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Abstract
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lems when estimated using available sample sizes. Hodrick (1992) proposed a
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of no predictability to be tested, and assumes stationary regressors. In this
paper, we revisit long-horizon forecasting from reverse regressions, and argue
that reverse regression methods avoid serious size distortions in long-horizon
predictive regressions, even when there is some predictability and/or near unit
roots. Meanwhile, the reverse regression methodology has the practical ad-
vantage of being easily applicable when there are many predictors. We apply
these methods to forecasting excess bond returns using the term structure of
forward rates, and �nd that there is indeed some return forecastability. But
con�dence intervals for the coe¢ cients of the predictive regressions are about
twice as wide as are obtained with the conventional approach to inference.
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1 Introduction

Asset returns are widely thought to be somewhat forecastable, and perhaps more so

at long than at short horizons. But inference in long-horizon predictive regressions is

well known to be complicated by severe econometric problems in empirically relevant

sample sizes. The problems arise because the predictors that are used are variables

like the dividend yield or term spread that are highly persistent, while the regres-

sor is an overlapping sum of short-term returns. This creates something akin to a

spurious regression. This is compounded by the feedback e¤ect, or absence of strict

exogeneity� a shock to returns will in turn a¤ect future values of the predictors. As a

result, conventional t-statistics have rejection rates that are well above their nominal

levels. The vast literature on the problems with long-horizon predictive regressions

includes work such as Goetzmann and Jorion (1993), Elliott and Stock (1994), Stam-

baugh (1999), Valkanov (2003), Campbell and Yogo (2006) and Rossi (2007).

Hodrick (1992) proposed an approach to test the null hypothesis that a certain

predictor does not help forecast long-horizon returns. His idea was instead of regress-

ing the cumulative h-period returns onto the predictor at the start of the holding

period, to regress the one-period return onto the sum of the predictors over the pre-

vious h periods. Under stationarity, for the coe¢ cient in the �rst projection to be

equal to zero is necessary and su¢ cient for the coe¢ cient in the second projection

to be equal to zero. However, the second regression has a persistent right-hand-side

variable, but not a persistent left-hand side variable. Intuitively, this might mean

that the size distortions of a test based on the second regression are much smaller.
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Hodrick �nds that this is indeed the case. Hodrick also considered a standard error for

the original long-horizon predictive regression that uses the same reverse regression

logic. The reverse regression approach to inference has become fairly widely used.

For example, in their study of the long-horizon predictability of stock returns, Ang

and Bekaert (2007) rely mainly on Hodrick standard errors 1B.

The methodology proposed by Hodrick (1992) however has two limitations.

Firstly, its justi�cation relies on stationarity. Secondly, it is only valid for testing

the null of no predictability. Many researchers believe that there is some time series

predictability in asset returns, even after controlling for econometric problems (see for

example Campbell (2000)) and would like to test other hypotheses about the slope

coe¢ cient in a long-horizon predictive regression and, in particular, would like to

form a con�dence interval for this coe¢ cient.

This paper revisits the use of reverse regressions in long-horizon asset return

prediction, making a number of contributions. First, in the case with stationary re-

gressors, we propose a methodology related to the reverse-regression, and show that

it can be used more widely for inference on the slope coe¢ cient in a long-horizon

regression, not just to test that it is equal to zero. Second, we derive the asymp-

totic distribution of the various reverse regression test statistics if the predictors are

highly persistent, modelled as having roots that are local to unity. In these results,

we allow for some predictability in returns. Although the standard reverse regression

does not give the correct size asymptotically in this case, we show that the size dis-

tortions are modest, provided that the degree of predictability is not too great. This

contrasts with results for the usual forward regression Wald statistics, where asymp-
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totic size distortions with near unit roots are enormous (Valkanov (2003)). Third,

we assess the properties of the di¤erent reverse regression procedures in Monte-Carlo

simulations with highly persistent predictors and some predictability. We �nd that

the reverse regression procedures give con�dence intervals with good coverage proper-

ties. In contrast, the standard forward regression with Newey-West standard errors

has e¤ective coverage that is well below the nominal level. Finally, we apply the

reverse regression to the prediction of excess bond returns, considering the regres-

sions of Fama and Bliss (1987) and Cochrane and Piazzesi (2005). We �nd that the

con�dence intervals for the slope coe¢ cients are roughly twice as wide as we would

obtain from the usual long-horizon regression with Newey-West heteroskedasticity-

and autocorrelation-robust standard errors. Using the reverse regression does not

eliminate the clear empirical evidence for the predictability of bond returns using the

term structure of forward rates. But, the p-values testing joint signi�cance of all the

slope coe¢ cients go from eye-popping values around 10�6 in the ordinary regression

to more reasonable numbers around 0.01 in the reverse regressions.

The reverse regression approach to inference applies regardless of whether there

is a single predictor or multiple predictors. That is an advantage of this approach

to inference relative to some others that have been proposed, such as the methods of

Campbell and Yogo (2006), Torous, Valkanov and Yan (2004) and Rossi (2007) that

are feasible only for a scalar predictor.

The plan for the remainder of the paper is as follows. Section 2 considers the case

with stationary predictors and describes long-horizon regressions, reverse regressions,

and the proposed extension to the reverse-regression methodology that allows us to
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test any hypothesis on the long-horizon slope coe¢ cient, not just the null that it is

equal to zero. Section 3 derives the limiting distribution of reverse-regression Wald

tests if the predictors have roots that are local to unity. Section 4 contains Monte-

Carlo simulations. Section 5 uses the reverse regression methodology to re-examine

the forecasting of excess bond returns. Section 6 concludes.

2 Forward and Reverse Regressions

Let rt+1 denote the continuously compounded return on any asset from t to t+1 and

let r(h)t+h = rt+1 + rt+2::: + rt+h denote the h-period return. Let xt be some px1

vector of predictors. Assume that yt = (rt; x
0
t)
0 is covariance-stationary and that

A(L)yt = "t where A(L) is a lag polynomial with all roots outside the unit circle

and "t is a martingale di¤erence sequence with 2 + � �nite moments for some � > 0.

Consider the standard long-horizon predictive regression:

r
(h)
t+h = �

(h) + x0t�
(h) + "

(h)
t+h (1)

Let �̂
(h)
denote the OLS estimator of this regression. Researchers commonly estimate

equation (1), using either Newey-West or Hansen-Hodrick standard errors (Newey and

West (1987) and Hansen and Hodrick (1980)), to control for serial correlation in the

errors.1

Alternative standard errors in equation (1) are given by Hodrick standard errors

1Throughout this paper, we will use the Newey-West standard errors as the �conventional�stan-
dard errors. Hansen-Hodrick standard errors are an alternative, but these can occasionally be
imaginary numbers, which cannot happen with Newey-West. Otherwise, the two sets of standard
errors have very similar properties in our Monte-Carlo analysis and empirical work. For this reason,
we report Newey-West standard errors, and omit Hansen-Hodrick standard errors.
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1B (Hodrick (1992)). This involves estimating the variance of (�(h); �(h)0)0 in the

forward regression (equation 1) as W = (�~xt~x
0
t)
�1�wt+1w

0
t+1(�~xt~x

0
t)
�1 where wt+1 =

(rt+1 � �r)�hi=0~xt�i , ~xt = (1; x0t)
0 and �r is the sample mean of returns. Hodrick

standard errors 1B are valid if and only if � = 0, because it is in this case alone that

the sample variance of wt+1 is a consistent estimate of the zero-frequency spectral

density of xt"
(h)
t+h. The Wald statistic testing the hypothesis that �(h) = 0 using

Hodrick standard errors 1B is �̂
(h)0W�1

22 �̂
(h)
whereW is partitioned conformably with

(�(h); �(h)0)0 as
�
W11 W12

W21 W22

�
: This has a �2(p) asymptotic distribution under the

null.

