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Abstract

We exploit two ways of estimating forecasting models in real-time: a method that takes at

each point in time the values from the latest available vintage of data (end-of-sample data), and

the use of ‘real-time vintages’. We show that autoregressive model forecasts computed using

end-of-sample data to estimate the model do not minimise real-time mean squared forecast

errors (MSFE), while forecasts with real-time vintages do. Expected MSFE reductions from the

use of real-time vintages depend on revisions characteristics and the sample size employed in

the estimation. We find gains to the use of real-time vintages for forecasting US output growth

and inflation with autoregressive and ADL models, while models that include multiple vintages

of data are not markedly better.
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1 Introduction

There has been much interest in the recent literature regarding the effects of different data vintages

on model specification and forecast evaluation, and in the use of ‘real-time data’ in assessing

predictability, as opposed to using ‘final-revised’ data, based on concerns that the use of final-

revised data may exaggerate the predictive power of explanatory variables relative to what could

actually have been achieved at the time using the then available data (see, e.g., Diebold and

Rudebusch (1991b, 1991a), Robertson and Tallman (1998), Orphanides (2001), Croushore and

Stark (2001, 2003), Stark and Croushore (2002), Faust, Rogers and Wright (2003) and Orphanides

and van Norden (2005)). In this paper, we carry out a detailed assessment of different ways of using

real-time data to predict US output growth and inflation. It is a real-time assessment in the sense

that at each point in time the forecasting models are specified and the parameters estimated using

only data for time periods up to that point in time, and the vintages of data used are restricted

to those which would have been available at that time. Pseudo out-of-sample exercises adhere to

the first aspect but use vintages of data that would not have been available at that time (as an

example, see the study by Stock and Watson (2008)).

Our main interest concerns how best to account for data revisions in a real-time forecasting

exercise. The majority of the literature uses the ‘traditional approach’ to real-time forecasting

when there are data revisions, and this will be one of the focuses of our approach analysis. The

traditional approach takes at each point in time the values of all the observations from the latest

available vintage of data and uses these to estimate the forecasting model. Hence this is known

as the end-of-sample vintage approach, or EOS, following Koenig, Dolmas and Piger (2003). To

the extent that later estimates of a data point are more accurate or reliable than earlier estimates,

this strategy uses the ‘best’estimates of the data which are available at the time the forecast is

made. However, it implies that a large part of the data used in model estimation has been revised

many times, while the forecast is conditioned on data that has been just released or only revised a

few times. In the context of autoregressive models, we show the traditional way of using real-time
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data for forecasting does not minimise the expected squared forecast error in population. One of

our main methodological contributions is to show that the use of ‘real-time vintage’ (RTV) can

overcome the deficiencies of using EOS data.1 When RTV data is used, the data vintages on the

observations that are available in real-time are organized in such a way that the data vintages

used in model estimation are of a similar maturity to the vintage of data on which the forecast is

conditioned.

Some have attempted to make use of the multiple estimates of the same observation that are

typically available, possibly using state-space models, or some other way of modelling the revisions

process along with the process for the ‘true’data: see, for example, Harvey, McKenzie, Blake and

Desia (1983), Howrey (1984), Patterson (1995, 2003), Jacobs and van Norden (2007), Cunningham,

Eklund, Jeffery, Kapetanios and Labhard (2007), Garratt, Lee, Mise and Shields (2009b, 2009a)

and Hecq and Jacobs (2009). The approach of Kishor and Koenig (2005) (building on earlier

contributions by Howrey (1978, 1984) and Sargent (1989)) can be contrasted to ours, as it aims

at obtaining estimates of the ‘current truth’from the first-release data, which is then used in the

forecasting model with the parameter estimates based on data which for the most part can be

treated as ‘final’(or the truth). Our approach is instead to adapt the forecasting model (namely,

the model estimates) to cater for the forecasts being conditioned on largely unrevised data when

computed in a real-time assessment.

It is not clear that using multiple data vintages improves forecast accuracy. In a recent review

of forecasting with real-time data, Croushore (2006) concludes that the results of forecasting with

state-space models that incorporate data revisions are mixed, compared to simply ignoring data

revisions. However, we add to this knowledge base by forecasting with a vector autoregression

(VAR) that models the relationships between the different vintage estimates, in the spirit of recent

work by Garratt et al. (2009b, 2009a) and Hecq and Jacobs (2009). As we will show, our restricted

VAR model captures the peculiar nature of the revisions process to US macro variables such as

1Harrison, Kapetanios and Yates (2005) consider the use of EOS data when there are measurement errors, and
suggest that the most recent observations might be downweighted.
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output and inflation in a parsimonious fashion, without the need to take a stance on the nature of

the data revisions.

Hence, our focus will be on the best way of organizing the available data vintages to estimate and

forecast using autoregressions (AR) and autoregressive distributed lag models (ADL), as models

of this sort dominate the forecasting literature, and in addition we will generate forecasts from a

VAR that draws on multiple vintages to check whether our focus on AR and ADL models is unduly

narrow.

We derive analytical results that relate the properties of the forecasts generated by the use of

EOS and RTV data to the properties of data revisions for an assumed data generation process that

characterises data revisions as ‘news’or ‘noise’, in the Mankiw and Shapiro (1986) sense. We use the

Jacobs and van Norden (2007) statistical framework to model the ‘regular’rounds of revisions which

are made to the data at a level of detail that allows us to delineate between first and subsequent

revisions, as the sizes of the variances of the first and subsequent revisions are found to affect the

relative performance of RTV and EOS. It might be argued that data revisions are irregular and not

amenable to modelling as a stationary process. This is likely to be true of benchmark revisions but

the evidence presented by Croushore (2006) suggests that growth rates - the focus of our analysis -

will be affected to a much lesser degree than the levels of variables.2 The model we use as the data

generating process is undoubtedly too simple as a description of reality, as it neglects the ‘seasonal

nature’of revisions which we discuss in detail when we describe a vintage-based VAR model, but

such complications will not affect the analytical results. We assume stationarity of revisions in

order to be able to characterize the effects of revisions on the forecasts of models constructed using

RTV and EOS data. The analytics we present are for an AR(p), although the logic underlying our

approach suggests that, at least in population, with the maintained assumption of the stationarity

of revisions, RTV-based forecasts should also dominate for autoregressive models with additional

2Siklos (2008) identifies eight benchmark revisions in 1966, 1971, 1976, 1981, 1986, 1992, 1996 and 2001, all
occurring in the data vintage of the first quarter of the year - so, for example, the 1981:1 data set has data up
to 1980:4 calculated on a different basis or definition to the 1980:4 vintage data set. The way which the national
accounts data are calculated then remains unchanged until the 1986:1 data set. Base year changes occurred in 1976,
1985 and 1991.
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explanatory variables, namely autoregressive-distributed lag (ADL) models.

For AR models we are able to derive analytical results that relate the population properties of

the estimator, using RTV or EOS data, back to the properties of the hypothesized data generation

process, including the properties of the revisions process, which yields additional insights when

we can clearly categorize a series in terms of news or noise revisions. In models with explanatory

variables it will not in general be possible to obtain the direction of any bias of the estimator,

without making a range of further assumptions, including specifying the covariances between the

revisions to the series being forecast and the revisions to the explanatory variables. Hence our

analytical results are for the AR, as this allows for sharper predictions, although as mentioned, the

general arguments that support the use of RTV data in the case of AR models are also applicable

to ADL models.3

Although our analytical results (based on a large estimation sample relative to the number

of rounds of revisions) show that it is better in principle to use RTV data instead of EOS data,

of interest is whether gains will be observed once an allowance is made for parameter estimation

uncertainty. Hence we extend the analytical results with a Monte Carlo. The results suggest that

the gains to using RTV data relative to EOS data are likely to be modest, of the order of around

2-3% on mean squared error for reasonably large samples. For small samples, larger gains of around

3-8% might occur in the case of revisions which add news. These results are based on what might be

regarded as reasonably typical, empirically-calibrated data generation processes. However, we check

the robustness of our finding that RTV tends to dominate EOS in small samples by simulating data

from an estimated VAR model that incorporates restrictions for the seasonality of data revisions and

intercept shifts caused by benchmark revisions, and carry out the same exercise. The VAR model

is agnostic as to the nature of data revisions. In essence the Monte Carlo results are unchanged,

indicating that our findings are unaffected by the precise way in which the data and data revisions

3Koenig et al. (2003) derive expressions for the bias of the estimator of distributed lag (DL) models for various
ways of using real-time vintage data, but do not explicitly model the revisions process. They simply specify the first
and final estimates, and hence have a single revision. We model the sequence of revisions, and as noted, find that the
properties of the estimators depend on the relative variances of the successive rounds of revision.
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are modelled.

Nevertheless, all the Monte Carlo results we report hold fixed factors that might be relevant

empirically. Chief amongst these are the assumed constancy of the underlying models of the

variables and their revisions over time. Of interest will be the usefulness of these results as a

guide to empirical outcomes. In our empirical forecasting exercises we compare the use of EOS and

RTV data as competing approaches to real-time forecasting, and look at the extent to which the

empirical findings are consistent with our analysis. Our analytical results are directly applicable to

AR models, but we also consider ADL models of output growth and inflation.

The plan of the rest of the paper is as follows. Section 2 presents the statistical framework that

we use to model data revisions. This is essentially the Jacobs and van Norden (2007) state-space

model, but modified to allow for non-zero mean revisions, because this appears to be a feature of

some US macroeconomic aggregates we consider. Section 3 presents one of the main results of the

paper, that the traditional way of using real-time data (EOS) to estimate autoregressive models

generates forecasts that are not optimal, and are biased when data revisions are non-zero mean.

Section 4 shows how the use of RTV data to estimate the autoregressive model generates optimal,

unbiased forecasts. Section 5 presents the Monte Carlo investigation of the small-sample relevance

of our analytical results. This uses the state-space model of section 2 to generate data subject to

noise and news revisions, as well as a VAR model, which is also briefly described. Section 6 is the

empirical forecast comparison. Section 7 offers some concluding remarks. The derivations of the

main results are confined to an appendix.

2 Statistical framework

Generally, the basic statistical framework for modelling data revisions relates a data vintage es-

timate to the true value plus an error or errors, where the errors are typically unobserved. So

the period t + s vintage estimate of the value of y in period t, denoted yt+st , where s = 1, . . . , l,

consists of the true value ỹt, as well as (in the general case) news and noise components, vt+st and
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εt+st , so that yt+st = ỹt + vt+st + εt+st . Data revisions are news when initially released data are

optimal forecasts of later data, so news revisions are not correlated with the first-released data,

Cov
(
vt+st , yt+st

)
= 0. Data revisions are noise when each new release of the data is equal to the

true value of yt, denoted ỹt, plus noise, so that noise revisions are not correlated with the truth,

Cov
(
εt+st , ỹt

)
= 0. We adopt the framework of Jacobs and van Norden (2007) which stacks the

l different vintage estimates of yt, namely, yt+1t , . . . , yt+lt in the vector yt =
(
yt+1t , . . . , yt+lt

)′
, and

similarly εt =
(
εt+1t , . . . , εt+lt

)′
and vt =

(
vt+1t , . . . , vt+lt

)′
, so that:

yt = iỹt + vt + εt (1)

where i is a l-vector of ones. One way of defining a revisions process with the required characteristics

is to assume a process for ỹt, for example, an AR(p) with iid disturbances η1t, plus a sum of iid

disturbances η2t:

ỹt = ρ0 +

p∑
i=1

ρiỹt−i +R1η1t +
l∑

i=1

σviη2t,i, (2)

and to specify:

vt = −



σv1 σv2 . . . σvl

σv2

. . .

