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Abstract

We develop a two-sector monetary model with a centralized and decentralized market. Activities in

the centralized market resemble those in a standard New Keynesian economy with price rigidities. In

the decentralized market agents engage in bilateral exchanges for which money is essential. The model

is estimated and evaluated based on postwar U.S. data. We document its money demand properties and

determine the optimal long-run inflation rate that trades off the New Keynesian distortion against the

distortion caused by taxing money and hence transactions in the decentralized market. We find that

target rates of -1% or less are desirable, which contrasts with policy recommendations derived from a

cashless New Keynesian model.
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1 Introduction

The standard framework used for monetary policy analysis for the last decade in academic research, especially

at central banks, the so-called New-Keynesian model, is one where various nominal rigidities are central.

The framework prescribes near-zero inflation as a long-run goal. This policy prescription arises from the

most stripped-down version of the framework, where capital is absent and the only friction is that firms

face a cost for adjusting nominal prices, and it holds true in much more complicated environments. A large

fraction of models within this framework adopt a cashless perspective under which the motive that generates

money demand is not made explicit. The prevalent view is that the explicit modeling of money does not alter

the welfare prescriptions of New Keynesian models. Only a handful of previous studies carefully consider

frictions that make money essential alongside nominal rigidities when studying optimal monetary policy. We

are contributing to this literature by developing a new model in which demand for money arises because

currency facilitates bilateral exchange in decentralized markets and nominal rigidities are present in the

centralized markets. We fit different versions of our model to aggregate U.S. data using Bayesian techniques.

According to our estimates, negative target inflation rates in the range of -2% to -1% are preferable to a zero

inflation target.

Our contributions are threefold. First, we develop a dynamic stochastic general equilibrium (DSGE)

model that bridges the gap between the search-based monetary theory initiated by Kiyotaki and Wright

(1989) and the literature on estimable New Keynesian DSGE models laid out in the textbook by Woodford

(2003). In our model, following the basic structure of Lagos and Wright (2005, henceforth LW) and Aruoba,

Waller, and Wright (2008, henceforth AWW), in every period economic activity takes place in two markets.

In a decentralized market (DM), households engage in bilateral trade with a fraction of households producing

and a fraction of households consuming. The terms of trade in the bilateral exchange are either determined

by bargaining (B) or Walrasian price taking (PT). The centralized market (CM) resembles a standard DSGE

model with admittedly reduced form nominal rigidities, where production is carried out by firms. Physical

capital is a factor of production in both markets. Demand for money arises because the particular frictions

in the decentralized markets necessitate the facilitation of transactions by a medium of exchange.

Our model specification adds nominal rigidities in the centralized market, represents monetary policy by

an interest rate feedback rule, and introduces stochastic disturbances to technology, preferences, government

spending, and monetary policy to make the model amenable to econometric estimation methods. While the

structure of our model to a large extent resembles that of a canonical New Keynesian model with capital, the

presence of the decentralized market provides a micro-founded motive for holding money and creates a non-

separability between consumption and the value of real money balances. Most important for the subsequent

policy analysis, our model incorporates two key channels through which inflation can affect welfare. First,
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non-zero inflation rates lead to relative price distortions and inefficient use of intermediate goods because it is

costly for firms to adjust nominal prices. We label this channel the New Keynesian channel. Second, non-zero

nominal interest rates constitute a tax on money holdings and hence depress activity in the decentralized

market. We label this channel the Friedman channel.

The second contribution is the estimation and evaluation of our proposed model, using post-war U.S.

data on output, inflation, interest rates, and inverse M1 velocity. While most of the work on search-based

monetary models has been theoretical, we use the Bayesian techniques surveyed in An and Schorfheide

(2007) to conduct a full-fledged econometric analysis. In particular, we obtain posterior distributions for the

parameters that control the strength of the New Keynesian and the Friedman channels. A novel feature of

our estimation is that we construct a measure of the target inflation rate from low frequency dynamics of

inflation as well as inflation expectations and then use this series along with output, inflation, interest rates,

and velocity to estimate the DSGE model. To assess the fit of the search-based DSGE model we also estimate

a vector autoregression (VAR) and a standard New Keynesian model in which real money balances enter

the households’ utility function (MIU) in a separable fashion and conduct a detailed comparison. Under the

assumption that agents forecast the target inflation rate with a random walk model, we are able to identify

impulse responses to a target inflation rate shock in the DSGE models as well as the VAR. Responses to

this shock are informative for the subsequent policy analysis in which we will examine the effect of target

inflation changes on welfare. An impulse response function comparison shows that the Bayesian estimates of

different versions of the DSGE models only capture the small short-run elasticity of velocity with respect to

interest rates, but not the larger long-run elasticity. In turn, we generate a second set of loss-function based

estimates, which reproduce the long-run (but not the short-run) interest rate elasticity of money demand.

The third contribution of the paper is the policy analysis where we examine steady state welfare effects

of changes in the target inflation rate. In particular, we compute measures of welfare gain of changing the

target inflation from our end-of-sample value of 2.5% to a new value π̄∗. Since both the New Keynesian and

the Friedman channels “agree” that positive target inflation rates are non-desirable, we focus on the range

of π̄∗ ∈ [−2.5%, 0%], where 2.5% corresponds to the real rate in our model. At π̄∗ = −2.5% the nominal

interest rate is zero which is the celebrated “Friedman rule.”

