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Abstract

We consider combinations of subjective survey forecasts and model-based forecasts from

linear and non-linear univariate speci�cations as well as multivariate factor-augmented models.

Empirical results suggest that a simple equal-weighted average of survey forecasts outperform

the best model-based forecasts for a majority of macroeconomic variables and forecast horizons.

Additional improvements can in some cases be gained by using a simple equal-weighted average

of survey and model-based forecasts. We also provide an analysis of the importance of model

instability for explaining gains from forecast combination. Analytical and simulation results

uncover break scenarios where forecast combinations outperform the best individual forecasting

model.
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1 Introduction

Since the seminal work of Bates and Granger (1969), forecast combinations have come to be viewed

as a simple and e¤ective way to improve and robustify the forecasting performance over that o¤ered

by individual models. As a result, forecast combinations are now in widespread use in central

banks, among private sector forecasters and in academic studies. Challenges still remain, however,

to our understanding of what types of forecasts bene�t most from combination, which combination

schemes are optimal in a given forecast situation and when to expect the greatest advantage from

forecast combination.

This article studies two issues in forecast combination. First, we consider ways to combine

forecasts from surveys and time-series models. Second, we consider the possibility, advanced by

Hendry and Clements (2004), that model instability can help explain the gains in forecasting

performance resulting from combination. These two issues may in fact be closely related since

survey participants can sometimes rapidly adjust their forecasts to shifts in the underlying data

generating process. In contrast, constant parameter models will typically take longer to adjust to

a change in the data generating process. Conversely, in a stable environment time-series models

may more e¢ ciently summarize all available information than survey forecasts do. Survey forecasts

may therefore serve as a hedge against breaks in the underlying data generating process when

combined with time-series forecasts. Whether forecasts from time-series models, survey forecasts

or some combination of the two performs best will depend on the degree of model instability, i.e.,

the frequency and magnitude of model and parameter changes, as well as the ability of survey

participants to adapt their forecasts to such changes. Ultimately, which type of forecasting method

works best is an empirical issue.

Forecast combinations require deciding both which forecasts to include and how to weight

them. This is usually treated as a two-step process in which relatively little attention is paid to the

�rst step (design of the model universe) compared with the second step (assigning weights to the

included models). To the extent that the �rst step acquires much attention, this is often restricted

to �trimming�, i.e., excluding the models with the worst forecasting performance (Granger and

Jeon (2004)). However, often little explicit thought goes into designing the universe of forecasts

used in the combination in the �rst place. Even so, conclusions about the performance of forecast

combinations necessarily have limited validity without posing them in the context of the universe

of models being combined. For example, the common �nding that an equal-weighted forecast is

surprisingly di¢ cult to beat�commonly known as the forecast combination �puzzle��will cease to
hold if a large number of poor forecasts dominates the universe of models being combined.

A particularly interesting aspect of the design of the universe of forecasts is whether including

both subjective survey forecasts and forecasts from time-series models helps improve forecasting

performance. Existing work on forecast combinations most often focuses on either combining

forecasts from time-series models or combining subjective forecasts from sources such as the Survey

of Professional Forecasters.1 However, it is clearly of interest to see if combining these two types
1Although see Clements and Harvey (2010) for an application to subjective and model-based probability forecasts.

1



of forecasts leads to additional gains or whether one approach dominates the other. Forecasts from

time-series models�whether linear or non-linear�are often closely correlated, but survey forecasts
and time-series forecasts may be less so, opening the possibility of gains from combining these two

types of forecasts. In particular, subjective forecasts can incorporate forward-looking information

in a way that time-series forecasts cannot, e.g., as a result of a pre-announced or expected change in

public policy. Conversely, there are issues related to the weighting of individual survey forecasts and

changes in the composition of survey data due to entry and exit of survey participants (Engelberg et

al. (2009) and Capistrán and Timmermann (2009)) that may put survey forecasts at a disadvantage.

To consider whether survey forecasts and model-based forecasts should be combined, we explore

empirically how standard combination schemes applied to di¤erent classes of forecasting models

and di¤erent types of forecasts (model-based versus survey forecasts) perform as the universe of

forecasting models is varied.2 We also study bias-adjustment of forecasts which take the form of

regressions that augment the forecasts of interest, e.g., survey forecasts, with information such as

current and past values of the predicted variable as well as common factors. In an empirical analysis

that considers 14 U.S. macroeconomic variables, four horizons and a 17-year forecast evaluation

sample, we �nd that the simple equal-weighted average of survey forecasts dominates the best

forecast from any of the time-series models in around two-thirds of all cases. We also �nd that,

for the most part, equal-weighted combinations of forecasts from time-series models and survey

forecasts lead to improvements over using the time-series models alone but fail to systematically

improve on using only the survey forecasts.

Turning to the second issue, instability of individual forecasting models o¤er an empirically

plausible explanation for the good performance of forecast combinations. There is mounting ev-

idence that the parameters of autoregressive models �tted to many economic time series change

over time. For example, Stock and Watson (1996) undertake a systematic study of a wide variety of

economic time series and �nd that the majority of these are subject to change. Diebold and Pauly

(1987), Clements and Hendry (1998, 1999, 2006), Pesaran and Timmermann (2005) and Timmer-

mann (2006) view model instability as an important determinant of forecasting performance and a

potential reason for combining models. Little is known about how di¤erent forms of model insta-

bility a¤ect forecast combinations, however. Thus, it is important to investigate the in�uence of

this particular form of model misspeci�cation on forecasting performance and its ability to explain

the superior performance of simple combination schemes.

To address this issue, we evaluate the determinants of the performance of di¤erent forecast

combination schemes in the presence of occasional shifts to the parameters of the data generating

Elliott and Timmermann (2005) also propose a time-varying combination scheme in which the weights on survey
forecasts and time-series (ARIMA) forecasts are allowed to follow a regime-switching process driven by a �rst-order
Markov chain. They �nd evidence of signi�cant time-variations in the optimal combination weights, suggesting that
neither the time-series forecasts, nor the survey forecasts encompass the other group at all points in time.

2Under squared error loss, the value of an additional forecast can be measured through its correlation with the
forecast error from the existing forecasts and so the additional forecast should only be assigned a non-zero weight in
the combination provided that it explains some of the errors from forecasts that are already included. This is related
to the notion of forecast encompassing (Chong and Hendry (1986)).
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process. In the context of a simple factor model with stochastic breaks we derive analytical results

that reveal the determinants of whether forecast combinations can be expected to outperform

forecasts from the best model. Our results show that the relative factor variance, as well as the

frequency and size of breaks play a role in determining the performance of forecast combinations.

Finally, we use simulations from dynamic factor models estimated on a range of US macroeco-

nomic time series to investigate the extent to which factor models with and without breaks are

able to match empirical �ndings on the performance of standard forecast combination schemes. We

consider three separate scenarios re�ecting breaks in the factor loadings, breaks in the dynamics of

the underlying factors and breaks in the covariance matrix of the factors. Our results suggest that

stable factor models without breaks are unable to match the performance of the forecast combina-

tion schemes, whereas breaks in the factor model�particularly if they occur in the factor loadings
or in the factor dynamics�bring the results modestly closer to what is observed in the data. This
suggests that parameter instability in dynamic factor models o¤er a partial explanation for why

simple combinations outperform the best individual forecasting models.

The outline of the chapter is as follows. Section 2 discusses the design of the universe of fore-

casting models used in combining forecasts from time-series models and subjective survey forecasts.

Section 3 undertakes an empirical analysis using forecasts from univariate and multivariate linear

models, non-linear models and survey forecasts. Section 4 provides analytical results that shed

light on the performance of forecast combinations under model instability, while Section 5 presents

empirical results on forecast combinations under breaks. Section 6 concludes.

2 Combinations of Survey and Time-series Forecasts

Users of modern forecasting techniques in economics and �nance are faced with an abundance

of predictor variables and a plethora of methods for generating forecasts. An important issue is

therefore, �rst, how to summarize and implement such information and, second, whether to adopt

a forecasting strategy that seeks out a single best forecasting method or, alternatively, attempt to

combine forecasts generated by di¤erent models.

As always, we have to consider whether to pool forecasts or pool information. For some types

of forecasts, e.g., survey forecasts, we can only pool the forecasts since we do not have access

to the individual forecasters� information set. In contrast, when it comes to combining forecasts

from surveys with information used by an econometric forecasting model, we have the option of

either combining the forecasts or augmenting the survey forecast with information underlying the

econometric model, and we will consider both strategies.

Combinations of survey and time-series forecasts are particularly interesting because they rep-

resent fundamentally di¤erent approaches to forecasting. Surveys re�ect individual forecasters�

subjective judgement and may be able to adjust rapidly to changes in the data generating process

to the extent that these can be monitored or even predicted by survey participants. Conversely,

forecasts from time-series models can e¢ ciently incorporate past regularities in the data, but may
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take longer to adapt to changes in the data generating process.

To explore the performance of combinations of these types of forecasts, we consider a broad set

of speci�cations which includes a variety of time-series models�univariate, multivariate, linear and
non-linear�in addition to survey forecasts. First we describe the design of the experiments.

Suppose that we are interested in forecasting a generic variable of interest, y, multiple periods

ahead. Let t be the time of the forecast, let h � 1 be the forecast horizon, so the object is to

predict yt+h given information known at time t. Finally, let ŷj;t+hjt be the jth forecast which could

be either a survey forecast or a forecast from a time-series model.

For combinations of forecasts we shall focus on equal-weighted combinations, ŷewt+hjt, of the type

ŷewt+hjt = N�1
NX
j=1

ŷj;t+hjt; (1)

where N is the number of forecasts being combined. We focus on equal-weighted combinations

because our sample is quite short and so estimating forecast combination weights is unlikely to lead

to any improvements in forecasting performance (Smith and Wallis (2009)).