Consider also the reverse regression of the one-period return on the h-period

sum of the regressor:

rt+1 = �
(h) + x

(h)0
t (h) + ut+1 (2)

where x(h)t = xt + xt�1::: + xt�h+1. The coe¢ cients in the forward and reverse

regressions are related as

�(h) = V �1xx Cov(r
(h)
t+h; xt) = V

�1
xx �

h
j=1Cov(rt+j; xt) = V

�1
xx �

h
j=1Cov(rt+1; xt+1�j)

= V �1xx Cov(rt+1; x
(h)
t ) = V

�1
xx V

(h)
xx

�
V (h)xx

��1
Cov(rt+1; x

(h)
t ) = V

�1
xx V

(h)
xx 

(h) (3)

where Vxx and V
(h)
xx are the variance-covariance matrices of xt and x

(h)
t , respectively,

and the last equality on the �rst line uses the assumption of covariance-stationarity.

A consequence of this is that �(h) = 0 if and only if (h) = 0. However, inference in

the reverse regression is less prone to size distortions. Consequently, Hodrick (1992)

also proposed testing the hypothesis that �(h) = 0 by testing the implication that
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(h) = 0 in the reverse regression, equation (2). This can be implemented by the

Wald statistic:

F1 = (T � h)̂(h)0V̂ (h)xx V ar(ut+1x
(h)
t )

�1V̂ (h)xx ̂
(h) (4)

using a heteroskedasticity-robust estimate of the variance of ut+1x
(h)
t , where V̂

(h)
xx =

1
T�h

T�1X
t=h

�
x
(h)
t � x(h)

��
x
(h)
t � x(h)

�0
. This statistic also has a �2(p) asymptotic distri-

bution under the null. Note that Hodrick proposed the reverse regression in addition

to his standard errors 1B, where the latter are alternative standard errors for the

forward regression. Both apply only as tests of the hypothesis of no predictability,

i.e. that �(h) = 0.

2.1 Testing the hypothesis of some predictability via reverse
regressions

However, the evidence for some predictability in asset returns at long horizons is quite

strong, and we are perhaps more interested in testing other hypotheses about �(h),

or forming a con�dence set for it. The �rst contribution of this paper is to propose a

method for inference on �(h) in a long-horizon regression that is based on the reverse

regression logic, but that goes beyond just testing the null that �(h) = 0. Like the

work of Hodrick (1992), its formal justi�cation relies on covariance-stationarity.

The idea is that from equation (3), under covariance-stationarity �(h) = V �1xx V
(h)
xx (h),

and so inference about from the reverse regression can be used for inference on �(h),

taking account of the distribution of the xts. Since (h) = V
(h)�1
xx Cov(rt+1; x

(h)
t ), we
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only need to adjust the numerator of the reverse regression, as

�(h) = V �1xx Cov(rt+1; x
(h)
t ) (5)

We now describe concretely how to use equation (5) for inference on �(h). Let �1 =

Cov(rt+1; x
(h)
t ) and �2 = Vxx. Also let �̂1 = (T � h)�1�T�1t=h rt+1(x

(h)
t � �x(h)) =

(T � h)�1�T�ht=1 rt+h(x
(h)
t+h�1 � �x(h)) and �̂2 = (T � h)�1�T�ht=1 (xt � �x)(xt � �x)0 be the

sample counterparts where �r = T�1�Tt=1rt, �x = (T � h)�1�T�ht=1 xt and �x
(h) = (T �

h)�1�T�1t=h x
(h)
t . We have �

(h) = ��12 �1 and assume that

T 1=2(�̂ � �)!d N(0; V )

where � = (�01; vech(�2)
0)0, �̂ = (�̂

0
1; vech(�̂2)

0)0 and V is 2� times the spectral den-

sity at frequency zero of
�

rt+h(x
(h)
t+h�1 � �x(h))

vech((xt � �x)(xt � �x)0)

�
, which can be partitioned con-

formably as V =
�
V11 V12
V21 V22

�
.

We can then use the delta method for inference on �(h), using the fact that �(h) is

a nonlinear function of � that is itself root-T consistently estimable and asymptotically

normal. Concretely, consider the estimator

~�
(h)
= �̂

�1
2 �̂1 (6)

Because the derivatives of �(h) with respect to �1 and vech(�2) are �
�1
2 and �(�01��12 


��12 )Dp, respectively, where Dp denotes the duplication matrix, it follows that:

T 1=2(~�
(h) � �(h))!d N(0;

@�(h)

@�
V
@�(h)

@�

0

) (7)

where @�(h)

@�
=
�
��12 �(�01��12 
 ��12 )Dp

�
, allowing conventional Wald tests to be

conducted.
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Implementation of the proposed con�dence intervals requires choosing a spe-

ci�c estimator of V , which is 2� times the spectral density at frequency zero of�
rt+h(x

(h)
t+h�1 � �x(h))

vech((xt � �x)(xt � �x)0)

�
. We use a Newey-West estimator with lag length equal

to h. We refer to this method a �reverse regression�estimate even though it does

not require explicit estimation of equation (2), because it is based on assessing the

covariance between one-period returns and the h-period sum of the predictor. We

henceforth call this the reverse-regression delta method approach to inference for long-

horizon forecasting.

The estimator of �(h) in equation (6) is the multivariate analog of a ratio of

two random variables, which could motivate forming a con�dence set for �(h) by the

multivariate analog of the method of Fieller (1954). Under the null that �(h) = �0,

T 1=2(�̂2�0 � �̂1)!d N(0;
�
�Ip �(�0 
 Ip)Dp

�
V
�
�Ip �(�0 
 Ip)Dp

�0
), giving a

Wald test of the hypothesis that �(h) = �0, and allowing us to form a con�dence

set for �(h) by inverting the acceptance region of this test. We have investigated

this, and �nd that it does indeed give modest improvements in the coverage of the

con�dence intervals, relative to the reverse-regression delta method. However, the

method involves explicitly inverting the acceptance region of a test, which makes it

much harder to operationalize when the number of predictors is more than about 2

(as in the main application in this paper). For this reason, we do not report further

results using this approach.
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3 Reverse Regressions with Near Unit Roots and
Some Predictability

The second contribution of the paper is to derive the asymptotic distributions of

reverse regression tests when there is some predictability and the predictors are so

persistent that it is suitable to model them as having roots local to unity. For this

purpose, we consider the model

rt+1 = ar + x
0
tb+ "r;t+1; (8)

(I � �L)xt = ax +B(L)"x;t; (9)

and the following assumptions are made:

A1. ("r;t; "0x;t)
0 is a martingale di¤erence sequence with 2+ � �nite moments for some

� > 0.