The strength of the New Keynesian channel is determined by the probability with which firms are able

to re-optimize their prices – we use a Calvo (1983) style nominal rigidity in the centralized market – and

the degree at which non-optimizing firms index their past price to lagged inflation. The Friedman channel

is to a large extent controlled by the probability with which households engage in bilateral exchange in the

decentralized market, which in turn determines the semi-interest elasticity of money demand. Moreover, as

emphasized in AWW, determining the terms of trade in the DM by bargaining creates two hold-up problems

that amplify the welfare costs of inflation. With posterior draws of the DSGE model parameters in hand,



This Version: March 13, 2009 3

we ask the following question. Given π̄∗, what is the probability that the regret – defined as the difference

of welfare gain between the target inflation rate that is optimal for a particular parameter draw and π̄∗

– is small. We find that a small regret is attained for most versions of our search-based model for target

inflation rates of −1% or less, which contrasts with the policy recommendation derived from a cashless New

Keynesian model.

Our paper is related to several strands of the literature in monetary economics and the estimation of

DSGE models. While the literature on estimated DSGE models with New Keynesian features is large – see

Schorfheide (2009) for an extensive survey – only very few papers use a measure of money as observable

and hence implicitly or explicitly estimate a DSGE model-implied money demand function: Christiano,

Eichenbaum and Evans (2005), Andres, Lopez-Salido, and Nelson (2004, 2007), Ireland (2004), Bouakez,

Cardia, and Ruge-Murcia (2005, 2009), Christensen and Dib (2008), Guerron-Quintana (2008, 2009). Most

of these authors introduce money through an MIU specification that captures the value of transaction services

derived from money holdings in a reduced form manner. Guerron-Quintana (2008, 2009) emphasizes the

distinction between short and long-run interest rate elasticities of money demand and introduces short-run

costs of adjusting money balances into his MIU model. He reports estimates of a short-run elasticity of

about one and a long-run elasticity of approximately 13. In our search-based model (as in a standard MIU

model), short and long-run elasticities are tightly linked and there is no free parameter to disentangle the

two. Hence, we offer two types of estimates: a likelihood-based estimate that captures short-run dynamics

in the data and a loss-function based estimate that is designed to match the long-run elasticity.

The search-theoretic literature typically focuses on the optimal long-run monetary policy. In general, for

example as in LW and AWW, Friedman rule is found to be the optimal policy unless the model features some

other frictions: some examples are endogenous participation (Rocheteau and Wright, 2005), credit rationing

by banks (Berentsen, Camera and Waller, 2007) or government-financing (Aruoba and Chugh, 2007, 2008).

The New Keynesian channel and its potential influence on monetary policy has not been analyzed in this

class of models before.

There is a large literature on monetary policy analysis in New Keynesian models. Much of the New

Keynesian literature, as summarized in Woodford (2003), focuses on stabilization policies, assuming the

absence of steady state distortions. For example, Levin, Onatski, Williams, and Williams (2005) analyze

policy implications of an estimated medium-scale DSGE model under parameter uncertainty. There are also

some papers which focus on the long-run policy but for the most part they abstract from monetary frictions.

For example, Goodfriend and King (1997) is one of the first papers to argue that in the absence of monetary

frictions, the optimal long-run policy is price stability. Examples of the very few papers that consider both

of these frictions simultaneously are Guerron-Quintana (2008), King and Wolman (1996), Khan King and

Wolman (2003) and Schmitt-Grohe and Uribe (2007). Guerron-Quintana (2008) with his estimated MIU
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model focuses on the steady state welfare effects of reducing inflation from 12% to 2%, accounting for the

transition from high to low inflation. The remaining papers analyze the trade-off between the New Keynesian

and the Friedman channel and this is also our focus in this paper. King and Wolman (1996) show that once

monetary frictions that generate money demand, shopping-time in their case, are added to the most stripped-

down New Keynesian model, Friedman rule is approximately optimal. Khan, King and Wolman (2003) use

a different framework from Calvo-type price stickiness – one where the probability of a price change for a

firm depends on the time since last change – and the optimal long-run inflation target in their benchmark

calibration is −0.75%. Schmitt-Grohe and Uribe (2007) show that in a medium-scale New Keynesian model,

one with more frictions than ours, and with a transaction cost of consumption to motivate money demand,

the optimal policy is a long-run inflation target of −0.5%, but it is very sensitive to changing the degree of

price stickiness.

The size of the New Keynesian distortion in a Calvo framework depends crucially on assumptions about

the prices set by firms that are unable to re-optimize. In our model a fraction ι of these firms update

their prices by lagged inflation, whereas a fraction 1 − ι update them according to some static multiplier

π∗∗. In many estimated DSGE models, e.g., Smets and Wouters (2003, 2007), Rabanal and Rubio-Ramirez

(2005), Levin, Onatski, Williams, and Williams (2005), Justiniano and Primiceri (2008), it is assumed that

π∗∗ equals the steady state inflation rate, which essentially eliminates the New Keynesian distortion from

long-run considerations.1 In our analysis we will set π∗∗ = 1, which preserves the steady state effects of

the New Keynesian distortion provided that ι < 1. The benchmark calibration in Schmitt-Grohe and Uribe

(2007) features no dynamic indexation, that is ι = 0, and use ζ = 0.8. The calibration in Khan, King and

Wolman (2003) resembles, but not equivalent to, a parametrization of our model with ζ = 0.8 and ι = 0. As

such, it seems that these two papers are similarly calibrated and they both find a small level of deflation to

be optimal.