Turning to the second approach, i.e. extending survey forecasts with information used by

the time-series models, we base forecasts on least squares estimates from a simple regression that

includes information from subjective survey forecasts, �yt+hjt, current and past values of the variable

of interest, fyt�lgLl=0 and economic factors, ff̂k;tgKk=1:

yt+h = �+ ��yt+hjt +
LX
l=0

�lyt�l +
KX
k=1

�kf̂k;t + "t+h: (2)

Here ff̂k;tgKk=1 comprise the �rst K principal components of a larger set of multivariate information,

Xt, estimated recursively, i.e. using information only available at time t. The lag length, L, and

the number of principal components, K, are selected by using the Schwartz information criterion

(SIC). The h�step ahead �consensus�survey forecast, �yt+hjt, is given by:

�yt+hjt =

8>><>>:
1
N

PN
i=1 yi;t+hjt equal-weighted forecastPN

i=1

h
yi;t+hjtMSFE�1i;tjt�h=

PN
i=1MSFE�1i;tjt�h

i
inverse MSFE-weightsPN

i=1

h
yi;t+hjt exp(SICi;tjt�h)=

PN
i=1 exp(SICi;tjt�h)

i
SIC weights.

(3)

HereMSFEi;tjt�h is the mean squared forecast error of forecaster i at time t assuming an h�period
forecast horizon, while SICi;tjt�h is the value of the Schwarz information criterion for forecaster i

at time t, again assuming an h�period horizon. In both cases we base calculations on a common
overlapping sample so thatMSFEi;tjt�h and SICi;tjt�h are comparable across forecasters. The SIC

weights can be viewed as approximate Bayesian Model Averaging weights (Garratt et al. (2009)).

Little is known about how forecasts generated by di¤erent classes of econometric models, e.g.,

univariate linear, multivariate linear, locally and globally approximating non-linear models, com-
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plement or substitute for one another in a particular forecasting experiment. To explore this point,

we further consider combinations based on forecasts from two non-linear univariate models:

yt+h = �+ �ŷnlt+hjt +
LX
l=0

�lyt�l +
KX
k=1

�kf̂k;t + "t+h; (4)

Again the non-linear univariate forecasts, ŷnlt+hjt, are estimated recursively so that no use is made

of information dated after period-t, for purposes of forecasting for period t+h. Following Swanson

and White (1997) and Terasvirta (2006), we consider two types of non-linear univariate forecasts,

a logistic smooth transition autoregressive (LSTAR) model and a neural network (NNET). The

LSTAR model is

yt+h =

0@�1 + L1X
l1=0

�1;l1yt�l1

1A+ dt
0@�2 + L2X

l2=0

�2;l2yt�l2

1A+ "t+h; (5)

with dt = 1= (1 + exp (yt�1 � c)) : L1 and L2 are chosen using the SIC. A linear regression is

used to estimate the ��s and ��s and then  and c are estimated by minimizing the sum of squared

residuals, repeating until convergence. The NNET is a single-layer feedforward model with J hidden

units:

yt+h = �0 +
JX
j=1

�jg

 
0j +

LX
l=0

l;jyt�l

!
+ "t+h; (6)

where J and L are selected using the SIC, and g is the logistic function. Notice that in each case

we consider direct forecasting models, i.e., period-t forecasts of yt+h based on information known

at time t. Another approach would be to iterate on a one-period forecasting model, but we do not

consider this approach here.

An alternative interpretation of the �information pooling regressions�(2) and (4) is that they

are bias-adjustment equations for the survey and non-linear forecasts, respectively. By regressing

the actual value on the forecast as well as an intercept, current and past values of the variable of

interest and economic factors, we orthogonalize the forecast error with respect to this additional

information.

Note that the various approaches di¤er in terms of how many parameters they require estimat-

ing. This is an important issue. Elaborate combination schemes that require estimating multiple

parameters have often been found to underperform the equal-weighted combination scheme (Clemen

(1989), Stock and Watson (2001)). This �nding re�ects a bias-variance trade-o¤: equal-weighted

combinations can be expected to be more biased but also may have a lower estimation error than

data-driven weighting schemes which makes up for the bias (Granger and Ramanathan (1984),

Smith and Wallis (2009)). The ability to e¢ ciently explore this bias-variance trade-o¤ depends on

how many forecasts are included. To keep the aggregation scheme limited, �blocking�forecasts is

a simple procedure, i.e. forecasts from linear models is one block, forecasts from non-linear models

another block, factor-based forecasts a separate block and survey forecasts form yet another block
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(Aiol� and Timmermann (2006)).3

We consider the following restricted universes of models:

1. Individual time-series models (univariate (AR), multivariate factor-based (AR_FAC), LSTAR

and NNET);

2. Combinations of linear and non-linear time-series models;

3. Subjective (survey) forecasts only;

4. Combinations of survey forecasts and forecasts from time-series models.

3 Empirical Application

This section provides an empirical analysis of how the universe of models being combined as well as

the chosen combination or bias-adjustment method a¤ects the performance of various combination

schemes relative to the individual forecasting models.

3.1 Data

To illustrate the empirical performance of the estimation and forecast combination methods, we

study 14 variables that are covered by the Survey of Professional Forecasters (SPF) and have data

from 1981Q3 through 2006Q4. The variables include the Real Gross Domestic Product (RGDP),

the Unemployment Rate (UNEMP), the GDP Implicit Price De�ator (PGDP) and the Consumer

Price Index (CPI). A brief description of these variables is provided in Table 1 (and in Table 2 of

Capistrán and Timmermann (2009)). Actual values (i.e., the values that we forecast) are taken

from the Federal Reserve Bank of Philadelphia�s real-time database. Following Corradi, Fernandez

and Swanson (2009) we use �rst release data.

Data on the subjective forecasts are taken from the SPF and contain one- through four-quarter-

ahead forecasts. The data used to calculate common factors come from Stock and Watson (2009).

This data set consists of 144 quarterly time series for the United States, spanning the sample

1959:Q1-2006Q4. The series are transformed as needed to eliminate trends by taking �rst or second

di¤erences, in many cases after taking logarithms. The variables, sources and transformations can

be found in the appendix to Stock and Watson (2009).

3.2 Forecasting Performance of Individual models and surveys

Columns one through four of Table 2 report the forecasting performance of individual time-series

models. In each case we use real time data to estimate the model parameters. This provides a

3This option may not be open if survey information is being combined since the underlying models and information
sets are typically unknown. Survey forecasts will, in any case, also be a¤ected by forecasters�subjective adjustments
and priors and so it is not clear how to construct a �meta model� that encompasses information contained in the
individual forecasts.
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fairer comparison with the survey forecasts since �nal release data is not available until well after

the date where the survey forecast is formed. The �rst column of table 2 presents the annualized

root mean squared forecast error (RMSFE) of the benchmark autoregressive (AR) model, i.e., the

autoregressive part of equation (2). Subsequent columns show RMSFE ratios, computed relative

to the AR forecasts, of several forecasting models.

To estimate the parameters of the initial AR models, we use the �rst 30 data points from 1981Q3

to 1988Q4. This means that the forecast evaluation sample runs from 1989Q1 to 2006Q4. Parameter

estimation and forecasting is always done recursively, using an expanding window. Lag lengths,

L, are determined using SIC and an exhaustive search, with a maximum of eight autoregressive

terms. We produce 68 pseudo-out-of-sample forecasts for each horizon (the �rst h� 1 forecasts are
dropped in order to have the same number of forecasts for each horizon).4

The factors used in the autoregressive factor model (AR_FAC) shown in the second column are

extracted using principal components.5 The number of factors, K; is determined using SIC and an

exhaustive search, from a maximum of �ve factors. For the LSTAR model (column 3), the number

of lags, L1 and L2, is chosen using SIC, and an exhaustive search from a maximum of 3 lags. For

the NNET model (column 4), the number of hidden units, J; is chosen in the same way, from a

maximum of 4 units.6 The remaining columns present the results using data from the SPF. The

combinations are: equal weights (EW), inverse MSFE (IMSFE), and approximate BMA weights

(ISIC). The last two combinations are based on the subset of forecasters that at the forecasting

date have a minimum of 10 common contiguous observations. The ISIC calculates the SIC for

each forecaster by projecting the actual values on a constant and the forecasts and then uses the

weighting scheme in (3).

For approximately two-thirds of the variables and forecast horizons (36 out of 56 cases), the sim-

ple equal-weighted average of survey forecasts�which appears to be the best weighting scheme�performs
better than any of the time-series models.7 At the shortest horizon, h =1 quarter, the LSTAR model

is the best performer for 8 of the 14 variables. In contrast, the purely autoregressive model, the

factor-augmented multivariate model and the neural net only generate the lowest RMSFE-values in

one, �ve and two cases, respectively. Interestingly, the value of the survey forecasts is not entirely

driven by the early 1980s, a period before the �Great Moderation�. When we repeat the exercise

using a sample that starts in 1986Q1 instead of 1981Q3, we �nd that survey forecasts are better

than time-series forecasts in 25 out of 56 cases. Hence, although not as dominant, survey forecasts

are still the best performing group.

4The exception is the TBILL series which only has 66 out-of-sample forecasts because the data in the SPF starts
in 1982Q1.

5As in Stock and Watson (2009), the factor estimates are computed using a subset of 110 series that excludes
higher level aggregates related by identities to the lower level subaggregates, instead of the full 144 series.

6For the forecasts produced with non-linear models, an �insanity �lter�was used. It replaces a forecast more than
six interquartile ranges away from the median with the previous observation. This �lter replaces forecasts for less
than 1% of the observations.

7Ang, Bekaert and Wei (2007) also �nd that survey forecasts have superior information when it comes to predicting
in�ation.
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3.3 Combinations of model-based and subjective forecasts

Table 3 shows results from the bias-adjusted combination equation (2) and subsets of it. We

only present results using the equal-weighted SPF forecasts because it is generally the best way

of weighting the survey forecasts and also because the results were very similar when we used

the other combinations applied to data from the SPF. Both autoregressive terms and individual

forecasts are selected using SIC. The results are reported as RMSFE ratios with respect to the

best autoregressive model. Adding the equal-weighted survey forecast to the AR terms reduces

the RMSFE for some variables, notably the CPI, PGDP, RGDP and RFEDGOV. By including

autoregressive terms, the AR-EW combination accounts for any autocorrelation not picked up

by the professional forecasters. However, the simple average of survey forecasts listed in Table

2 generally outperforms combinations of the survey forecasts with the time series forecasts. For

instance, AR_EW only outperforms the equal-weighted survey forecast in ten out of 56 cases.8

We saw in Table 2 that the simple equal-weighted survey forecasts outperformed the best

individual time-series forecasts roughly two-thirds of the time. Table 3 shows that bias-adjusting

the equal-weighted survey forecast by adding either autoregressive or autoregressive and factor

terms as in equation (2) generally does not lead to better forecasting performance. This is likely

driven by the e¤ect of estimation error associated with having to estimate the weights on the equal-

weighted forecast in addition to any included autoregressive terms and factors. This suspicion is

con�rmed by the �nding that in 46 out of 56 cases the equal-weighted average of forecasts from the

AR model, the factor-augmented model and the surveys, i.e. equation (1) shown in the last column

of Table 3, outperform the corresponding combination regression, equation (2). Hence, any gains

from combining subjective and model-based forecasts seems to come from the included models and

not so much from the estimated weights (i.e., the bias-adjustment). This can be explained by the

short samples used here to estimate combination weights and the resulting large estimation errors.

