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1 Introduction

One key advantage of dynamic stochastic general equilibrium (DSGE) models over vector au-

toregressions (VARs) and the reason that central banks are considering them for projections

and policy analysis is, that DSGE models use modern macroeconomic theory to explain and

predict comovements of aggregate time series over the business cycle. Historical observations

can be decomposed into contributions of the underlying exogenous disturbances, such as tech-

nology, preference, government spending, or monetary policy shocks. Future paths of the

endogenous variables can be constructed conditional on particular realizations of monetary

policy shocks that reflect potential future nominal interest rate paths. Unfortunately, these

desirable attributes of DSGE model forecasts are not reflected in the root-mean-squared er-

ror (RMSE) measures that have been predominantly used to assess the forecast performance

of DSGE models.

This paper develops and applies tools to assess multivariate aspects of DSGE model

forecasts and their ability to predict comovements between key macroeconomic variables.

DSGE models are typically analyzed with Bayesian methods, which can be easily used to

generate draws from the model-implied h-step ahead predictive distribution for a vector of

key macroeconomic variables. These predictive distributions reflect uncertainty about latent

state variables, parameters, and future realizations of shocks. While, strictly speaking, the

predictive distributions in a Bayesian framework are subjective, an important question for

practitioners is whether they are well calibrated in view of the observed data. In repeated

practical (as opposed to hypothetical) use of a statistical procedure such as sequential fore-

casting it is desirable that the long-run average level of accuracy is no less than (and ideally

equal to) the long-run average reported accuracy.1

More specifically, we examine whether predictive densities obtained from DSGE models

are well calibrated in the sense that probability integral transforms (PITs) are uniformly

distributed. The use of PITs has a long tradition in density forecast evaluation, which

we will discuss in more detail below. The novel aspect of our evaluations is to construct

statistics that measure whether the predicted change in forecast accuracy due to conditioning

1Bayarri and Berger (2004) refer to this notion as frequentist principle.
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on future realizations of a subset of the model variables matches the actual change. We use

these statistics to assess the models’ ability to predict comovements among macroeconomic

variables, which is one of the stated goals of DSGE modeling.

For a three equation New Keynesian DSGE model, we find that the marginal and con-

ditional one-step, two-step, and four-step predictive densities for output and inflation are

well calibrated, but do not observe a reduction in RMSE associated with conditioning on

output or inflation. The predictive density for the interest rate is poorly calibrated, with

the majority of realizations falling in the left tail of the distribution. When performing the

same exercise with real time data, we find an that the predictive density for interest rates

improves and the predictive density for inflation worsens. Now the predictive density for

inflation is too wide, with too many realizations falling in the center of the distribution. The

relationship between the interest rate and output is generally well calibrated and associated

with reductions in RSME when forecasting using conditional predictive densities for short

horizons, but performs poorly at longer horizons.

For the Smets-Wouters model, we find that the marginal predictive densities for inflation

and output are not well calibrated in the sense the tails of the predictive densities are too

large. That is, the realizations of output and inflation fall too frequently in the center of the

predictive distribution. Conversely, the marginal predictive density for the Federal Funds

funds appears well calibrated. In terms of comovements, there are large gains in conditioning

on the federal funds rate for forecasting inflation but not for output growth as seem by the

reduction of RMSEs. However, the predictive distributions of inflation and output growth

given the Federal Funds Rate are too diffuse.

Geweke and Whiteman (2006) emphasize that Bayesian approaches to forecast evalua-

tion are fundamentally different from non-Bayesian approaches, although they might appear

superficially similar. In a Bayesian framework there is no uncertainty about the predictive

density given the specified collection of models.2 Predictive densities are simply constructed

by the relevant conditioning. Non-Bayesian approaches, surveyed in Corradi and Swanson

2Though there might be some uncertainty about the accuracy with which it is evaluated using computa-

tional methods.
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(2006), tend to adopt the notion of a “true” data generating process (DGP) and try to

approximate the predictive density inherent in the DGP with a member of a collection of

probability distributions Pt+h|t = {P θ
t+h|t|θ ∈ Θ}. To the extent that the forecaster faces

uncertainty with respect to θ, there is uncertainty about the density forecast itself. In turn,

non-Bayesian assessments of density forecasts try to account for this uncertainty.

Formally, we conduct so-called posterior predictive checks to assess the adequacy of

DSGE model forecasts. A discussion of the role of predictive checks in Bayesian analysis

can be found, for instance, in Lancaster (2004) and Geweke (2005). It is important to note

that the the goal of the forecast evaluation conducted in this paper is not to select the best

forecasting model from a collection of DSGE models, to average predictive densities from

competing DSGE models, or to “reject” or “accept” a particular DSGE model specification.

The goal is to examine whether despite some of the empirical deficiencies of DSGE models

documented in the literature, e.g. Del Negro, Schorfheide, Smets, and Wouters (2007), the

probability forecasts generated by the models are adequate in certain dimensions, as policy

makers at central banks shift their attention from point forecasts to interval and density

forecasts.3 In general, the purpose of posterior predictive checks is to provide diagnostics

that may spur creative thinking about new models.

One of the statistics used in our posterior predictive checks, namely PITs constructed

based on the predictive distributions associated with our DSGE models, has a long tradi-

tion in the literature on density forecast evaluation. Dawid (1984) proposed a prequential

approach to statistics, founded on the premiss that the purposes of statistical inference is

to make sequential probability forecasts for future observations. According to his prequen-

tial principle, any assessment of the overall adequacy of a sequence of forecasts should only

depend on the forecasts actual made.4 While there are many different ways of defining the

adequacy of forecasts, Dawid (1984) suggested among other things to examine whether PITs

are iid uniformly U [0, 1] distributed.

3Bayesian methods to formally compare DSGE models in instances in which the model space spanned by

a collection of DSGE models is deemed incomplete are discussed in Schorfheide (2000) and Geweke (2010).
4This principle asserts the irrelevance of hypothetical forecasts that might have been issued in circum-

stances that did not come about.
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Kling and Bessler (1989) construct probability density forecasts from a VAR for inter-

est rates, money stock, consumer prices, and output. To examine whether the PITs are

uniformly distributed, the authors compared their empirical distribution functions to the

cumulative distribution function (cdf) of a U [0, 1] random variable and reported the out-

come of χ2 tests. Diebold, Gunther, and Tay (1998) emphasize that PITs of multi-step

density forecasts should be both uniformly distributed as well as independent across time

and provide a general proof. In addition to examining cumulative distribution functions,

the authors also inspect autocorrelation functions of PITs (and nonlinear transformations of

PITs) to assess density forecasts for S&P 500 constructed from GARCH models. Diebold,

Hahn, and Tay (1999) extend the PIT-based density forecast evaluation to multivariate mod-

els. More recently, Geweke and Amisano (2010) use PITs to evaluate Bayesian forecasts from

five univariate time series models of S&P500 portfolio returns.

Gneiting, Balabdaoui, and Raftery (2007) illustrate that uniformly distributed PITs

do not imply that conditional mean forecasts are unbiased or that the predictive density

is sharp. Thus, if a DSGE model passes out PIT-based predictive checks, it cannot be

concluded that there do not exist other econometric models that provide superior forecasts.

If PITs are found not to be uniformly distributed, they can in principle be re-calibrated.

This idea was discussed in Dawid (1984) and applied to VAR forecasts by Kling and Bessler

(1989). The latter use a sequential procedure to re-calibrate predictive distributions based

on previously issued predictions and outcomes and found that the re-calibration improved

the VAR forecasts. Diebold, Hahn, and Tay (1999) re-calibrated density forecasts of high-

frequency returns on foreign exchange from JP Morgan’s RiskMetrics. Due to the short

sample that we have available for our empirical analysis we do not pursue a re-calibration of

DSGE model forecasts in this paper.