By and large, the target inflation prescriptions obtained from our search-based DSGE model, while

obtained under very different assumptions about the demand for money, are consistent with this earlier

work which gets a range of results between the Friedman rule and full price stability. We differ from the

literature above in two aspects. First, we discipline our model by making fairly standard choices about

utility and production functions defined over consumption goods, instead of choosing arguably arbitrary

functional forms for the utility derived from real money balances or the cost of transactions. Second, we

identify the parameters that determine the strength of various channels that have conflicting long-run policy

implications within our model, in an internally consistent way, as opposed to, for example, independently

calibrating these parameters. Moreover, we are easily able to account for parameter uncertainty in the policy

analysis using our Bayesian framework.

1The sensitivity of policy analysis to assumptions about π∗∗ has recently been emphasized by Ascari and Ropele (2007).
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There is one caveat to our policy analysis: we abstract from aggregate uncertainty in the policy analysis

and the effects of a potentially binding zero lower bound on policy analysis. The analysis in Billi (2008) in

the context of a cash-less New Keynesian model without capital suggests that accounting for the zero-lower

bound in a stochastic environment might lead to a slightly larger optimal target inflation rate than found in

this paper.

The remainder of the paper is organized as follows. We provide a detailed derivation and discussion of

the search-based DSGE model in Section 2. The Bayesian estimation results are presented in Section 3 and

the welfare analysis is summarized in Section 4. Finally, Section 5 concludes. Detailed derivations as well as

additional estimation results are provided in an appendix that is available electronically.

2 The Model

The model is an extension of the two-sector model developed in LW. In every period, there is economic

activity in two markets, which we label as decentralized (DM) and centralized market (CM). In the DM,

households engage in decentralized bilateral trade in which one party produces and the other consumes. The

CM resembles a standard macro model where production is carried out by firms and transactions take place in

centralized labor and goods markets. We extend the LW model in two dimensions. First, we include physical

capital as a factor of production in the centralized as well as the decentralized market, following AWW. The

only deviation we have from AWW in this regard is that we introduce an adjustment cost for investment to

improve the empirical fit. Second, to generate price stickiness we replace the perfectly competitive CM firms

by monopolistically competitive firms that are constrained in their ability to change nominal prices. The

centralized market is essentially identical to the goods market in a standard New Keynesian DSGE model

(see Woodford, 2003) with a Calvo (1983) friction.

In turn we will describe the households’ decision problems in both the centralized and the decentralized

market (Section 2.1) and the firms’ problem in the centralized market (Section 2.2). We then characterize the

behavior of fiscal policy (Section 2.3), derive an aggregate resource constraint (Section 2.4) and characterize

monetary policy (Section 2.5). Our model economy is subject to aggregate disturbances as we show in

Section 2.6. A summary of all the equilibrium conditions and more details for some of the derivations are

provided in the Appendix.

2.1 Households

There is a continuum of ex-ante identical households in the economy. In every period, households first

trade in the DM. According to an idiosyncratic taste shock that is realized at the beginning of the period,
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households become buyers with probability σ, sellers with probability σ, or non-participants with probability

1 − 2σ. These shocks are independent across time and across households. When a household receives the

shock that makes him a buyer, he wants to consume in the DM and cannot produce. Similarly, a seller

does not wish to consume, but is able to produce for another household. The taste shocks create a double-

coincidence problem where frictionless barter cannot occur.2 All households are anonymous in this market

which means their possible trading partners cannot identify them and therefore will not accept any IOUs.

Kiyotaki and Wright (1989) showed that a double-coincidence problem, of the type created by the taste

shocks and the anonymity of households, will make money “essential” in the decentralized market, since

trade can only happen with a quid pro quo. In a monetary equilibrium, the buyer uses money to purchase

the good from the seller.3 Thus, the desire to consume in the DM generates a demand for money in our

model. Given that there are equal measures of buyers and sellers, we assume there is an efficient matching

technology that match exactly one buyer with one seller. The terms of trade in such a match are determined

via one of two alternative schemes: generalized Nash bargaining or price-taking.

Once the households leave the DM, they proceed to the CM where neither of the two frictions that create

a role for money in the DM are present: the households are identical in their preferences and abilities and

they are not anonymous. This means that there is no role for a medium of exchange in the CM. Using labor

and capital income, the households acquire the final goods produced in the CM and use them for consumption

and to accumulate capital. Households also adjust their asset holdings. We assume that households have

access to a set of claims contingent on all possible realizations of the aggregate states. To characterize the

household’s behavior in this economy, we start from the problem of the household in the CM, followed by

the DM problem.

2.1.1 Household Activity in the Centralized Market

The households take as given the aggregate price level in the CM, Pt, the gross nominal interest rate Rt on

one-period bonds, the wage Wt, the rental rate of capital, Rkt , and the set aggregate shocks St, along with

their laws of motion. We use V CMt (m̂t, kt, it−1, bt,St) and V DMt (mt, kt, it−1, bt,St) to denote the period t

value functions in the CM and DM, where m̂t is the money balance of a household entering the CM, kt is its

2It is shown in AWW that a search-based setup in which households meet at random, leads to the same mathematical

construct.
3As with any deep model of money, there is a nonmonetary equilibrium in this model which is dominated by the monetary

equilibrium in terms of welfare. We focus on the monetary equilibrium.
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capital stock, it−1 is lagged investment, and bt denote its bond holdings. The CM problem takes the form4

V CMt (m̂t, kt, it−1, bt,St) = max
xt,ht,mt+1,it,kt+1,bt+1

{
U(xt)−Aht + βEt[V DMt+1 (mt+1, kt+1, it, bt+1,St+1)]

}
s.t.