0 σvl





η2t,1

η2t,2

η2t,l


, εt =



σε1η3t,1

σε2η3t,2

σεlη3t,l


. (3)

For (2), we let ρ (L) =
∑p

i=1 ρiL
i and assume that the roots of (1− ρ (L)) = 0 lie outside the

unit circle, so that ỹt is a stationary process. In (3) we have ηt = [η1t,η
′
2t,η

′
3t] is iid, E (ηt) = 0,

with E (ηtη
′
t) = I. Thus the σv1 , ..., σvl are the standard deviations of the η2t,1, ..., η2t,l processes,

R1 = ση1 is the standard deviation of the disturbances of the underlying AR(p) process for the

true values, and σε1 , ..., σεl are the standard deviations of the η3t,1, ..., η3t,l processes. Therefore,
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the first estimate of yt, yt+1t , estimates ỹt with noise (σε1η3t,1) and a news term consisting of l

separate components (−
∑l

i=1 σviη2t,i). Later estimates are also characterised by noise, but fewer

news components and therefore provide more accurate estimates of ỹt. If σvl = 0 and σεl = 0 the

l-vintage value is the true value, yt+lt = ỹt. The assumption that ỹt is a stationary process ensures

that yt is a stationary process from (1),as both the news and noise terms are stationary.

By construction, when revisions are pure noise (νt = 0), yt − iỹt = εt, and with E (ηt) = 0,

E (εtỹt) = 0. When revisions are pure news, E
(
νt+st yt+st

)
= 0, as required.

The assumption that E (ηt) = 0 implies that the noise and news revisions are zero mean, so

that the unconditional mean of the underlying series {ỹt} and the observed data {yt} are equal

at ρ0 (1− ρ (1))−1. However, there is evidence that the revisions to some macroeconomic data are

non-zero mean, as we shall discuss in section 6.4 To account for this characteristic of the revisions

process, we consider a modified version of the statistical model that allows data revisions to affect

the mean of the {ỹt,yt}:

ỹt =
[
ρ0 +

∑l
i=1 µη2,i

]
+

p∑
i=1

ρiỹt−i +R1η1t +
l∑

i=1

σviη2t,i, (4)

and

vt = −



∑l
i=1 µη2,i∑l
i=2 µη2,i
...

µη2,l


−



σv1 σv2 . . . σvl

σv2

. . .

0 σvl





η2t,1

η2t,2

...

η2t,l


, εt = −



µη3,1

µη3,2
...

µη3,l


+



σε1η3t,1

σε2η3t,2

...

σεlη3t,l


.

(5)

Hence we allow news revisions to have a non-zero mean provided Cov
(
vt+st , yt+st

)
= 0, and similarly,

noise revisions may be non-zero mean. Hence news revisions may be predictable in the limited sense

that the early estimate is expected to be revised up or down by a fixed amount, but the expected

revision is not allowed to depend on the magnitude of the early estimate.

4See Aruoba (2008) and Corradi, Fernandez and Swanson (2009) for recent analyses of the properties of data
revisions.
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The statistical model can be cast in state-space form (SSF) and the parameters can be estimated

by maximum likelihood using the Kalman Filter, as described by Jacobs and van Norden (2007),

amongst others.

The formulation of the model that we have described in this section assumes that the revisions

process is the same irrespective of the quarter of the year to which time period t belongs. How-

ever this is a simplification of the way the Bureau of Economic Analysis (BEA), the statistical

agency that provides us with US national account data, operates. The BEA releases an ‘advance’,

‘preliminary’and ‘final’estimate of real GDP growth at about one month, two months, and three

months after the end of the quarter. We observe the ‘advance’, which we call the first release

(yt+1t ), and then the next quarter the ‘final’estimate (yt+2t ). The data are then unchanged until

the July revision, so that whether yt+3t − yt+2t is non-zero will depend on the quarter of the year

to which t belongs.5 In appendix B, we outline a ‘seasonal’version of the model described in this

section which allows for this feature of the revisions process. However, the key analytical findings

in the following sections would remain unchanged. The second moment matrices in the expressions

for the estimators given in the following two sections would become more complicated, but the

implications for the properties of the estimators would remain as stated.

3 Estimating and Forecasting with AR models using EOS data

In this section we derive the values of the AR(p) parameters that minimise the real-time expected

squared forecast error assuming the model of data revisions described in the last section. For ease

of exposition, we first assume that revisions are zero mean. We then show that the traditional

way of using real-time data for forecasting does not generate forecasts that minimise the real-time

loss function. Finally, we assess the impact of non-zero mean revisions on the traditional way of

forecasting with AR models in real-time.

5The data are subject to three annual revisions which occur in the July of each year, as described by, e.g., Fixler
and Grimm (2005, 2008) and Landefeld, Seskin and Fraumeni (2008). This suggests that

{
yt+14t

}
will have undergone

all the regular revisions irrespective of which quarter of the year t falls in.
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3.1 Optimal AR parameters in population

Consider how forecasters normally use real-time data to compute forecasts with an autoregressive

model. At time T + 1, the T + 1 vintage of data contains data up to period T , so that the T + 1

vintage is used to estimate the AR(p) model, and the forecasts are obtained by conditioning on

the model estimates and the lagged values of y from the latest data vintage, namely, yT+1T =(
yT+1T , . . . , yT+1T−p+1

)′
. But does least squares estimation of the AR model using the T + 1 data

vintage minimise the expected squared forecast error? To answer this question, we first obtain the

population value of the parameter vector that minimizes the real-time squared forecast error for

a forecast conditioned on yT+1T , when the data are subject to revisions as described in section 2.

For a pth-order autoregression, the forecast is given by the combination φ0 + φ′yT+1T , where φ0 is

the intercept and φ′ =
(
φ1, . . . , φp

)
contains the slope parameters. The optimal parameter values

(φ∗0,φ
∗), in terms of minimizing the real-time squared-error loss, are the solution to:

(φ∗0,φ
∗) = arg min

φ0,φ
E (L (φ0,φ))

where:

L (φ0,φ) =
(
yT+1+fT+1 − φ0 − φ′yT+1T

)2
. (6)

In (6), the vintage of data employed to compute the forecast errors is that available at T +1+f , so

that f = 1 indicates first-release data is used. The following proposition is derived in the Appendix.

Proposition 1 The optimal parameters (φ∗0,φ
∗) when the data generating process is given by

(1)—(3), are

φ∗ =
(
Σỹ + Σv + Σỹv + Σ′ỹv + Σε

)−1 (
Σỹ + Σ′ỹv

)
ρ

φ∗0 =
(
1− φ∗′i

)
µỹ. (7)

The slope parameter simplifies to φ∗news =
(
Σỹ + Σv + Σỹv + Σ′ỹv

)−1 (
Σỹ + Σ′ỹv

)
ρ, if data re-
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visions add news, and is φ∗noise =
(
Σỹ + Σε

)−1
Σỹρ if data revisions only reduce noise, where the

second moment matrices Σỹ, Σv, Σỹv, and Σε are defined in the Appendix, i is a p-vector of 1’s,

and µỹ ≡ E (ỹt). The optimal values hold for all f ≥ 1, i.e., irrespective of whether the goal is to

forecast the first-released value (yT+2T+1) or the latest available estimate (y
T+l
T+1).

For the special case of an AR(1) model, for general revisions that are a combination of news

and noise:

φ∗1 =
ρ1

(
σ2ỹ − σ2v

)
σ2ỹ − σ2v + σ2ε1

where σ2v ≡
∑l

i=1 σ
2
vi , and σ

2
ỹ = V ar (ỹt). As a consequence, for pure news (σ2ε1 = 0):

φ∗1,news = ρ1, φ∗0,news = ρ0.

Note that φ∗1,news = ρ1 only holds for p = 1: in general when there are news revisions the parameter

vector of the underlying process ỹt (i.e., ρ) is not optimal from a forecasting perspective when the

forecasts are conditioned on early estimates, as is typically the case in a real-time forecasting

exercise.

For pure noise (σ2v = 0):

φ∗1,noise =
ρ1σ

2
ỹ

σ2ỹ + σ2ε1
(8)

so that φ∗1,noise < ρ1 provided σ
2
ε1 6= 0.

3.2 Estimating AR forecasting models using EOS data

As noted, when forecasting with AR models using real-time data, the standard approach is to

replace the model estimation data with the latest estimates of all the past observations given in

the data vintage available at the forecast origin. So, for example, at time T + 1, the T + 1 vintage

of data contains data up to T , and is used for estimation, while at T + 2, the T + 2 vintage is used

for estimation. We call this use of real-time data ‘end-of-sample’vintage data (EOS).
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For forecasting yT+1+fT+1 the AR forecasting model is given by:

yT+1t = α0 +

p∑
i=1

αiy
T+1
t−i + et,EOS (9)

where t = p+ 1, . . . , T , assuming the latest data vintage is dated T + 1. In matrix notation:

Y T+1 = iα0 + Y−1α+ error

where Y−1 =
[
Y T+1
−1 , . . . , Y T+1

−p

]
, i is a T − p vectors of 1’s, and the vectors of observations Y T+1

and Y T+1
−i , i = 1, . . . , p, are:

Y T+1 =
[
yT+1p+1 , . . . , y

T+1
T−1, y

T+1
T

]′
, Y T+1

−i =
[
yT+1p+1−i, . . . , y

T+1
T−i−1, y

T+1
T−i

]′

for i = 1, . . . , p. Notice that the more recent y’s will therefore have been revised fewer than l times.

The main result is summarized in the following proposition, which is derived in the appendix.

Proposition 2 The population (asymptotic) value of the least-squares estimator of the parameter

vector in the autoregressive model using EOS data, when the data are generated by (1)—(3), are

given by:

α∗ =
(
Σỹ + Σv + Σỹv + Σ′ỹv + Σε

)−1 (
Σỹ + Σ′ỹv

)
ρ

α∗0 =
(
1−α∗′i

)
µỹ, (10)

where Σv and Σε are second moment matrices of the news and noise components, and Σỹv is the

second moment matrix between the news and the underlying process, ỹt, and µỹ ≡ E (ỹt).

A comparison of (10) and (7) shows that the conventional use of real-time data (EOS) for

estimation of the AR(p) model does not deliver the optimal population parameters when there are

data revisions. That is,

α∗ 6= φ∗ and α∗0 6= φ∗0,
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so that the forecasts of τ + 1 computed using α∗0 + α∗′yτ+1τ (for a set of forecast origins τ =

T, T + 1, T + 2, . . .), where recall that yτ+1τ =
(
yτ+1τ , . . . , yτ+1τ−p+1

)′
, are not optimal in a squared-

error loss sense. Intuitively, when the sample is large, the use of EOS data amounts to mainly

using fully-revised data (i.e., data from the yt+lt vintage) whilst optimal forecasts are obtained by

relating the first estimates of the LHS variable to early estimates of the RHS variables. The finding

of the lack of optimality of EOS forecasts holds for news and noise revisions, although forecasts are

unbiased when the data revisions are zero mean, as described by the following remark, derived in

the Appendix.

Remark 1 Forecasts computed using EOS data using the AR model with (α∗0,α
∗) are unbiased

when data revisions are described by (1) —(3).

Consider the special case of an AR(1). When revisions are news, we can show that the EOS

estimator simplifies such that α∗1 = ρ1, matching the optimal value, but this is true only for the

special case of p = 1.

Under noise:

α∗1 =
ρ1σ

2
ỹ

σ2ỹ + σ2εl
(11)

An immediate implication is that |α∗1| > |φ∗| if earlier revisions are larger than later revisions

(compare (11) to (8) when σ2ε1 > σ2εl). Note that if σ
2
εl

= 0, so that the truth is eventually revealed

when there is noise, then α∗1 = ρ1 for a large estimation sample. Even so, ρ1 is not the parameter

vector that minimizes the real-time squared forecast loss (φ∗1 6= ρ1).

3.3 Optimal AR coeffi cients in population when revisions are non-zero mean

In this section we allow for non-zero mean revisions. Non-zero mean revisions indicate that in

general E
(
yt+rt

)
6= E

(
yt+st

)
, so that forecasts may be biased for some vintage estimates of the

actuals but not for others. We need to take a stance on the vintage, i.e., f , in yT+1+fT+1 . Suppose

the objective is to predict the first-released value, namely, yT+2T+1, so the optimal values (φ∗0,φ
∗) are

defined as the solution of (6) with f = 1.
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Proposition 3 The optimal parameters (φ∗0,φ
∗) when the data are generated by (1)-(4) and (5),

for the loss function given by (6) with f = 1, are equal to φ∗, as derived in Proposition 1, and

φ∗0 =
(
1− φ∗′i

)
µỹ + µv1 + µε1 − φ

∗′µε − φ∗′µv, (12)

where µỹ = (1− ρ (1))−1
[
ρ0 − µv1

]
, µε1 ≡ E

(
εt+1t

)
= −µη3,1, µv1 ≡ E

(
vt+1t

)
= −

∑l
i=1 µη2,i, and

µε and µv are p× 1 vectors of the means of noise and news components.