The remainder of the paper is organized as follows. In Section 2 we briefly review

empirical findings regarding the forecasting performance of DSGE models. Our econometric

methodology is discussed in Section 3 and the two DSGE models considered in this paper

are summarized in Section 4. The empirical results are presented in Section 5 and Section 6

concludes.
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2 Forecasting Record of DSGE Models

Most of the literature on evaluating the forecasting performance of DSGE models has focused

on the evaluation of point forecasts based on root-mean-squared errors or the log determinant

of the error covariance matrix of the forecasts. The latter criterion, henceforth “ln-det”

statistic, had been proposed by Doan, Litterman, and Sims (1984). In Table 1 we are

summarizing pseudo-out-of-sample RMSEs for U.S. data obtained with Smets and Wouters

(2003, 2007) type DSGE models from the following five studies: (i) Del Negro, Schorfheide,

Smets, and Wouters (2007), (DSSW); (ii) Smets and Wouters (2007) (SW); (iii) Edge, Kiley,

and Laforte (2009) (EKL); (iv) Edge and Gürkaynak (2010) (EG); and (v) Schorfheide, Sill,

and Kryshko (2010) (SSK). Since all studies differ with respect to the forecast period, we

report sample standard deviations over the respective forecast periods. Unlike the other

three studies, EKL and EG use real time data. Overall, the RMSEs reported in DSSW are

slightly worse than those in the other three studies. This might be due to the fact that DSSW

use a rolling window of 120 observations to estimate their DSGE model and start forecasting

in the mid 1980s, whereas the other papers let the estimation sample increase and start

forecasting in the 1990s. Only EKL and EK are able to attain an RMSE for output growth

that is lower than the sample standard deviation. The RMSEs for the inflation forecasts

range from 0.21 to 0.29 and are very similar across studies. They are only slightly larger

than the sample standard deviations. Finally, the interest rate RMSEs are substantially

lower than the sample standard deviations, because the forecasts are able to exploit the high

persistence of the interest rate series.

Edge and Gürkaynak (2010) compare univariate forecasts from the Smets and Wouters

(2007) model estimated with real time data against forecasts obtained from the staff of

the Federal Reserve, the Survey of Professional Forecasters, and a Bayesian VAR. Based

on RMSEs they conclude that the DSGE model delivers forecasts that are competitive in

terms of accuracy with those obtained from the alternative prediction methods. However,

none of the procedures is particularly successful in forecasting large fluctuations. Overall,

the predictability of inflation has been quite low over the past 10 to 15 years, because its

persistence dropped substantially after the Great Moderation.
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The evidence from Euro Area data is similar. Adolfson, Lindé, and Villani (2007) assess

the forecasting performance of an Open Economy DSGE model during the period of 1994

to 2004 based on RMSEs, ln-det statistics, predictive scores, and the coverage frequency

of interval forecasts. Overall, the authors conclude that the DSGE model compares well

with more flexible time series models such as VARs. Christoffel, Coenen, and Warne (2010)

examine the forecasting performance of the New Area Wide Model (NAWM), the DSGE

model used by the European Central Bank. The authors evaluate the model’s univariate

forecast performance through RMSEs and its multivariate performance using the ln-det

statistic. They find that the DSGE model is competitive with other forecasting models such

as VARs of various sizes. The authors also find that the assessment of multivariate forecasts

based on the ln-det statistic can sometimes be severely effected by the inability to forecast

just one series, nominal wage growth.

3 Econometric Approach: Predictive Checks

In this paper we shall consider predictive checks based on posterior parameter distributions.

We shall partition the actual sample into Y1:R and YR+1:T , defining P = T −R. In addition,

let Y ∗
R+1:T be a hypothetical sample of length P . The predictive distribution for Y ∗

R+1:T is

given by

p(Y ∗
R+1:T |Y1:R) =

∫
p(Y ∗

R+1:T |θ)p(θ|Y1:R)dθ. (1)

Draws from the predictive distribution can easily be obtained in two steps. First, generate a

parameter draw θ̃ from p(θ|Y1:R). Second, simulate a trajectory of observations Y ∗
R+1:T from

the DSGE model conditional on θ̃. The simulated trajectories can be converted into sample

statistics of interest, S(Y ∗
R+1:T ) to obtain an approximation for predictive distributions of

these sample statistics. Finally, one can compute the value of the statistic S(YR+1:T ) based on

the actual data and assess how far it lies in the tails of its predictive distribution. A S(YR+1:T )

far in the tails of its predictive distribution can be interpreted as a model deficiency. We

shall use predictive checks to assess the adequacy of model forecasts.

One-Step Ahead PITs: Denote the elements of the vector yt by yi,t, i = 1, . . . , n and define
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the probability integral transform for the actual one-step ahead forecast of yi,t+1 based on

time t information by

zi,t,1 =

∫ yi,t+1

−∞
p(ỹi,t+1|Y1:R, YR+1:t)dỹi,t+1. (2)

Likewise, the probability integral transform constructed for a forecast of y∗i,t+1 based on the

sample (Y1:R, Y
∗
R+1:t) can be defined as

z∗i,t,1 =

∫ y∗i,t+1

−∞
p(ỹ∗i,t+1|Y1:R, Y

∗
R+1:t)dỹ

∗
i,t+1. (3)

Thus, the sequence {z∗i,t,1}T−1
t=R can be interpreted as a draw from the model-implied predictive

distribution of the probability integral transforms. It is shown in Rosenblatt (1952) and

Diebold, Gunther, and Tay (1998) that the z∗i,t,1’s are iid U [0, 1] distributed. This property

can be exploited in a predictive check. For instance, suppose we divide the unit interval

into J sub-intervals. According to the predictive distribution, the fraction of PITs in each

sub-interval is equal to 1/J . Paraphrasing Bayarri and Berger (2004)’s frequentist principle,

the fraction of actual PITs in each sub-interval should be close to the predicted fraction.

The closeness can be assessed with a χ2 goodness-of-fit statistic of the form

Sχ(zi,R,1, . . . , zi,T−1,1) =
J∑
j=1

(nj − P/J)2

P/J
, (4)

where nj is the number of PITs in the interval [(j − 1)/J, j/J ].

Multi-Step Ahead and Conditional PITs: The multi-step generalization of (2) is given

by

zi,t,h =

∫ yi,t+h

−∞
p(ỹi,t+h|Y1:R, YR+1:t)dỹi,t+1. (5)

Moreover, we are interested in assessing the conditional predictive distribution of

p(ỹi,t+h|y1:(i−1),t+h, Y1:R, YR+1:t), using

zi|1:(i−1),t,h =

∫ yi,t+h

−∞
p(ỹi,t+h|y1:(i−1),t+h, Y1:R, YR+1:t)dỹi,t+1. (6)

Conditional on (Y1:R, YR+1:t) the marginal distribution of zi,t,h and zi|1:(i−1),t,h remain U [0, 1].

However, the sequence {zi,t,h}T−ht=R is serially dependent, which will be reflected in the posterior

predictive distribution of this sequence and transformations such as (4).
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RMSE ratios: Finally, we use RMSEs and ratios of conditional and unconditional RMSEs

as in Schorfheide, Sill, and Kryshko (2010) to form a predictive check.

Our econometric analysis is novel in the following dimensions. First, none of the previous

studies on DSGE model forecast performance has examined the uniformity of PITs. Only

Adolfson, Lindé, and Villani (2007) assessed the coverage frequency of interval forecasts for

Euro Area forecasts generated with a small open economy DSGE model. Second, none of

the existing papers has set up the forecast evaluation formally as a predictive check. While

it is well known that the PITs for a sequence of one-step ahead forecasts are independently

distributed, PITs of h-step ahead forecasts are serially correlated. Our simulation approach

is able to capture this serial correlation. Moreover, our approach let us easily consider other

statistics such as RMSEs or ratios of RMSEs. Third, while PITs based on predictive den-

sities that are conditioned on future realizations of a subset of variables arise naturally in

a multivariate density forecast evaluation setting as explained in Diebold, Hahn, and Tay

(1999), they have not yet been applied to assess DSGE model forecasts. Finally, while ratios

of RMSEs of unconditional forecasts versus forecasts that are conditioned on the future real-

ization of a subset of variables have been reported in Schorfheide, Sill, and Kryshko (2010),

that paper did not provide a formal benchmark, such as percentiles of a predictive distribu-

tions, against which the ratios could be evaluated. Moreover, Schorfheide, Sill, and Kryshko

(2010) used a parametric approximation of the predictive density to form conditional fore-

casts, whereas we are using a nonparametric Kernel-based approximation of the predictive

density.

4 The DSGE Models

We will apply the predictive checks to two New Keynesian DSGE models. First, we consider

a small-scale model that consists of three basic equations: a consumption Euler equation,

a New Keynesian Phillips curve, and a monetary policy rule. The theoretical properties of

this class of models is discussed extensively in Woodford (2003) and numerous versions that

differ with respect to the specification of the exogenous shock processes and the formulation
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of the monetary policy rule have been estimated based on output, inflation, and interest rate

data (see Schorfheide (2008) for a survey). Second, we generate forecasts from the model of

Smets and Wouters (2007) (henceforth the SW model). The SW model has a richer structure

that accounts for capital accumulation, variable capital utilization, wage rigidity in addition

to price rigidity, and households’ habit formation.