Ptxt + Ptit + bt+1 +mt+1 ≤ PtWtht + PtR
k
t kt + Πt +Rt−1bt + m̂t − Tt + Ωt (1)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
it (2)

Here U(xt) is the instantaneous utility from consuming xt units of the final good, A is the disutility of one unit

of labor, ht is hours worked, Tt is a nominal lump-sum tax, Πt denotes the total profits the household receives

from intermediate good producers, and Ωt is the household’s net cash-in-flow from trading state-contingent

securities. The assumption of quasi-linear preferences is crucial and leads to a degenerate distribution of

asset holdings at the end of each period.5

Equation (2) determines the capital accumulation. The adjustment cost function S(.) satisfies properties

S(1) = 0, S′(1) = 0 and S′′(1) > 0. We adopt the timing convention that kt+1 and mt+1 denote capital and

money holdings at the end of period t and do not depend on period t+1 shocks. Derivations in the appendix

show that since the individual state variables (m̂t, kt, it−1, bt) do not appear in the household’s optimality

conditions, household’s decisions in the CM do not depend on its state variables. More specifically, for

any distribution of assets (m̂t, kt, bt) across agents entering the CM, the distribution of (mt+1, kt+1, bt+1)

is degenerate.6 Second, we show that V CMt (.) is linear in m̂t which will be important in the DM problem

below. Finally, the Lagrange multiplier associated with the households’ nominal budget constraint (1) is

U ′(xt)/Pt. Under the assumption that households have access to a set of claims contingent on all possible

realizations of the aggregate states, along with quasi-linearity of preferences in the CM, we obtain

Ξpt+s|t =
U ′(xt+s)/Pt+s
U ′(xt)/Pt

, (3)

which the firms use to discount future profits.

2.1.2 Household Activity in the Decentralized Market

The value of starting the DM for a household whose taste shock has not been realized yet is given by

V DMt (mt, kt, it−1, bt,St) = σV bt (mt, kt, it−1, bt,St) + σV st (mt, kt, it−1, bt,St) (4)

+(1− 2σ)V CMt (mt, kt, it−1, bt,St),
4We could index households with j, but we will see that the the index will drop out of most of these variables due to

quasi-linearity of preferences since in equilibrium households will make the same choice of consumption, money demand, and

investment. So, we drop this index from the outset.
5This assumption can be motivated, as is done in the RBC model of Hansen (1985), by the indivisible labor setup of

Rogerson (1988). See Rocheteau et al. (2008) and Rocheteau et al. (2008) for details.
6This result requires a small qualification for bond holdings. See the appendix.
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where the values of being a buyer and a seller are

V bt (mt, kt, it−1, bt,St) = χtu(qbt ) + V CMt

(
mt − dbt , kt, it−1, bt,St

)
(5)

V st (mt, kt, it−1, bt,St) = −c(qst , kt, Zt) + V CMt (mt + dst , kt, it−1, bt,St) . (6)

A household that consumes qt units of the consumption good in the DM receives utility χtu(qt). The

disturbance χt is a preference shock for goods produced in the DM. Since money is essential to purchase

DM goods, χt can also be interpreted as a money demand shock. A seller household in the DM experiences

disutility −et, where et denotes the effort the household exerts to produce qt units of the DM good according

to the technology qt = Ztf(et, kt). The total factor productivity process Zt is assumed to be exogenous

and common across DM and CM. We invert the production function to express the level of effort as et =

c(qt, kt, Zt), which appears in (6). Finally, qbt (qst ) and dbt (dst ) denote output and money exchanged when

buying (selling). The terms of trade are determined via bilateral generalized Nash bargaining, which is one of

the most common schemes in the search literature, or price taking, which was first considered by Rocheteau

and Wright (2005). Apart from the mechanics, an important difference between these two schemes is the

absence of holdup problems in the price-taking version.

Bargaining. Exploiting the linearity of the CM value function, and using threat points which have the

agents continuing to the CM, our bargaining problem is

max
q,d

[
χu(q)− Ad

PW

]θ [
Ad

PW
− c(q, ks, Z)

]1−θ

s.t. d ≤ mb,

where θ is the bargaining power of the buyer. The first term captures the buyer’s surplus and the second

term is the seller’s surplus. We dropped the time subscripts since the bargaining problem is static. Using

the insights of LW and AWW, in any monetary equilibrium d = mb, that is the buyer spends all his money

in exchange for some q that the seller produces using his capital and effort. Inserting d = mb and taking the

FOC with respect to q, one can show that

mb

P
=
g(q, ks, χ, Z)W

A
. (7)

where g(.) is a function of various primitive functions. The quantity q of goods produced can be obtained

by solving (7) for q as a function of mb, ks, χ, and Z. In the equilibrium conditions in Section 2.1.3, we use

γ(.) defined as

γ(q, k, χ, Z) ≡ ck(q, k, Z) + cq(q, k, Z)
∂q(m,k, χ, Z)

∂k
< 0, (8)

where cq (ck) denotes the partial derivative of the cost function c(qt, kt, Zt) with respect to its first (second)

argument, and −γ(.) captures a seller’s marginal return of capital in the DM. In particular, having more

capital will reduce the seller’s cost for a given quantity produced, which is captured by the ck term. However,

due to the non-competitive nature of DM under this pricing scheme, having more capital for the seller will
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also affect the terms of trade by increasing the output produced and this will increase his cost. This second

term is the source of one of the holdup problems.