A2. B(L) is a 1-summable matrix lag polynomial with all roots outside the unit circle.

A3. � = I + T�1C. The matrix C = diag(c1; c2; :::cp) is a �xed diagonal matrix

where ci � 0 8i. We write the matrix as c in the case of a scalar predictor (p = 1).

A4. ar = ax = 0 (an assumption that involves no loss of generality).

The near I(1) parameterization in A3 is not designed to be a literal description of the

data generating process, as we do not believe that predictors become more persistent

as the sample size increases. Rather it is a well-known device that is designed to

provide a good approximation to the small sample behavior of estimators and test

statistics when times series are highly persistent (Phillips (1987), Stock (1991, 1996)).

In this section, we derive the limiting distributions of reverse regression Wald

tests under this near I(1) parameterization. It should be emphasized that our objec-
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tive in doing this is not to provide alternative usable critical values. This is because

the distributions will depend on the parameter C, which is in practice not known,

and not consistently estimable.2 Rather, what we are considering is how severe the

size distortions will be when the researcher simply uses the incorrect conventional �2

critical values.

We consider the h�period predictive regression

r
(h)
t+h = �

(h) + x0t�
(h) + "

(h)
t+h (10)

but also let the horizon be an increasing function of the sample size to represent

the idea that the forecast horizon is non-negligible relative to the sample size (as in

Richardson and Stock (1989) and Stock (1996)). Thus, h is equal to [�T ], where [:]

denotes the integer part. The setup of local to unit roots and a horizon that is an

increasing function of the sample size was also considered by Valkanov (2003) and

Rossi (2005, 2007).

Under these assumptions3, it is well known from Phillips (1987) that

T�1=2�
[Tr]
t=1"r;t ! �W (r);

T�1=2x[Tr] ! 
1=2Jc(r);

T�1=2
�
x[Tr] � x

�
! 
1=2J�c (r);

2Some papers get around this problem by forming a con�dence set for C and then appealing to
the Bonferroni inequality (Campbell and Yogo (2006), Torous, Valkanov and Yan (2004) and Rossi
(2007)). But these papers all consider just one predictor because if there are multiple predictors the
number of nuisance parameters in C makes this strategy impractical.

3We think of the case where ci < 0 8i as the leading case, but can accommodate exact unit roots
(ci = 0) as well. The matrix C�1(exp(C�)� I) is diagonal, and if there are some exact unit roots,
the relevant diagonal elements of this matrix are set equal to �.
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T�3=2x
(h)
t ! 
1=2 �JC(r);

T�3=2
�
x
(h)
t � x(h)

�
! 
1=2 �J�C(r);

where �2 = V ar("r;t), 
 = B(1)V ar("x;t)B(1)0, JC(r) denotes an Ornstein-Uhlenbeck

process de�ned by

dJC(r) = CJC(r) + dV (r);

J�C(r) = JC(r) � 1
1��

R �
0
JC(s)ds, �JC(r) =

R r
r�� JC(s)ds (de�ned for r � �), �J

�
C(r) =

�JC(r) � 1
1��

R 1
�
�JC(s)ds, and V (r) and W (r) are px1 and scalar standard Brownian

motions with some correlation � (the long-run correlation between "x;t and "r;t).

Following Rossi (2007), we have the following results:

�(h) = �h�1i=0�
ib = (I � �)�1(I � �h)b = [TC�1(exp(C�)� I) +O(1)]b

"
(h)
t+h = �hi=1"r;t+i + f�h�1i=1 [�

i�1
k=0�

i]B(1)"x;t+h�ig0b+ op(T�1=2)

First consider the Wald statistic testing the hypothesis of no predictability

((h) = 0) in the reverse regression (equation 4). Theorem 1 provides the limit-

ing distribution of this test statistic with near unit roots, under the null hypothesis

of no predictability.

Theorem 1. Under the null �(h) = (h) = 0, in the limit as T goes to in�nity,

F1 !
�Z 1

�

�J�C(r)dW (r)

�0 �Z 1

�

�J�C(r)
�J�C(r)

0dr

��1 �Z 1

�

�J�C(r)dW (r)

�
The proofs of the Theorems are collected in the appendix. The reverse-regression

Wald statistic does not have a standard �2 null limiting distribution, and its distrib-

ution depends on the unknown local-to-unit root parameter that is not consistently
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estimated. So we cannot obtain usable critical values for the asymptotic distribution

of F1. Nonetheless for any particular parameter con�gurations, we can compute the

size distortions when standard �2 critical values are used. These are reported in Table

1 in the case p = 1 (scalar regressor) for di¤erent choices of c, � and �, using the 5

percent nominal signi�cance level. As can been seen from the table, the Hodrick test

that uses conventional critical values is close to being asymptotically correctly sized,

except when c = 0. Even in the exact unit root case, the e¤ective size is around

20 percent, at worst. This is in marked contrast to a t-test based on the forward

regression which diverges at the rate T 1=2 for all values of c (Valkanov (2003)).

Next consider the Wald statistic testing the hypothesis that �(h) = �0 using

Hodrick standard errors 1B:

F2 = (�̂
(h) � �0)0W�1

22 (�̂
(h) � �0) (11)

The test that compares F2 with conventional �2 critical values is justi�ed only as

a test of the null hypothesis that �(h) = 0, and only under covariance-stationarity.

Here we are considering its properties with near unit roots and a more general null

hypothesis. Theorem 2 provides the null limiting distribution of this test statistic.

Theorem 2. Under the null �(h) = �0, in the limit as T goes to in�nity,

F2 ! (�1 + �2�0)
0��1(�1 + �2�0)

where

�1 = (

Z 1��

0

J�C(r)J
�
C(r)

0dr)�1
Z 1��

0

J�C(r)(W (r + �)�W (r))dr;
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�2 = ��1
�Z 1��

0

J�c (r) J
�
c (r)

0 dr

��1�Z 1��

0

J�c (r) J c(r + �)
0dr

��

1=2

�0 ~C � I;
� =

�Z 1��

0

J�c (r) J
�
c (r)

0 dr

��1 �Z 1

�

J
�

c (r) J
�

c (r)
0 dr

� �Z 1��

0

J�c (r) J
�
c (r)

0 dr

��1
and ~C = [exp (C�)� I]�1C. Table 2 shows the simulated asymptotic rejection rates

from comparing the test statistic F2 to the 5 percent conventional �2 critical values in

the case p = 1 (scalar regressor) for di¤erent choices of c, �, � and �. The asymptotic

size of this test is increasing in the degree of predictability (�0), �, and c. For values

of c at or below -10, the size distortions are mild: comparing F2 to �2 critical values

yields a test with an asymptotic size of around 15 percent or less. With roots closer

still to the unit circle, the size distortions from treating F2 as though it were �2

distributed get worse, and can be quite large with the combination of exact unit

roots (c = 0), a high degree of predictability and a large correlation �.