4.1 A Small-Scale Model

Empirical specifications of the canonical small-scale New Keynesian DSGE model differ with

respect to the exogenous shock processes as well as the formulation of the monetary policy

rule. Our version is identical to the one studied in the survey paper by An and Schorfheide

(2007) and includes a technology growth, a government spending, and a monetary policy

shock. The interest rate feedback rule implies a reaction to output growth deviations from

steady state rather than to deviations of the level of output from a measure of potential

output.

Agents’ Decision Problems and Equilibrium Conditions. The perfectly competi-

tive, representative, final good producing firm combines a continuum of intermediate goods

indexed by j ∈ [0, 1] using the technology

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

. (7)

Here 1/ν > 1 represents the elasticity of demand for each intermediate good. The firm

takes input prices Pt(j) and output prices Pt as given. Profit maximization implies that the

demand for intermediate goods is

Yt(j) =

(
Pt(j)

Pt

)−1/ν

Yt. (8)

The relationship between intermediate goods prices and the price of the final good is

Pt =

(∫ 1

0

Pt(j)
ν−1

ν dj

) ν
ν−1

. (9)

Intermediate good j is produced by a monopolist who has access to the following linear

production technology:

Yt(j) = AtNt(j), (10)
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where At is an exogenous productivity process that is common to all firms and Nt(j) is the

labor input of firm j. Labor is hired in a perfectly competitive factor market at the real

wage Wt. Firms face nominal rigidities in terms of quadratic price adjustment costs

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j), (11)

where φ governs the price stickiness in the economy and π is the steady state inflation rate

associated with the final good. Firm j chooses its labor input Nt(j) and the price Pt(j) to

maximize the present value of future profits

IEt

[
∞∑
s=0

βsQt+s

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sNt+s(j)− ACt+s(j)

)]
. (12)

Here, Qt+s is the marginal value of a unit of the consumption good to the household, which

is treated as exogenous by the firm.

The representative household derives utility from real money balances Mt/Pt and con-

sumption Ct relative to a habit stock. We assume that the habit stock is given by the level of

technology At. This assumption ensures that the economy evolves along a balanced growth

path even if the utility function is additively separable in consumption, real money balances,

and leisure. The household derives disutility from hours worked Ht and maximizes

IEt

[
∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ
+ χM ln

(
Mt+s

Pt+s

)
− χHHt+s

)]
, (13)

where β is the discount factor, 1/τ is the intertemporal elasticity of substitution, and χM

and χH are scale factors that determine steady state real money balances and hours worked.

We will set χH = 1. The household supplies perfectly elastic labor services to the firms

taking the real wage Wt as given. The household has access to a domestic bond market

where nominal government bonds Bt are traded that pay (gross) interest Rt. Furthermore,

it receives aggregate residual real profits Dt from the firms and has to pay lump-sum taxes

Tt. Thus, the household’s budget constraint is of the form

PtCt +Bt +Mt −Mt−1 + Tt = PtWtHt +Rt−1Bt−1 + PtDt (14)

The usual transversality condition on asset accumulation applies, which rules out Ponzi

schemes.
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Monetary policy is described by an interest rate feedback rule of the form

Rt = R∗ 1−ρR
t RρR

t−1e
εR,t , (15)

where εR,t is a monetary policy shock and R∗
t is the (nominal) target rate, which evolves

according to

R∗
t = rπ∗

( πt
π∗

)ψ1
(

Yt
γYt−1

)ψ2

. (16)

Here r is the steady state real interest rate, πt is the gross inflation rate defined as πt =

Pt/Pt−1, and π∗ is the target inflation rate, which in equilibrium coincides with the steady

state inflation rate.

The fiscal authority consumes a fraction ζt of aggregate output Yt, where ζt ∈ [0, 1]

follows an exogenous process. The government levies a lump-sum tax (subsidy) to finance

any shortfalls in government revenues (or to rebate any surplus). The government’s budget

constraint is given by

PtGt +Rt−1Bt−1 = Tt +Bt +Mt −Mt−1, (17)

where Gt = ζtYt. The market clearing conditions are given by

Yt = Ct +Gt + ACt and Ht = Nt. (18)

Exogenous Processes. The model economy is perturbed by three exogenous processes.

Aggregate productivity evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + εz,t. (19)

Thus, on average technology grows at the rate γ and zt captures exogenous fluctuations of

the technology growth rate. Define gt = 1/(1− ζt). We assume that

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t. (20)

Finally, the monetary policy shock εR,t is assumed to be serially uncorrelated. The three

innovations are independent of each other at all leads and lags and are normally distributed

with means zero and standard deviations σz, σg, and σR, respectively.
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Log-Linearized Equilibrium Conditions and Measurement. Since the non-stationary

technology process At induces a stochastic trend in output and consumption, it is convenient

to express the model in terms of detrended variables ct = Ct/At and yt = Yt/At. The model

economy has a unique steady state in terms of the detrended variables that is attained if

the innovations εR,t, εg,t, and εz,t are zero at all times. The steady state inflation π equals

the target rate π∗, r = γ
β
, and R = rπ∗. Let x̂t = ln(xt/x) denote the percentage deviation

of a variable xt from its steady state x. Then the log-linearized equilibrium conditions can

be summarized by a (consumption) Euler equation, a New Keynesian Phillips curve, and an

interest rate feedback rule:

ŷt = IEt[ŷt+1] + ĝt − IEt[ĝt+1]−
1

τ

(
R̂t − ÎEt[πt+1]− IEt[ẑt+1]

)
(21)

π̂t = βIEt[π̂t+1] + κ(ŷt − ĝt)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (∆ŷt + ẑt) + εR,t

where κ = τ(1− ν)/(νπ2φ). The loglinearized exogenous shock processes take the form

ĝt = ρgĝt−1 + εg,t, ẑt = ρz ẑt−1 + εz,t. (22)

The model is completed by defining a set of measurement equations that relate the model

states to a set of observables. We assume that the time period t in the model corresponds

to one quarter and that the following observations are available for estimation: quarter-

over-quarter per capita GDP growth rates (YGR), annualized quarter-over-quarter inflation

rates (PI), and annualized nominal interest rates (INT). The three series are measured in

percentages and their relationship to the model variables is given by the following set of

equations:

Y GRt = γ(Q) + ŷt − ŷt−1 + ẑt (23)

PIt = π(A) + 4π̂t

INTt = π(A) + r(A) + 4γ(Q) + 4R̂t.

The parameters γ(Q), π(A), and r(A) are related to the steady states of the model economy

as follows

γ = 1 +
γ(Q)

100
, β =

1

1 + r(A)/400
, π = 1 +

π(A)

400
.
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Prior Distribution. Bayesian estimation of a DSGE model requires the specification of

a prior distribution. This distribution is constructed as a product of marginals, which are

summarized in Table 2. We use the same priors as in An and Schorfheide (2007) with one

exception: the inflation coefficient in the monetary policy rule is fixed at ψ1 = 1.7. It is

well known in the literature that ψ1 is difficult to identify. This lack of identification causes

some numerical instabilities in the application of Markov-Chain-Monte-Carlo methods. Since

the predictive check requires us to estimate the DSGE model many times and the precise

measurement of ψ1 is not the objective of our analysis, we decided to fix the parameter.

Priors for the autocorrelations and standard deviations of the exogenous processes, the

steady state parameters γ(Q), π(A) and r(A), as well as the standard deviation of the monetary

policy shock are quantified based on regressions run on pre-(estimation)-sample observations

of output growth, inflation, and nominal interest rates. The priors for the policy rule coef-

ficients ψ2 and ρR are loosely centered around values typically associated with the “Taylor

rule.” The prior for the parameter that governs price stickiness is chosen based on micro-

evidence on price setting behavior provided. More formal methods for the elicitation of

priors for DSGE model parameters are discussed in Del Negro and Schorfheide (2008).

Posterior Inference. To implement the posterior predictive checks we need to generate

draws from a sequence of posterior distributions p(θ|Y1:R+τ ) for τ = 0, . . . , P . For τ = 0 we

use the Random-Walk Metropolis (RWM) algorithm in An and Schorfheide (2007). Draws

for τ > 0 are also generated with the RWM algorithm. However, the covariance matrix of

the proposal density is constructed by re-weighting the draws from p(θ|Y1:R+τ−1) with the

importance weight p(yR+τ |θ, Y1:R+τ−1).

