  Figure 4 is taken from Comin and Hobijn (2004).  Presumably this 

discrepancy is because of the level of aggregation so that each of the Comin-Hobijn technologies 

is really a collection of technologies of different vintages so that as the use of each technology 

grows, earlier  generations of that technology are being phased out by later generations.   

 

 At a lower level of aggregation we do see the pattern that Figures 2 and 3 dispolay, 

namely, waves of usages that rise and then fall. Figure 5, taken From Jovanovic and MacDonald 

(1994) shows the diffusion of various generations of DRAM chips.  
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Figure 5: Diffusion of DRAM chips 

 

Here the level of aggregation seems finer than Figures 2 and 3 would require, in that the peak 

adoption occurs when a technology is about four years old.   

 

 

5. Conclusion 

 

We have derived equilibrium paths of capital and investment of vintage technologies, and 

we have showed that economies in which technological progress is faster and the elasticity of 

substitution in production is higher, will have an age-distribution of capital that first-order 

dominates the age-distribution of capital in other economies.  
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5. Appendix 

 

 

To derive necessary conditions for the firm optimization problem defined in (5), we apply the 

classic Lagrange multiplier method adjusted to vintage capital models as in Hritonenko and 

Yatsenko (1996, 2005). Below we use the standard notations f(t) = ft and g(v,t) = gvt for all 

involved functions.  

 

We consider a representative firm and assume that its employment remains at its equilibrium 

level N(t) = 1 at all dates. This is an equilibrium constraint that the price-taking firm does not 

face; rather it treats the wage as exogenous to its choice of K.  We concentrate on the firm 

investment decisions x(t)  and u(v,t).   
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The Lagrangean of the firm problem (1)-(5) with taking the optimal equilibrium wage (8) into 

account can be written as  
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where λ(v,t) is the unknown Lagrange multiplier function for the constraints (3) and (4). Using 

small variations δu(v,t), δx(t), δy(t), and δk(v,t) of the controls u, x, y, and k, we obtain that the 

corresponding increment δL of functional L is  
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where, by equations (1) and (2), 
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  Next, interchanging limits of integration in the double integrals and making other routine 

transformations, we represent (A1) as:              
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Setting the coefficients at δx(t), δu(v,t), and δk(v,t) in (A2) equal to zero and excluding the dual 

variable λ(v,t), we obtain the first-order extremum condition for an interior solution u>0, x>0, 

namely   
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or     
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1/)()( ),()()()( δβαβαδβα +−∞ −−+ =−∫ ,    0<v≤t, 0< t<∞.      (A3) 

 

Equality (A3) at v<t delivers the extremum condition for interior u(v,t)>0, and the condition for 

interior x(t)>0 at v=t. Differentiation of (A3) with respect to t gives the necessary condition (9) 

represented in the text.   

 