Price-Taking. With price taking, the DM value function has the same form as (4), but now

V bt (mt, kt, it−1, bt,St) = max
q

{
χtu(q) + V CMt (mt − p̃q, kt, it−1, bt,St)

}
s.t. p̃q ≤ m (9)

V st (mt, kt, it−1, bt,St) = max
q

{
−c(qst , kt, Zt) + V CMt (mt + p̃q, kt, it−1, bt,St)

}
, (10)

where p̃ is the DM price level taken as given by the household and the constraint in the buyer’s problem

ensures the quid pro quo nature of trade in the DM. Market clearing guarantees that buyers and sellers

choose the same q and buyers will choose to spend all of their money so that q = mb/p̃ will hold. From the

resulting FOC one can derive the analog to (7) in the bargaining model:

mb

P
=
qcq(q, ks, Z)w

A
, (11)

which can be solved for the quantity produced q as a function of mb, ks, and Z.

2.1.3 Household’s Optimality Conditions

We define µt ≡ Υt/U
′(xt) as the shadow price of capital where Υt is the multiplier in front of (2). Formally,

taking as given
{
Pt, Rt,Wt, R

k
t ,Πt, Tt

}∞
t=0

and exogenous aggregate states {Zt, χt}∞t=0 , the household solves

for {qt, xt,mt+1, kt+1, it, bt+1, µt}∞t=0 using the following equations:

U ′(xt) =
A

Wt
(12)

1 = βEt

[
U ′(xt+1)
U ′(xt)

Rt
πt+1

]
(13)

1 = µt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEt

{
U ′(xt+1)
U ′(xt)

µt+1

(
it+1

it

)2

S′
(
it+1

it

)}
(14)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
it (15)

µt = βEt

[
U ′(xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(xt)
γ(qt+1, kt+1, χt+1, Zt+1)

]
(16)

mt

Pt
=

g(qt, kt, χt, Zt)Wt

A
(17)

1 = βEt

{
U ′(xt+1)
U ′(xt)πt+1

[
σχt+1u

′(qt+1)
gq(qt+1, kt+1, χt+1, Zt+1)

+ (1− σ)
]}

(18)

where we used πt+1 ≡ Pt+1/Pt. The first four equations above are entirely standard in a DSGE model with

a investment adjustment cost and quasi-linear preferences. (12) is a labor supply equation that relates the

wage to the marginal rate of substitution between consumption and leisure. (13) is the Euler equation for

Bond holdings. (14) describes the evolution of the shadow price of installed capital, µt, and (15) is the

capital accumulation equation.
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Equations (16), (17) and (18) reflect the presence of the decentralized market. (16) is the Euler equation

for capital stock holdings. The return to capital has two components: the return from renting capital to

intermediate good producing firms in the centralized market, Rkt , net of capital depreciation, and the return

to capital when producing in the decentralized market. In the absence of the latter, (16) would be the

standard intertemporal Euler equation for capital. The additional term captures the marginal utility of

using capital in the DM as a seller which depends on the γ(.) function defined in (8). (17) determines the

output produced in the DM, given the pre-determined money balances of the buyer and capital holdings of

the seller, among other things.

Finally, (18) is the Euler equation for holding money where the term in square brackets reflects the

additional consumption provided in the DM by holding money. In particular, bringing in one more unit of

money to the DM of t+ 1 will change the price that the buyer is facing by a fraction U ′(.)/gq(.) due to the

non-competitive nature of pricing and this will result in increased utility given by the first part of this term

which is reached with probability σ. With probability 1 − σ, the extra money is not used in the DM and

can be used for consumption in the CM of t + 1. Note that combining (12), (17) and (18) we obtain the

following equation that define money demand in this environment.

mt+1

Pt
=

β

U ′(xt)
Et

[
g(qt+1, kt+1, χt+1, Zt+1)

[
σχt+1u

′(qt+1)
gq(qt+1, kt+1, χt+1, Zt+1)

+ (1− σ)
]]
. (19)

The two holdup problems discussed in detail in AWW are also present in the bargaining version of

our model. In a nutshell, for an interior value of θ, the buyer and the seller both receive a part of the

surplus created by their match. However, assuming R > 1, both have made a costly and irreversible ex-ante

investment decision in the previous period: the buyer brought in money and the seller brought in capital.

The ex-post split of the surplus create a double holdup problem. The money-demand holdup problem can

be eliminated if θ = 1, i.e. when the buyer gets all the surplus but there is no θ that can eliminate both

problems.7 These holdup problems, which are intrinsically linked to the monetary nature of exchange in the

DM, will create an extra layer of inefficiency in our policy analysis.

Turning to the price-taking version, we need to replace Equations (16), (17), and (18) by

µt = βEt

[
U ′(xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(xt)
ck(qt+1, kt+1, Zt+1)

]
(20)

mt

Pt
=

qtcq(qt, kt, Zt)Wt

A
(21)

1 = βEt

{
U ′(xt+1)
U ′(xt)πt+1

[
σχt+1u

′(qt+1)
cq(qt+1, kt+1, Zt+1)

+ (1− σ)
]}

(22)

The changes in (21) and (22) reflect the competitive flavor of pricing in the DM. Increasing the capital stock

now simply increases utility by −σck(.) which is the reduction in DM cost when the household is a seller.

The terms of trade are not affected and the extra terms in (8) do not appear.
7See AWW and Aruoba, Rocheteau and Waller (2007) for further details.
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The set of equations above determines the path of money balances, given m0 which is identical across

all households assuming an interior solution. As all households start period t with the same money balances,

mt = Mt where Mt is the aggregate money stock, the buyers in the DM enter the CM with m̂ = 0, the

sellers with m̂ = 2M while the remaining 1− 2σ households carry m̂ = M . Looking at (1), this means that

individual labor supply depends on the status of the agent in the previous DM as the money holdings. In

particular, we have

ht =


Ht +

(Mt − 0)
PtWt

buyers

Ht +
(Mt − 2Mt)

PtWt
sellers

Ht others

(23)

where Ht is aggregate hours which we define below. This shows buyers in the DM work more than others

since they have to make up for the money they have spent and sellers work less than others. We only care

about total hours Ht in equilibrium and will not track individual ht, or its dispersion.