4.2 The Smets-Wouters Model

The second model considered in this paper is the one by Smets and Wouters (2007). The

model is a more elaborate version of the DSGE model presented in Section 4.1. Capital

is a factor of intermediate goods production and nominal wages, in addition to nominal

prices, are rigid. The model is based on work by Christiano, Eichenbaum, and Evans (2005),

who added various forms of frictions to a basic New Keynesian DSGE model in order to
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capture the dynamic response to a monetary policy shock as measured by a structural

vector autoregression (VAR). In turn, Smets and Wouters (2003) augmented the Christiano-

Eichenbaum-Evans model by additional shocks to be able to capture the joint dynamics of

Euro Area output, consumption, investment, hours, wages, inflation and interest rates. The

2007 version of the SW model contains a number of minor modifications of the 2003 model

in order to optimize its fit on U.S. data. We use the 2007 model exactly as presented in SW

and refer the reader to that article for details. The log-linearized equilibrium conditions are

reproduced in the Appendix.

Measurement Equations: We estimate the SW model based on seven macroeconomic time

series. The period t corresponds to one quarter and the measurement equations for output

growth, inflation, interest rates, consumption growth, investment growth, wage growth, and

hours worked are given by:

Y GRt = γ̄ + ŷt − ŷt−1 (24)

PIt = π̄ + π̂t

INTt = r̄ + R̂t

CGRt = γ̄ + ĉt − ĉt−1

IGRt = γ̄ + ît − ît−1

WGRt = γ̄ + ŵt − ŵt−1

HOURSt = l̄ + l̂t.

Unlike in the small-scale model, for the estimation of the SW model both measured interest

and inflation rates are not annualized. Moreover, since the neutral technology shock in the

SW model is assumed to be stationary, the model variables are not transformed as in the

small-scale model to induce stationarity and the growth rate of the technology shock does

not appear in the measurement equations.

Prior Distributions. Based on information that does not enter the likelihood function,

SW fix the following five parameters in their estimation:

δ = 0.025, gy = 0.18, λw = 1.50, εw = 10.0, εp = 10.
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We deviate from SW’s analysis by fixing the following additional parameters:

ϕ = 5.00, σc = 1.5, h = 0.7, ξw = 0.7, σl = 2,

ξp = 0.7, ιw = 0.5, ιp = 0.5, rπ = 2, α = 0.3.

These parameter values are close to the posterior mean estimates reported in Smets and

Wouters (2007). Our predictive check requires us to estimate the SW model several hundred

times on recursive samples. Fixing the additional parameters ensures the numerical stability

of our MCMC methods. The marginal prior distributions for the remaining parameters are

identical to those used by SW and are summarized in Table 3. The joint prior density is

constructed as the product of the marginal densities.

5 Empirical Results

The empirical results are presented in three steps. First, we discuss the data set that is used

to conduct the predictive check (Section 5.1). Second, we present results for the small-scale

DSGE model (Section 5.2) and finally we examine the predictive performance of the Smets-

Wouters model (Section 5.3). The results of the predictive checks reported below are based on

50 trajectories from predictive distribution p(Y ∗
R+1:T |Y1:R). Each simulated trajectory Y ∗

R+1:T

is combined with Y1:R and the DSGE model is estimated recursively, starting with the sample

Y1:R and ending with the sample (Y1:R, Y
∗
R+1:T ). For each estimation we generate 10,000

draws from the posterior using the MCMC approach described in Section 4.1. To construct

recursive density forecasts we use a subsample of 1,000 parameter draws θ̃ and simulate

10 trajectories from p(ỸR+τ+1:R+τ+h|θ̃, Y1:R, Y
∗
R+1:τ ) for each θ̃. The same calculations are

repeated along the observed history (Y1:R, YR+1:T ).

5.1 Data Set

For the evaluation of the density forecasts we using the real-time data set assembled by Edge

and Gürkaynak (2010). These authors compared the accuracy of point forecasts from the

SW model to those from the Fed’s Greenbook. Thus, for each Greenbook publication date
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EK compiled the time series that are used in the estimation of the SW model. Since the

focus in our paper is not a comparison of DSGE model and Greenbook forecast we only use

a subset of the data sets constructed by EK, namely those for the Greenbooks published in

March, June, September, and December. We refer to the March forecast as the first-quarter

forecasts and the remaining forecasts are associated with Quarters 2 to 4.

The March forecasts are based on fourth quarter releases from the previous year, meaning,

that the estimation period for the DSGE model effectively ends in Q4 of the preceding year.

Thus, the first forecast in March is essentially a nowcast for Q1 and the subsequent forecasts

are for Q2, Q3, and so forth. For each forecast origin, we refer to the “nowcast” as a one-

step-ahead forecast and choose the maximum forecast horizon according to the maximum

horizon of the corresponding Greenbook. Thus, we construct forecasts up to 8 periods ahead

for March origins, 7 periods ahead for June origins, 10 periods ahead for September origins,

and 9 periods ahead for December origins. The first forecast origin in our analysis is March

1997 and the last forecast origin is December 2004, which provides us with 32 sets of forecasts.

Since there is strong empirical evidence that monetary policy as well as the volatility of

macroeconomic shocks changed in the early 1980s, we estimate both DSGE models based

on data sets that start in 1984:Q3.5 We use both the small-scale DSGE model as well as the

SW model to construct pseudo-out-of-sample forecasts using the real time data set. Forecast

errors are calculated based on the first final release of each variable. The predictive distri-

bution for the model checks – using the notation of Section 3 – is constructed conditional

on Y1:R. Period R corresponds to 1996:Q4, which is the last period in the estimation sample

that is used to generate the March 1997 forecasts. When simulating from the predictive dis-

tribution p(Y ∗
R+1+T |Y1:R), we do not take into account the data revision process. In addition

to a forecast evaluation based on real time data, we also construct a sequence of pseudo-

out-of-sample forecasts for the small-scale model based on the data set associated with the

December 2004 forecasts. We refer to these pseudo-out-of-sample forecasts as last-vintage

as opposed to real-time forecasts. Finally, for the analysis of the SW model all real series

are converted into per capita terms, whereas we do not convert GDP growth in per capita

5We are using a conditional likelihood function that conditions on observations from 1983:Q3 to 1984:Q4.
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terms when estimating the small-scale DSGE model.

5.2 Evidence from the Small-Scale Model

Empirical results are presented in terms of histograms for PITs, e.g. Figure 1, plots of

RMSEs (or RMSE ratios) as a function of the forecast horizon, e.g. Figure 11, or tables with

χ2 goodness-of-fit statistics, e.g. Table 4. To generate the histogram plots we divide the

unit interval into five equally-sized subintervals and depict the fraction of PITs (measured in

percent) computed from the actual data that fall in each of the subintervals. Since the PITs

are uniformly distributed on the unit interval we also plot the 20% line. Finally, the dashed

lines indicate the 5th and 95th percentile of the predictive distribution for the fraction of

PITs in each bin. In the RMSE plots the solid lines signify the actual RMSEs or RMSE

ratios and the dashed lines indicate the 5th and 95th percentile of the predictive distribution.

Finally, in the tables we report the values of the χ2 statistic computed based on actual data

as well as the 95th percentile of the predictive distribution. We first examine the results

obtained from the last vintage of observations and then discuss the results from the real

time data.

Last Vintage. The small-scale DSGE model generates a joint predictive distribution for

output growth, inflation, and interest rates. We begin the density forecast evaluation by

considering the marginal predictive distributions for these three variables. PIT histograms

for one-step, two-step, and four-step ahead density forecasts are displayed in Figure 1. The

inflation and output growth forecasts appear to be well calibrated as the percentages of

PITs computed from actual data fall inside the intervals computed based on the predictive

distribution. This is confirmed by the χ2 statistics reported in Table 4, which measure the

squared distance of the bin heights from the 20% line. All actuals except for the goodness-of-

fit statistic computed for the four-step-ahead inflation forecasts are below the 95th percentile

of their respective predictive distribution. The interest rate (Federal Funds rate) density

forecasts, especially two and four steps ahead, are less well calibrated. Many interest rate

realizations all into the left tail of the density forecasts leading to a fraction of PITs in the

[0, 0.2] that is larger than the estimated model predicts.