Interestingly, forty percent of the time (i.e., 22 out of 56 cases) the equal-weighted average of

forecasts from the autoregressive model, the factor-augmented model and the mean survey forecast

improves upon the simple equal-weighted survey forecasts. This suggests that the survey forecasts

are modestly biased and that in some cases this bias can be removed by augmenting the survey

forecast with information from the time-series models. Moreover, the simple equal-weighted combi-

nation of survey forecasts and time-series forecasts, equation (1), almost never produces very poor

forecasts.

3.4 Combinations of linear and non-linear models

Table 4 presents results for the combination of linear models, either univariate or multivariate,

and non-linear models as in equations (1) and (4), once again based on recursive estimation and

SIC selection using exhaustive search. The �rst two columns present the combinations of the non-

8Since we include a constant in the combination and allow for a non-zero weight on the SPF forecasts, this is
related to the bias adjusted mean procedure proposed by Capistrán and Timmermann (2009). However, in contrast
to the latter, here we also include autoregressive terms.
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linear forecasts with information underlying the autoregressive model in equation (4). For the

AR_LSTAR speci�cation, the RMSFE-values mostly fall between those obtained from the pure

AR model and those generated by the LSTAR model and the combined forecasts only outperform

both the AR forecasts and LSTAR forecasts in a few cases (7 out of 56). There is more room for

improvement for the NNET forecasts extended to include information on current and past values

of the predicted variable, in part because the NNET forecasts are relatively poor and so, ironically,

the NNET forecasts may not be selected in (4) and so the forecast falls back on the autoregressive

part.

Empirically, gains in forecast precision again seem to be sensitive to the way in which we combine

the AR and the non-linear models. For a given variable, forecast horizon, and time period, we select

the weights attached to each of the eight lags and to the forecast from the non-linear model. Hence,

the non-linear forecast is only selected when it reduces the SIC with respect to the selected AR

model. This helps to alleviate the problem that non-linear models sometimes produce extreme

predictions and is what explains the high RMSFE ratios for unemployment when the nonlinear

models are used alone (see Table 2). This �nding is consistent with the observation by Teräsvirta

(2006) that �combining nonlinear forecasts with forecasts from a linear model may sometimes lead

to a series of forecasts that are more robust (contain fewer extreme predictions) than forecasts from

the nonlinear model� (p. 438-439). Our results suggest that this conclusion is particularly true

when inclusion of non-linear forecasts is dictated by a model selection criterion and the combination

weights are estimated.

The columns labeled AR_FAC_LSTAR and AR_FAC_NNET in Table 4 present the results

corresponding to equations (1) and (4). The third and fourth columns use linear regression to

estimate the weights, (4), whereas the �fth and sixth columns combine the same models, but using

equal weights as in (1). In the vast majority of cases the equal-weighted combinations continue to

outperform the combinations based on estimated weights. However, when we use an equal-weighted

average to combine the non-linear forecasts with forecasts from the univariate and multivariate

linear models, we �nd that the RMSFE is reduced, relative to the best of the underlying models�

RMSFE-values, for less than half of all cases.

3.5 Combination of the full set of forecasts

We �nally combine the full set of forecasts under consideration. Again, we consider two combination

schemes. One simply uses an equal-weighted average of the forecasts from the AR, AR_FAC,

LSTAR and NNET models along with the mean survey forecasts in equation (1). The other

scheme combines the forecasts from the two non-linear models and the surveys with up to eight

autoregressive terms and �ve common factors. The results are presented in Table 5 both for cases

with estimated weights and with equal weights. The latter is clearly easier to implement, since

it only involves choosing the parameters for each block, i.e., the lags for the AR, the number

of lags and factors for the AR_FAC, the number of lags in each regime of the LSTAR, etc. In

contrast, model selection and parameter estimation is computationally intensive: for each variable,
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forecast horizon, and time period, 2^ (8 + 5 + 1 + 1 + 1) = 65; 536 models are estimated and one

gets selected by the SIC.9

The results indicate that extending the information set underlying the forecast combination

often does not maintain the gains from combining only the survey forecasts. In fact only in 18

out of 56 cases does the equal-weighted combination of time-series and survey forecasts lead to an

improvement over using the survey forecast alone.

Using equal weights dominates using estimated combination weights in roughly two-thirds of

all cases (38 out of 56). However, the results vary a lot across the variables. For the unemploy-

ment series, estimating the weights dominates using equal weights, but for other variables, such

as CPROF, HOUSING, or RSLGOV using equal-weights dominates. Furthermore, for most vari-

ables the results vary across horizons. An example of the latter is PGDP, for which estimating

the weights dominates at horizons 1 and 3 quarters, but in turn is dominated by equal weights for

horizons of 2 and 4 quarters.

We conclude from this analysis that using equal weights leads to better forecast performance

than using estimated combination weights in roughly two-thirds of all cases where forecasts from

time-series models and surveys are considered. Interestingly, even if they do not always deliver the

most precise forecasts, forecast combinations, particularly equal-weighted ones, generally do not

deliver poor performance and so from a �risk�perspective represent a relatively safe choice.

4 Model Instability

Whether forecast combinations o¤er a �safe pair of hands� depends, to some extent, on which

sources of risk they help forecasters hedge against. In this section we address whether combinations

improve forecasting performance in the presence of one particular type of risk, namely model

instability.

Hendry and Clements (2004) argue that forecast combinations can provide insurance against

extraneous (deterministic) structural breaks when individual forecasting models are misspeci�ed.

Their analysis provides supporting evidence that simple combinations can work well under a single

end-of-sample break in the process governing the dynamics of the predictor variables. They consider

a wide array of designs for the break and �nd that combinations work particularly well when the

predictors are shifted in opposite directions and are positively correlated.

In support of the interpretation that model instability may explain the good average perfor-

mance of forecast combination methods, the �ndings in Stock and Watson (2001) suggest that the

performance of combined forecasts tends to be more stable than that of the individual constituent

forecasts entering in the combinations. Interestingly, however, gains from combination methods

that attempt to build in time-variations in the combination weights (either by discounting past

performance or by modeling time-variations in the weights) have generally proved elusive.

9There are up to eight autoregressive terms, �ve factors, one LSTAR forecast, one NNET forecast and one equal-
weighted survey forecast.
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We consider instability in the context of a simple common factor model. Factor models have

played an important role in recent work on forecasting in the presence of large numbers of predictor

variables and are widely used empirically to forecast macroeconomic and �nancial time series (Stock

and Watson (2002), Bai and Ng (2002), Bovin and Ng (2006), Forni et al. (2000, 2005), Artis et

al. (2005), and Marcellino (2004)). Furthermore, intuition can be gained in terms of distribution

of factor loadings/exposures and variability of the individual factors.

We consider forecasting a single variable, Y0t, by means of an array of state variables, Y1t; ::; YNt
for t = 1; :::; T; where T is the sample size. Our starting point is a factor model of the form

Y = F � L+ "; (7)

where Y is a T � (N + 1) data matrix, F is a T �m matrix that contains the m factors, L is an

m� (N +1) matrix of factor loadings, and " is a T � (N +1) matrix of innovations with covariance
matrix E[""0] = 
.

For a particular time period, 1 � t � T , we can write the model

Yt = Ft � L+ "t; t = 1; :::; T; (8)

where Yt = (Y0t; Ŷ1t; :::; ŶNt) is now a 1� (N +1) vector, Ft is a 1�m vector of factors and "t are

the innovations at time t. We use a zero subscript on the �rst element of Yt to indicate that this is

the variable whose values are being predicted. The remaining terms, Ŷ1t, Ŷ2t; :::; ŶNt are forecasts

as indicated by the hats. This is a highly stylized setup where individual forecasts have predictive

content because of their correlation with future factor realizations.

Factor dynamics is assumed to be driven by an autoregressive process,

F0t = AF
0
t�1 + "

0
Ft; E["Ft"

0
Ft ] = �; (9)

where E["0Ft"t ] = 0. Following common practice, we further assume that the factors are orthogonal.

There are many ways of specifying breaks to this process. We will assume that breaks are tracked

by a state indicator, St, that can take two possible values, namely St = 1 or St = 2.10 Breaks then

take the form of a shift in some of the parameters of the model (8)-(9) as governed by a change

in St. To this end we partition the factors into Ft = (F1tjF2t), where F1t is 1 � m1 and F2t is

1 �m2 with m1 +m2 = m and associated covariance matrices V ar(F1t) = �F1 , V ar(F2t) = �F2 ;

Cov(F1t; F2t) = �F12 . Further, suppose that the matrix of loading coe¢ cients can be partitioned

as follows

L = (l0 Lr) ; Lr =

 
L1r

L2r

!
; l0 =

 
l01

l02

!
;

where the dimension of l0 is m� 1; Lr is m�N , L1r is m1 �N , L2r is m2 �N , l01 is m1 � 1 and
l02 is m2 � 1.
10Our results can easily be generalized to the case where St takes an arbitrary number of discrete values.

11



Suppose that breaks take the form of a shift in the loadings of the target variable, Y0t from the

�rst m1 factors to the last m2 factors:

Y0t = 1fSt=1gF1tl01 + 1fSt=2gF2tl02 + "0t, (10)

where 1fSt=1g is an indicator variable that equals one at time t if St = 1, otherwise is zero. Similarly

1fSt=2g is one at time t only if St = 2. Assuming that the unconditional state probabilities are

given by Pr(St = 1) = p, Pr(St = 2) = 1 � p, the population value of the projection coe¢ cient of

Y0t on Ŷit (i = 1; ::; N); �i, is given by

�i = (l
0
i�F li + �

2
"i)
�1(pl001�F1li1 + (1� p)l002�F2li2); (11)

where �F = V ar(Ft), �Fj = V ar(Fjt); (j = 1; 2), li is the ith m � 1 column vector of Lr, while
li1 and li2 are m1 � 1 and m2 � 1 vectors formed as the ith columns of L1r and L2r, respectively.