Finally we conclude this section by considering the limiting distribution of the

Wald statistic based on the reverse-regression delta method proposed in subsection

2.1 (equations 6 and 7). This Wald statistic testing the null �(h) = �0 is:

F3 = (�̂
�1
2 �̂1��0)0f

�
�̂
�1
2 �(�̂01�̂

�1
2 
 �̂�12 )Dp

�
V̂
�
�̂
�1
2 �(�̂01�̂

�1
2 
 �̂�12 )Dp

�0
)g�1(�̂�12 �̂1��0)

(12)

Its null limiting distribution is provided in Theorem 3.

Theorem 3. Under the null �(h) = �0, in the limit as T goes to in�nity,

F3 ! (����0)0f
�
���12 �(��0 
 ���12 )Dp

�� V �11 V �12
V �21 V �22

��
���12 �(��0 
 ���12 )Dp

�0
)g�1(����0)
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where

�� = ���12 ��1

��1 = �
1=2
��Z 1

�

�J�C(r)BC (r) dr

�
+

Z 1

�

�J�C(r)dW (r)

�
��2 =

Z 1��

0

HC(r)dr

V �11 = �2f
Z �

��

Z 1�max(0;!)

��min(0;!)
GC(r; !)BC(r)BC(r + !)(1�

j!j
�
)drd!

+

Z 1

�

Z min(1�r;�)

max(��r;��)
GC(r; !)

�
1� jwj

�

�
dW (r + !)dW (r)

+

Z 1

�

Z min(1�r;�)

max(��r;��)
GC(r; !)(1�

j!j
�
)dW (r + !)BC(r)dr

+

Z �

��

Z 1�max(0;!)

��min(0;!)
GC(r; !)BC(r + !)(1�

j!j
�
)dW (r)d!g � ����1��01

V �21 = �f
Z �

��

Z 1���max(0;!)

�min(0;!)
vech(HC(r)) �J

�
C(r + �+ !)

0
1=20BC(r + �+ !)(1�
j!j
�
)drd!

+

Z 1��

0

Z min(1���r;�)

max(�r;��)
vech(HC(r)) �J

�
C(r + �+ !)

0
1=20(1� j!j
�
)dW (r + �+ !)drg

���vech (��2) ��01

V �12 = V �021

V �22 =

Z �

��

Z 1�max(0;!)

��min(0;!)
vech(HC(r))vech(HC(r + !))

0dr

�
1� jwj

�

�
dw � ��vech(��2)vech(��2)0

BC(r) = ��1JC(r)
0(
1=2)0 ~C�0, GC(r; !) = 
1=2 �J�C(r)

�J�C(r + !)
0(
1=2)0, HC(r) =


1=2J�C(r)J
�
C(r)

0(
1=2)0 and �� = � � 4�2

3
. Table 3 shows the simulated asymptotic

rejection rates from comparing the test statistic F3 to the conventional �2 critical

values in the case p = 1 (scalar regressor) for di¤erent choices of c, �, � and �: The
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size of this test is again increasing in the degree of predictability (�(h)), �, and c. But

the size distortions are noticeably milder than for the test comparing F2 to �2 critical

values (shown earlier in Table 2). The asymptotic rejection rate the test comparing

F3 to conventional �2 critical values does not exceed 20 percent for any parameter

con�guration considered here. And it is below 16 percent for all simulations in which

c is strictly negative.

4 Monte-Carlo Simulations

The motivation for considering the proposed approaches to inference via reverse re-

gressions is that they may work better in small samples. Like the conventional forward

regression methods, their justi�cation is based on an assumption of stationarity, and

methods that assume stationarity often fare poorly in the presence of a unit root,

or a near unit root, at least in empirically relevant sample sizes. However, the re-

sults of the previous section suggest that they might in practice be quite robust to

near non-stationarity. The intuition is that they back out the implied coe¢ cient in

the long-horizon regression from the correlation between one-period returns and a

long-run sum of the predictor, which avoids a spurious regression. How well the re-

verse regression methods actually work in �nite samples with nearly non-stationary

predictors is the key practical question that we answer in a Monte-Carlo experiment.

In this experiment, returns and the predictor follow a VAR(1):�
rt+1
xt+1

�
= �

�
rt
xt

�
+

�
"r;t+1
"x;t+1

�
where the errors are iid normal with mean zero and covariance matrix V". Following
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Campbell (2001), set , � =
�
0 �
0 �

�
and V" =

�
�2r ��r�x

��r�x �2x

�
. As the units

of measurement for returns and the predictors are arbitrary, we can normalize �r =

�x = 1 without loss of generality, leaving three free parameters: �, � and �.

The slope coe¢ cient in the long-horizon regression is �(h) = �1��
h

1�� . The popu-

lation R-squared in this regression is

R2 =
�(h)2

�(h)2 + (1� �2)�hi=1e01(�ij=1�j�1)V"(�ij=1�j�1)0e1
where e1 = (1; 0)0. So long as we �x the sign of �, R2 will be a monotone increasing

function of � (holding the other parameters �xed). Figure 1 plots the e¤ective cover-

age of three di¤erent con�dence intervals for the long-horizon slope coe¢ cient (�(h))

against the population R2 for the case4 where � � 0 with di¤erent choices of h and

�. The coverage rates of the con�dence sets are of course 1 minus the sizes of the test

that �(h) is equal to its true value. The sample size is T = 500, which corresponds

to about 40 years of monthly data, the nominal coverage is 95 percent, and the para-

meter � is 0.98. The con�dence intervals considered are: (i) the ordinary con�dence

intervals based on estimating equation (1), using Newey-West standard errors with a

lag truncation parameter of h, (ii) the con�dence interval based on estimating equa-

tion (1) using standard errors 1B of Hodrick (1992), (iii) con�dence intervals using

the reverse-regression delta method (equations 6 and 7), and (iv) con�dence intervals

formed using the method proposed by Campbell and Yogo (2006), as adapted to the

case of a long-horizon predictive regression, following Rossi (2007).5 The appendix

4The point of plotting coverage against population R2 rather than � is just that this seems easier
to interpret.

5Here and throughout this paper, the Campbell-Yogo con�dence interval refers to the method
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of supplemental materials includes analogous �gures for di¤erent choices of T and �,

and considering both positive and negative values of �. The results that we show in

Figure 1 are representative of the results that apply in these other cases.

The con�dence interval for �(h) formed using Newey-West standard errors has

coverage that is considerably too low, regardless of whether there is no predictability

or some predictability. In many cases, it has an e¤ective coverage around 60 percent.

The con�dence interval formed using Hodrick standard errors 1B generally does much

better. It gets the coverage about right in the case of no predictability (�(h) = 0).

Even with mild predictability, the coverage does not fall below about 80 percent.

It is only when the predictability is considerable, that it can have coverage that is

substantially too low, but then it can do really badly. All this is consistent with

the asymptotic results under near unit roots in the previous section. The con�dence

interval formed using the reverse-regression delta method approach proposed in this

paper always has e¤ective coverage of at least 80 percent, and usually a good bit

more. The case where this fares better than Hodrick standard errors 1B is if the

predictability is considerable (population R-squared of above about 30 percent). The

Campbell-Yogo con�dence interval has high coverage, that is consistently above the

nominal level.