2.2 Firms in the Centralized Market

The setup of the centralized market resembles that of a New Keynesian DSGE model. Production is carried

out by two types of firms in the CM: final good producers combine differentiated intermediate goods. In-

termediate goods producing firms hire labor and capital services from the households to produce the inputs

for the final good producers. To introduce nominal rigidity we follow Calvo (1983) by assuming that only a

constant fraction of the intermediate goods producers is able to re-optimize prices.

2.2.1 Final Good Producers

The final good Yt in the CM is a composite made of a continuum of intermediate goods Yt(i):

Yt =
[∫ 1

0

Yt(i)
1

1+λ di

]1+λ

. (24)

with elasticity of substitution (1 + λ)/λ. We constrain λ ∈ [0,∞). The final good producers buy the

intermediate goods on the market, package them into Yt units of the composite good, and resell them to

consumers. These firms maximize profits in a perfectly competitive environment taking Pt(i) as given which

yields the demand for good i

Yt(i) =
(
Pt(i)
Pt

)− 1+λ
λ

Yt. (25)

Combining this condition with the zero profit condition one obtains the following expression for the price of

the composite good

Pt =
[∫ 1

0

Pt(i)−
1
λ di

]−λ
. (26)



This Version: March 13, 2009 12

2.2.2 Intermediate Goods Producers and Inflation Dynamics

Intermediate goods producers, indexed by i, use the following Cobb-Douglas technology with fixed costs F :

Yt(i) = max
{
ZtKt(i)αHt(i)1−α −F , 0

}
. (27)

The technology shock Zt is identical to the one that appears in the DM production function. Firm i’s profit

is given by:

Πt(i) = Pt(i)Yt(i)− PtWtHt(i)− PtRktKt(i). (28)

All firms take factor prices Wt and Rkt , as well as the prices of the other firms and the aggregate price level

as given. The cost-minimizing choice of factor inputs leads to the following expression for marginal costs

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )αZ−1

t . (29)

Following Calvo (1983), we assume that firms are only able with probability 1 − ζ to re-optimize their

price in the current period. Firms that are not allowed to choose Pt(i) optimally, update their price according

to the geometric weighted average of the fixed rate π∗∗ and of last period’s inflation πt−1 with weights 1− ι

and ι, respectively. In Calvo’s original setup π∗∗ = 1 and ι = 0. In our empirical analysis we fix π∗∗ = 1 and

treat the degree of dynamic indexation, ι, as a parameter to be estimated. It is useful to define the price

adjustment factor of a firm in t+ s, which was able to choose an optimal price in period t

πadjt+s|t =
s∏
l=1

πιt+l−1π
1−ι
∗∗ ,

adopting the convention that πadjt|t = 1. Firms that are unable to re-optimize their prices simply satisfy the

demand for their product according to (25).

For those firms that are allowed to re-optimize prices, the problem is to choose a price level P ot (i) that

maximizes the expected present discounted value of profits in all future states in which the firm is unable to

re-optimize its price:

max
P ot (i)

IEt

[ ∞∑
s=0

ζsβsΞpt+s|t
[
P ot (i)πadjt+s|t − Pt+sMCt+s

]
Yt+s(i)

]
(30)

s.t. Yt+s(i) =

[
P ot (i)πadjt+s|t

Pt+s

]− 1+λ
λ

Yt+s,

where βsΞpt+s|t is the time t value of a dollar in period t+ s for the consumers. Here we are considering only

the symmetric equilibrium in which all firms that can re-adjust prices will choose the same P ot (i).

The solution of (30) leads to a dynamic relationship between the optimal price pot = P ot /Pt and marginal

costs MCt. From (26) it follows that

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
, (31)
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which links inflation to marginal costs and generates the so-called New Keynesian Phillips curve.

2.3 Goverment Spending and Fiscal Policy

In period t, the government in this model collects a nominal lump-sum tax Tt, spends Gt on goods from the

centralized market, issues one-period nominal bonds Bt+1 that pay Rt gross interest tomorrow and supplies

the money to maintain the interest rate rule. It satisfies the following budget constraint every period

PtGt +Rt−1Bt +Mt = Tt +Bt+1 +Mt+1. (32)

We assume that government spending Gt evolves exogenously and will provide further details below.

2.4 Aggregate Resource Constraint and National Accounting

We begin by adding the households’ CM budget constraints and the government budget constraint to obtain

PtXt + PtIt + PtGt = PtWtHt + PtR
k
tKt + Πt. (33)

Now consider intermediate goods producers’ profits in the CM

Πt =
∫
Pt(i)Yt(i)di− PtWt

∫
Ht(i)di− PtRkt

∫
Kt(i)di

= PtYt − PtWtHt − PtRktKt.

The second equality follows from the zero profit conditions for the final goods producers. Combining the

expression for profits with (33) we obtain

Xt + It +Gt = Yt, (34)

which is the resource constraint in the CM. Since there is no savings in the DM (and goods are perishable),

there is a trivial resource constraint that sets consumption equal to output.

The relationship between the total output of the intermediate goods producers, Ȳt, and the aggregate

labor and capital inputs in the CM is given by

Ȳt = Zt

∫
Kα
t (i)H1−α

t (i)di−F = ZtK
α
t H

1−α
t −F .