Following common practice, we assume that each forecasting model is based on a linear pro-

jection of the target variable, Y0t, on one of the forecasts, Ŷit, (i = 1; :::; N). To establish the

properties of such forecasts, notice from (8) that the population projection of Y0t on Ŷit is

Ŷ0tji = �iFtli + �i"it:

The associated forecast error is eit = Y0t� Ŷ0tji. Moments of the joint distribution of these forecast
errors are characterized as follows. Conditional on St = 1, we have

V ar(eit) = (l01 � �ili1)0�F1(l01 � �ili1) + �2i l0i2�F2li2 + 2�i(l01 � �ili1)0�F12li2 + �2"0 + �
2
i �
2
"i ;

Cov(eit; ejt) = (l01 � �ili1)0�F1(l01 � �jlj1) + �i�jl0i2�F2lj2
+ �j(l01 � �ili1)0�F12lj2 + �i(l01 � �jlj1)0�F12li2 + �2"0 : (12)

Conditional on St = 2, we have

V ar(eit) = �2i l
0
i1�F1li1 + (l02 � �ili2)0�F2(l02 � �ili2) + 2�il0i1�F12(l02 � �ili2) + �2"0 + �

2
i �
2
"i ;

Cov(eit; ejt) = �i�jl
0
i2�F1lj1 + (l02 � �ili2)0�F2(l02 � �jlj2)

+ �j(l02 � �ili2)0�0F12lj1 + �i(l02 � �jlj2)
0�0F12li1 + �

2
"0 : (13)

This means that the MSFE associated with the ith forecast error is

MSFE(eit) = p
�
(l01 � �ili1)0�F1(l01 � �ili1) + �2i l0i2�F2li2 + 2�i(l01 � �ili1)0�F12li2

	
+ (1� p)

�
�2i l

0
i1�F1li1 + (l02 � �ili2)0�F2(l02 � �ili2) + 2�il0i1�F12(l02 � �ili2)0

	
+ �2"0 + �

2
i �
2
"i :

Similarly, the MSFE associated with the average forecast �Yt = N�1PN
i=1 Ŷit, and the corresponding
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error, �et = (Y0t � �Yt), is

MSFE(�et) = p

(
(l01 �

NX
i=1

�ili1
N

)0�F1(l01 �
NX
i=1

�ili1
N

) +

 
NX
i=1

�il
0
i2

N

!
�F2

 
NX
i=1

�ili2
N

!

+2(l01 �
NX
i=1

�ili1
N

)0�F12

NX
i=1

�ili2
N

)

+ (1� p)
( 

NX
i=1

�il
0
i1

N

!
�F1

 
NX
i=1

�ili1
N

!
+ (l02 �

NX
i=1

�ili2
N

)0�F2(l02 �
NX
i=1

�ili2
N

)

+2
NX
i=1

�il
0
i1

N
�F12(l02 �

NX
i=1

�ili2
N

)

)

+ �2"0 +

 
NX
i=1

�2i �
2
"i

N

!
:

These expressions are quite general and di¢ cult to interpret so we simplify the model to the

case where m = N = 2 and L = I2 so each forecast tracks one factor only and is thus misspeci�ed.11

Assuming only a break in the factor loadings, l0, and setting A = 0, we have

Y0t = 1fSt=1gF1t + 1fSt=2gF2t + "0t;

Ŷ1t = F1t + "1t; (14)

Ŷ2t = F2t + "2t:

All variables are assumed to be Gaussian with F1t � N(0; �2F1), F2t � N(0; �2F2), "0t � N(0; �2"0),

"1t � N(0; �2"1), "2t � N(0; �2"2), while the innovations, ", are mutually uncorrelated and uncorre-

lated with the factors and Cov(F1t; F2t) = �F1F2 :

The linear projection of Yt on Y1t can be obtained through the least squares estimator (i = 1; 2)

�̂i =

 
1

T

TX
t=1

Y 2it

!�1 
1

T

TX
t=1

Y0tYit

!

with probability limits

p lim(�̂1) =
p�2F1 + (1� p)�F1F2

�2F1 + �
2
"1

� �1;

p lim(�̂2) =
(1� p)�2F2 + p�

2
F1F2

�2F2 + �
2
"2

� �2:

This leads to the following joint distribution of the forecast errors eit = Y0t � �iYit (i = 1; 2):
11We could easily relax these assumptions and allow Y1t; Y2t to depend on both factors. However, these gener-

alizations come with few additional insights at the cost of complicating the arithmetic and interpretation of the
results.
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Conditional on St = 1 :

 
e1t

e2t

!
� N

  
0

0

!
;

 
(1� �1)

2�2F1+�
2
1�
2
"1+�

2
"0 (1� �1)�

2
F1
�(1� �1)�2�F1F2+�2"0

(1� �1)�
2
F1
�(1� �1)�2�F1F2+�2"0 �2F1+�

2
2�
2
F2
�2�2�F1F2+�22�2"2+�

2
"0

!!
:

Conditional on St = 2 :

 
e1t

e2t

!
� N

  
0

0

!
;

 
�21�

2
F1
+�2F2�2�1�F1F2+�

2
1�
2
"1+�

2
"0 (1� �2)�

2
F2
��1(1� �2)�F1F2+�

2
"0

(1� �2)�
2
F2
��1(1� �2)�F1F2+�

2
"0 (1� �2)

2�2F2+�
2
2�
2
"2+�

2
"0

!!
:

Integrating across states, we get the MSFE values

E[e21t] = E
�
((St � �1)F1t + (1� St)F2t + "0t � �1"1t)2

�
=
�
p(1� �1)2 + (1� p)�21

�
�2F1 + (1� p)�

2
F2 � 2(1� p)�1�F1F2 + �

2
1�
2
"1 + �

2
"0 ;

E[e22t] = E
�
(StF1t + (1� St � �2)F2t + "0t � �2"2t)2

�
= p�2F1 +

�
p�22 + (1� p)(1� �2)2

�
�2F2 � 2p�2�F1F2 + �

2
2�
2
"2 + �

2
"0 :

Similarly, the MSFE of the combined equal-weighted forecast Ŷ ct = (Ŷ1t + Ŷ2t)=2 is

E[e2ct] = E
�
((St � �1=2)F1t + (1� St � �2=2)F2t + "0t � 0:5�1"1t � 0:5�2"2t)2

�
= (p(1� �1=2)2 + (1� p)�21=4)�2F1 + (p�

2
2=4 + (1� p)(1� �2=2)2)�2F2+

�21�
2
"1=4 + �

2
2�
2
"2=4 + �

2
"0 � (p(1� �1=2)�2 + (1� p)�1(1� �2=2))�F1F2 :

For simplicity suppose that the factors are uncorrelated so �F1F2 = 0. Then E[e
2
1t] > E[e2ct] if�

p(1� �1)2 + (1� p)�21 � p(1�
�1
2
)2 � (1� p)�

2
1

4

�
�2F1

+

�
(1� p)� p�

2
2

4
� (1� p)(1� �2

2
)2
�
�2F2 +

3

4
�21�

2
"1 �

1

4
�22�

2
"2 > 0: (15)

This condition is satis�ed provided that�
3

4
�21 � p�1

�
�2F1 +

�
�2(1� p)�

1

4
�22

�
�2F2 +

3

4
�21�

2
"1 �

1

4
�22�

2
"2 > 0:

Using the de�nition of �1; �2, this can be written

�2F2
�2F1

>
1

3

�
p

1� p

�2 (1 + �2"2=�2F2)
(1 + �2"1=�

2
F1
)
: (16)

Hence it is more likely that the MSFE from model 1 exceeds that of the equal-weighted forecast

provided that the second factor explains a large part of the variation in Y relative to the �rst factor
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(�2F2=�
2
F1
is high); the second factor is in e¤ect more often (p=(1�p) is low) and the second forecast

has a low noise-to-signal ratio relative to that of model 1 (�2"2=�
2
F2
is low relative to �2"1=�

2
F1
).

By symmetry, the conditions for E[e22t] > E[e2ct] are

�2F2
�2F1

< 3

�
p

1� p

�2 (1 + �2"2=�2F2)
(1 + �2"1=�

2
F1
)
: (17)

If both (16) and (17) hold, the average forecast will have a lower population MSFE than that

of the individual models. We summarize this result in the following proposition.

Proposition 1 Suppose (Yt; Ŷ1t; Ŷ2t) is generated by the process (14) with mutually uncorrelated,
Gaussian factors and innovations and that St = 1 with constant probability p while the probability

that St = 2 is (1 � p). Then the population MSFE of the equal-weighted combined forecast will be

lower than the population MSFE of the best model provided that the following condition holds:

1

3

�
p

1� p

�2 (1 + �2"2=�2F2)
(1 + �2"1=�

2
F1
)
<
�2F2
�2F1

< 3

�
p

1� p

�2 (1 + �2"2=�2F2)
(1 + �2"1=�

2
F1
)
:

Figure 1 shows the MSFE values from models 1, 2 and the combined forecast as a function of

p under di¤erent assumptions about relative factor variances and the variances of the error terms.

In Panel 1 the two forecasts are of equal quality so the equal-weighted forecast is close to being

optimal and always dominates the individual forecasts. In contrast, in Panels 2 and 3 it is only for

low (Panel 2) and high (Panel 3) values of p that the combined forecast is best. Finally in Panel

4 we show an example where the forecast combination dominates the individual forecasts provided

that p lies between 0.2 and 0.8. Since the probability of a switch in the factor structure can be

measured by p(1� p), this is also the region where �breaks�are most likely, suggesting that model

instability can be one reason for the good performance of forecast combinations.