Although in this Monte-Carlo simulation, we know the true value of �(h), in

practice, of course, the researcher does not know the data generating process and so

using the Bonferroni Q-test of Campbell and Yogo (2006), where the scalar predictor is assumed
to follow an AR(p) with p chosen by the BIC, and with a root local to unity. This gives a con�-
dence interval for �(1), which is then used to give an implied con�dence interval for �(h) under the
assumption that h = O(T ), as described in Theorem 2.1 of Rossi (2007).
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it is important that the coverage of a con�dence interval be as close as possible to the

nominal level uniformly in reasonable values of �(h). In this regard, Figure 1 shows

that the reverse-regression delta method and Campbell-Yogo methods do best. But

the Campbell-Yogo method is only applicable with a single predictor.

Coverage is of course not the only criterion for a con�dence interval; precision

matters too. The median width of the alternative con�dence intervals is shown in

Figure 2 (as before, results for other parameter con�gurations are in the appendix of

supplemental materials). Con�dence intervals with higher coverage naturally tend to

have higher width6. The two con�dence intervals based on reverse regressions have

comparable width, but both are wider than the Newey-West con�dence intervals. That

seems to be a price worth paying given that the conventional methods consistently

fail to get an e¤ective coverage rate that is even close to the nominal level. The

Campbell-Yogo con�dence intervals, being conservative, tend to be wider still.

5 Forecasting Excess Bond Returns

We now apply the reverse regression methodology to an important predictive regres-

sion in �nance; the prediction of excess bond returns using the term structure of

interest rates. Many authors have found predictability long-horizon excess bond re-

turns. For example, Fama and Bliss (1987) found that the steeper is the yield curve,

the higher are the subsequent excess returns on holding a long-maturity bond. In an

in�uential paper, Cochrane and Piazzesi (2005) argued that while the slope of the

6This is what one would expect, given that these are symmetric one-dimensional con�dence
intervals constructed around the parameter estimates.
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yield curve has some predictive power for bond returns, using a combination of for-

ward rates gives better forecasting performance, and that a �tent-shaped� function

of forward rates has remarkable predictive ability for excess bond returns with R-

squared values up to 44 percent. These results represent strong evidence against the

expectations hypothesis of the term structure. Yet one might wonder if they are� at

least in part� an artefact of small-sample econometric problems.

Let Pn;t be the price of an n-month zero-coupon bond in month t; the per annum

continuously compounded yield on this bond is zn;t = �12
n
log(Pn;t). The excess return

(over the one-month riskfree rate) from buying this bond in month t and selling it in

month t+ 1 is

rn;t+1 = log(Pn�1;t+1)� log(Pn;t)� z1;t

where z1;t is the one-month yield. We can then construct the h-period excess return

r
(h)
n;t+h = �hj=1rn;t+j. This is very close to� though not exactly the same as� the

excess return on holding an n-month zero-coupon bond for h months over the return

on holding the h-month bond for that same holding period, considered by Cochrane

and Piazzesi (2005) and others.

A basic premise of term structure analysis is that today�s yield curve can be

used to forecast future yield curves and, hence, the excess returns on long bonds.

For example, Fama and Bliss (1987) argue that when the yield curve is steep, long-

term bonds can be expected to subsequently have high excess returns. Accordingly,

researchers project excess returns onto the term structure of interest rates at the start

of the holding period, running regressions of the form
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r
(h)
n;t+h = �+ x

0
t�
(h) + "

(h)
t+h (13)

where xt is some vector of yields or spreads at time t .

We considered estimates of �(h) formed from estimating equation (13) with the

long-term bond maturity, n, ranging from 2 to 5 years and the holding period, h, of

12 months. End-of-month data on zero-coupon bond yields and riskfree rates from

the Fama-Bliss dataset were used.7 The sample period is 1964:01-2009:12.

We �rst used the spread between the �ve-year and one-month yield as the sole

predictor, xt. Panel A of Table 4 shows the forward regression estimates (equation

1) of �(h) along with Newey-West standard errors and Hodrick standard errors 1B.

The Newey-West standard errors indicate statistical signi�cance at the 5 percent level

(except for n = 2). However, using Hodrick standard errors 1B, none of the slope

coe¢ cients is statistically signi�cant at the 5 percent level.

Panel B of Table 4 reports the reverse regression Wald test (equation 4). The

hypothesis that �(h) = (h) = 0 is not rejected at the 5 percent level for any maturity

n.

Panel C shows the reverse regression delta method estimates and standard errors

of �(h) (from equations 6 and 7). These are signi�cant at the 5 percent level only in

the case n = 5. Overall, the use of the reverse regression methods shows only marginal

evidence of a relationship between the slope of the yield curve and subsequent excess

7We have also used the yields from the dataset of Gürkaynak, Sack and Wright (2007), and
obtained similar results. Note also that the Fama and Bliss dataset only gives yields at 1, 2, 3, 4
and 5 year maturities (in addition to short-term risk-free rates). Following Campbell and Shiller
(1991) and others, we approximate the price of an n� 1

12 year bond as exp(�(n�
1
12 )zn;t).
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bond returns.

The bottom panel of Table 4 shows the 95 percent con�dence intervals formed

by the method of Campbell and Yogo (2006), as adapted to the case of a long-horizon

predictive regression, following Rossi (2007). These likewise show only marginal ev-

idence of predictability of bond returns, as the con�dence intervals for �(h) straddle

zero in all cases except n = 5.

5.1 Forecasting Excess Bond Returns with the Term Struc-
ture of Forward Rates

We next follow Cochrane and Piazzesi (2005) in estimating equation (13), using as

the predictors the one-year yield, and the one-year forward rates ending in two, three,

four, and �ve years. This regression has �ve predictors, which limits the number of

approaches that are available to handle econometric inference in this context, but is

not a problem for the reverse regression methodology. Table 5 shows p-values from the

Wald test of the hypothesis that �(h) = 0 using the Newey-West standard errors, Ho-

drick standard errors 1B, the reverse-regression Wald test and the reverse-regression

delta method. In this case, all of the Wald tests are signi�cant at conventional sig-

ni�cance levels. But the Newey-West p-values are very extreme� we report them in

scienti�c notation� and they around 10�6! Meanwhile, the other Wald statistics that

are all based on reverse regressions� give p-values around 1 percent.

Finally, in Table 6, we report the point estimates of the elements of �(h) and

the associated standard errors for the regression of excess bond returns on the term

structure of forward rates. The top panel shows the forward regression estimates

and standard errors, along with Newey-West standard errors and Hodrick standard
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errors 1B. The bottom panel shows the reverse regression delta method estimates and

standard errors. The two sets of point estimates are virtually identical, and show the

�tent-shaped�pattern highlighted by Cochrane and Piazzesi (2005). However, the

two sets of standard errors that are based on the reverse regression methodology are

both considerably larger than the Newey-West standard errors. Typically, they are

roughly twice as big.8

The regression of Cochrane and Piazzesi (2005) implies that the ex-ante risk

premium on buying a �ve-year bond and going short a one-year bond are both large

and volatile. Some �nd this surprising and implausible (Sack (2006)). In this regard,

it seems relevant that the underlying parameters from the return prediction equation

appear to be quite imprecisely estimated.