The second equality follows from the fact that the optimal capital labor ratio Kt(i)/Ht(i) only depends on

relative factor prices which are common to all firms. The quantity of final goods in the CM is related to Ȳt

according to

Yt =
1
Dt
Ȳt, Dt =

∫ (
Pt(i)
Pt

)− 1+λ
λ

di, (35)
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where Dt measures the extent of price dispersion and evolves according to

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ)
[
P ot
Pt

]− 1+λ
λ

. (36)

Unless Pt(i) = Pt for all firms, Dt will be greater than unity, which in turn implies the economy will produce

inside its production possibilities frontier.

We now turn to the aggregation of CM and DM output. Real output in the CM is given by Yt and Pt is

the price (in terms of money) of the CM final good. Real and nominal output in the DM are given by σqt

and σMt, respectively. Hence, we can define the price level and inflation in the DM as

PDMt = Mt/qt, πDMt = PDMt /PDMt−1 . (37)

Using the final good produced in the CM as numeraire, we can express total output in the model economy

as

Yt = Yt + σMt/πt, (38)

where Mt ≡ Mt/Pt−1 is the real money stock in terms of CM output. To take our model to the data

we now construct a GDP deflator and a measure of real GDP that is consistent with this GDP deflator.

Following NIPA conventions, we use a Fisher price index. However, to simplify the analysis we replace

time-varying nominal shares by steady state shares. The DM share of nominal output in the steady state is

s∗ = σM∗/(Y∗π∗ + σM∗). Thus,

πGDPt = π1−s∗
t (πDMt )s∗ . (39)

Defining real GDP as

YGDPt = Yt
Pt

PGDPt

, (40)

we verify in the appendix that up to a first-order approximation changes in real GDP evolve according to

∆ lnYGDPt = (1− s∗)∆ lnYt + s∗∆ ln qt. (41)

2.5 Monetary Policy

Following authors like Sargent (1999) and Lucas (2000) we assume that low frequency movements of inflation,

such as the rise of inflation in the 1970s and the subsequent disinflation episode in the early 1980s, can be

attributed to monetary policy changes. Unlike in the learning models considered by Sargent, Williams, and

Zha (2006) or Primiceri (2005), our DSGE models offer no explanation why monetary policy shifts occur

over time. We simply assume that the target inflation rate π∗,t is time-varying. The central bank supplies
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money to control the nominal interest rate. Following the setup in Schorfheide (2005), we assume that it

systematically reacts to inflation and output growth according to the rule

Rt = R1−ρR
∗,t RρRt−1 exp{σRεR,t}, R∗,t = (r∗π∗,t)

(
πGDPt

π∗,t

)ψ1 ( Y GDPt

γY GDPt−1

)ψ2

, (42)

where r∗ is the steady state real interest rate, γ is the steady state growth rate of the economy, and εR,t

is a monetary policy shock that captures transitory deviations from the interest rate feedback rule that are

unanticipated by the public.

2.6 Aggregate Shocks

We consider five aggregate disturbances in our model economy. Zt is the random productivity term that

effects production in both CM and DM. gt is a shock that shifts government spending according to

Gt = (1− 1/gt)Yt. (43)

We assume that although government consumption goods are purchased in the centralized market, the

overall amount is a stochastic fraction of total GDP, expressed in CM prices. The money demand shock

χt shifts preferences for goods produced in the DM. Finally, our model has two monetary policy shocks:

εR,t is assumed to be serially uncorrelated and captures short-run shifts in monetary policy, whereas the

time-varying inflation target π∗,t captures long-run policy changes. We define

Z̃t = ln (Zt/Z∗) , χ̃t = ln (χt/χ∗) , g̃t = ln (gt/g∗) , π̃∗,t = ln (π∗,t/π∗)

where Z∗, χ∗, g∗, and π∗ are steady state values of the exogenous disturbances. We assume that all the

exogenous disturbances except for π̃∗,t evolve according to stationary AR(1) processes

Z̃t = ρzZ̃t−1 + σzεz,t, χ̃t = ρχχ̃t−1 + σχε
χ
χ,t, g̃t = ρg g̃t−1 + σgεg,t

and π̃∗,t evolves as a random walk

π̃∗,t = π̃∗,t−1 + σπε
π
π,t.

The innovations are stacked in the vector ε = [εz,t, εχ,t, εg,t, επ,t, εR,t] which follows a multi-variate standard

normal distribution. The law of motion for the exogenous processes completes the specification of our DSGE

model. The equilibrium conditions are summarized in the Appendix. We derive the deterministic steady state

for this model and use a log-linear approximation to its dynamics to form a state-space representation that

is used for the Bayesian estimation. We log-linearize our model around a π∗ that corresponds to an annual

inflation rate of 4%, which is the mean in our sample. AWW use a nonlinear solution scheme (projection

method with Chebyshev polynomials) with no shocks and find that around a reasonable neighborhood of



This Version: March 13, 2009 16

the steady state the decision rules are well-approximated linearly. Aruoba and Chugh (2008) use a version

of the AWW model with shocks and report that first and second order linear approximations and nonlinear

approximations lead to very similar results. Accumulated evidence from estimating New Keynesian DSGE

models, see for example An (2007), also suggest that first-order approximations work well.

3 Empirical Analysis

We now turn to the DSGE model estimation. We use a Bayesian approach discussed in detail in An and

Schorfheide (2007). Our data set is described in Section 3.1. For reasons explained below the target inflation

rate is treated as an observable in the estimation. The construction of this series is discussed in Section 3.2.

Functional forms are specified in Section 3.3 and a description of the prior distribution is provided in

Section 3.4. Next, parameter estimates as well as implied steady states are presented in Section 3.5 and

the implied model dynamics are analyzed via variance decompositions and impulse response functions in

Section 3.6. Finally, the assess the fit of the search-based DSGE model in Section 3.7.