An equivalent condition for E[e21t] > E[e2ct] is (letting k1 = (1=3)�
2
F1
(p=(1� p))2)

(�2F1 + �
2
"1)�

4
F2 � k1�

2
F1�

2
F2 � k1�

2
"2�

2
F1 > 0 (18)

with real roots
k1�

2
F1
�
q
k21�

4
F1
+ 4k1�2"2�

2
F1
(�2F1 + �

2
"1)

2(�2F1 + �
2
"1)

. (19)

Similarly, E[e22t] > E[e2ct] provided that

(�2F1 + �
2
"1)�

4
F2 � k2�

2
F1�

2
F2 � k2�

2
"2�

2
F1 < 0; (20)

where k2 = 3�2F1(p=(1� p))
2. This has roots

k2�
2
F1
�
q
k22�

4
F1
+ 4k2�2"2�

2
F1
(�2F1 + �

2
"1)

2(�2F1 + �
2
"1)

. (21)
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In both cases, one root will be negative while the other is positive. This means that the

combined, equal-weighted forecast dominates both individual forecasts provided that �2F2 lies in

the interval24k1�2F1 +
q
k21�

4
F1
+ 4k1�2"2�

2
F1
(�2F1 + �

2
"1)

2(�2F1 + �
2
"1)

;
k2�

2
F1
+
q
k22�

4
F1
+ 4k2�2"2�

2
F1
(�2F1 + �

2
"1)

2(�2F1 + �
2
"1)

35 : (22)

Figure 2 plots the lower and upper bands of this range of values for �2F2 . The lower band re�ects the

performance of the combination against the �rst model while the upper band re�ects performance

against the second model. As p gets higher, the likelihood that model 2 is the true model gets

lower so that, when this model is in fact valid, it must be better than model 1 by a larger margin,

i.e. �2F2 must rise. Conversely, the second model�s performance when it is valid cannot be too good

relative to model 1 - otherwise a strategy of only using the forecast from model 2 would be the

dominant strategy - which is the intuition for why the upper bound is needed. For values of �2F2
between the two bounds, the equal-weighted combination dominates the individual forecasts.

The above conclusions are not altered by allowing for non-zero correlations across the two

factors. After some algebra, we can modify equations (16) and (17) by adding a term

2p
�
3 + 2(�2"1=�

2
F1
+ �2"2=�

2
F2

�
)�F1F2

3(1� p)(1 + �2"2=�2F2)�
2
F1

to the right hand side of (16) and subtracting (1=3) times this term from the right hand side of

(17). As expected, this tends to narrow the range where the combined forecast works best.

5 Breaks and Empirical Forecasting Performance

To illustrate the performance of a range of forecast combination methods in the presence of breaks,

we �nally conduct a Monte Carlo experiment in the context of a simple common factor model.

5.1 Setup

The data set that we consider is the same as that used in Stock and Watson (2004). It consists

of up to 43 quarterly time series for the US economy over the period 1959Q1 �1999Q4, although

some series are available only for a shorter period. The 43 series comprise a range of asset prices

(including returns, interest rates and spreads), measures of real economic activity, wages and prices,

and various measures of the money stock.12 To achieve stationarity, the series are transformed as

needed to eliminate trends by taking �rst di¤erences, in many cases after taking logarithms. We

12Following Stock and Watson (2004) the variables are subject to the following transformations. First, in a few
cases the series contain a large outlier�such as spikes associated with strikes�and these outliers are replaced by
interpolated values. Second, series that show signi�cant seasonal variation are seasonally adjusted using a linear
approximation to X11 in order to avoid problems with non-linearities, see Ghysels, Granger and Siklos (1996). Third,
data series available on a monthly basis are aggregated to get quarterly observations.
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then standardize the transformed data so as they have sample mean equal to zero and unitary

sample variance. Let yi;t, i = 1; :::; N denote the individual standardized transformed data series

and assume the following factor structure for the transformed variables:

Yt = �Ft + �t; (23)

where Yt = (y1;t; :::; yN;t)
0, E [�0t�t] = R and the factor dynamics is assumed to be governed by a

�rst-order autoregressive process:

Ft = AFt�1 + ut; (24)

where E [u0tut] = 
. We estimate b� and bFt by principal components using a balanced panel subset
of the full data set that includes 36 series. We focus on the �rst four factors which account for 65%

of the variance of the panel. Given b� and bFt we can estimate b�t = Yt � b� bFt and bR = b�t0b�t=(T � 1).
We then �t a VAR(1) model to the �rst four factors and estimate bA and b
. Under a stable factor
setup, factors and data are simulated as follows:13

bFmt = bA bFmt�1 + umt ; umt � N(0; 
̂)bY mt = b� bFmt + �mt ; �mt � N(0; R̂); (25)

where m = 1; :::; 100 refers to the particular Monte Carlo simulation. We allow for instability in the

factor model by means of breaks in either the factor loadings, �, in the factor dynamics, A, or in

the covariance matrix of the factors, 
. Generalizing the setup from Section 4, breaks are generated

through an indicator series Smt from a Markov Switching process that can take two possible values

Smt = 1 or S
m
t = 2 with transition probabilities p11 = p22 = 0:8, where pij = prob(St = ijSt�1 = j).

We consider three breakpoint scenarios:

1. Breaks in the factor loadings:

bFmt = bA bFmt�1 + umt ; umt � N(0; 
̂)bY mt = 2� 1fSmt =1gb�1:2 bFm1:2;t + 2� 1fSmt =2gb�3:4 bFm3:4;t + �mt ; �mt � N(0; R̂)

13The recursion is initialized by setting bFm0 = N(0; 
̂). We simulate time series with 200 observations and discard
the �rst 65 observations to match the average length of the actual data.
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2. Breaks in the dynamics of the factors:

Smt =

266664
1fSmt =1g 1fSmt =1g 1fSmt =2g 1fSmt =2g

1fSmt =1g 1fSmt =1g 1fSmt =2g 1fSmt =2g

1fSmt =1g 1fSmt =1g 1fSmt =2g 1fSmt =2g

1fSmt =1g 1fSmt =1g 1fSmt =2g 1fSmt =2g

377775
bAmt = Smt � bAbFmt = bAmt bFmt�1 + umt ; umt � N(0; 
̂)bY mt = b� bFmt + �mt ; �mt � N(0; R̂)

3. Breaks in the covariance matrix of the factors:

 mt = 2� 1fSmt =1g + 0:5� 1fSmt =2g
	mt = [ 

m
t ;  

m
t ; 1= 

m
t ; 1= 

m
t ]b
mt = 	mt � b
bFmt = bA bFmt�1 + umt ; umt � N(0; 
̂mt )bY mt = b� bFmt + �mt ; �mt � N(0; R̂)

Following the analysis of Stock and Watson (2001), we focus on linear forecasting models.

Speci�cally, we consider simple autoregressions with lag lengths selected recursively using SIC with

up to L = 4 lags:

yi;t+1 = ci +
LX
l=0

�i;lyi;t�l + �i;t+1: (26)

We also consider all possible bivariate autoregressive models that include a single additional regres-

sor, yj;t, drawn from the full set of transformed variables:

yi;t+1 = ci +

L1X
l1=0

�i;l1yt�l1 +
L2X
l2=0

�i;j;l2yj;t�l2 + �i;t+1: (27)

Lag lengths are again selected recursively using the SIC with between one and four lags of yj;t
(L1 = 4) and between zero and four lags of yi;t (L2 = 4). Parameter estimation and forecasting

are also done recursively, using an expanding window. To estimate the parameters of the initial

AR models, we use the �rst 40 data points. For each of the simulated series we re-estimate the

parameters of the linear forecasting models and use these to produce out-of-sample forecasts.14

14To avoid extreme values, forecasts greater than four recursive standard deviations of the target variable are
replaced by the recursive mean of the dependent variable computed at the time of the forecast.
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We next present the results of the Monte Carlo experiment. We also report the results obtained

using actual data as a benchmark for the Monte Carlo experiment.

5.2 Empirical Results

Table 6 presents results for the out-of-sample MSFE performance of a range of alternative forecast

combination methods also considered by Aiol� and Timmermann (2006) such as the mean forecast,

triangular kernel weights (TK, which weights the forecasts by the inverse of their historical MSFE

rank) and weights that are inversely proportional to the MSFE (IMSFE). Out-of-sample MSFE

values are reported relative to the MSFE-values produced by the previous best (PB) forecasting

model. Because the previous best model at a given point in time depends on the individual models�

track record up to that point, the identity of the previous best model may change through time.

We �rst note that the performance of the equal-weighted forecast combination�i.e., the average
forecast computed across the 37 univariate and bivariate models�generally (across all variables)
is much better than the performance of the previous best model. Speci�cally, the ratio of out-of-

sample MSFE-values of the average forecast (mean) over the previous best model is 0.844. The

simulations with a stable factor structure (no break) in the second column generate a much higher

value of 0.97, suggesting that the improvement o¤ered by the forecast combinations cannot be well

explained in the context of a stable factor structure.

Turning to the results for the factor models with breaks, the form of the break process appears

to a¤ect the ability of the simulations to match the actual performance of the combinations. If

the break occurs in the covariance matrix of the factor innovations, the performance of the mean

forecast is slightly worse than under the stable factor structure (0.97). In contrast, if the break

a¤ects the factor loadings, the relative performance of the equal-weighted forecast improves to

around 0.93 which is more in line with the empirical data. Breaks in the coe¢ cients determining

the factor dynamics also lead to some improvement in the performance of the forecast combinations

relative to the single best model.

Finally consider the disaggregate results by category of the economic variables. It is clear

that breaks do not a¤ect all time series to the same extent. For example, breaks in the factor

loadings bring the simulated results more closely in line with the data for the monetary aggregates.

Such breaks do a far worse job for returns, interest rates and spreads although, in most cases, the

relative MSFE performance under breaks is closer to the results for the data than in the absence of

a break. Overall, the rather modest improvements in the performance of forecast combinations due

to breaks suggest that model instability in the form considered here can only be part of the reason

why forecast combinations perform better than a strategy of selecting the single best model.

6 Conclusion

Forecast combinations are in widespread use, representing a pragmatic approach for dealing with

the misspeci�cation biases that a¤ect individual forecasting models. Since individual models may
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be biased in di¤erent directions, it is important to consider which types of forecasts to combine, i.e.,

forecasts from linear versus nonlinear models, forecasts from univariate versus multivariate models

and combinations of time-series forecasts with subjective survey forecasts.

Our empirical results suggest that the simple equal-weighted survey forecast dominates the

best forecast from a time-series model around two-thirds of the time. However, there is some room

for improvement by using a simple equal-weighted average of survey forecasts and forecasts from

various time-series models and this approach rarely generates poor out-of-sample forecasts. Even if

forecast combinations do not always deliver the most precise forecasts they generally do not deliver

poor performance and so from a �risk�perspective represent a safe choice.

We also present analytical and simulation results on the performance of a range of forecast

combination schemes under instability in dynamic factor models characterizing the dependence

structure across variables. These results are modestly encouraging in that they suggest that the

performance of forecast combinations gets closer to what is observed in actual data under a factor

model that is subject to occasional breaks in parameters, particularly if they take the form of a

change in the factor loadings or in the coe¢ cients determining the factor dynamics.