This Version: October 17, 2010 18

We now consider bivariate predictive distributions generated by the small-scale DSGE

model. Since a joint density of two random variables can be factored into a marginal and

a conditional density and we have examined the marginal densities already, we shall now

focus on density forecasts that are conditioned on future realizations of either output growth,

inflation, and interest rates. If the DSGE model is able to capture the comovements between

pairs of the three observables, then probability integrals computed from the conditional

density of say output growth given actual future inflation are also uniformly distributed,

which is shown formally in Diebold, Hahn, and Tay (1999). The results are summarized in

Figures 2 to 4. Given the relatively poor performance of the marginal interest rate forecasts,

it is not surprising that the forecasts conditional on future realizations of output growth or

inflation are not well calibrated either. The forecasts of output given inflation and inflation

given output, on the other hand, appear well calibrated. The corresponding χ2 statistics in

Table 4 computed from the actual forecasts are all below the 95th percentile of the predictive

distribution.

The comovement of output growth and inflation with the Federal Funds rate is of par-

ticular importance to central banks, which often compare macroeconomic forecasts based on

various hypothetical paths for the short-term nominal interest rate. Thus, Figure 4 depicts

PIT histograms for output and inflation forecasts that condition on the actual future interest

rate. It is important to note that these histograms do not convey any information about

the DSGE model’s ability to generate accurate counterfactual policy predictions. We only

examine whether the DSGE model is able to capture the comovement between interest rate

and other macroeconomic variables under the actual policy. The results are mixed at best.

Judging from the χ2 statistics in Table 4 the output growth forecasts conditional on interest

rates pass the predictive check at all horizons, whereas the inflation forecasts only passes at

the one-step horizon.

Finally, we turn to predictive checks based on RMSEs, which are summarized in Figures 5

and 6. The RMSEs are computed for point predictions, which are in turn based on the mean

of the predictive distribution and thereby optimal under a quadratic loss function. To obtain

forecasts conditional on future realizations of one of the other variables, we compute the mean
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from the conditional predictive density. In a nutshell, if the predictive distribution implies

that two variables are highly correlated, then knowing the future realization of one of them

should substantially reduce the RMSE when predicting the other. Figure 5 depicts actual

RMSEs as well as the 5th and 95th percentile of the predictive distribution. The RMSEs

for the output growth forecasts are around 0.5, which for one-step-ahead forecasts is in line

with the values reported in Table 1. For the output growth forecasts the actual RMSEs lie

within the bands computed from the predictive distribution. The small-scale DSGE model

implies that conditioning on realized values of inflation should reduce the RMSE of output

growth forecasts, which is more evident from the top left panel of Figure 6. This RMSE

reduction however is not realized by the actual forecasts. The realized ratio of RMSEs is one

or slightly larger, whereas the 5th percentile of the predictive distribution is about 0.75 for

four-step-ahead forecasts. The evidence from the predictive check for RMSEs of inflation and

interest rate forecasts is less favorable for the DSGE model. The estimated model assigns a

lot of probability to inflation (interest rate) forecast RMSEs that are higher (lower) than the

actual RMSE. Conditioning on one of the other two variables worsens the inflation forecasts

and leaves the RMSE of the interest rate forecast essentially unchanged.6

Real Time Data. We now turn to results from the real-time data set. It is important to

re-emphasize that we do not try to capture the data revision process with the measurement

equation of the DSGE model and therefore data revisions are not reflected in predictive

distribution that we are simulating. Figure 7 displays the PITs of unconditional forecasts

for the small model using real time data and χ2 statistics are reported in Table 5. The one-

step-ahead forecasts (nowcasts) for all three variable appear to be well calibrated. At longer

horizons, the distribution of the PITs for inflation and the Federal Funds rate deteriorates

slightly. The actual interest rate falls too frequently in the left tail of the predictive distri-

bution, while realizations of the inflation are dispersed much less than would be indicated

by the predictive distribution. That is, the volatility of inflation implied by the model is too

high, which is also evident from the predictive distribution for the inflation RMSE depicted

in Figure 11. The realized RMSEs for inflation (and at longer horizons output) fall outside

6Unlike in Table 1 the inflation forecast RMSEs depicted in Figure 5 are based on annualized quarter-

over-quarter inflation rates.
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the 90% credible intervals of the predictive distribution. However, the realized RMSEs for

the interest rate falls well inside the credible intervals, despite the poor left tail behavior of

the predictive density.

Figure 8 shows the distribution of the PITs conditional on future output. The distri-

butions for the PITs of output and interest rates look very similar to the distributions of

the unconditional PITs. The one-step-ahead forecasts look well calibrated, while the four-

step ahead conditional predictive distribution for inflation is too conservative. Evidently,

conditioning on interest rates does not improve the models ability capture the volatility of

the inflation rate. Figures 9 and 10 display the distribution of the PITs conditional on

inflation and interest rates, respectively. Once again, the one-step-ahead forecasts look well-

calibrated, while at longer horizons the distributions for output growth and inflation given

interest rates and for interest rates given inflation to be mis-calibrated.

Turning to the Figure 11, the actual RMSEs errors for inflation and to lesser extent

output fall in the lower tail of the predictive distributions. However, the actual RMSEs

for interest rates are consistent with those implied by the model. Compared to the last-

vintage data set (Figure 5), this behavior is reversed. Furthermore, the actual RMSEs are

in general lower with real time data. Figure 12 displays the ratio of the conditional and

unconditional RMSEs. Conditional on R, the ratio of the RMSEs falls well outside the

predictive distribution for output and too a lesser extent inflation. At longer horizons, the

actual interest rate often lies in the extreme tail of the distribution while output and inflation

are moderate. With real-time data, there are actual gains in conditioning on realized output

and inflation, whereas with the final vintage data set there were no gains.

5.3 Evidence from the Smets-Wouters Model

The Smets-Wouters model generates a joint predictive distribution for output, consump-

tion, inflation, investment, hours, wages, the federal funds rates. We consider only model

predictions for output, inflation, and the federal funds rate. The PITs histograms of the

one-step, two-step, and four-step ahead marginal predictive density forecasts are displayed

in Figure 13. The nowcasts (one-step forecast) for inflation and the federal funds seem to
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be well calibrated, but the nowcast for GDP appears to less well calibrated. Evidently, for

the two-step and four-step forecasts, the marginal predictive density for output and inflation

is too disperse. Conversely, the predictive density for the Federal Funds rate appear well

calibrated. The χ2 statistics in Table 6 are consistent with these observations, with the

realized statistic for output growth well above the 95th percentile of the predictive distribu-

tion at all horizons. The statistic for inflation exceeds the 95th percentile of the predictive

distribution for two-step and four-step ahead forecasts. The χ2 statistic associated with the

Federal Funds rate does not exceed the 90th percentile of the predictive distribution at any

horizon.

Figure 14 shows the histograms of PITs of the forecasts given future output. The nowcasts

are well calibrated, but at all longer horizons there are too few realizations of inflation in

the tails of the distribution. On the other hand, the conditional forecasts for the Federal

Funds rate appear well calibrated. The χ2 statistics in Table 6 confirm the conclusions draw

from the histograms of the PITs. Figure 15 shows the histogram of the PITs of forecasts

given future inflation. The conditional predictive density for output given inflation is poorly

calibrated at all horizons. Essentially, the predictive distribution of output given inflation

implied by the model is too disperse relative the to volatility of the data. This problem

also occurs with the marginal predictive distribution for output, as seen in Figure 13. The

conditional predictive density for interest rates given inflation is well calibrated. Turning

to Figure 16, the histogram of conditional PITs given the Federal Funds Rate, the nowcast

for inflation appears to the only well calibrated forecast. In general the features of these

conditional predictive densities are similar to the marginal predictive distribution.

Next we consider the RMSE for each of the three series, along with the predictive dis-

tribution for these statistics constructed in the same way as the small-scale model RMSE

predictive distribution. The first row of Figure 17 displays the actual RMSEs for up to

eight-step forecasts based on the marginal predictive densities as well as the 5th and 95th

percentile of the predictive distribution. As before, the actual RMSEs errors are consistent

with those in Table 1. The one-step RMSEs for are 0.45 for output growth, 0.21 for inflation,
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and 0.46 for the Federal Funds rate.7 The RMSEs are essentially identical to those reported

by Edge and Gürkaynak (2010), which suggests that our fixing of additional parameters did

not adversely affect the fit of the model. The RMSEs for output and inflation are below

5th of their predictive distributions, consistent with the earlier observations that the predic-

tive densities for these variables are too wide. Conversely, the RMSEs for the federal funds

appear well within the bands given by the predictive distribution.