3.4 Estimating AR forecasting models using EOS data when revisions are non-

zero mean

In the Appendix we derive the following proposition:

Proposition 4 The population (asymptotic) value of the least-squares estimator of the parameter

vector in the autoregressive model using EOS data (eq. (9)), when the data are generated by (1),

(4) and (5), is equal to the slope value of α∗ given in Proposition 2, and the intercept is given by

α∗0 =
(
1−α∗′i

) (
µỹ + µvl + µεl

)
, (13)

where µỹ = (1− ρ (1))−1
[
ρ0 − µv1

]
, µεl ≡ E

(
εt+lt

)
= − µη3,l and µvl ≡ E

(
vt+lt

)
= −µη2,l.

Comparing (12) with (13), we have that α∗0 6= φ∗0, that is, the EOS estimation will in general

yield biased forecasts when revisions are non-zero mean.

Remark 2 Forecasts of the first-released value computed using the AR model with parameter vector

(α∗0,α
∗), as under EOS, are biased when data revisions are described by (1), (4) and (5), with bias

of
(
µv1 − µvl

)
+
(
µε1 − µεl

)
−α∗′

[(
µv − iµvl

)
+
(
µε − iµεl

)]
.

Summarizing, the use of EOS data to estimate AR models for forecasting in real-time when

data are subject to news and noise revisions delivers predictions that are not optimal, that is,

the resulting forecasts do not minimise expected quadratic forecast loss. We show in the following
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section that alternative forecasts conditioned on the same information set deliver a smaller squared-

error loss in population. When in addition data revisions are non-zero mean, forecasts using EOS

are generally biased for the first-release of the target variable, whereas unbiased forecasts are easily

obtained from the AR model by organizing the data as described in the next section.

4 Estimating AR forecasting models using RTV data

In this section we consider a way of using real-time data, motivated by the approach suggested

by Koenig et al. (2003) in the context of distributed lag models, that delivers optimal estimators

of the forecasting model in population. We adapt their approach to the estimation of AR models

by regressing the period t + 1 vintage value of yt on the t-vintage data values of the lags, yt−i,

i = 1, . . . , p, for t = p+ 1, . . . , T . The reason for using the t-vintage value of the lags (rather than

the t+ 1-vintage value) is that when the model is used for forecasting, say, the T + 2 vintage value

of yT+1, the forecast will be conditioned on the previous T + 1-vintage values of the explanatory

variables. This use of vintage data is called ‘real-time-vintage’data (RTV). The model is:

yt+1t = β0 +

p∑
i=1

βiy
t
t−i + et,RTV (14)

where t = p+ 1, . . . , T . In matrix notation:

Y t = iβ0 + Yt
−1β + error

where Y t andYt
−1 =

[
Y t
−1, . . . , Y

t
−p
]
are given by:

Y t =
[
yp+2p+1, . . . , y

T
T−1, y

T+1
T

]′
, Y t

−i =
[
yp+1p+1−i, . . . , y

T−1
T−i−1, y

T
T−i

]′
, i = 1, . . . , p.

Note that Y t and Y t
−i contain early vintages of data relative to the period T + 1-vintage: these

observations are not replaced with the latest available (T +1-vintage) values for these observations.
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The fact that later data revisions are not incorporated in the model estimation sample proves to

be beneficial from a forecasting perspective, as we show below.

Consider estimating equation (14) by OLS. A typical observation on the LHS and RHS variables

is
{
yt+1t ,ytt−1 =

(
ytt−1 . . . y

t
t−p
)′}. This is a covariance stationary process, so we can calculate the

population values of the OLS estimators as the values that satisfy:

(β∗0,β
∗) = arg min

β0,β
E
(
yt+1t − β0 − βytt−1

)2
.

This estimation loss function is identical to the real-time forecast loss function (6), when f = 1,

so that the solutions to the two coincide. Hence the use of RTV data to estimate the AR model

delivers optimal forecasts, that is,

β∗0= φ∗; β∗ = φ∗0.

The unbiasedness of using RTV data to compute forecasts follows directly because (β∗0,β
∗) sat-

isfy E
(
yt+1t − β0 − βytt−1

)
= 0 (which is one of the FOCs), and so by stationarity E

(
yT+2T+1 − β

∗
0 − β∗yT+1T

)
=

0. The unbiasedness of the forecasts holds irrespective of whether or not the revisions are zero mean,

provided that f = 1 when revisions are non-zero mean. Suppose the goal were instead to forecast

yT+1+fT+1 , when f > 1, then the estimation and out-of-sample loss criteria no longer match, and

RTV estimation would yield a systematic forecast error if E
(
yT+1+fT+1 − yT+2T+1

)
6= 0.6 However, a

simple solution suggests itself - the forecast should be corrected by an estimate of the difference

between the vintage we wish to forecast and the first release, e.g., the sample mean of yt+ft − yt+1t ,

t = 1, . . . , T + 1− f .

Summarizing, the use of RTV data to estimate and forecast with AR(p) models in real time

delivers forecasts that minimise the real-time expected loss (optimal forecasts) and unbiased fore-

6The expected forecast error is E
(
yT+f+1T+1 − yT+2T+1

)
= E

(
vT+f+1T+1 − vT+2T+1 + εT+f+1T+1 − εT+2T+1

)
= −

∑l
i=f µη2i +∑l

i=1 µη2i +
(
µεf − µε1

)
= −

∑f−1
i=1 µη2i +

(
µεf − µε1

)
, where µεi ≡ E

(
εt+it

)
, and E

(
vt+1t

)
= −

∑l
i=1 µη2i and

E
(
vt+lt

)
= −µη2,l , and so would be non-zero if either µεf 6= µε1 under noise revisions or if

∑f−1
i=1 µη2i 6= 0 when

revisions are news.
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casts of yT+2T+1. Unbiasedness also holds for f > 1 if data revisions are zero mean, but in the event

of non-zero mean revisions a simple correction can be applied to the intercept.

5 Measuring the impact of using EOS and RTV data

In section 3, we showed that the use of EOS data to compute estimates of the AR model does

not generate optimal forecasts. The differences between the optimal parameter values (φ∗0,φ
∗)

in (7) and (12) and those obtained using EOS data ((α∗0,α
∗) in (10) and (13)) depend on the

sizes of the means and variances of the various vintages of revisions, as well as on the properties

of the data generating process for the underlying true data (e.g., µỹ and σ
2
ỹ, and the correlation

structure). In this section we firstly evaluate the analytical formulae numerically for empirically

relevant values of the key parameters, to assess the potential importance of using RTV versus EOS

data for forecasting with AR models. Secondly, because the results derived in sections 3 and 4

were based on large sample approximations, we also assess by Monte Carlo the relevance of the

analytical predictions for the ‘small samples’that are likely to be used in practice.

5.1 Calibrating the key parameters

Because we want to assess the potential size of the forecast losses from using EOS data for typical

macroeconomic aggregates subject to revisions, Figure 1 displays some of the key characteristics of

the revisions processes for real output growth and two measures of inflation (GDP deflator, PCE

deflator).7 All three series are expressed in quarterly percentage differences. In the first (top left)

panel, we plot the mean of each revision as a proportion of the mean of the first-released data.

The figure plots the sample averages of revisions defined as r(i)t = yt+1+it − yt+it , for i = 1, ..., 14,

calculated for the full period (1965Q3 onwards)8. It is apparent that the first revision tends to

increase the mean of the first-released data by around 6% for output growth and 3% for GDP

7All real-time data employed in this paper are from the Real Time Data Set of the Philadelphia Fed available at
the Philadelphia Fed webpage,
http://www.phil.frb.org/research-and-data/real-time-center/real-time-data/. See Croushore and Stark (2001).
8We plot r(i)t for i = 1 to 14, as r(14)t will account for all the ‘regular’revisions.
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inflation. After the first revision, subsequent revisions tend to be smaller in terms of first-moment

effects. In the second (top right) panel, we present the standard deviation of each revision as

a proportion of the standard deviation of the first released data. For output growth and GDP

inflation, the first-revision has a variance that is almost 25% of the first-release data. An important

feature is that the standard error of revisions tends to decrease in i. But it is important to recall that

beyond the first revision we are calculating means and standard deviations by averaging over some

revisions which are zero, because of the seasonality of revisions. This exacerbates the reduction in

the variance of the second revision relative to that of the first revision.

The bottom left panel is the same as the top right, only restricted to the sub-period of the

Great Moderation (assumed to be 1985 onwards). It is evident that the relative importance of

revisions increases after 1985, as the lower variability of the measured first-release series is not

matched one-for-one with a reduction in the variability of revisions since the first-revision standard

deviation is now 40% of the standard deviation of the first-released data.

The bottom right panel is as for the top right, but based only on data for which t falls in the

second quarter (i.e., the first release is in the 3rd quarter), and illustrates the seasonal pattern

(e.g., the second revision is zero). A similar figure would result if we chose any of the other three

quarters. The seasonal nature of revisions motivates the restricted VAR model which will be used

in the Monte Carlo and to generate forecasts in section 6. The smoothness in the top right panel

comes from averaging over revisions that relate to observations that fall in different quarters of the

year.

Based on these estimates of the typical sizes of revisions, we construct eight sets of parameters

for the statistical model in (1), (4) and (5), assuming throughout that p = 2 and l = 14. Firstly,

consider the AR coeffi cients of the model for ỹt. The first four sets of parameters in Table 1 have

autoregressive coeffi cients that sum up to 0.4, while those of the last four sets of parameters sum

to 0.8. The first block is more typical of a process such as output growth which exhibits moderate

persistence, while the second is typical of a more persistent process such as inflation. Comparisons

between these two blocks will therefore be informative about whether the relative forecast accuracy
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of EOS and RTV estimation depends upon the persistence of the underlying process.

For all sets of parameters, we assume that the means of the first and the fifth revisions are non-

zero, as suggested by Figure 1. The mean values were chosen in conjunction with the values of the

AR coeffi cients to give ratios of revision means to first-released data of 4% and 2%, as suggested

by Figure 1. Within each of the two blocks we also vary the sizes of the standard deviations

of the revisions. The first set of values within each block has a relatively large first revision

variance (σr1/σyt+1t
= .4), followed by equal-sized revisions of smaller variance (σri/σyt+1t

= .2, for

i = 2, ...13), with a small final revision (σr14/σyt+1t
= .1). This decay is a stylized representation

of the results in the second panel of Figure 1.9 The second set of revision standard errors has

proportionally larger revision standard deviations (50% larger) than the first set, and might be

motivated by considering the Great Moderation period (as opposed to the full sample). The third

one is useful to check the effect of no decay in the standard errors of the revisions. Finally, the

fourth one assumes that the last revision reveals the true data (σr14 = 0).

The parameter values set out in Table 1 will be applied under the assumption that revisions

are news, and under the assumption of noise. This will allow us to determine whether the news

versus noise issue is relevant to the relative forecast accuracy of EOS and RTV estimation of AR

models for forecasting, both in large samples and in small samples when we allow for parameter

estimation uncertainty in the Monte Carlo simulations. Because we have carefully calibrated our

design parameters to reproduce the sorts of patterns we observe in the revisions of output growth

and inflation, we would hope that our results might be informative about empirical outcomes.

5.2 Numerical quantification of gains to RTV versus EOS estimation: large

sample results

In this section we evaluate the impact of data revisions on estimating and forecasting with an AR

model assuming a large sample, such that the analytical results hold. For each set of parameter

value in Table 1, we allow for revisions to be either pure news (σri = σvi) or pure noise (σri = σεi).