References

[1] Aiol�, M. and A. Timmermann, 2006, Persistence in Forecasting Performance and Conditional
Combination Strategies. Journal of Econometrics, 135, 31-53.

[2] Ang, A., G. Bekaert, and MWei, 2007, Do Macro Variables, Asset Markets or Surveys Forecast
In�ation Better? Journal of Monetary Economics, 54, 1163-1212.

[3] Artis, M., A. Banerjee and M. Marcellino, 2005, Factor Forecasts for the U.K. Journal of
Forecasting, 24, 279-298.

[4] Bai, J. and S. Ng, 2002, Determining the Number of Factors in Approximate Factor Models.
Econometrica 70, 191-221.

[5] Bates, J.M. and C.W.J. Granger, 1969, The Combination of Forecasts. Operations Research
Quarterly 20, 451-468.

[6] Bovin, J., and S. Ng, 2006, Are More Data Always Better for Factor Analysis? Journal of
Econometrics, 132, 169-194.

[7] Capistrán, C., and A. Timmermann, 2009, Forecast Combination with Entry and Exit of
Experts. Journal of Business and Economic Statistics, 27(4), 428-440.

[8] Chong, Y.Y, and D.F. Hendry, 1986, Econometric Evaluation of Linear macro-economic Mod-
els. Review of Economic Studies, 53, 671-690.

[9] Clemen, R.T., 1989, Combining Forecasts: A Review and Annotated Bibliography. Interna-
tional Journal of Forecasting, 5, 559-581.

[10] Clements, M.P. and D. I. Harvey, 2010, Forecast Encompassing Tests and Probability Fore-
casts. Forthcoming in Journal of Applied Econometrics.

20



[11] Clements, M.P. and D.F. Hendry, 1998, Forecasting Economic Time Series. Cambridge Uni-
versity Press.

[12] Clements, M.P. and D.F. Hendry, 1999, Forecasting Non-stationary Economic Time Series.
The MIT Press.

[13] Clements, M.P. and D.F. Hendry, 2006, Forecasting with Breaks. Pages 605-658 in Elliott,
G., C.W.J. Granger and A. Timmermann (eds.), Handbook of Economic Forecasting vol. 1.
North-Holland.

[14] Corradi, V., A. Fernandez, and N.R. Swanson, 2009, Information in the Revision Process of
Real-time Datasets. Journal of Business and Economic Statistics, 27(4), 455-467.

[15] Diebold, F.X. and P. Pauly, 1987, Structural Change and the Combination of Forecasts. Journal
of Forecasting ,6, 21-40.

[16] Elliott, G., and A. Timmermann, 2005, Optimal Forecast Combination under Regime Switch-
ing. International Economic Review, 46(4), 1081-1102.

[17] Engelberg, J., C.F. Manski and J. Williams, 2009, Assessing the Temporal Variation of Macro-
economic Forecasts by a Panel of Changing Composition. Mimeo, Northwestern.

[18] Forni, M., M. Hallin, M. Lippi, and L. Reichlin, 2000, The Generalized Factor Model: Identi-
�cation and Estimation. The Review of Economics and Statistics, 82, 540-554.

[19] Forni, M, M. Hallin, M. Lippi, and L. Reichlin, 2005, The Generalized Dynamic Factor Model:
Forecasting and One Sided Estimation. Journal of the American Statistical Association, 100,
830-840.

[20] Garratt, A., G. Koop, E. Mise, and S.P. Vahey, 2009, Real-time Prediction with U.K. Monetary
Aggregates in the Presence of Model Uncertainty. Journal of Business and Economic Statistics,
27(4), 480-491.

[21] Ghysels, E., C.W.J. Granger and P.L. Siklos, 1996, Is Seasonal Adjustment a Linear or Non-
linear Data Filtering Process? Journal of Business and Economic Statistics, 14, 374-86.

[22] Granger, C.W.J. and R. Ramanathan, 1984, Improved Methods of Combining Forecasts. Jour-
nal of Forecasting, 3, 197-204.

[23] Granger, C.W.J. and Y. Jeon, 2004, Thick Modeling, Economic Modelling, 21, 323-343.

[24] Hendry, D.F. and M.P. Clements, 2004, Pooling of Forecasts. Econometrics Journal, 7, 1-31.

[25] Marcellino, M., 2004, Forecast Pooling for Short Time Series of Macroeconomic Variables.
Oxford Bulletin of Economic and Statistics, 66, 91-112.

[26] Pesaran, M.H. and A. Timmermann, 2005, Small Sample Properties of Forecasts from Autore-
gressive Models under Structural Breaks. Journal of Econometrics, 129, 183-217.

[27] Smith, J. and K.F. Wallis, 2009, A Simple Explanation of the Forecast Combination Puzzle.
Oxford Bulletin of Economics and Statistics, 71(3), 331-355.

[28] Stock, J.H. and M.W. Watson, 1996, Evidence on Structural Instability in Macroeconomic
Time Series Relations. Journal of Business and Economic Statistics, 14, 11-30.

21



[29] Stock, J.H. and M. Watson, 2001, A Comparison of Linear and Nonlinear Univariate Models
for Forecasting Macroeconomic Time Series, in R.F. Engle and H. White, eds., Festschrift in
Honour of Clive Granger. Cambridge University Press, 1-44.

[30] Stock, J.H. and M.W. Watson 2002. Macroeconomic Forecasting Using Di¤usion Indexes.
Journal of Business and Economic Statistics, 20, 147-162.

[31] Stock, J.H. and M. Watson, 2004, Combination Forecasts of Output Growth in a Seven-
Country Data Set. Journal of Forecasting, 23, 405-430.

[32] Stock, J.H., and M.W. Watson, 2009, Forecasting in Dynamic Factor Models Subject to Struc-
tural Instability. In J.L. Castle and N. Shephard (eds.), The Methodology and Practice of
Econometrics. A Festschrift in Honour of David Hendry. Oxford University Press, 173-205.

[33] Swanson, N.R. and H. White, 1997, Forecasting Economic Time Series Using Flexible Versus
Fixed Speci�cation and Linear versus Nonlinear Econometric Models. International Journal of
Forecasting 13, 439�462.

[34] Teräsvirta, T., 2006, Forecasting Economic Variables with Nonlinear Models. In Graham El-
liott, Clive W.J. Granger and Allan Timmermann (eds.), Handbook of Economic Forecasting.
Elsevier, 413�457.

[35] Timmermann, A., 2006, Forecast Combinations. In Graham Elliott, Clive W.J. Granger and
Allan Timmermann (eds.), Handbook of Economic Forecasting. Elsevier, 135�196.

22



Table 1. Variable description 

Name Description Transformation Sample 

CPI 

Forecasts for the CPI Inflation 
Rate. SA, annual rate, 
percentage points. Quarterly 
forecasts are annualized 
quarter-over-quarter percent 
changes. 

None 
1981q3- 
2006q4 

CPROF 

Forecasts for the quarterly level 
of nominal corporate profits 
after tax excluding IVA and 
CCAdj. SA, annual rate, 
billions of dollars. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
CPROF

CPROF  1981q3- 
2006q4 

HOUSING 
Forecasts for the quarterly 
average level of housing starts. 
SA, annual rate, millions. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
HOUSING

HOUSING  
1981q3- 
2006q4 

INDPROD 

Forecasts for the quarterly 
average of the index of 
industrial production. SA, 
index, base year varies. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
INDPROD

INDPROD  
1981q3- 
2006q4 

NGDP 
Forecasts for the quarterly level 
of nominal GDP. SA, annual 
rate, billions of dollars. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
NGDP

NGDP  1981q3- 
2006q4 

PGDP 
Forecasts for the quarterly level 
of the GDP price index. SA, 
index, base year varies. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
PGDP

PGDP  1981q3- 
2006q4 

RCBI 

Forecasts for the quarterly level 
of real change in private 
inventories. SA, annual rate, 
base year varies. 

None 
1981q3- 
2006q4 

RCONSUM 

Forecasts for the quarterly level 
of real personal consumption 
expenditures. SA, annual rate, 
base year varies. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
RCONSUM

RCONSUM  
1981q3- 
2006q4 

RFEDGOV 

Forecasts for the quarterly level 
of real federal government 
consumption and gross 
investment. SA, annual rate, 
base year varies. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
RFEDGOV

RFEDGOV  
1981q3- 
2006q4 

RGDP 
Forecasts for the quarterly level 
of real GDP. SA, annual rate, 
base year varies. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
RGDP

RGDP  1981q3- 
2006q4 

RRESINV 

Forecasts for the quarterly level 
of real residential fixed 
investment. SA, annual rate, 
base year varies. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
RRESINV

RRESINV  
1981q3- 
2006q4 

RSLGOV 

Forecasts for the quarterly level 
of real state and local 
government consumption and 
gross investment. SA, annual 
rate, base year varies. 

GR QoQ change, expressed in annualized 
percentage points: 

400ln
1

















ht

ht
RSLGOV

RSLGOV  
1981q3- 
2006q4 

TBILL 
Forecasts for the quarterly 
average three-month Treasury 
bill rate. Percentage points. 

None 
1982q1- 
2006q4 

UNEMP 
Forecasts for the quarterly 
average unemployment rate. 
SA, percentage points. 