Finally, Figure 18 displays ratio of the conditional to unconditional RMSEs. We see that

there is a substantial reduction in RMSE when forecasting inflation given the Federal Funds

Rate or vice versa. This is consistent with the predictive distribution of the RMSEs. There

is not any gain in conditioning on output for forecasting inflation or the interest rate; the

predictive distribution indicates that one should not expect large reductions in RMSE from

knowing GDP. Similar findings hold for forecasting GDP conditioning on inflation and the

Federal Funds rate.

6 Conclusion

We have evaluated the forecasting performance of two DSGE models by examining whether

the predictive densities are well calibrated in the sense that probability integral transforms

are uniformly distributed. To accomplish this, we implemented predictive checks for the

uniformity of the PITs for both the marginal and conditional predictive densities. We also

examined the behavior of RMSEs of point forecasts for unconditional and conditional pre-

dictions against the distribution of RMSEs implied by the posterior.

For a three equation New Keynesian DSGE model, we find that the marginal and con-

ditional one-step, two-step, and four-step predictive densities for output and inflation are

well calibrated, but do not observe a reduction in RMSE associated with conditioning on

output or inflation. The predictive density for the interest rate is poorly calibrated, with

the majority of realizations falling in the left tail of the distribution. When performing the

same exercise with real time data, we find an that the predictive density for interest rates

7Now the inflation rate is given in Q-o-Q percentages.
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improves and the predictive density for inflation worsens. Now the predictive density for

inflation is too wide, with too many realizations falling in the center of the distribution. The

relationship between the interest rate and output is generally well calibrated and associated

with reductions in RSME when forecasting using conditional predictive densities for short

horizons, but performs poorly at longer horizons.

For the Smets-Wouters model, we find that the marginal predictive densities for inflation

and output are not well calibrated in the sense the tails of the predictive densities are too

large. That is, the realizations of output and inflation fall too frequently in the center of the

predictive distribution. Conversely, the marginal predictive density for the Federal Funds

funds appears well calibrated. In terms of comovements, there are large gains in conditioning

on the federal funds rate for forecasting inflation but hardly any gains for forecasting output

growth as seen by the reduction of RMSEs. However, the predictive distributions of inflation

and output growth given the Federal Funds Rate are too diffuse.

This paper develops tools to assess the adequacy of the forecasting performance of DSGE

models, with an emphasis on capturing the comovements of key macroeconomic variables.

We hope that these predictive checks can be used to spur new thinking about DSGE models,

particularly in the modeling the relationship between variables.
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Table 1: One-Step-Ahead Forecast Performance of DSGE Models

Study Forecast Period Output Growth Inflation Interest Rate

(Q %) (Q %) (A %)

Del Negro et al. (2007) 1985:IV to 2000:I 0.73 0.27 0.87

(0.52) (0.25) (1.72)

Smets, Wouters (2007) 1990:I to 2004:IV 0.57 0.24 0.43

(0.57) (0.22) (1.97)

Edge, Kiley, Laforte (2009) 1996:III to 2004:IV 0.45 0.29 0.83

(0.57) (0.20) (1.96)

Edge, Gürkaynak (2010) 1997:I to 2006:III 0.49 0.21 0.48(∗)

(0.56) (0.23) (1.89)

Schorfheide, Sill, Kryshko (2010) 2001:I to 2007:IV 0.51 0.22 0.71

(0.47) (0.22) (1.68)

Notes: Del Negro et al. (2007, Table 2): VAR approximation of DSGE model estimated

based on rolling samples of 120 observations. Smets and Wouters (2007, Table 3): DSGE

model is estimated recursively, starting with data from 1996:I. Edge, Kiley, and Laforte (2009,

Table 5): DSGE model is estimated recursively with real time data starting in 1984:II. Edge,

Gürkaynak (2010, Figure 3): DSGE model is estimated recursively, with real time data from

1997:I. (*) The interest rate entry refers to changes in the interest rate. Schorfheide, Sill,

Kryshko (2010, Table 2): DSGE model is estimated recursively with data starting in 1984:I.

Numbers in parentheses are sample standard deviations for forecast period, computed from

the Schorfheide, Sill, Kryshko data set. Q % is the quarter-to-quarter percentage change,

and A % is an annualized rate.
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Table 2: Prior Distribution for Small-Scale Model

Density Para (1) Para (2)

τ Gamma 2.00 0.50

κ Gamma 0.20 0.10

ψ2 Gamma 0.50 0.25

ρR Beta 0.50 0.20

ρG Beta 0.80 0.10

ρZ Beta 0.66 0.15

r(A) Gamma 0.50 0.50

π(A) Gamma 7.00 2.00

γ(Q) Normal 0.40 0.20

σR InvGamma 0.40 4.00

σG InvGamma 1.00 4.00

σZ InvGamma 0.50 4.00

Notes: The following parameter is fixed: ψ1 = 1.70. Para (1) and Para (2) list the means

and the standard deviations for Beta, Gamma, and Normal distributions; the upper and

lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma

distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is truncated at the

boundary of the determinacy region.
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Table 3: Prior Distribution for Smets-Wouters Model

Density Para (1) Para (2) Density Para (1) Para (2)

ψ Beta 2.00 0.50 Φ Normal 1.25 0.12

ρ Beta 0.75 0.10 ry Normal 0.12 0.05

r∆y Normal 0.12 0.05 π̄ Gamma 0.62 0.10

100(β−1 − 1) Gamma 0.25 0.10 l̄ Normal 875 10.0

γ̄ Normal 0.40 0.10 σa Invgamma 0.10 2.00

σb Invgamma 0.10 2.00 σg Invgamma 0.10 2.00

σI Invgamma 0.10 2.00 σr Invgamma 0.10 2.00

σp Invgamma 0.10 2.00 σw Invgamma 0.10 2.00

ρa Beta 0.50 0.20 ρb Beta 0.50 0.20

ρg Beta 0.50 0.20 ρI Beta 0.50 0.20

ρr Beta 0.50 0.20 ρp Beta 0.50 0.20

ρw Beta 0.50 0.20 µp Beta 0.50 0.20

µw Beta 0.50 0.20 ρga Beta 0.50 0.20

Notes: The following parameters are fixed in Smets and Wouters (2007): δ = 0.025, gy =

0.18, λw = 1.50, εw = 10.0, and εp = 10. In addition we fix: ϕ = 5.00, σc = 1.5, h = 0.7,

ξw = 0.7, σl = 2, ξp = 0.7, ιw = 0.5, ιp = 0.5, rπ = 2, α = 0.3. Para (1) and Para (2)

list the means and the standard deviations for Beta, Gamma, and Normal distributions; the

upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is truncated at

the boundary of the determinacy region.
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Table 4: χ2 Tests for PITs (Small Model, Final Vintage)

Output Growth Inflation Interest Rates

1 Quarter Ahead

Uncond. 1.44 ( 8.31 ) 3.94 (10.81 ) 10.50 (10.19 )

Cond on Y 3.63 ( 9.88 ) 12.38 ( 8.31 )

Cond on π 1.75 ( 7.06 ) 10.50 (10.81 )

Cond on R 5.50 (10.19 ) 3.94 (12.06 )

2 Quarters Ahead

Uncond. 3.31 (10.81 ) 10.19 (19.25 ) 20.81 (17.38 )

Cond on Y 3.31 (15.81 ) 24.56 (13.63 )

Cond on π 1.75 ( 8.31 ) 20.81 (18.94 )

Cond on R 9.25 (11.13 ) 12.69 (21.44 )

4 Quarters Ahead

Uncond. 5.58 (16.83 ) 28.50 (21.42 ) 24.75 (21.83 )

Cond on Y 5.58 (16.42 ) 28.50 (17.67 )

Cond on π 4.75 (10.58 ) 23.50 (25.58 )

Cond on R 12.67 (15.17 ) 23.08 (21.42 )

Notes: The values in parentheses correspond to the 90th percentile of the predictive distri-

bution.
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Table 5: χ2 Tests for PITs (Small Model, Real Time)

Output Growth Inflation Interest Rates

1 Quarter Ahead

Uncond. 2.69 ( 8.63 ) 1.75 (10.19 ) 8.00 ( 9.25 )

Cond on Y 1.75 (10.19 ) 12.69 ( 8.94 )

Cond on π 3.31 (11.44 ) 6.44 ( 9.56 )

Cond on R 4.88 ( 8.31 ) 1.75 ( 9.56 )

2 Quarters Ahead

Uncond. 13.31 (12.06 ) 31.12 (18.00 ) 17.69 (20.81 )