9Specifically, for the purpose of computing the DGP parameters, we use σ2
yt+1t

=
R21(1−ρ2)

(1+ρ2)[(1−ρ2)2−ρ21]
.
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We compute the population values (φ∗0, φ
∗
1, φ
∗
2) and (α∗0, α

∗
1, α
∗
2) using equations (7)-(12), and (10)-

(13), respectively. We then compute the population value of the loss function, (6), with f = 1, at

these parameter values, and also calculate the bias of EOS estimation (from Remark 2). The results

are recorded in Table 2. We find that the impact of data revisions is larger for more persistent

data (compare DGPs 5 to 8 versus 1 to 4), and that there are marked changes in individual

autoregressive coeffi cients (e.g., under news, for DGP 7 φ∗1 = 0.69 and α∗1 = 0.51), but that the sum

of the autoregressive parameters changes less. The size of the forecast bias under EOS estimation

is commensurate with the sizes of the revision means, while the loss in terms of MSFE from EOS

estimation in comparison with optimal forecasting is in the 2-3% range for the more persistent data

(DGPs 5 to 8) but it is smaller for the less persistent data.

In terms of the effect of the pattern of the variances of the revisions on the relative performance

of EOS versus RTV estimation, we find that: i) under noise, EOS is more heavily penalized when

the variance of the first revision is large relative to subsequent revisions (DGP 6); and ii) under

news revisions, EOS fares relatively poorly in the same scenario, but is worst affected when there

is no variance decay so that σvi = 0.3 for i = 1, . . . , l (DGP 7). When the last vintage reveals the

true data (DGPs 4 and 8), our main results still hold, so that even when EOS estimation is based

on the true data (for all but the last 3-years of observations) one would still do better to use RTV

estimation.

5.3 Monte Carlo estimates of small sample effects

In this section we assess by Monte Carlo simulation whether the large-sample results provide a

useful guide to small-sample outcomes. Specifically, we assess whether: i) the values (φ∗0, φ
∗
1, φ
∗
2)

and (α∗0, α
∗
1, α
∗
2) are good approximations to the estimates obtained using RTV and EOS data with

small samples; and ii) whether greater or smaller losses to using EOS estimation relative to RTV

estimation data are realised in small samples. We again use the set of parameters detailed in Table

1, and assuming that revisions are either news or noise, we simulate data using the statistical model

described in section 2, and forecast from the AR model estimated by both EOS and RTV.
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Table 3 presents the average bias across replications of estimating the autoregressive parameters

using RTV ((β̂0, β̂1, β̂2) versus (φ∗0, φ
∗
1, φ
∗
2)) and EOS data ((α̂0, α̂1, α̂2) versus (α∗0, α

∗
1, α
∗
2)). The

entries are computed with samples of size T = 50, 100, 200 and 500, and employ 10, 000 replica-

tions. The asymptotic results are seen to provide a reasonable approximation to the small-sample

estimates of the slope parameters with samples of size 200, but larger samples are required for the

intercepts.

Table 4 presents the differences of the absolute value of the forecast biases between forecasts

using EOS and RTV data for four different sample sizes. The first column records the biases

computed in Table 2 for ease of comparison. Table 4 also shows the MSFE of forecasts computed

with RTV data as a ratio of the MSFE of forecasts computed with EOS data. Finally, using

the same estimates employed to compute one-step-ahead forecasts, we compute four-step-ahead

forecasts by iteration. The right panel of Table 4 presents MSFE ratios of these forecasts, where

the actuals are again the first-release values (that is, yT+1+4T+4 ). Our analytical formulae generally

work well for the bias differences and MSFE ratios when the sample is large (T = 500). An

important finding for practical forecasting is that the losses to using EOS instead of RTV data are

markedly larger for small samples when revisions are news, so that the analytical results downplay

the likely empirical relevance of RTV estimation. For example, consider the relative performance of

EOS and RTV estimation in terms of MSFE for DGP 6 when there are news revisions. For T = 50

the gains to RTV are in excess of 8%, while the large sample results indicate gains closer to 4%.

The results for forecasting four-steps ahead suggests even larger gains, of 9 to 12% for the more

persistent processes (DGPs 5 to 8) when there are news revisions, for T = 50.

In summary, we would expect that the forecast loss of using EOS data instead of RTV data

would be higher when i) the estimation sample is relatively small, ii) the process is reasonably

persistent, and iii) revisions primarily add news.
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5.4 Monte Carlo results based on a VAR of multiple vintages

In order to see whether our findings are robust to the way we have modelled the data revisions

process, we also experiment with a restricted version of the vintage-balanced VAR (VB-VAR) of

Hecq and Jacobs (2009). The VB-VAR is closely related to the VAR models used by Garratt et al.

(2009a, 2009b)) to model real-time data. The VB-VAR is given by:

zt = c0 +

p∑
i=1

Γizt−i + εt (15)

where zt−i =
[
yt−it−1−i, y

t−i
t−2−i, . . . , y

t−i
t−q−i

]′
, c0 is q×1, Γi is q×1, and εt is q×1. The vector zt (with

q = l) differs from the vector yt from the statistical framework described in section 2 because the

data are organised by balancing the panel of data vintages as suggested by Hecq and Jacobs (2009).

This way of employing the panel of data vintages means that the forecasts will be conditioned on

the latest available estimates of the current and lagged observations. For example, for p = 1

the forecast of yT+1+fT+1 will be the first element of the vector ẑT+2 = ĉ0 + Γ̂1zT+1 where zT+1 =[
yT+1T , yT+1T−1, . . . , y

T+1
T+1−q

]
. The VAR model allows for rich dynamics between different vintage

estimates of the same observations, but does not clearly disentangle news and noise revisions.

The model is augmented to incorporate the effect of benchmark revisions by including dummies

that affect c0. We identify seven benchmark revisions using vintages from 1965:Q4 up to 2009:Q1.

The VB-VAR can be restricted to accommodate the seasonality of the BEA data revisions. We

describe the resulting model as the Seasonal VB-VAR, or SVB-VAR. This model is described in

appendix B, where we also describe estimation issues.

The third panel of Table 4 reports the relative performance of AR models estimated with RTV

and EOS data when data are generated from an estimated SVB-VAR. The model is estimated with

dummies to capture the effects of benchmark revisions - the dummies are then removed when data

are simulated by setting their values to zero. The model was estimated on output growth, GDP

deflator inflation, and PCE deflator inflation, giving rise to the three sets of results reported in the

table. In each case, the SVB-VAR was specified with p = 1, q = 14. We find (small) gains to RTV
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over EOS of the order of 1 to 3%. We do not observe RTV faring relatively better at smaller T ,

contrary to the results when revisions are assumed to be news, suggesting that empirically revisions

to these three variables may not be well described as pure news processes.10 By and large, though,

using the SVB-VAR as the DGP in the Monte Carlo confirms the earlier findings in favour of RTV.

The VB-VAR model can also be used to assess whether AR models are competitive with models

exploiting multiple vintages in terms of real-time forecasting. The VB-VAR model requires the

estimation of (q2+q) parameters, so it is not a parsimonious model but it exploits the rich dynamics

of the data revision process. The last panel of Table 4 presents a comparison of the forecast accuracy

of the VB-VAR model (with q = 14) against the AR(2) with EOS data when the data generating

process is the SVB-VAR model calibrated to a US macro variable. Gains to using multiple vintages

when the sample is large (T = 500) are around 10-30%, but losses in comparison with the AR using

the conventional approach to real-time forecasting are of a similar magnitude when the sample is

short (T = 50). These results suggest that parameter uncertainty may seriously curtail the value

of multiple-vintage models in short samples. The gain to the multiple-vintage VAR in comparison

to the AR with RTV data depends on the macro-variable: for output growth (DGP 9 in table 4)

the sample size has to be large (T = 200) to warrant the use of the VAR model.

6 Forecasting US output growth and inflation

Our first empirical forecasting exercise compares the forecast performance of the use of RTV and

EOS data for simple autoregressive models for predicting quarterly output growth and inflation

1 and 4-steps ahead. In addition, we include the VB-VAR as the multiple-vintage model to see

whether the use of multiple data vintages improves forecast accuracy. We begin with the autore-

gressive models (rather than ADL models) because the analysis in sections 3 and 4 that relates

forecast performance to the properties of revisions is more directly applicable.

We then present a forecasting exercise for output growth and inflation that allows for additional
10 In the following section we present evidence that suggests that this is indeed the case, as the properties of

the revisions are shown to depend on the sample period and the interval over which the revision is defined (e.g.,
yt+14t − yt+1t versus y09Q1t − yt+1t ).
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explanatory variables. This parallels the pseudo out-of-sample forecasting exercises of Stock and

Watson (2003, 2008) for these two variables, albeit using only a handful of candidate explanatory

variables. Nevertheless, we are able to assess whether the theoretical advantages to the use of RTV

over EOS in real-time forecasting are realized in practice. We will also consider very short horizon

forecasts (or ‘nowcasts’) as Koenig et al. (2003) found marked gains to RTV-estimation of models

for quarterly output growth using monthly indicators at such horizons.

6.1 AR models of output growth and inflation: RTV, EOS and the VB-VAR.

In this subsection we assess the empirical relevance of the analytical and Monte Carlo results for

forecasts from autoregressive models of output growth and the two measures of inflation. The

variables are defined as (one hundred times) the quarterly difference of the log of the level. We

compute descriptive statistics of the different vintages of data and the revisions between them as

follows. We consider first-released data yt+1t , data available three and a half years later yt+14t , as

well as latest-available, which in our case is from the 2009:Q1 vintage dataset, denoted y09:1t . Table

5 presents means, standard deviations and first-order autocorrelations for the three data series,

as well as p-values of tests for whether revisions (yt+14t − yt+1t and y09:1t − yt+1t ) are noise, or add

news, and whether they are zero-mean. These are all calculated for the forecast period 1985:Q3

to 2006Q4, and separately for the estimation period 1965:Q3 to 1985:Q2.11 Recall that revisions

are defined as noise if the initial estimate is an observation on the final series but measured with

error, so that the revisions are uncorrelated with final value, but are correlated with data available

when the initial estimate was made. Hence noisy revisions are predictable. Alternatively, revisions

are news if the initial estimate is an effi cient forecast of the final value, such that the revision is

unpredictable from information available at the time the initial estimate was made. We test for

11Real-time data are available starting with the 1965:Q4 vintage.
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news and noise revisions using, respectively, the following auxiliary regressions:

yt+lt − yt+1t = α+ βyt+1t + ωt

yt+lt − yt+1t = α+ βyt+lt + ωt

where the null hypothesis is that α = β = 0 in both cases. In place of yt+lt , we use both yt+14t and

y09Q1t . We also tests separately whether revisions are zero mean (H0: α = 0 in yt+lt −yt+1t = α+ωt).

Data revisions to output growth and inflation are seen to have different characteristics, and show

some variation across the forecast and estimation periods. For output growth we can reject the

noise hypothesis for both periods using the 2009:1 data vintage, and there is no evidence against

the news hypothesis using the t + 14 data vintage (the latter matching the findings of Mankiw

and Shapiro (1986)). For both inflation measures the revisions relative to the 2009:1 vintage can

be assumed to be noise over the forecast period, and news over the estimation period, while the

revisions relative to yt+14t cannot be so easily categorised. There is also evidence that the 2009:1

revisions to output growth have been significantly upward, as have the t + 14 revisions to both

inflation rates over the forecast period.

The results of sections 3 and 4 suggest that we should expect improvements in forecast accuracy

from using RTV instead of EOS data when there are news revisions, especially when estimation

sample sizes are short, as well as when there are noise revisions for more highly persistent processes

(as is true of inflation compared to output growth). Our out-of-sample period for forecast com-

parison is such that the initial estimation sample has around 100 observations, and as we adopt a

recursive forecasting scheme, this increases to around 194 by the end.

We compare forecasts computed with RTV and EOS data for the three series, using autoregres-

sive models with fixed specifications - the lag length for output growth is 1, and for the inflation

series, 4. These autoregressive order were chosen based on their relatively accurate performance

when forecasting with final data. Recall that both RTV and EOS condition the forecasts on exactly

the same information set (yT+1T , . . . , yT+1T−p+1) for T =1985:Q3,...,2008:Q4. The forecasts will differ
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to the extent that the parameters of the AR models estimated with EOS and RTV data differ. As

the forecast origin is moved through the data, the AR model using EOS data will be estimated

using the full set of data from the new vintage that becomes available at that origin. By way of

contrast, with RTV data, we add only the estimate of the most recent period from the new vintage,

as described in section 4.