None 
1981q3- 
2006q4 

Notes: GR QoQ stands for Growth Rate, Quarter on Quarter. 
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Table 2. Forecast performance of individual models and survey information 
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RMSFE

AR AR_FAC LSTAR NNET EW IMSE ISIC

h = 1 1.4516 0.9996 0.6204 1.0672 0.9574 0.9663 0.9881
h = 2 1.5634 0.9880 1.0014 1.1564 0.8903 0.8986 0.9529
h = 3 1.5368 1.0396 1.0671 1.2740 0.9008 0.9182 0.9507
h = 4 1.5801 1.0497 1.0754 1.3831 0.9030 0.9047 0.9271

h = 1 20.4380 0.9951 0.9539 0.9599 0.8872 0.9044 0.9091
h = 2 20.3715 1.0909 0.9832 0.9867 0.8595 0.8916 0.8981
h = 3 20.4939 1.0016 1.0271 1.0217 0.8662 0.8787 0.8883
h = 4 20.8992 1.0224 1.0057 0.9346 0.8935 0.8916 0.9036

h = 1 27.8404 1.0101 0.8981 0.8631 0.8918 0.8919 0.8905
h = 2 28.1350 0.9823 1.0728 1.0349 0.9459 0.9457 0.9417
h = 3 29.1552 1.0490 0.9222 0.9431 0.8761 0.8771 0.8759
h = 4 28.1420 1.0621 0.9795 0.9791 0.8939 0.8949 0.8996

h = 1 3.6548 0.8666 0.6994 1.2522 0.9649 0.9639 0.9623
h = 2 4.2634 1.0219 1.0979 1.0137 0.8996 0.8984 0.8935
h = 3 4.3009 1.0124 0.9127 1.0012 0.9404 0.9338 0.9278
h = 4 4.1792 1.0200 1.1211 1.0969 0.9837 0.9657 0.9619

h = 1 2.1161 1.1249 0.8199 1.1649 0.9707 1.0214 1.0507
h = 2 2.1398 1.1134 1.2885 1.2668 0.9799 1.0117 1.0258
h = 3 2.3450 0.9432 0.9834 1.1161 0.9392 0.9550 0.9662
h = 4 2.1909 1.0621 1.2115 1.3317 1.0360 1.0255 1.0504

h = 1 0.9086 1.0228 0.7594 1.4095 0.9260 0.9080 0.9126
h = 2 1.0238 0.9932 0.9148 1.2537 0.8473 0.8002 0.8033
h = 3 1.0053 1.0035 0.9357 1.4941 0.9218 0.8418 0.8411
h = 4 1.0485 1.3620 1.1592 1.3751 0.9521 0.8752 0.8696

h = 1 28.1468 0.9540 0.4302 0.8633 1.0957 1.0931 1.0902
h = 2 36.6898 0.9593 0.9213 0.9670 0.9339 0.9335 0.9263
h = 3 39.4043 0.8966 1.0433 0.9225 0.9385 0.9266 0.9144
h = 4 39.8177 0.9156 0.9721 0.9972 0.9673 0.9487 0.9406

h = 1 1.9999 1.0293 0.9558 1.1211 0.9549 0.9695 1.0161
h = 2 1.9889 1.2232 1.0656 1.1779 0.9768 0.9877 1.0308
h = 3 2.0115 1.0923 0.9837 1.1271 1.0436 1.0425 1.0840
h = 4 2.0667 1.0000 1.1801 1.1353 0.9773 0.9970 1.0324

h = 1 7.6616 1.0252 1.2773 1.3405 0.9222 0.9252 0.9304
h = 2 7.6475 1.1370 1.2568 1.2912 0.9363 0.9415 0.9457
h = 3 7.6041 1.0647 1.1681 1.1850 0.9432 0.9488 0.9528
h = 4 7.6318 1.1248 1.0534 1.2538 0.9556 0.9625 0.9646

RFEDGOV

HOUSING

NGDP

RCBI

PGDP

RMSFE ratios with respect to AR

INDPROD

RCONSUM

Horizon Time Series Models Survey Forecasts

CPI

CPROF

 



Table 2. Forecast performance of individual models and survey information (Cont.) 
RMSFE

AR AR_FAC LSTAR NNET EW IMSE ISIC

h = 1 2.0670 0.9352 0.6811 0.7594 0.8715 0.8753 0.8912
h = 2 2.1139 0.9507 0.9241 1.0509 0.8968 0.8988 0.9093
h = 3 2.1729 0.9289 0.9924 0.9729 0.9208 0.9325 0.9253
h = 4 2.1054 1.0655 1.0153 1.0723 0.9577 0.9656 0.9636

h = 1 9.9230 0.9610 0.7109 0.8241 1.0027 1.0045 1.0078
h = 2 11.3842 1.1000 1.0877 0.9914 0.9312 0.9305 0.9309
h = 3 11.7252 1.1484 0.9988 1.0611 0.9206 0.9190 0.9352
h = 4 12.6665 0.9942 0.8957 0.9313 0.8655 0.8677 0.8699

h = 1 2.7149 1.0282 0.9012 0.8349 0.8473 0.8610 0.8707
h = 2 2.6699 1.0127 1.0455 1.1501 0.8757 0.8742 0.8842
h = 3 2.6808 1.0094 1.0232 0.9798 0.8876 0.8927 0.8947
h = 4 2.6475 1.0000 1.0508 1.0174 0.9315 0.9381 0.9384

h = 1 0.3504 1.0445 0.6069 5.0496 1.1575 1.3457 1.6660
h = 2 0.7697 1.1151 0.9426 2.1520 0.9629 0.9653 1.0713
h = 3 1.1940 1.1243 1.0968 2.0890 0.9102 0.8725 0.8884
h = 4 1.6074 1.0105 1.0824 1.7213 0.8760 0.8007 0.7985

h = 1 0.2159 0.8624 1.2367 4.9265 1.1009 1.0412 1.9799
h = 2 0.3771 0.7867 1.0102 2.2240 0.8901 0.8352 1.5993
h = 3 0.5835 0.7581 1.0636 1.8224 0.7877 0.7629 1.3319
h = 4 0.7487 0.8431 1.1129 1.5891 0.7666 0.8509 1.2629

UNEMP

TBILL

RRESINV

RSLGOV

Horizon Time Series Models Survey Forecasts

RMSFE ratios with respect to AR

RGDP

 
Notes: The root mean squared forecast error (RMSFE) is calculated with 68 out-of-sample forecasts, except for 
the T-bill rate which only uses 66 forecasts. AR forecasts are based on autoregressive models with up to eight 
lags and lag length selected by the SIC through an exhaustive search. AR_FAC is the AR model augmented with 
a maximum of five factors extracted from 110 underlying series. LSTAR is the Logistic Smooth Transition 
Autoregressive model. NNET is a Neural Network with one hidden layer. EW refers to the consensus of the 
Survey of Professional Forecasters (SPF) giving equal weights to each forecaster. IMSE and ISIC refer to the 
combinations of the SPF data with weights estimated by the inverse of the individual forecasters’ RMSFE or 
weights proportional to the SIC of each forecaster with at least 10 continuous forecasts. 
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Table 3. Forecast performance of combinations of AR, factor and survey 
forecasts 

Equal Weights

AR_EW AR_FAC_EW AR_FAC_EW

h = 1 0.9745 1.0166 0.9567
h = 2 0.9295 0.9421 0.9387
h = 3 0.9671 1.0080 0.9595
h = 4 0.9845 1.0408 0.9612

h = 1 0.9816 1.0315 0.9384
h = 2 1.0327 1.1044 0.9441
h = 3 1.0328 1.0594 0.9278
h = 4 1.0520 1.1093 0.9382

h = 1 1.0331 1.1000 0.9370
h = 2 1.0471 1.0314 0.9452
h = 3 1.0341 1.0490 0.9417
h = 4 1.1200 1.2472 0.9591

h = 1 1.0449 0.8666 0.8700
h = 2 1.0193 1.0486 0.9224
h = 3 1.0121 1.0574 0.9379
h = 4 1.0066 1.0269 0.9657

h = 1 1.0405 1.0714 0.9741
h = 2 1.0130 1.1150 0.9757
h = 3 1.0269 1.0122 0.9142
h = 4 1.0223 1.2418 0.9892

h = 1 0.8275 0.8298 0.8731
h = 2 0.9040 0.9619 0.9281
h = 3 0.9450 0.9507 0.9576
h = 4 0.9787 1.5257 1.0745

h = 1 1.0113 0.9873 0.9447
h = 2 1.0565 0.9592 0.9172
h = 3 1.0318 0.9204 0.9163
h = 4 1.0276 0.9156 0.9390

h = 1 0.9521 1.0611 0.9209
h = 2 1.0000 1.2563 1.0130
h = 3 1.0000 1.2267 1.0036
h = 4 1.0000 1.0000 0.9715

NGDP

PGDP

RCBI

RCONSUM

INDPROD

RegressionHorizon

RMSFE ratios with respect to AR

CPI

CPROF

HOUSING

 
 26



Table 3. Forecast performance of combinations of AR, factor and survey 
forecasts (Cont.) 

Equal Weights

AR_EW AR_FAC_EW AR_FAC_EW

h = 1 0.8686 0.9268 0.9645
h = 2 0.9883 0.9967 0.9733
h = 3 0.9669 0.9456 0.9658
h = 4 0.9457 0.9457 0.9686

h = 1 0.9138 0.9304 0.8801
h = 2 0.9986 0.9607 0.8910
h = 3 1.0268 0.9185 0.9075
h = 4 0.9999 1.0655 0.9817

h = 1 0.9896 0.9468 0.9322
h = 2 0.9827 1.0783 0.9819
h = 3 1.0992 1.2111 0.9780
h = 4 1.0000 0.9961 0.9167

h = 1 0.9462 1.0118 0.9192
h = 2 1.0000 1.0127 0.9297
h = 3 1.0000 1.0092 0.9464
h = 4 1.0105 1.0105 0.9615

h = 1 1.0000 1.0445 1.0220
h = 2 1.0255 1.1238 0.9841
h = 3 1.0183 1.1634 0.9599
h = 4 1.0044 1.0196 0.8883

h = 1 1.0237 0.8624 0.8985
h = 2 1.0283 0.8161 0.8253
h = 3 1.0005 0.7920 0.7922
h = 4 1.0087 0.8543 0.8143

Horizon Regression

RMSFE ratios with respect to AR

RSLGOV

TBILL

UNEMP

RRESINV

RGDP

RFEDGOV

 

Notes: RMSFE is calculated with 68 out-of-sample forecasts, except for the TBILL rate which uses only 66 
forecasts. AR_EW refers to the AR model augmented with the equally-weighted survey (SPF) forecasts. 
AR_FAC_EW refers to the AR model augmented by a maximum number of five common factors as well as the 
equally-weighted survey (SPF) forecasts. 
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Table 4. Forecast performance of combinations of AR, nonlinear and factor models  