6 Conclusion

In this paper, we have revisited the use of reverse regressions for inference in long-

horizon forecasting. The reverse regression methodology of Hodrick (1992) assumes

stationary predictors and gives only a test of the null hypothesis of no predictability.

In this paper, we have evaluated the properties of reverse regression methodologies

(including a new variant of the reverse regression) with some predictability and/or

near unit roots. We �nd, both using local-to-unit root asymptotics and Monte-Carlo

simulations, that the reverse regression with standard �2 critical values o¤ers an

8Bekaert and Hodrick (2001) and Bekaert, Hodrick and Marshall (2001) are other papers arguing
that some�but not all�of the evidence against the Expectations Hypothesis of the term structure
owes to small-sample problems. Those papers are however considering the tests of Campbell and
Shiller (1991), not the forward rate regressions of Cochrane and Piazzesi (2005).
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approach to inference in long-horizon predictive regressions that avoids serious size

distortions, while working easily with an arbitrary number of predictors. In marked

contrast, conventional Wald tests using the standard errors of Newey and West (1987)

or Hansen and Hodrick (1980) in a long-horizon forecasting regression reject the null

far too often, and indeed diverge to in�nity under the null in the presence of local-

to-unit roots (Valkanov (2003)).

We have applied these reverse regressions to re-examine the predictability of

excess bond returns using the term structure of interest rates, considered by Fama

and Bliss (1987) and Cochrane and Piazzesi (2005). We continue to �nd some pre-

dictability of excess bond returns, contradicting the expectations hypothesis of the

term structure, and indicating the existence of time-varying term premia. How-

ever, the standard errors on the equations for predicting excess bond returns are

much larger than in the forward regression using conventional heteroskedasticity-

and autocorrelation-robust standard errors.
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Appendix: Proofs
Proof of Theorem 1. By de�nition

b(h) =

 
1

T � h

T�1X
t=h

�
x
(h)
t � x(h)

��
x
(h)
t � x(h)

�0!�1 1
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T�1X
t=h

�
x
(h)
t � x(h)

�
rt+1

!

= (h) +
�
V̂ (h)xx

��1
V̂ (h)x" ;

where V̂ (h)xx is as de�ned in the text and

V̂ (h)x" =
1

T � h

T�1X
t=h

�
x
(h)
t � x(h)

�
"r;t+1:

Letting ût+1 = rt+1 � �r, under the null of (h) = 0, the Wald statistic is
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Under assumptions (A1) through (A4),
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T�1V̂ (h)x" =
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T � hT
�1=2

T�1X
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(h)
t � x(h)

�
"r;t+1
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1� �

1=2

Z 1��

0

J
�

c (r) dW (r) (15)

while T�h
T ! 1� �. Hence, under the null of (h) = 0,

F1 !
�Z 1

�

J
�

c (r) dW (r)

�0 �Z 1

�

J
�

c (r) J
�

c (r)
0
dr

��1 �Z 1

�

J
�
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�
:

Proof of Theorem 2. By de�nition

b�(h) = �V̂xx��1 V̂ (h)xr (16)
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where

V̂xx =
1

T � h

T�hX
t=1

(xt � x) (xt � x)0 ;

V̂ (h)xr =
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Using Equation (8) we can write
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Combining Equations (16), (17) and (18) we have
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The Hodrick (1B) estimator of its variance-covariance matrix is given by

W22 =
�
(T � h)V̂xx

��1 T�1X
t=h

�
x
(h)
t � x(h)

��
x
(h)
t � x(h)

�0
(rt+1 � �r)2

!�
(T � h)V̂xx

��1
=

�
T � h
T 2

V̂xx

��1 
T�4

T�1X
t=h

�
x
(h)
t � x(h)

��
x
(h)
t � x(h)

�0
(rt+1 � �r)2

!�
T � h
T 2

V̂xx

��1

! �2
�

�1=2

�0 "Z 1��

0

J�c (r) J
�
c (r)

0
dr

#�1 �Z 1

�

J
�

c (r) J
�

c (r)
0
dr

�
"Z 1��

0

J�c (r) J
�
c (r)

0
dr

#�1

�1=2

= �2
�

�1=2

�0
�
�1=2:

Under the null �(h) = �0;

F2 =

�b�(h) � �0�0W�1
22

�b�(h) � �0�
! (�1 + �2�0)

0
��1 (�1 + �2�0)
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and from Equation (17)
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The limiting distributions of the Newey-West estimators of the variance-covariance matrices are
derived as follows:
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s=�h

T�1�max(0;s)X
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(x
(h)
t � �x(h))(x(h)t+s � �x(h))0T�1xt0 ~C�(h)T�1xt+s0 ~C�(h)

�
1� jsj

h+ 1

�

+

T�1X
t=h

min(T�1�t;h)X
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(x
(h)
t � �x(h))(x(h)t+s � �x(h))0

�
1� jsj

h+ 1

�
"r;t+s+1"r;t+1

+

T�1X
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s=max(h�t;�h)

(x
(h)
t � �x(h))(x(h)t+s � �x(h))0

�
1� jsj

h+ 1

�
"r;t+s+1T

�1xt
0 ~C�(h)

+
hX

s=�h

T�1�max(0;s)X
t=h�min(0;s)

(x
(h)
t � �x(h))(x(h)t+s � �x(h))0T�1xt+s0 ~C�(h)"r;t+1

�
1� jsj

h+ 1

�35
�b�1b�01� 1

T � h

�2 hX
s=�h

(T � h� jsj)
�
1� jsj

h+ 1

�

Noting that T�3(x(h)[Tr] � �x(h))(x
(h)
[T (r+!)] � �x(h))0 ! GC(r; !), T�1x[Tr]0 ~C�

(h) ! BC(r);

T�3:5
min(T�1�[Tr];h)X
s=max(h�[Tr];�h)

(x
(h)
[Tr] � �x(h))(x

(h)
[Tr]+s � �x(h))0

�
1� jsj

h+1

�
"r;[Tr]+s+1 !Rmin(1�r;�)

max(��r;��)GC(r; !)
�
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�

�
dW (r + !)
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and

�
1

T�h
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�
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1�� )
22
R �
0
(1� �� s)(1� s

� ) =
1

(1��)2�
�,

this means that
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�

1� �
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f
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��

Z 1�max(0;!)
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j!j
�
)drd!
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Z 1

�
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1� jwj

�

�
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Z 1
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max(��r;��)
GC(r; !)(1�

j!j
�
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��
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�
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���1�
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1
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(1� �)2V
�
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�
vech
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1
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hX
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T�h�max(0;s)X
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�2 Z �

��

Z 1���max(0;!)

�min(0;!)
vech(HC(r))vech(HC(r + !))