We evaluate forecasts by computing forecast errors using first-released data (yT+2T+1), data after

three and a half years of revision (yT+15T+1 ) and data from the last available vintage (y09Q1T+1 ). Table

6 presents ratios of RMSFEs of forecasting using RTV and EOS data such that values smaller

than one favour RTV. We give results for one-step-ahead forecasts, and results for four-step-ahead

forecasts (computed by iteration of the one-step forecasts). In general there are gains to RTV over

EOS for all three series, and some of these are of the order of 4%. There are gains to the use of

RTV data for forecasting the early release as well as the revised data, and they are generally larger

for four-step-ahead forecasts. Bias-correction of the RTV forecasts (as discussed in section 4) is not

effective, as might have been anticipated from the differences in the mean revisions between the

estimation and forecast periods. Nevertheless, there is promising evidence in favour of using RTV

data instead of EOS data.

Can we do better still by making use of multiple vintage estimates of the same observations, as in

the VB-VAR model? Table 6 also reports the ratios of the RMSFEs of the VB-VAR model forecasts

to the AR (estimated with EOS data), for a lag order of 1, but experimenting with different values

of q (the number of vintages).12 In general, gains from using VB-VAR with respect to the AR

estimated with EOS data are similar in size to the gains from using RTV data for AR forecasting,

and in many cases the VB-VAR performance is worse. An exception is the relative accuracy of

the VB-VAR to forecast GDP deflator inflation: RMSFEs reductions of 5% are observed when

predicting yT+15T+1 , specially when q is large. In short, using multiple data vintages does not result

in clearly superior forecasts across the three variables taken together. In this regard the empirical

12The use of the VAR model augmented by seasonality and structural breaks (SVB-VAR, appendix B) delivers
more accurate forecasts than the SB-VAR, but gains are so small (.5 p.p. of RMSFEs) that for conciseness, we do
not show these results.
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forecasting results are less supportive of the VB-VAR than the Monte Carlo reported in table 4.

This likely reflects the smaller sample sizes that are available empirically, and non-constancies in

the correlation structure of the different vintage estimates over time (assumed absent in the Monte

Carlo by construction).

6.2 ADL models of output growth and inflation

In this section we compare the relative forecasting ability of models with explanatory variables

estimated by EOS and RTV. For output growth, we consider industrial production and employment,

and for the inflation variables, we consider models with the same two variables and in addition

output growth. The choice of these indicators is supported by their popularity in forecasting

exercises that aim at assessing the predictive power of economic activity variables for output and

inflation and also by the availability of real-time data in the Philadelphia dataset.13

We consider forecasts of quarterly growth (at an annual rate) 1 and 4 quarters ahead, as before,

and in addition we generate ‘nowcasts’: in this case the horizon is h = 0 as we use information on

the explanatory variables up to and including the period being forecast. For this horizon the au-

toregressive component (when included) relates to the previous quarter. We consider DL and ADL

models for h = 0, 1, and for h = 4 only ADL models. The h = 0 DL models correspond closely to

the models of Koenig et al. (2003) (who regressed quarterly output growth on the contemporaneous

and 4 lags of the monthly indicator, but preliminary investigation suggested nothing is lost by us-

ing the contemporaneous and 1 lagged quarterly values of the indicator instead). However, Table

7 does not show results with DL when forecasting inflation since an autoregressive component is

required to obtain sensible forecasts. We also consider two in-sample periods. The first begins in

1959Q1, as in the previous sub-section; the second is the much shorter estimation period beginning

in 1979Q1, to be comparable with Koenig et al. (2003).

Consider firstly the results for forecasting output growth reported in table 7. The entries which

13Quarterly vintages of industrial production and employment are constructed by taking the first month of the
quarter vintages. We obtain quarterly series from the monthly by averaging over the months in the quarter.
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report the relative RMSFE of the models estimated with RTV and EOS data suggest gains of

around 5% at the h = 0 horizon for both industrial production and employment as the explanatory

variable provided we restrict the start of the estimation sample to 1979Q1, as in Koenig et al. (2003).

On the longer estimation sample RTV is no better that EOS. This primarily reflects a worsening

in the EOS-based forecasts when the sample is shortened, with the RTV-generated forecasts being

less affected by sample size. We also compute the ratio of the RMSFEs of the (A)DL model to

the AR (both estimated by RTV), and only for the h = 0 horizon do we find that the indicator

variables enhance forecast performance.

In terms of the two inflation series, we get a clear picture. The use of RTV data improves the

forecast accuracy of the ADL models at all horizons (gains of around 5%) in comparison with EOS,

albeit that the gains at h = 4 tend to depend on the shorter sample being used. But compared to

the AR(4) benchmark, the ADL models do not generally improve the forecasts of inflation.

To conclude: the forecast accuracy of the A(DL) models is generally enhanced by RTV esti-

mation, although for output growth this result is dependent on truncating the available estimation

sample. Nevertheless, the AR benchmark models (estimated using RTV data) prove more compet-

itive against the A(DL) models except for nowcasting output growth. The results of our real-time

forecasting exercise are in tune with those of the pseudo out-of-sample exercises of Stock and Wat-

son (2003, 2008) who report that indicator variables do not consistently enhance output growth

and inflation forecasts over the period from 1985 onwards.

7 Conclusions

In recent times there has been a growing appreciation of the effects of data revisions on various

aspects of macro-modelling (such as the calculation of output gaps and conduct of monetary policy:

e.g., Orphanides (2001) and Orphanides and van Norden (2005)), as well as the relevance of data

revisions for forecasting (as reviewed by Croushore (2006)). We have tackled one aspect of forecast-

ing when there are data revisions: namely, does the way in which the real-time data set is employed
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to estimate ADL and AR models matter when forecasting in real time? We have considered two

ways of constructing the estimation sample - the conventional approach of using end-of-sample

data, and the use of real-time-vintage data. Our analytical results show that the use of EOS data

will lead to AR model forecasts which are not optimal relative to the so-called RTV approach in

population. Moreover, the use of EOS data may result in biased forecasts when data revisions are

non-zero mean, whereas forecasts remain unbiased when estimation employs RTV data when the

aim is to forecast the first-release data. If the goal is to forecast the revised data, the logic of the

RTV approach suggests a simple bias-correction can be applied to the forecasts.

When we use AR models for forecasting output growth and inflation, we observe the gains to

using RTV data predicted by our analytical results and the Monte Carlo simulations. AR model

forecasts are of interest in their own right but are also typically used as benchmark forecasts against

which forecasts from other models may be assessed. These models might contain leading indicators,

whose predictive ability we wish to assess for real-time forecasting (see, for example, Clements and

Galvão (2008, 2009)). Because the gains to including the putative predictor variables relative to

the AR model forecasts are typically relatively small, and of a similar magnitude to the difference

between estimating the AR model with RTV instead of EOS data, care is required in ensuring that

the finding of predictability of an indicator variable is not simply due to data vintage effects. That

is, an AR model estimated with RTV data might offer a stiffer challenge. Forecasts from the AR

model estimated with RTV data are competitive with the vintage-based VAR model (VB-VAR),

suggesting that using more data vintages is not advantageous for forecasting post WWII US output

growth and inflation, although other models might result in different conclusions.

The results of the empirical forecast comparisons suggest that the conclusions we draw regarding

the predictability of inflation using Phillips curve-type models with ‘activity variables’are largely

unchanged when the exercise is performed in real time compared to the pseudo out—of-sample exer-

cise of Stock and Watson (2008). The use of RTV data generally improves the forecast performance

of the ADL models, but the resulting forecasts are not markedly superior to those of the AR model

estimated with RTV data. When forecasting output growth with measures of economic activity,
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the use of RTV data yields more accurate forecasts than EOS provided the estimation sample is re-

stricted, but, except for the nowcasts, the forecasts are not markedly superior to the AR benchmark

estimated with RTV data.

In future research one might ask whether alternatives to the VB-VAR model offer better ways

of harnessing the information content in past data vintages for forecasting. It is not clear that

more elaborate, complicated models that simultaneously model the true process and the revisions

process would be expected to yield more accurate forecasts, given the findings of the recent empirical

forecast comparison literature that ‘simple’models generate competitive forecasts relative to more

sophisticated models,14 but this would be an interesting topic to explore.
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A Proofs

Proof. Proposition 1: Optimal AR population parameter.

The expected squared forecast error is given by:

E
(
yT+1+fT+1 − φ′yT+1T

)2
= E

(
ρ0 + ρ′ỹT +R1η1T+1 + v̂T+1+fT+1 + εT+1+fT+1 − φ0 − φ′ỹT − φ′vT+1T − φ′εT+1T

)2
where yT+1T = ỹT + vT+1T + εT+1T , v̂T+1+fT+1 = −vT+2T+1 + vT+1+fT+1 , with yT+1′T =

(
yT+1T , . . . , yT+1T−p+1

)
,

ỹ′T = (ỹT , . . . , ỹT−p+1), v
T+1′
T =

(
vT+1T , . . . , vT+1T−p+1

)
, with typical element vT+1T−j = −

∑l
i=j+1 σviη2,T−j,i,

for j < l, and vT+1T−j = σviη2,T−j,l, for j ≥ l, and εT+1′T =
(
εT+1T , . . . , εT+1T−p+1

)
. Note that

yT+1+fT+1 = ỹT+1 + vT+1+fT+1 + εT+1+fT+1 = ρ0 + ρ′ỹT + R1η1T+1 − vT+2T+1 + vT+1+fT+1 + εT+1+fT+1 , so

that v̂T+1+fT+1 = −vT+2T+1 + vT+1+fT+1 = 0 when f = 1. We let E (ỹT ỹ′T ) = Σỹ + µỹµ
′
ỹ, where

Σỹ = V ar (ỹT ), µỹ = iµỹ = E (ỹT ), i a p-dimensional vector of 1’s; Σv ≡ V ar
(
vT+1T vT+1′T

)
=

E
(
vT+1T vT+1′T

)
= diag

(∑l
i=1 σ

2
vi , , . . . ,

∑l
i=p σ

2
vi

)
for p ≤ l, with terms of σ2vl on the diago-

nal for p > l; Σε ≡ V ar
(
εT+1T εT+1′T

)
= E

(
εT+1T εT+1′T

)
= diag

(
σ2ε1 , σ

2
ε2 , . . . σ

2
εp

)
, with σ2εs =

σ2εl for s > l, and Σỹv ≡ V ar
(
ỹTvT+1′T

)
= E

(
ỹTvT+1′T

)
. Solving the first-order conditions

∂E
(
yT+fT+1 − φ

′yT+1T

)2
/∂φ = 0 and ∂E

(
yT+fT+1 − φ

′yT+1T

)2
/∂φ0= 0 gives:

φ∗ =
(
Σỹ + Σv + Σỹv + Σ′ỹv + Σε

)−1 (
Σỹ + Σ′ỹv

)
ρ

φ∗0 =
(
1− φ∗′i

)
µỹ.

Proof. Proposition 2: Estimation of AR(p) with EOS data (zero-mean data revisions).

1. If we allow T → ∞ for a fixed l, then OLS estimator of eq(14) is asymptotically equivalent
to the estimator obtained from a regression using only fully-revised data. Denote this data
by {yt, yt−1 . . . yt−p}, where yt = ỹt + vt+lt + εt+lt , and yt = ỹt if the true data are eventually
revealed. As the data

{
yt,yt−1 = (yt−1 . . . yt−p)

′} are covariance stationary we can use the
population moments (assuming that T →∞) to compute the OLS estimators as values that
satisfy

(α∗0,α
∗) = arg min

α0,α
E
(
yt − α0 −αyt−1

)2
,

which are:
α∗0 = E (yt)−αE (yt−1) (16)

and
E
(
yt−1y

′
t−1
)
α∗ + α∗0E (yt−1)− E (ytyt−1) = 0. (17)

Combining (16) and (17) gives the standard FOC for α∗,

Cov
(
yt−1y

′
t−1
)
α =Cov (ytyt−1) (18)
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where Cov
(
yt−1y′t−1

)
= E

(
yt−1y′t−1

)
−E (yt−1)E

(
y′t−1

)
, Cov (ytyt−1) = E (ytyt−1)−E (yt)E (yt−1).