 28

AR_LSTAR AR_NNET AR_FAC_ AR_FAC_ AR_FAC_ AR_FAC_
LSTAR NNET LSTAR NNET

h = 1 0.4000 0.8869 0.4072 1.0149 0.8355 0.9203
h = 2 0.9994 1.0000 0.9892 0.9880 0.9539 1.0046
h = 3 1.0000 1.0000 1.0396 1.0194 1.0042 1.0480
h = 4 1.0059 1.0000 1.0582 1.2052 0.9870 1.0386

h = 1 1.0000 1.0000 0.9951 0.9951 0.9636 0.9646
h = 2 1.0000 1.0000 1.0909 1.0909 0.9996 0.9997
h = 3 1.0000 1.0000 1.0016 1.0016 0.9774 0.9776
h = 4 1.0147 1.0000 1.0345 1.0224 0.9768 0.9524

h = 1 1.0000 0.9340 1.0330 0.9983 0.9366 0.9366
h = 2 0.9946 1.0061 0.9964 0.9848 0.9781 0.9789
h = 3 1.0000 1.0000 1.0490 1.0490 0.9609 0.9689
h = 4 0.9981 0.9920 1.0641 1.1166 0.9782 0.9818

h = 1 0.5642 0.8945 0.4813 0.7868 0.6616 0.7962
h = 2 1.0000 1.0025 1.0205 1.0188 0.9415 0.9464
h = 3 1.0000 1.0005 1.0124 1.0124 0.9441 0.9378
h = 4 1.0000 1.0000 1.0200 1.0200 0.9978 0.9892

h = 1 0.9158 1.0000 1.0220 1.1249 0.9366 0.9754
h = 2 1.0476 1.1034 1.1301 1.1454 1.0538 1.0437
h = 3 1.0000 1.0000 0.9432 0.9432 0.9284 0.9645
h = 4 1.0000 1.0170 1.0627 1.1252 1.0487 1.0713

h = 1 0.8925 0.9086 0.9104 0.9293 0.8195 0.9613
h = 2 0.9717 1.0238 1.0305 1.0169 0.9405 1.0197
h = 3 0.9760 1.0053 0.9806 1.0259 0.9427 1.0846
h = 4 1.0485 1.0745 1.4506 1.4949 1.0863 1.1750

h = 1 0.5329 0.8484 0.5449 0.8096 0.7280 0.8622
h = 2 1.0000 1.0000 0.9593 0.9844 0.9219 0.9307
h = 3 1.0052 1.0111 0.8966 0.9242 0.9465 0.9102
h = 4 1.0000 1.0000 0.9156 0.9156 0.9412 0.9512

h = 1 1.0000 1.0000 1.0293 1.0293 0.9215 0.9682
h = 2 1.0000 1.0000 1.2584 1.2507 1.0125 1.0348
h = 3 1.0000 1.0000 1.0923 1.0923 0.9620 0.9707
h = 4 0.9982 1.0000 0.9982 1.0000 1.0187 0.9815

RMSFE ratios with respect to AR

PGDP

HOUSING

Regression
Horizon

RCONSUM

RCBI

Equal Weights

CPI

CPROF

INDPROD

NGDP

 



Table 4. Forecast performance of combinations of AR, nonlinear and factor 
models (Cont.) 

AR_LSTAR AR_NNET AR_FAC_ AR_FAC_ AR_FAC_ AR_FAC_
LSTAR NNET LSTAR NNET

h = 1 1.1174 1.0000 1.1943 1.0252 1.0591 1.0772
h = 2 1.0000 1.0000 1.3256 1.1370 1.0521 1.0609
h = 3 1.0000 1.0000 1.0647 1.0647 1.0030 1.0148
h = 4 1.0000 1.0000 1.1248 1.1248 0.9944 1.0203

h = 1 0.9640 0.8202 0.9427 0.8133 0.8281 0.8016
h = 2 0.9731 1.0000 0.8938 0.9324 0.9132 0.9307
h = 3 0.9979 1.0000 0.9401 0.9408 0.9271 0.9211
h = 4 1.0552 1.0064 1.0013 1.1346 0.9911 1.0192

h = 1 0.7517 0.8026 0.7522 0.8186 0.7979 0.7742
h = 2 1.0050 1.0000 1.1908 1.0466 1.0351 0.9999
h = 3 0.9979 1.0000 1.1776 1.1398 1.0245 1.0067
h = 4 1.0006 1.0072 1.0013 0.9935 0.9529 0.9406

h = 1 1.0000 0.9553 1.0275 1.0719 0.9286 0.8907
h = 2 1.0000 0.9951 1.0142 1.0094 0.9706 1.0021
h = 3 1.0000 1.0072 1.0094 1.0157 0.9529 0.9591
h = 4 1.0000 1.0000 1.0000 1.0000 0.9828 0.9502

h = 1 0.1887 1.1402 0.1884 1.1194 0.5246 1.9548
h = 2 0.9390 1.0223 0.9034 1.1241 0.9379 1.2920
h = 3 1.0000 1.0000 1.1181 1.1243 1.0100 1.2633
h = 4 1.0454 1.0027 1.0165 1.0271 0.9476 1.1442

h = 1 0.4223 1.0230 0.4324 0.8681 0.4638 1.7827
h = 2 1.0591 1.0000 0.7867 0.7867 0.8151 1.0946
h = 3 1.0229 1.0000 0.7428 0.7942 0.8428 0.9711
h = 4 1.0000 1.0068 0.7827 0.8385 0.8667 0.9409

RMSFE ratios with respect to AR

RSLGOV

TBILL

RFEDGOV

RGDP

UNEMP

Regression

RRESINV

Equal Weights
Horizon

 

Notes: RMSFE-values are calculated with 68 out-of-sample forecasts, except for the T-bill rate which 
only uses 66 forecasts. AR_LSTAR and AR_NNET refer to the AR model augmented with forecasts 
generated by the Logistic Smooth Transition Autoregressive models and the Neural Network models, 
respectively. AR_FAC_LSTAR and AR_FAC_NNET refer to the AR_FAC model augmented by the 
LSTAR and NNET forecasts, respectively.  
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Table 5. Forecast performance of combinations of all models 

Regression Equal Weights Regression Equal Weights

AR_FAC_EW_ AR_FAC_EW_ AR_FAC_EW_ AR_FAC_EW_
LSTAR_NNET LSTAR_NNET LSTAR_NNET LSTAR_NNET

h = 1 0.4229 0.8296 1.0611 0.9350
h = 2 0.9421 0.9420 1.2835 0.9960
h = 3 0.9871 0.9934 1.2795 0.9561
h = 4 1.2098 0.9768 0.9982 0.9849

h = 1 1.0315 0.9341 0.9842 1.0540
h = 2 1.1035 0.9477 1.1972 1.0431
h = 3 1.0594 0.9380 0.9456 0.9924
h = 4 1.1465 0.9221 1.1267 0.9828

h = 1 1.1149 0.8903 0.8985 0.7654
h = 2 0.9988 0.9600 0.8930 0.8952
h = 3 1.0490 0.9190 0.9418 0.9160
h = 4 1.3654 0.9425 1.2174 0.9825

h = 1 0.4875 0.6585 0.6751 0.7488
h = 2 1.0262 0.9202 1.1208 0.9736
h = 3 1.0565 0.9187 1.2364 0.9663
h = 4 1.0269 0.9817 1.0056 0.8997

h = 1 1.0197 0.9128 1.0680 0.8589
h = 2 1.1829 1.0148 1.0113 0.9608
h = 3 0.9991 0.9358 1.0094 0.9240
h = 4 1.2962 1.0616 1.0820 0.9462

h = 1 0.9146 0.9401 0.1876 1.2180
h = 2 0.9396 0.9222 0.9134 1.0877
h = 3 0.9593 0.9713 1.1640 1.1035
h = 4 1.4551 1.0179 1.0400 1.0167

h = 1 0.5541 0.7745 0.4356 1.1121
h = 2 0.9843 0.9057 0.8161 0.9032
h = 3 0.9145 0.9230 0.8158 0.8957
h = 4 0.9156 0.9416 0.8228 0.8937

RMSFE ratios with respect to AR

RSLGOV

Horizon

TBILL

UNEMP

RCONSUM

RFEDGOV

RGDP

RRESINV

PGDP

CPI

CPROF

RCBI

HOUSING

INDPROD

NGDP

 
Notes: RMSFE-values are calculated with 68 out-of-sample forecasts, except for the T-bill rate 
which only uses 66 forecasts. AR_FAC_EW_LSTAR_NNET combines the AR, AR_FAC, EW, 
LSTAR and NNET forecasts. 
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Table 6.Out-of-sample MSFE-relative to that of the previous best model using 
an expanding window – across variables 

Mean 0.844 0.970 0.935 0.953 0.972
TK 0.837 0.958 0.931 0.951 0.960
PB 1.000 1.000 1.000 1.000 1.000
IMSFE 0.853 0.970 0.935 0.953 0.972

Mean 0.777 0.967 0.928 0.954 0.967
TK 0.783 0.957 0.926 0.952 0.958
PB 1.000 1.000 1.000 1.000 1.000
IMSFE 0.777 0.966 0.929 0.954 0.968

Mean 0.990 0.983 0.947 0.949 0.990
TK 0.967 0.960 0.940 0.946 0.966
PB 1.000 1.000 1.000 1.000 1.000
IMSFE 1.004 0.981 0.947 0.949 0.988

Mean 0.814 0.965 0.937 0.953 0.969
TK 0.809 0.955 0.934 0.950 0.959
PB 1.000 1.000 1.000 1.000 1.000
IMSFE 0.823 0.964 0.937 0.952 0.968

Mean 0.918 0.975 0.937 0.956 0.975
TK 0.894 0.961 0.932 0.952 0.961
PB 1.000 1.000 1.000 1.000 1.000
IMSFE 0.939 0.975 0.937 0.956 0.975

Data

Simulation

No Breaks Breaks in the 
Factor Loadings

Breaks in the 
Factor Dynamics

Breaks in the 
Covariance Matrix 

of Factors

Panel E: Monetary Aggregates

Panel A: All Variables

Panel B: Returns, Interest Rates and Spreads

Panel C: Measures of Economic Activity

Panel D: Prices and Wages

 
Notes: Mean refers to the mean forecast, TK to the combination using triangular kernel weights 
(i.e., inverse of historical MSFE rank), PB stands for the previous best forecasts, and IMSFE is 
a combination with weights that are inversely proportional to the MSFE. 
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Figure 1. MSFE from model 1, model 2 and equally combined models as a 

function of p, for different setups 
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Figure 2. Equal-Weighted Forecast vs Best Model Forecast 

 
Notes: The bands describe the regions in which the population MSFE of the equal-weighted forecast 
is lower than the population MSFE of the best model as a function of the relative variance of the 
factors, for p=0.1, 0.5. 
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