0dr

�
1� jwj

�

�
dw

� 1

(1� �)2�
�vech (��2) vech (�
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�
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1
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T�2cov
�b�1; vech�b�2�� =

1

(1� �)2V
�0
21 =

1

(1� �)2V
�
12 (24)

Substituting Equations (19) through (24) into Equation (12) completes the proof.
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Table 1: Asymptotic Probability that F1 exceeds the �2(1) critical values
c=-30 c=-25 c=-20 c=-15 c=-10 c=-5 c=0

� = 0:02
� = 0 5.5 5.8 5.3 4.7 4.1 3.5 4.8
� = 0:5 4.7 5.1 4.7 4.7 4.7 5.5 10.5
� = 0:9 7.4 7.4 7.6 8.1 8.7 10.4 21.4

� = 0:05
� = 0 4.1 3.9 3.6 3.5 3.3 3.8 4.2
� = 0:5 4.6 4.3 4.1 4.5 4.8 5.3 10.2
� = 0:9 6.5 7.0 6.8 7.0 8.0 9.5 21.0

� = 0:1
� = 0 3.5 3.5 3.5 3.6 3.8 3.8 5.4
� = 0:5 3.9 4.2 4.3 4.1 4.4 5.5 9.1
� = 0:9 6.1 6.4 6.1 6.9 7.6 9.1 19.4

This table shows the probability that the limiting distribution of F1 exceeds 3.84, the upper 5th

percentile for the �2(1) distribution. Entries were obtained by simulating the limiting distribution

derived in Theorem 1.
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Table 2: Asymptotic Probability that F2 exceeds the �2(1) critical values
c=-30 c=-25 c=-20 c=-15 c=-10 c=-5 c=0

� = 0; � = 0:02
� = 0 5.1 4.9 4.5 4.5 3.9 3.1 4.4
� = 0:5 4.8 4.8 4.8 4.7 5.0 5.6 11.0
� = 0:9 6.9 6.7 7.2 7.6 8.9 10.0 21.6

� = 0; � = 0:05
� = 0 3.7 3.8 3.7 3 3.1 2.7 3.8
� = 0:5 4.3 4.0 4.0 3.9 4.6 4.6 10.6
� = 0:9 5.7 5.8 5.9 6.1 7.1 8.1 20.7

� = 0; � = 0:1
� = 0 3.1 3.2 3.4 3.2 3.4 3.4 4.4
� = 0:5 3.8 3.6 3.8 4.0 4.3 4.8 10.4
� = 0:9 5.8 5.9 5.7 6.5 6.6 8.4 21.1

� = 0:2; � = 0:02
� = 0 4.8 4.8 4.6 3.8 4.1 3.2 4.9
� = 0:5 6.5 6.4 6.1 6.4 6.8 7.5 15.3
� = 0:9 10.2 10.3 10.8 11.3 11.9 15.2 29.9

� = 0:2; � = 0:05
� = 0 4.0 4.2 3.4 3.6 3.1 3.1 4.9
� = 0:5 6.2 5.8 5.8 6.1 6.7 7.4 14.1
� = 0:9 9.6 9.5 9.8 10.2 10.6 13.6 28.0

� = 0:2; � = 0:1
� = 0 3.4 3.1 3.4 3.2 3.1 3.4 5.1
� = 0:5 5.9 5.5 5.7 5.7 5.6 7.4 14.2
� = 0:9 11.1 10.3 10.2 9.8 10.7 13.5 27.1

� = 0:5; � = 0:02
� = 0 5.4 5.6 4.7 4.6 4.8 4.5 7.1
� = 0:5 11.0 10.8 9.8 10.0 9.9 10.7 21.3
� = 0:9 16.2 16.2 16.5 16.8 17.8 21.1 42.3

� = 0:5; � = 0:05
� = 0 4.4 4.7 4.4 4.2 4.7 3.9 6.3
� = 0:5 10.1 10.2 9.9 9.7 9.6 11.4 21.6
� = 0:9 16.9 16.3 16.1 16.7 17.2 20.6 38.8

� = 0:5; � = 0:1
� = 0 5.0 4.4 4.3 4.3 4.1 4.6 6.9
� = 0:5 10.8 10.0 9.9 10.2 10.4 11.9 20.9
� = 0:9 18.0 17.7 16.4 17.4 16.9 20.0 37.5

This table shows the probability that the limiting distribution of F2 exceeds 3.84, the upper 5th

percentile for the �2(1) distribution. Entries were obtained by simulating the limiting distribution

derived in Theorem 2.
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Table 3: Asymptotic Probability that F3 exceeds the �2(1) critical values
c=-30 c=-25 c=-20 c=-15 c=-10 c=-5 c=0

� = 0; � = 0:02
� = 0 4.4 4.3 3.7 3.7 3.9 3.7 4.0
� = 0:5 4.7 4.9 4.8 4.9 4.4 4.7 8.7
� = 0:9 7.9 8.2 7.8 8.3 8.9 10.0 15.7

� = 0; � = 0:05
� = 0 3.5 3.5 3.0 3.2 3.0 3.0 3.8
� = 0:5 4.1 3.6 3.5 3.4 2.9 3.7 6.4
� = 0:9 6.3 6.0 5.9 6.3 6.3 7.6 13.3

� = 0; � = 0:1
� = 0 2.4 2.7 2.7 2.6 3.1 4.4 5.5
� = 0:5 2.5 2.5 2.6 2.8 3.4 4.1 7.3
� = 0:9 2.9 3.3 3.3 3.2 4.0 5.4 10.4

� = 0:2; � = 0:02
� = 0 3.8 4.1 3.9 4.0 4.0 4.6 5.9
� = 0:5 5.5 5.7 5.7 5.7 5.6 6.8 10.8
� = 0:9 8.3 8.8 8.6 9.4 10.9 11.8 17.0

� = 0:2; � = 0:05
� = 0 3.3 3.6 3.8 4.0 4.2 4.5 5.3
� = 0:5 6.1 6.2 5.9 5.4 5.8 6.9 9.4
� = 0:9 9.6 9.4 9.8 10.5 11.5 12.2 15.8

� = 0:2; � = 0:1
� = 0 3.8 3.7 3.5 3.6 4.0 4.6 6.1
� = 0:5 5.3 5.2 5.1 5.6 6.1 7.3 9.0
� = 0:9 9.0 8.4 8.0 9.0 9.6 10.7 13.1

� = 0:5; � = 0:02
� = 0 2.7 2.7 2.6 2.7 2.5 2.3 4.3
� = 0:5 5.6 5.1 5.0 5.1 5.2 6.3 10.7
� = 0:9 7.7 8.3 8.4 8.6 9.5 10.5 17.9

� = 0:5; � = 0:05
� = 0 4.9 5.0 5.4 5.6 5.5 5.9 7.9
� = 0:5 8.8 8.6 8.3 8.1 8.8 10.1 13.3
� = 0:9 11.9 12.3 12.6 12.9 14.2 13.9 18.9

� = 0:5; � = 0:1
� = 0 6.5 6.8 6.8 6.9 6.5 7.8 10.4
� = 0:5 10.7 9.8 9.9 9.7 10.2 12.0 14.4
� = 0:9 15.1 14.8 14.6 15.3 15.3 15.5 19.4

This table shows the probability that the limiting distribution of F3 exceeds 3.84, the upper 5th

percentile for the �2(1) distribution. Entries were obtained by simulating the limiting distribution

derived in Theorem 3.
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Table 4: Regression of n-year excess bond returns on the yield curve slope
n=2 n=3 n=4 n=5

Panel A: Forward Regression Estimate and SEs
Estimator 0.46 0.94 1.37 1.88

(0.28) (0.39)�� (0.49)��� (0.59)���

[0.47] [0.63] [0.80]� [0.92]��

Panel B: Reverse Regression Wald Statistics
Test statistic 0.75 1.80 2.49 3.64�

Panel C: Reverse Regression Delta Method Estimate and SEs
Estimator 0.45 0.93 1.35 1.85

(0.40) (0.55) (0.69)� (0.80)��

Panel D: Campbell-Yogo Con�dence Interval
(-0.41, 0.84) (-0.13, 1.68) (-0.15, 2.43) (0.30,3.36)

Notes: This table reports the results of a regression of n-year excess bond returns on the slope

of the yield curve with a holding period of h = 12 months. The top panel shows the forward

regression estimate (equation 1) along with the Newey-West standard errors in round brackets and

Hodrick standard errors 1B in square brackets. Panel B shows the reverse regression Wald statistics

testing the hypothesis that (h) = 0 in equation (2), which have a �2(1) null limiting distribution.