2. The moments in (16) are obtained from E (yt) = E
(
ỹt + vt+lt + εt+lt

)
= µỹ, and E (yt−1) =

iµỹ, since yt−1 = ỹt−1 + vt+lt−1 + εt+lt−1, with ỹt−1 = [ỹt−1, . . . , ỹt−p]
′, vt+lt−1 =

[
vt+lt−1, . . . , v

t+l
t−p

]′
,

εt+lt−1 =
[
εt+lt−1, . . . , ε

t+l
t−p

]′
, so that:

α∗0 =
(
1−α∗′i

)
µỹ. (19)

For (18) we obtain:

Cov
(
yt−1y

′
t−1
)

= Σỹ + Σv + Σε + Σỹvl + Σ′ỹvl (20)

where Σỹvl ≡ E
[
(ỹt−1 − E (ỹt−1))

(
vt+lt−1 − E

(
vt+lt−1

))′]
,Σv = E

[
vt+lt−1 − E

(
vt+lt−1

)(
vt+lt−1 − E

(
vt+lt−1

))′]
=

σ2vlIp, Σε = E

[
εt+lt−1 − E

(
εt+lt−1

)(
εt+lt−1 − E

(
εt+lt−1

))′]
= σ2εlIp. Note that Σỹvl is upper diag-

onal, and its diagonal is (minus) the diagonal of Σv. Also:

Cov (ytyt−1) = V
(
ỹt−1ỹ

′
t−1
)
ρ+ V

(
vt+lt−1ỹ

′
t−1

)
ρ = Σỹρ+ Σ′ỹvlρ (21)

Substituting (20) and (21) into (18) gives:

α∗=
(

Σỹ + Σv + Σε + Σỹvl + Σ′ỹvl

)−1 (
Σỹ + Σ′ỹvl

)
ρ. (22)

Recall that Σε 6= Σε = diag
{
σ2ε1 , . . . σ

2
εp

}
, Σỹvl 6= Σỹv and Σv 6= Σv from the assumption

that in the large samples the use of EOS data implies the use of data from the t+ l vintage.
Hence when σvl = σεl = 0, the use of EOS gives the same large-sample estimates of the model
parameters as using the true data {ỹt}.

Proof. Remark 1: Forecasts obtained using EOS data to estimate the AR(p) model are unbiased
when data revisions follow (1)-(3).

By construction, {α∗0,α∗} satisfy E (yT+1 − α0 −α′yT ) = 0, where yT+1 and yT = (yT , . . . , yT−p+1)
′

are ‘final data’. But the forecasting exercise is to forecast yT+1 using the latest available data,

yT+1T =
(
yT+1T , . . . , yT+1T−p+1

)′
. Consider the expected value of the forecast error E

(
yT+2T+1 − α0 −α′y

T+1
T

)
,

where we substitute yT+2T+1 = yT+1 −
(
yT+1 − yT+2T+1

)
and yT+1T = yT −

(
yT − yT+1T

)
to give:

E
(
yT+2T+1 − α0 −αyT+1T

)
= E

(
yT+2T+1 − yT+1 −α

′
(
yT+1T − yT

))
= 0

35



because E
(
yT+2T+1

)
= E (yT+1) = µỹ and E

(
yT+1T

)
= E (yT ) = iµỹ.

Proof. Proposition 3: Optimal AR population parameter when data revisions are
non-zero mean.

The optimal parameters solve E
(
yT+2T+1

)
= φ0 + E

(
φ′yT+1T

)
. The optimal slope parameters

φ∗ only depend on (centred) second moment matrices, so are the same whether the data revision
process is (1)-(4)-(5) or (1)-(2)-(3). Under the data revision process (1)-(4)-(5), we have

E
(
yT+2T+1

)
= E

(
ỹt + vt+1t + εt+1t

)
= µỹ + µv1 + µε1 ,

where µε1 ≡ E
(
εt+1t

)
= −µη3,1 , µv1 ≡ E

(
vt+1t

)
= −

∑l
i=1 µη2,i , and E

(
φ′ytt−1

)
= φ′

(
iµỹ + µε + µv

)
,

where iµỹ = E ([ỹt−1]) = E
(
[ỹt−1, . . . , ỹt−p]

′), i a p-dimensional vector of 1’s, and µε and µv
are the means of the noise and news revisions, µε ≡ E

([
εtt−1, . . . , ε

t
t−p
])

=
[
−µη3,1 , ...,−µη3,p

]
,

µv ≡ E
([
vtt−1, . . . , v

t
t−p
])

=
[
−
∑l

i=1 µη2,i , ...,−
∑l

i=p µη2,i

]
. Finally, µỹ = (1− ρ (1))−1

[
ρ0 − µv1

]
.

Using the previous results, it is straightforward to show that:

φ∗0 =
(
1− φ∗′i

)
µỹ + µv1 + µε1 − φ

∗′µε − φ∗′µv.

Proof. Proposition 4: Estimation of AR(p) with EOS data (zero-mean data revisions).

Allowing for non-zero mean revisions, in place of E (yt) = µỹ and E (yt−1) = iµỹ in Proposition

2, we now have E (yt) = E
(
ỹt + vt+lt + εt+lt

)
= µỹ + µvl + µεl , where µvl ≡ E

(
vt+lt

)
= −µη2,l ,

µεl ≡ E
(
εt+lt

)
= −µη3,l , and E (yt−1) = iµỹ + iµvl+i µεl . α

∗ is still given by (22), but (19)

becomes:
α∗0 =

(
1−α∗′i

) (
µỹ + µvl + µεl

)
.

Proof. Remark 2: Forecasts computed using EOS data to estimate AR(p) model are biased when
data revisions are described by (1)-(4)-(5).

Consider the first moment properties of the forecast errors when an AR(p) is estimated by
EOS in the presence of non-zero mean data revisions. Suppose the aim is to forecast the first
vintage estimate yT+2T+1. To see that EOS population forecasts are generally biased, note that by
construction, {α∗0,α∗} satisfy E (yT+1 − α0 −α′yT ) = 0, where yT+1 and yT = (yT , . . . , yT−p+1)

are ‘final data’. But forecasts are of necessity conditioned on yT+1T =
(
yT+1T , . . . , yT+1T−p+1

)
, so

of interest is the expected value of the forecast error E
(
yT+2T+1 − α∗0 −α∗′y

T+1
T

)
. Substituting

yT+2T+1 = yT+1 −
(
yT+1 − yT+2T+1

)
and yT+1T = yT −

(
yT − yT+1T

)
gives:

E
(
yT+2T+1 − α

∗
0 −α∗′yT+1T

)
= E

(
yT+2T+1 − yT+1 −α

∗′
(
yT+1T − yT

))
=

(
µv1 − µvl

)
+
(
µε1 − µεl

)
−α∗′

[(
µv − iµvl

)
+
(
µε − iµεl

)]
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since E
(
yT+2T+1

)
= µỹ +E

(
vT+2T+1

)
+E

(
εT+2T+1

)
= µỹ +µv1 +µε1 , and E (yT+1) = µỹ +E

(
vT+1+lT+1

)
+

E
(
εT+1+lT+1

)
= µỹ+µvl+µεl , and similarly for E

(
yT+1T

)
and E (yT ). Recall that µv1 = −

∑l
i=1 µη2,i ,

µvl = −µη2,l , µε1 = −µη3,1 , µεl = −µη3,l and µỹ = (1− ρ (1))−1
[
ρ0 − µv1

]
.The expression for this

bias will not equal zero if the mean of the revisions are not zero.

B Appendix

B.1 Seasonality of Data Revisions and Statistical Framework

We present an adaptation of the latent news-noise model in section 2 to allow for the seasonal

nature of the BEA data revisions. Assuming zero-mean revisions (for simplicity), vt and εt defined

in (3) need to depend on the quarter of the year that t falls in. Assuming l = 14, and that the

final estimate yt+14t reveals the truth, for news we have vt,t∈Qi = −Vi

[
η2t,1 η2t,2 η2t,3 η2t,4

]′, where
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i = 1, 2, 3, 4, and the Vi matrices are given by:

V1=

σv1 σv2 σv3 σv4

0 σv2 σv3 σv4

0 σv2 σv3 σv4

0 σv2 σv3 σv4

0 σv2 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 0



,

V2=

σv1 σv2 σv3 σv4

0 σv2 σv3 σv4

0 σv2 σv3 σv4

0 σv2 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 0

0 0 0 0



,

V3=

σv1 σv2 σv3 σv4

0 σv2 σv3 σv4

0 σv2 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 0

0 0 0 0

0 0 0 0



,

V4=

σv1 σv2 σv3 σv4

0 σv2 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 σv3 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 σv4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



Hence there are only 4 underlying variance terms, so we have assumed, for example, that the

variance of the first revision (yt+1t − yt+2t ) does not depend on the quarter. Alternatively one might

have {σv1 , σv2 , σv3 , σv4} indexed by quarter.
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For the case of noise, the expression for εt is replaced by:

εt,t∈Q1 =



σε1η3t,1

σε2η3t,2

σε2η3t,2

σε2η3t,2

σε2η3t,2

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε4η3t,4

σε4η3t,4

σε4η3t,4

σε4η3t,4

0



, εt,t∈Q2 =



σε1η3t,1

σε2η3t,2

σε2η3t,2

σε2η3t,2

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε4η3t,4

σε4η3t,4

σε4η3t,4

σε4η3t,4

0

0



, εt,t∈Q3 =



σε1η3t,1

σε2η3t,2

σε2η3t,2

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε4η3t,4

σε4η3t,4

σε4η3t,4

σε4η3t,4

0

0

0



, εt,t∈Q4 =



σε1η3t,1

σε2η3t,2

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε3η3t,3

σε4η3t,4

σε4η3t,4

σε4η3t,4

σε4η3t,4

0

0

0

0


B.2 The Restricted VAR model

We present an extension of the VB-VAR model of Hecq and Jacobs (2009) to incorporate the

seasonality of the data revisions published by the BEA and allow for the effect of benchmark

revisions. The VB-VAR with dummies to incorporate structural breaks is given by:

zt = c0 +

p∑
i=1

Γizt−i +
∑

τ∈(τ1,...,τB)
ΦτDt,τ + εt. (23)

We assume that benchmark revisions occurr at τ1, . . . , τB (these are the dates of the vintages

incorporating a benchmark revision). The included dummies are such that: Φτ is q × 1, with

typical element denoted Φτ ,i, and Dt,τ is a dummy such that Dt,τ = 1 when t = τ , and Dt,τ = 0

when t 6= τ .
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We specify and estimate a version of (15) which incorporates the nature of BEA revisions (as

discussed at the end of section 2), such that yt+2+it = yt+1+it for i > 1 unless t + 2 + i falls in

the third quarter of the year. This implies that for t ∈ {Q1, Q2, Q4} (and assuming q = 14, so

zt =
[
ytt−1, y

t
t−2, . . . , y

t
t−14

]′), (15) can be restricted to:
zt = c̃0 +

p∑
i=1

Γ̃izt−i +
∑

τ∈(τ1,...,τB)
Φ̃τDt,τ + εt (24)

where:

c̃0 =


c0,1

c0,2

012×1



Γ̃1 =

 γ1

012×1 I12×12 012×1

 , Γ̃i =

 γi

012×14

 , for i = 2, . . . , p

and where γ1 and γi are the (2× 14) matrices of parameters to be estimated for
[
ytt−1, y

t
t−2
]′: so

for these two variables the equations are as in the VAR given by (15). But subsequent elements of

zt are determined by identities. For example, consider the third element, ytt−3. The model in (24)

implies that:

ytt−3 = yt−1t−3

which captures the fact that the third estimate of t−3 will equal the second estimate when t /∈ Q3,

and provided t 6= τ (so that there has not been a benchmark revision). For t ∈ Q3, the model is

unchanged from (15).