Cond on Y 22.06 (17.69 ) 12.06 (21.44 )

Cond on π 3.94 (11.13 ) 19.25 (23.31 )

Cond on R 7.69 (10.19 ) 26.44 (16.44 )

4 Quarters Ahead

Uncond. 21.42 (14.75 ) 32.25 (23.92 ) 7.67 (28.92 )

Cond on Y 25.58 (22.67 ) 11.83 (31.42 )

Cond on π 14.75 (13.08 ) 6.42 (31.42 )

Cond on R 13.50 (14.33 ) 32.25 (23.92 )

Notes: The values in parentheses correspond to the 90th percentile of the predictive distri-

bution.
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Table 6: χ2 Tests for PITs (Smets Wouters, Real Time)

Output Growth Inflation Interest Rates

1 Quarter Ahead

Uncond. 23.31 (18.31 ) 3.62 ( 7.69 ) 8.94 ( 9.25 )

Cond on Y 4.25 ( 9.88 ) 8.94 (10.19 )

Cond on π 22.06 (16.44 ) 8.00 (10.19 )

Cond on R 21.44 (14.56 ) 3.00 ( 7.06 )

2 Quarters Ahead

Uncond. 26.44 ( 9.25 ) 65.81 (18.62 ) 12.06 (29.88 )

Cond on Y 54.25 (15.50 ) 10.19 (29.88 )

Cond on π 24.56 ( 5.81 ) 10.19 (18.62 )

Cond on R 27.69 ( 5.19 ) 27.69 ( 4.88 )

4 Quarters Ahead

Uncond. 28.92 ( 4.75 ) 77.25 (17.67 ) 9.75 (40.17 )

Cond on Y 42.25 (17.25 ) 9.75 (35.58 )

Cond on π 31.00 ( 3.08 ) 7.67 (23.08 )

Cond on R 36.42 ( 7.25 ) 13.08 ( 7.67 )

Notes: The values in parentheses correspond to the 90th percentile of the predictive distri-

bution.
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Figure 1: PITs of Unconditional Forecasts (Small Model, Last Vintage)

Notes: Probability integral transforms for forecasts of output growth (GDP), inflation (PI),

and interest rates (R). Bars correspond to actuals and dashed bands indicate 90% credible

intervals obtained from the predictive distribution.
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Figure 2: PITs of Forecasts Given Future Output (Small Model, Last Vin-

tage)

Notes: Probability integral transforms for forecasts of inflation (PI) and interest rates (R)

conditional on actual future output growth. Bars correspond to actuals and dashed bands

indicate 90% credible intervals obtained from the predictive distribution.
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Figure 3: PITs of Forecasts Given Future Inflation (Small Model, Last Vin-

tage)

Notes: Probability integral transforms for forecasts of output growth (GDP) and interest

rates (R) conditional on actual future inflation. Bars correspond to actuals and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 4: PITs of Forecasts Given Future Interest Rates (Small Model, Last

Vintage)

Notes: Probability integral transforms for forecasts of output growth (GDP) and inflation

(PI) conditional on actual future interest rates. Bars correspond to actuals and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 5: RMSEs of Unconditional and Conditional Forecasts (Small Model,

Last Vintage)

Notes: Root Mean Squared Errors (RMSEs) for forecasts of output growth (GDP, not

annualized), inflation (PI, annualized), and interest rates (R, annualized) unconditional and

conditional on future realizations of other variables. The solid line corresponds to RMSEs

associated with actual forecasts and the dashed line signifies 90% credible intervals obtained

from the predictive distribution.
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Figure 6: RMSE Ratios of Unconditional and Conditional Forecasts (Small

Model, Last Vintage)

Notes: RMSE ratios for forecasts of output growth (GDP), inflation (PI), and interest rates

(R): conditional on future realizations of other variables versus unconditional. The solid line

corresponds to RMSE ratios associated with actual forecasts and the dashed line signifies

90% credible intervals obtained from the predictive distribution.
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Figure 7: PITs of Unconditional Forecasts (Small Model, Real Time)

Notes: Probability integral transforms for forecasts of output growth (GDP), inflation (PI),

and interest rates (R). Bars correspond to actuals and dashed bands indicate 90% credible

intervals obtained from the predictive distribution.
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Figure 8: PITs of Forecasts Given Future Output (Small Model, Real Time)

Notes: Probability integral transforms for forecasts of inflation (PI) and interest rates (R)

conditional on actual future output growth. Bars correspond to actuals and dashed bands

indicate 90% credible intervals obtained from the predictive distribution.
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Figure 9: PITs of Forecasts Given Future Inflation (Small Model, Real Time)

Notes: Probability integral transforms for forecasts of output growth (GDP) and interest

rates (R) conditional on actual future inflation. Bars correspond to actuals and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 10: PITs of Forecasts Given Future Interest Rates (Small Model,

Real Time)

Notes: Probability integral transforms for forecasts of output growth (GDP) and inflation

(PI) conditional on actual future interest rates. Bars correspond to actuals and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 11: RMSEs of Unconditional and Conditional Forecasts (Small Model,

Real Time)

Notes: Root Mean Squared Errors (RMSEs) for forecasts of output growth (GDP, not

annualized), inflation (PI, annualized), and interest rates (R, annualized) unconditional and

conditional on future realizations of other variables. The solid line corresponds to RMSEs

associated with actual forecasts and the dashed line signifies 90% credible intervals obtained

from the predictive distribution.
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Figure 12: RMSE Ratios of Unconditional and Conditional Forecasts (Small

Model, Real Time)

Notes: RMSE ratios for forecasts of output growth (GDP), inflation (PI), and interest rates

(R): conditional on future realizations of other variables versus unconditional. The solid line

corresponds to RMSE ratios associated with actual forecasts and the dashed line signifies

90% credible intervals obtained from the predictive distribution.
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Figure 13: PITs of Unconditional Forecasts for Output, Inflation and Inter-

est Rates (Smets Wouters, Real Time)

Notes: Probability integral transforms for forecasts of output growth (GDP), inflation (PI),

and interest rates (R). Bars correspond to actuals and dashed bands indicate 90% credible

intervals obtained from the predictive distribution.
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Figure 14: PITs of Forecasts for Inflation and Interest Rates Given Future

Output (Smets Wouters, Real Time)

Notes: Probability integral transforms for forecasts of inflation (PI) and interest rates (R)

conditional on actual future output growth. Bars correspond to actuals and dashed bands

indicate 90% credible intervals obtained from the predictive distribution.
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Figure 15: PITs of Forecasts for Output and Interest Rates Given Future

Inflation (Smets Wouters, Real Time)

Notes: Probability integral transforms for forecasts of output growth (GDP) and interest

rates (R) conditional on actual future inflation. Bars correspond to actuals and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 16: PITs of Forecasts for Output and Inflation Given Future Interest

Rates (Smets Wouters, Real Time)

Notes: Probability integral transforms for forecasts of output growth (GDP) and inflation

(PI) conditional on actual future interest rates. Bars correspond to actuals and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.
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Figure 17: RMSEs of Unconditional and Conditional Forecasts (Smets

Wouters, Real Time)

Notes: Root Mean Squared Errors (RMSEs) for forecasts of output growth (GDP, not

annualized), inflation (PI, annualized), and interest rates (R, annualized) unconditional and

conditional on future realizations of other variables. The solid line corresponds to RMSEs

associated with actual forecasts and the dashed line signifies 90% credible intervals obtained

from the predictive distribution.
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Figure 18: RMSE Ratios of Unconditional and Conditional Forecasts (Smets

Wouters, Real Time)

Notes: RMSE ratios for forecasts of output growth (GDP), inflation (PI), and interest rates

(R): conditional on future realizations of other variables versus unconditional. The solid line

corresponds to RMSE ratios associated with actual forecasts and the dashed line signifies

90% credible intervals obtained from the predictive distribution.
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A A Short Review of Density Forecast Evaluation

The following properties of PITs are derived in Diebold, Gunther, and Tay (1998) and

Diebold, Hahn, and Tay (1999).

Univariate density forecasts. Let p(yt+h|Y1:t) be a predictive distribution. Consider the

probability integral transform of yt+h with respect to p(yt+h|Y1:t),

zt,h =

∫ yt+h

−∞
p(ỹt+h|Y1:t)dỹt+h = Pt,h(yt+h). (A.1)

Since Pt,h is a cdf, it is nondecreasing over the yt+h and we can apply a change of variables

to find the density of f(zt,h):

f(zt,h) = p(P−1
t,h (zt,h)|Y1:t)

∣∣∣∣∣∂P−1
t,h (zt,h)

∂zt,h

∣∣∣∣∣ =
p(P−1

t,h (zt,h)|Y1:t)

p(P−1
t,h (zt,h)|Y1:t)

= I{0 ≤ zt,h ≤ 1}, (A.2)

which means that the probability integral transforms are zt,h ∼ U [0, 1].