Panel C shows the estimates and standard errors (in round brackets) using the reverse regression

delta method (equations 6 and 7). Panel D shows the 95 percent con�dence interval formed by the

method of Campbell and Yogo (2006), as adapted to the case of a long-horizon predictive regression,

following Rossi (2007). The data are Fama-Bliss yields spanning 1964:01 to 2009:12. One, two, and

three asterisks denote signi�cance at the 10, 5, and 1 percent levels, respectively.
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Table 5: Cochrane-Piazzesi regression of n-year excess bond returns on forward rates: p-values

from various Wald tests for the joint signi�cance of the forward rates
n=2 n=3 n=4 n=5

Newey-West 1*10�5 2*10�6 9*10�8 3*10�6

Hodrick Standard Errors 1B 0.031 0.022 0.008 0.029
Reverse Regression Wald 0.021 0.013 0.002 0.014

Reverse Regression Delta Method 0.014 0.005 0.001 0.003

Notes: This table reports the p-values obtained from Wald tests of the hypothesis that the slope

coe¢ cients are jointly equal to zero in a regression of excess bond returns on one-year forward rates

ending 1, 2, 3, 4 and 5 years hence with a holding period of h = 12 months. The Wald statistics

are compared with �2(5) critical values. The Wald statistics are based on (i) the forward regression

(equation 1) with Newey-West standard errors, (ii) the forward regression with Hodrick standard

errors 1B, (iii) the reverse regression Wald statistic, and (iv) the reverse regression delta method

(equations 6 and 7). The data are Fama-Bliss yields spanning 1964:01 to 2009:12. One, two, and

three asterisks denote signi�cance at the 10, 5, and 1 percent levels, respectively.
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Table 6: Cochrane-Piazzesi regression of n-year excess bond returns on forward rates: Alternative

Estimators and Standard Errors
n=2 n=3 n=4 n=5

Panel A: Forward Regression and Standard Errors
1 Year Yield -0.60 -1.27 -1.78 -2.37

(0.38) (0.54)�� (0.68)��� (0.79)���

[0.79] [1.05] [1.40] [1.57]
1-2 Year Forward -0.15 -0.25 -0.27 -0.08

(0.67) (0.90) (1.11) (1.28)
[1.08] [1.43] [1.98] [2.28]

2-3 Year Forward 1.77 3.23 3.55 4.00
(0.61)��� (0.82)��� (0.99)��� (1.18)���

[1.19] [1.69]� [2.03]� [2.33]�

3-4 Year Forward 0.62 0.69 1.85 1.66
(0.41) (0.58) (0.74)�� (0.87)�

[0.64] [0.88] [1.23] [1.47]
4-5 Year Forward -1.27 -1.95 -2.83 -2.59

(0.44)��� (0.60)��� (0.75)��� (0.87)���

[0.55]�� [0.79]�� [1.03]��� [1.21]��

Panel B: Reverse Regression Delta Method
1 Year Yield -0.61 -1.28 -1.80 -2.40

(0.64) (0.89) (1.14) (1.30)�

1-2 Year Forward -0.12 -0.21 -0.20 0.03
(1.02) (1.43) (1.86) (2.13)

2-3 Year Forward 1.79 3.26 3.59 4.06
(1.00)� (1.34)�� (1.64)�� (1.92)��

3-4 Year Forward 0.61 0.68 1.84 1.64
(0.71) (0.93) (1.23) (1.41)

4-5 Year Forward -1.30 -2.00 -2.90 -2.72
(0.53)�� (0.73)��� (0.93)��� (1.04)���

Notes: This table reports the results of a regression of n-year excess bond returns on the one-year

forward rates ending 1, 2, 3, 4 and 5 years hence. The holding period is h = 12 months. The top

panel shows the forward regression estimate (equation 1) along with the Newey-West standard errors

in round brackets and Hodrick standard errors 1B in square brackets. The bottom panel shows

the estimates and standard errors (in round brackets) using the reverse regression delta method

(equations 6 and 7). The data are Fama-Bliss yields spanning 1964:01 to 2009:12. One, two, and

three asterisks denote signi�cance at the 10, 5, and 1 percent levels, respectively.
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Figure 1: Effective Coverage of Alternative Confidence Intervals (Nominal Level: 95 Percent)
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Notes: The figure shows the effective coverage of alternative confidence intervals for the slope coefficient in

an h-step ahead predictive regression in the Monte-Carlo simulation described in the text. In this figure, the

sample size is T = 500 and the autoregressive parameter is φ =0.98. The confidence intervals are as follows:

(i) Red Dashed Line—the ordinary confidence intervals based on estimating equation (1), using Newey-West

standard errors with a lag truncation parameter of h, (ii) Blue Thick Solid Line—the confidence interval

based on estimating equation (1) using standard errors 1B of Hodrick (1992), (iii) Black Dotted Line—the

confidence intervals using the reverse-regression delta method proposed in this paper (equations 6 and 7), and

(iv) Green Thin Solid Line: confidence intervals using the method proposed by Campbell and Yogo (2006),

as adapted to the case of a long-horizon predictive regression by Rossi (2007). In all cases, the coverage is

plotted against R2 which is a monotone function of α, given the normalization α ≥ 0. Other simulations are

included in the appendix of supplemental materials.
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Figure 2: Median Width of Alternative Confidence Intervals (Nominal Level: 95 Percent)
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Notes: The figure shows the median width of alternative confidence intervals for the slope coefficient in an

h-step ahead predictive regression in the Monte-Carlo simulation described in the text. In this figure, the

sample size is T = 500 and the autoregressive parameter is φ =0.98. The confidence intervals are as follows:

(i) Red Dashed Line—the ordinary confidence intervals based on estimating equation (1), using Newey-West

standard errors with a lag truncation parameter of h, (ii) Blue Thick Solid Line—the confidence interval

based on estimating equation (1) using standard errors 1B of Hodrick (1992), (iii) Black Dotted Line—the

confidence intervals using the reverse-regression delta method proposed in this paper (equations 6 and 7), and

(iv) Green Thin Solid Line: confidence intervals using the method proposed by Campbell and Yogo (2006),

as adapted to the case of a long-horizon predictive regression by Rossi (2007). In all cases, the coverage is

plotted against R2 which is a monotone function of α, given the normalization α ≥ 0. Other simulations are

included in the appendix of supplemental materials.
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