We term this model the SVB-VAR, for ‘Seasonal’vintage-based VAR. The model can be written

more succinctly as follows. Define the vector with dummy variables for b benchmark revisions:

Dt=(Dt,τ1 , ..., Dt,τb)
′.
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Define also an indicator variable, I3t = 1(t∈Q3).

The matrix q × k of explanatory variables of the restricted model (when p = 1) is:

Xt =



(1,y′t−1,D
′
t) 01×(q+1+b) 01×(q+1+b) · · · 01×(q+1+b)

01×(q+1+b) (1,y′t−1,D
′
t) 01×(q+1+b) · · · 01×(q+1+b)

01×(q+1+b) 01×(q+1+b) (1,y′t−1 × I3t,D′t)
...

...
...

...
. . .

...

01×(q+1+b) 01×(q+1+b) 01×(q+1+b) · · · (1,y′t−1 × I3t,D′t)


where k = q(q + 1 + b). The VAR is:

zt = Azt−1 × (1− I3t) + Xtβ + εt

where:

Aq×q =

 02×1 02×q−2 02×1

0q−2×1 Iq−2×q−2 0q−2×1

 .
Finally, defining Zt = (zt −Azt−1 × (1− I3t)), we can estimate the system:

Zt = Xtβ + εt (25)

by SURE (which will be equivalent to ML, see Hamilton (1994, p.317)).
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Figure 1: The mean and standard deviation of the revisions relative to the first-released data. 
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Table 1: Characteristics of the Data Generating Processes for the Simulated Data.   
 

DGP n. 0 1 2 R1
51, rr  1t

ty 1
1

/ t
tyr   112

/,..., 


t
tl yrr  1/ t

tl yr 
1 .4 .2 .2 .5 .06, .03 .589 .4 .2 .1 
2 .4 .2 .2 .5 .06, .03 .589 .6 .3 .15 
3 .4 .2 .2 .5 .06, .03 .589 .3 .3 .3 
4 .4 .2 .2 .5 .06, .03 .589 .4 .2 0 
5 .4 .5 .3 .5 .12, .06 .749 .4 .2 .1 
6 .4 .5 .3 .5 .12, .06 .749 .6 .3 .15 
7 .4 .5 .3 .5 .12, .06 .749 .3 .3 .3 
8 .4 .5 .3 .5 .12, .06 .749 .4 .2 0 
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Table 2: Analytical values of the estimators, forecast biases and mean squared forecast errors  for the DGPs of Table 1 (l = 14)  
 

 AR parameters Forecasting 11
1



T
Ty  

DGP 
n. 

*
0  *

0  *
1  *

1  *
2  *

2  *
2

*
1    *

2
*
1   Optimal 

bias 
EOS 
bias 

Bias 
Diff 

Optimal 
MSFE 

EOS 
MSFE 

MSFE 
Ratio 

Under Noise 
1 0.39 0.40 0.17 0.20 0.20 0.20 0.37 0.40 0.000 -0.032 -0.032 0.296 0.298 0.993 
2 0.40 0.41 0.15 0.20 0.20 0.20 0.34 0.39 0.000 -0.032 -0.032 0.354 0.356 0.994 
3 0.39 0.42 0.19 0.19 0.19 0.19 0.37 0.37 0.000 -0.033 -0.033 0.277 0.278 0.996 
4 0.39 0.40 0.17 0.20 0.20 0.20 0.37 0.40 0.000 -0.032 -0.032 0.296 0.298 0.993 
5 0.42 0.41 0.39 0.49 0.36 0.30 0.76 0.80 0.000 -0.061 -0.061 0.360 0.367 0.981 
6 0.49 0.42 0.32 0.49 0.39 0.30 0.71 0.79 0.000 -0.061 -0.061 0.490 0.508 0.965 
7 

0.42 0.48 0.46 0.46 0.30 0.30 0.76 0.76 0.000 -0.065 -0.065 0.317 0.321 0.988 
8 0.42 0.40 0.39 0.50 0.36 0.30 0.76 0.80 0.000 -0.060 -0.060 0.360 0.368 0.978 

Under News 
1 0.41 0.46 0.22 0.20 0.20 0.20 0.41 0.40 0.000 -0.044 -0.044 0.263 0.263 0.992 
2 0.40 0.46 0.24 0.20 0.19 0.20 0.43 0.40 0.000 -0.044 -0.044 0.278 0.280 0.993 
3 0.40 0.46 0.24 0.20 0.19 0.20 0.43 0.40 0.000 -0.044 -0.044 0.276 0.279 0.989 
4 0.41 0.46 0.22 0.20 0.20 0.20 0.41 0.40 0.000 -0.044 -0.044 0.262 0.264 0.992 
5 0.45 0.58 0.60 0.50 0.23 0.30 0.82 0.80 0.000 -0.072 -0.072 0.361 0.371 0.973 
6 0.42 0.58 0.68 0.50 0.16 0.30 0.84 0.80 0.000 -0.072 -0.072 0.493 0.516 0.955 
7 0.42 0.57 0.69 0.51 0.15 0.29 0.84 0.80 0.000 -0.071 -0.071 0.465 0.489 0.951 
8 0.45 0.58 0.60 0.50 0.23 0.30 0.82 0.80 0.000 -0.072 -0.072 0.359 0.369 0.972 
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Table 3:  Small Sample Biases: AR model parameters 
 

 *
00

ˆ    *
00ˆ    )()ˆˆ( *

2
*
121    )()ˆˆ( *

1
*
121    

DGP 
n. 

T=50 T=100 T=200 T=500 T=50 T=100 T=200 T=500 T=50 T=100 T=200 T=500 T=50 T=100 T=200 T=500 

Under Noise 
1 0.06 0.03 0.01 0.01 0.06 0.03 0.01 0.01 -0.09 -0.04 -0.02 -0.01 -0.09 -0.04 -0.02 -0.01 
2 0.06 0.03 0.01 0.01 0.06 0.03 0.01 0.01 -0.09 -0.04 -0.02 -0.01 -0.09 -0.05 -0.02 -0.01 
3 0.06 0.03 0.01 0.01 0.06 0.03 0.01 0.01 -0.09 -0.04 -0.02 -0.01 -0.09 -0.04 -0.02 -0.01 
4 0.06 0.03 0.01 0.01 0.06 0.03 0.01 0.01 -0.09 -0.04 -0.02 -0.01 -0.09 -0.05 -0.02 -0.01 
5 0.26 0.12 0.06 0.03 0.24 0.11 0.06 0.02 -0.13 -0.06 -0.03 -0.01 -0.12 -0.06 -0.03 -0.01 
6 0.28 0.13 0.07 0.03 0.25 0.12 0.06 0.02 -0.14 -0.07 -0.03 -0.01 -0.13 -0.06 -0.03 -0.01 
7 0.25 0.12 0.06 0.02 0.25 0.12 0.06 0.02 -0.13 -0.06 -0.03 -0.01 -0.13 -0.06 -0.03 -0.01 
8 0.26 0.12 0.06 0.03 0.24 0.11 0.06 0.02 -0.13 -0.06 -0.03 -0.01 -0.12 -0.06 -0.03 -0.01 

Under News 
1 0.06 0.03 0.01 0.01 0.07 0.03 0.02 0.01 -0.08 -0.04 -0.02 -0.01 -0.09 -0.04 -0.02 -0.01 
2 0.05 0.03 0.01 0.01 0.07 0.03 0.02 0.01 -0.07 -0.04 -0.02 -0.01 -0.09 -0.04 -0.02 -0.01 
3 0.06 0.03 0.01 0.01 0.07 0.03 0.02 0.01 -0.09 -0.04 -0.02 -0.01 -0.09 -0.05 -0.02 -0.01 
4 0.06 0.03 0.01 0.01 0.07 0.03 0.02 0.01 -0.08 -0.04 -0.02 -0.01 -0.09 -0.05 -0.02 -0.01 
5 0.27 0.13 0.06 0.03 0.33 0.15 0.08 0.03 -0.10 -0.05 -0.02 -0.01 -0.11 -0.05 -0.03 -0.01 
6 0.24 0.11 0.06 0.02 0.32 0.15 0.07 0.03 -0.09 -0.04 -0.02 -0.01 -0.12 -0.05 -0.03 -0.01 
7 0.26 0.12 0.06 0.02 0.32 0.15 0.07 0.03 -0.09 -0.04 -0.02 -0.01 -0.11 -0.05 -0.03 -0.01 
8 0.27 0.13 0.06 0.03 0.33 0.15 0.08 0.03 -0.10 -0.05 -0.02 -0.01 -0.12 -0.06 -0.03 -0.01 
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Table 4: Small Sample Forecast Accuracy Findings: Biases and MSFEs (l = 14) 
 

 Forecasting 11
1



T
Ty  Forecasting 14

4



T
Ty , MSFE ratio 

DGP 
n. 

Bias 
Diff. 

T=50 T=100 T=200 T=500 MSFE 
Ratio 

T=50 T=100 T=200 T=500 T=50 T=100 T=200 T=500 

Using State-Space Model under Noise as DGP, Comparing AR_RTV/AR_EOS 
1 -0.032 -0.032 -0.021 -0.033 -0.032 0.993 1.004 0.999 0.997 0.996 1.006 0.998 0.996 0.996 
2 -0.032 -0.032 -0.020 -0.033 -0.031 0.994 1.014 0.997 0.996 1.000 1.014 0.999 0.998 0.997 
3 -0.033 -0.032 -0.023 -0.033 -0.032 0.996 0.992 1.000 0.995 0.999 0.995 0.995 0.994 0.995 
4 -0.032 -0.032 -0.021 -0.033 -0.032 0.993 1.004 0.994 0.997 0.995 1.003 0.997 0.997 0.998 
5 -0.061 -0.062 -0.051 -0.062 -0.059 0.981 1.000 0.988 0.983 0.979 1.010 1.004 1.001 1.008 
6 -0.061 -0.064 -0.050 -0.063 -0.059 0.965 1.001 0.983 0.977 0.968 1.015 1.009 1.003 1.007 
7 -0.065 -0.067 -0.057 -0.066 -0.065 0.988 0.981 0.984 0.986 0.989 0.998 1.001 0.994 0.989 
8 -0.060 -0.062 -0.050 -0.061 -0.059 0.978 0.994 0.990 0.983 0.978 0.994 1.009 1.001 1.001 

Using State-Space Model under Noise as DGP, Comparing AR_RTV/AR_EOS 
1 -0.044 -0.044 -0.034 -0.043 -0.044 0.992 0.976 0.982 0.989 0.994 0.966 0.979 0.983 0.989 
2 -0.044 -0.044 -0.032 -0.043 -0.044 0.992 0.947 0.966 0.982 0.993 0.945 0.969 0.980 0.986 
3 -0.044 -0.044 -0.033 -0.044 -0.044 0.989 0.965 0.978 0.985 0.985 0.955 0.976 0.981 0.989 
4 -0.044 -0.044 -0.034 -0.043 -0.044 0.992 0.976 0.985 0.987 0.996 0.968 0.981 0.986 0.988 
5 -0.072 -0.073 -0.058 -0.072 -0.073 0.973 0.949 0.959 0.962 0.973 0.964 0.976 0.980 0.988 
6 -0.072 -0.071 -0.055 -0.072 -0.073 0.955 0.926 0.941 0.952 0.961 0.958 0.968 0.974 0.982 
7 -0.071 -0.069 -0.058 -0.071 -0.071 0.951 0.925 0.929 0.945 0.947 0.971 0.975 0.981 0.984 
8 -0.072 -0.073 -0.058 -0.072 -0.073 0.972 0.941 0.957 0.966 0.977 0.954 0.981 0.974 0.982 

Using SVB-VAR as DGP, Comparing AR_RTV/AR_EOS 
9 -- -0.023 -0.040 -0.035 -0.040 -- 0.971 0.970 0.976 0.981 0.995 0.994 0.990 0.995 
10 -- 0.003 -0.001 -0.015 -0.015 -- 0.983 0.987 0.985 0.994 0.982 0.971 0.967 0.967 
11 -- 0.001 -0.012 0.001 0.001 -- 0.986 0.991 0.992 0.997 0.994 0.980 0.973 0.970 

Using SVB-VAR as DGP, Comparing VB-VAR/AR_EOS 
9  -0.035 -0.035 -0.038 -0.042  1.456 1.035 0.961 0.913 1.564 1.050 0.935 0.892 
10  0.002 -0.002 -0.014 -0.016  1.201 0.825 0.740 0.726 1.545 0.840 0.761 0.747 
11  -0.001 -0.002 -0.011 -0.007  1.118 0.759 0.718 0.683 1.851 0.962 0.846 0.831 

 
Note: “Bias Diff” are differences between the absolute bias: negative values indicate that RTV (or VB-VAR in last panel) reduces bias. “MSFE ratio” are ratios of MSFE: 
values smaller than one indicate that RTV (or VB-VAR in last panel) reduces the MSFE. The first columns under “Bias Diff” and “MSFE ratio” report the asymptotic 
values (of Table 2) for ease of comparison. DGPs 9, 10 and 11 are simulated from estimated SVB-VAR models (see appendix B) with, respectively, output growth, GDP 
deflator inflation and PCE inflation. The autoregressive order of the AR models is always 2.    
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Table 5: Characteristics of Data Vintages during the Estimation and out-of-sample Forecast Periods.  
 