Suppose yt+h has probability density pt,h(yt,h|Y1:t), t = 1, . . . ,m. For h = 1 the joint

distribution of {yt+h}mt=1 can be written as

p(y1+h, . . . , ym+h|Y1:1) =
m∏
t=1

p(yt+h|Y1:t). (A.3)

One can write the density of the probability integral transforms using the same change of

variables as before. Since the Jacobian of the transformation∣∣∣∣∣∣∣∣∣
∂y1+1

∂z1,1
. . . ∂y1+1

∂zm,1

...
. . .

...

∂ym+1

∂z1+1
. . . ∂ym+1

∂zm,1

∣∣∣∣∣∣∣∣∣ , yt+1 = P−1
t,1 (zt,1)

is lower triangular, we can write

f(z1,1, . . . , zm,1) =

(
m∏
t=1

∣∣∣∣∣∂P−1
t,1 (zt,1)

∂zt,1

∣∣∣∣∣
)(

m∏
t=1

p(P−1
t,1 (zt,1)|Y1:t)

)
(A.4)

=
m∏
t=1

{0 ≤ zt,1 ≤ 1}

For h > 1 the probability integral transforms still have a U(0, 1) distribution, but they

are now dependent. It is straightforward to verify that the dependence dies out after h

periods, that is, zt,h and zt−s,h are independent for s ≥ h.
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Multivariate density forecasts. In order to extend the above analysis to multivariate

forecasts, let yt = [y1,t, . . . , yn,t]
′ and define the conditional univariate probability integral

transforms:

zj,t,h|1:(j−1) =

∫ yj,t+h

−∞
p(ỹj,t+h|y1:(j−1),t+h, Y1:t).

The same arguments that were used to examine the properties of univariate PITs can now

be used to derive the properties of multivariate PITs.

Testing. The uniformity of the probability integrals transforms can be tested with a

Kolmogorov-Smirnov tests, which measures the distance between the empirical distribu-

tion function of the PITs and the cdf of a U [0, 1]. Alternatively, Kling and Bessler (1989)

used the following test. If one has a sequence of n PITs, then one expects (under the null

hypothesis that the forecasts are well calibrated) any subinterval of the unit interval of length

L to have Ln observed fractiles. If we have J nonoverlapping subintervals that exhaust the

unit interval, then we can calculate the goodness of fit statistic

X2 =
J∑
j=1

(aj − Ljn)2/(Ljn) ∼ χ2(j − 1),

where aj is the actual number of observed fractiles in the interval j, and Lj is its length.

B Computing PITs

We need to approximate the integral∫ yt+1

−∞
p(ỹt+1|Y1:t)dỹt+1. (A.5)

To do so, we use draws from the predictive distribution p(ỹt+1|Y1:t). Let {ỹ(i)
t+h}

nsim
i=1 be a set

of such draws. The approximation of the integral takes the form

zt,h =
1

nsim

nsim∑
i=1

I{ỹ(i)
t+h < yt+h}. (A.6)

For step-size h, we can repeat this process from t = T0 + 1 until t = T0 + S, yielding a set

of S probability transforms of h-step ahead forecasts.
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We are also interested in probability integral transforms based on conditional predictive

distributions, p(y1,t+h|y2,t+h, Y1:t). We approximate this conditional distribution by kernel

density estimation and compute the probability integral transform as follows:

z1,t,h =
1

nsim

nsim∑
i=1

κ

(
ỹ

(i)
2,t+h − y2,t+h

b

)
I{ỹ(i)

1,t+h < y1,t+h} (A.7)

where b is the bandwidth and κ is normalized kernel. For step-size h, we can repeat this

process from t = T0 + 1 until t = T0 + S, yielding a set of S probability transforms of h-step

ahead forecasts.

C The Smets-Wouters Model

The equilibrium conditions of the Smets and Wouters (2007) model take the following form:
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ŷt = cy ĉt + iy ît + rksskyẑt + εgt (A.8)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 +

wlss(σc − 1)

cssσc(1 + h/γ)
(l̂t − Etl̂t+1) (A.9)

− 1− h/γ

(1 + h/γ)σc
(r̂t − Etπ̂t+1)−

1− h/γ

(1 + h/γ)σc
εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etît+1 +

1

ϕγ2(1 + βγ(1−σc))
q̂t + εit (A.10)

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 + (1− β(1− δ)γ−σc)Etr̂
k
t+1 − εbt (A.11)

ŷt = Φ(αk̂st + (1− α)l̂t + εat ) (A.12)

k̂st = k̂t−1 + ẑt (A.13)

ẑt =
1− ψ

ψ
r̂kt (A.14)

k̂t =
(1− δ)

γ
k̂t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit (A.15)

µ̂pt = α(k̂st − l̂t)− ŵt + εat (A.16)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ιp
1 + βγ(1−σc)

π̂t−1 (A.17)

− (1− βγ(1−σc)ξp)(1− ξp)

(1 + ιpβγ(1−σc))(1 + (ϕ− 1)εp)ξp
µ̂pt + εpt

r̂kt = l̂t + ŵt − k̂t (A.18)

µ̂wt = ŵt − σl l̂t −
1

1− h/γ
(ĉt − h/γĉt−1) (A.19)

ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 + Etπ̂t+1) +

1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1) (A.20)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t +
(1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (λw − 1)εw)ξw
µ̂wt + εwt (A.21)

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t )) + r∆y((ŷt − ŷ∗t )− (ŷt−1 − ŷ∗t−1)) + εrt(A.22)

εat = ρaε
a
t−1 + ηat (A.23)

εbt = ρbε
b
t−1 + ηbt (A.24)

εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt (A.25)

εit = ρiε
i
t−1 + ηit (A.26)

εrt = ρrε
r
t−1 + ηrt (A.27)

εpt = ρrε
p
t−1 + ηpt − µpη

p
t−1 (A.28)

εwt = ρwε
w
t−1 + ηwt − µwη

w
t−1 (A.29)

(A.30)
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ŷ∗t = cy ĉ
∗
t + iy î

∗
t + rksskyẑ

∗
t + εgt (A.31)

ĉ∗t =
h/γ

1 + h/γ
ĉ∗t−1 +

1

1 + h/γ
Etĉ

∗
t+1 +

wlss(σc − 1)

cssσc(1 + h/γ)
(l̂∗t − Etl̂

∗
t+1) (A.32)

− 1− h/γ

(1 + h/γ)σc
r∗t −

1− h/γ

(1 + h/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etî

∗
t+1 +

1

φγ2(1 + βγ(1−σc))
q̂∗t + εit (A.33)

q̂∗t = β(1− δ)γ−σcEtq̂
∗
t+1 − r∗t + (1− β(1− δ)γ−σc)Etr

k∗
t+1 − εbt (A.34)

ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat ) (A.35)

k̂s∗t = k∗t−1 + z∗t (A.36)

ẑ∗t =
1− ψ

ψ
r̂k∗t (A.37)

k̂t =
(1− δ)

γ
k̂∗t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit (A.38)

µ̂p∗t = α(k̂s∗t − l̂∗t )− ŵ∗
t + εat (A.39)

µ̂p∗t = 1 (A.40)

r̂k∗t = l̂∗t + ŵ∗
t − k̂∗t (A.41)

µ̂w∗t = −σl l̂∗t −
1

1− h/γ
(ĉ∗t + h/γĉ∗t−1) (A.42)

ŵ∗
t = µw∗t (A.43)



This Version: October 17, 2010 A-6

With,

γ = γ̄/100 + 1 (A.44)

π∗ = π̄/100 + 1 (A.45)

r̄ = 100(β−1γσcπ∗ − 1) (A.46)

rkss = γσc/β − (1− δ) (A.47)

wss =

(
αα(1− α)(1−α)

(φrkss)
α

) 1
1−α

(A.48)

ik = (1− (1− δ)/γ)γ (A.49)

lk =
1− α

α

rkss
wss

(A.50)

ky = φl
(α−1)
k (A.51)

iy = (γ − 1 + δ)ky (A.52)

cy = 1− gy − iy (A.53)

zy = rkssky (A.54)

(A.55)