  Mean Standard Deviation Autocorrelation (1st) H0: Mean = 0 H0: News H0:Noise 
  1t

ty 14t
ty 109Q

ty 1t
ty 14t

ty 109Q
ty 1t

ty  14t
ty 109Q

ty 14r  109Qr  14r  109Qr 14r  109Qr  
Output growth 1965Q3-1985Q2 0.76 0.79 0.81 1.08 1.07 1.08 0.28 0.29 0.29 [.03] [.01] [.08] [.02] [.09] [.01] 
 1985Q3-2006:Q4 0.68 0.68 0.75 0.43 0.52 0.50 0.33 0.33 0.23 [.92] [.06] [.28] [.03] [.00] [.00] 
GDP Deflator 1965Q3-1985Q2 1.45 1.43 1.41 0.59 0.59 0.59 0.70 0.75 0.80 [.17] [.03] [.48] [.36] [.10] [.03] 
 1985Q3-2006:Q4 0.58 0.65 0.60 0.28 0.27 0.23 0.57 0.55 0.56 [.00] [.30] [.00] [.00] [.00] [.47] 
PCE Deflator 1965Q3-1985Q2 1.40 1.39 1.38 0.63 0.64 0.65 0.83 0.83 0.84 [.25] [.13] [.52] [.23] [.26] [.04] 
 1985Q3-2006:Q4 0.64 0.69 0.64 0.38 0.35 0.30 0.49 0.60 0.56 [.00] [.76] [.00] [.00] [.00] [.14] 

 
Note: p-values are computed for F-statistics (news/noise) and t-statistics (mean) using Newey-West standard errors, and are displayed in [].  
The  revisions are defined as 14r = 14t

ty - 1t
ty  and 109Qr = 109Q

ty - 1t
ty . 
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 Table 6: Comparing the RMSFEs from RTV and EOS in a Recursive out-of-sample Forecasting 
Exercise (for the period 1985:Q3-2008:Q4; n = 94 quarters).  
 
6A. Forecasting Output Growth 

 h = 1 h = 4 
 11

1



T
Ty  15

1



T
Ty  109

1
Q

Ty   14
4



T
Ty  144

4



T
Ty  109

4
Q

Ty   
AR(1) 0.976 0.981 0.999 0.956 0.956 0.972 
  0.998 0.995  0.982 0.980 
VB-VAR(1), q=4 0.999 0.996 1.013 0.965 0.965 0.988 
VB-VAR(1), q=5 0.995 0.996 1.012 0.967 0.960 0.980 
VB-VAR(1), q=8 0.994 0.986 1.009 1.002 0.958 0.989 
VB-VAR(1), q=14 1.028 1.026 1.034 1.017 0.970 0.990 

 
 
6B. Forecasting GDP Deflator Inflation 

 h = 1 h = 4 
 11

1



T
Ty  15

1



T
Ty  109

1
Q

Ty   14
4



T
Ty  144

4



T
Ty  109

4
Q

Ty   
AR(4) 0.961 0.972 0.959 0.959 0.967 0.953 
  0.973 0.977  0.994 0.991 
VB-VAR(1), q=4 0.962 0.962 0.958 0.968 0.966 0.958 
VB-VAR(1), q=5 0.988 0.966 0.965 1.034 1.028 1.021 
VB-VAR(1), q=8 0.963 0.956 0.955 1.036 1.040 1.027 
VB-VAR(1), q=14 0.955 0.953 0.959 0.973 0.978 0.970 

 
 

6C. Forecasting PCE Deflator Inflation 
 

 h = 1 h = 4 
 11

1



T
Ty  15

1



T
Ty  109

1
Q

Ty   14
4



T
Ty  144

4



T
Ty  109

4
Q

Ty   
AR(4) 0.979 0.982 0.977 0.977 0.973 0.969 
  0.987 0.988  0.985 0.986 
VB-VAR(1), q=4 0.974 0.978 0.971 0.968 0.963 0.959 
VB-VAR(1), q=5 1.000 1.005 0.999 1.017 1.018 1.010 
VB-VAR(1), q=8 1.016 1.024 1.014 1.049 1.055 1.044 
VB-VAR(1), q=14 1.068 1.084 1.080 1.054 1.067 1.052 

 
 
 
Note: Entries with values smaller than one indicate that RTV reduces the RMSFE relative to EOS. For VB-VAR 
models, ratios are relative to the AR(p) with EOS data (same benchmark model for each panel). Entries in the second 
line are for RTV bias-corrected forecasts (relative to EOS). The correction is based on the difference between the 

unconditional means of 14t
ty  and 1t

ty with data up to the forecast origin. Emboldened entries indicate RMSFE 
reductions larger than 2%.  Multiple step-ahead forecasts are computed by iteration.  Models are estimated with 
increasing windows of data. In-sample period starts in 1959:Q1 for AR comparisons and 1965:Q3 when comparing 
VAR models with AR with EOS data.  

 



49 
 

Table 7: Comparison of EOS and RTV data for forecasting output growth and inflation with (A)DL models of activity variables (for the period 1985:Q3-
2008:Q4; n = 94 quarters). 
 
7A. Forecasting Output Growth 

  h = 0 h = 1 h = 4 
     Ratio  

AR(1)_RTV 
   Ratio  

AR(1)_RTV 
   Ratio  

AR(1)_RTV 
Model: sample 11

1



T
Ty  15

1



T
Ty  109

1
Q

Ty   109
1
Q

Ty   11
1



T
Ty  15

1



T
Ty  109

1
Q

Ty   109
1
Q

Ty   14
4



T
Ty  144

4



T
Ty  109

4
Q

Ty   109
4
Q

Ty   
 starts:  With industrial production 
DL (2) 1959:Q1 1.026 1.001 1.000 0.847 0.999 0.992 0.996 0.974     
ADL (1,2) 1959:Q1 1.025 1.004 1.009 0.855 1.052 1.038 1.052 1.027 0.972 0.975 0.997 1.052 
DL (2) 1979:Q1 0.943 0.945 0.953 0.838 0.984 0.983 0.986 0.991     
ADL (1,2) 1979:Q1 0.921 0.958 0.928 0.850 0.971 0.980 0.981 0.990 0.936 0.964 0.982 1.001 

  With employment 
DL (2) 1959:Q1 1.022 1.010 0.998 0.895 0.990 0.993 0.998 0.994     
ADL (1,2) 1959:Q1 0.983 1.013 1.011 0.893 1.002 1.043 1.045 1.042 1.014 1.013 1.024 1.131 
DL (2) 1979:Q1 0.949 0.963 0.975 0.888 0.969 0.988 0.987 1.030     
ADL (1,2) 1979:Q1 0.921 0.958 0.968 0.890 0.898 0.975 0.959 1.024 0.979 0.987 1.007 1.023 

 
7B. Forecasting GDP Deflator Inflation 

 h = 0 h = 1 h = 4 
     Ratio  

AR(4)_RTV 
   Ratio  

AR(4)_RTV 
   Ratio  

AR(4)_RTV 
Model: sample 11

1



T
Ty  15

1



T
Ty  109

1
Q

Ty   109
1
Q

Ty   11
1



T
Ty  15

1



T
Ty  109

1
Q

Ty   109
1
Q

Ty   14
4



T
Ty  144

4



T
Ty  109

4
Q

Ty   109
4
Q

Ty   
 starts:  With industrial production 

ADL (4,2) 1959:Q1 0.948 0.945 0.945 1.001 0.945 0.958 0.943 0.985 1.052 1.006 0.983 1.044 
ADL (4,2) 1979:Q1 0.935 0.911 0.940 0.992 0.915 0.899 0.918 1.007 0.946 0.954 0.922 1.032 

  With employment 

ADL (4,2) 1959:Q1 0.952 0.974 0.967 1.027 0.968 0.986 0.968 1.016 0.990 1.017 0.983 1.103 
ADL (4,2) 1979:Q1 0.940 0.905 0.945 0.996 0.939 0.913 0.926 0.999 0.965 0.976 0.948 1.063 
  With output growth 

ADL (4,2) 1959:Q1 0.949 0.944 0.939 0.997 0.953 0.974 0.953 0.979 0.962 1.037 0.972 0.968 
ADL (4,2) 1979:Q1 0.955 0.926 0.958 1.013 0.933 0.911 0.928 1.015 0.958 0.979 0.943 1.049 
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7C. Forecasting PCE Deflator Inflation 
 

 h = 0 h = 1 h = 4 
 
 

    Ratio  
AR(4)_RTV 

   Ratio  
AR(4)_RTV 

   Ratio  
AR(4)_RTV 

Model: sample 11
1



T
Ty  15

1



T
Ty  109

1
Q

Ty   109
1
Q

Ty   11
1



T
Ty  15

1



T
Ty  109

1
Q

Ty   109
1
Q

Ty   14
4



T
Ty  144

4



T
Ty  109

4
Q

Ty   109
4
Q

Ty   
 starts:  With industrial production 

ADL (4,2) 1959:Q1 0.977 0.979 0.976 0.978 0.973 0.979 0.974 0.984 1.020 1.019 1.013 1.030 
ADL (4,2) 1979:Q1 0.988 1.000 0.981 0.987 0.979 0.987 0.977 0.994 0.983 0.967 0.968 1.016 

  With employment 

ADL (4,2) 1959:Q1 0.974 0.979 0.973 0.968 0.973 0.981 0.974 0.983 1.015 1.020 1.013 1.006 
ADL (4,2) 1979:Q1 0.988 0.984 0.982 0.993 0.975 0.980 0.974 0.995 0.973 0.977 0.964 1.007 
  With output growth 

ADL (4,2) 1959:Q1 0.986 0.991 0.993 1.013 0.974 0.986 0.972 0.991 1.039 1.052 1.031 1.010 
ADL (4,2) 1979:Q1 0.997 1.000 0.996 1.007 0.933 0.911 0.928 1.015 0.991 0.994 0.973 1.012 

 
Note: Entries with values smaller than one indicate that RTV reduces the RMSFE relative to EOS, except entries in the column “ratio AR(p)_RTV” where values smaller than 
one indicate that the (A)DL model reduces the RMSFE relative to the AR model. (A)DL models are estimated for each forecast horizon with the described specification (first 
column) in order to compute direct forecasts with increasing windows of data. As in the previous tables, the variable we aim at forecast is the quarterly difference in annual 
values h-quarters from t: ))ln()(ln(400 1  hththt XXy where X is level of real GDP, GDP deflator or PCE deflator. The explanatory variables are also quarterly 
differences in annual values. The quarterly vintage of industrial production and employment is the time series of data published in the first month of the quarter, while the data 
frequency is converted from monthly to quarterly by averaging over the quarter before computing first differences. When estimating with RTV data, the vintage of the RHS 
variables depends on the forecasting horizon. For example, if the current vintage is t, the RHS variables are from the t vintage when h=0 (except AR component which is from 
the t vintage), from t-1 vintage when h=1, and from the t-4 vintage when h=4.   

  