3.1 Data

Our empirical analysis is based on quarterly U.S. postwar data on aggregate output, inflation, interest rates,

(inverse) velocity of money, and a measure of the central bank’s target inflation rate. Unless otherwise noted,

the data are obtained from the FRED2 database maintained by the Federal Reserve Bank of St. Louis. Per

capita output is defined as real GDP (GDPC96) divided by civilian noninstitutional population (CNP16OV).

The population series is provided at a monthly frequency and converted to quarterly frequency by simple

averaging. Since the quarterly flow statistics reported in the National Income and Product Accounts are

annualized, we divide real GDP by 4. The model presented in Section 2 is specified to capture stationary

fluctuations around a deterministic steady state. Hence, we take the natural log of per capita output and

extract a deterministic trend by an OLS regression over the sample period 1959:I to 2006:IV. The deviations

from the linear trend are scaled by 100 to convert them into percentages.

Inflation is defined as the log difference of the GDP deflator (GDPDEF) and multiplied by 400 to

obtain annualized percentages. Our measure of nominal interest rates corresponds to the Federal Funds

Rate (FEDFUNDS). The Federal Funds Rate is provided at monthly frequency and converted to quarterly

frequency by simple averaging. Money is incorporated as an observable by using inverse M1 velocity. We use

the sweep-adjusted M1S series provided by Cynamon, Dutkowsky and Jones (2006). This series is recorded at

monthly frequency without seasonal adjustments. The EVIEWS default version of the X12 filter is applied to

remove seasonal variation. The M1S series is divided by quarterly nominal output to obtain inverse velocity.
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Since the choice variable Mt+1 in the our model corresponds to the money balances at the end of period t,

velocity in period t is computed based on the money stock in the last month of the quarter. We take the

natural log of inverse velocity, scale it by 100 to relate to the log deviations from 100 ∗ ln(M∗/Y∗). Our

estimation sample ranges from 1965:I to 2005:I and we use likelihood functions conditional on data from

1964:I to 1964:IV to estimate our DSGE model and vector autoregressions (VARs).

3.2 Target Inflation and Velocity

As explained in Section 2, we assume that the target-inflation rate π∗,t is time varying. One could simply

treat π∗,t as a latent variable in the likelihood-based estimation of the DSGE model and use the Kalman

smoother to obtain ex-post estimates of π∗,t based on the observations that are included in the construction

of the likelihood function. We shall deviate from this commonly used approach for the following two reasons:

(i) we will assess the time series fit of the DSGE model and the propagation of unanticipated changes in the

target inflation rate through a comparison with a VAR. To facilitate this comparison, it is helpful to treat

the target inflation rate as observable. (ii) From the perspective of the agents π∗,t can be interpreted as a

long-run inflation expectation. Hence, we will incorporate survey expectations in the construction of the π∗,t

series.

The first step of our analysis is to apply a bandpass filter to the GDP deflator inflation rate. Since the

agents generate forecasts of future target inflation rates with a random walk model we will use a one-sided

bandpass filter that removes cycles of a duration of less than 64 quarters. Our filter is based on the approach

by Geweke (1978) and Pierce (1980). We construct a time-domain moving average representation of the ideal

one-sided filter (truncated at 500 lags) and then replace missing lagged observations by optimal backcasts

obtained from an estimated AR(4) model. The resulting filtered inflation series is plotted in the top left

panel of Figure 1. The panel also shows 1-year and 10-year ahead inflation expectations obtained from the

Survey of Professional Forecasters, maintained by the Federal Reserve Bank of Philadelphia. From 1972 to

1985 as well as from 1995 to 2005 these three measures of target inflation move closely together. Only from

1990 to 1995 there is a discrepancy between the bandpass filtered series and the inflation expectations that

exceeds 150 basis points.

To combine the three series we use a small state-space model with measurement equations

π̃BPt = π̃∗,t + 0.025ε1,t, π̃1y
t = π̃∗,t + η2,t, π̃10y

t = π̃∗,t + η3,t,

and state transitions

π̃∗,t = π̃∗,t−1 + σπεπ,t, η2,t = ρ2η2,t−1 + σ2ε2,t, η3,t = ρ3η3,t−1 + σ3ε3,t,
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where the εi,t’s are iid standard normal random variables and π̃BPt , π̃1y
t , and π̃10y

t are bandpass filtered

inflation, 1-year ahead forecasts, and 10-year ahead forecasts, respectively. We fixed the innovation standard

deviation for π̃BPt to implicitly control the weight on the bandpass filtered series and estimated the remaining

parameters. The filtered target inflation series π̃∗,t is displayed in the top right panel of Figure 1 together

with the GDP deflator inflation. If one regresses the filtered series π̃∗,t on the three observed measures, the

coefficients are 0.57 (π̃BPt ), 0.22 (π̃1y
t ), and 0.23 (π̃10y

t ). Moreover, the dynamics of π̃∗,t are well approximated

by the random walk that the DSGE model agents use to forecast the target inflation rate.

Finally, the bottom panel of Figure 1 overlays the Federal Funds Rate and M1 inverse velocity. According

to our theoretical framework, the rise and fall of the nominal interest rate is to a large extent generated

by exogenously changing preferences of monetary policy makers, as reflected in π∗,t. The post-war U.S.

data exhibit a strong negative correlation between inverse velocity and nominal interest rates that at least

qualitatively resembles a money-demand relationship.

3.3 Functional Forms

We use the following functional forms in our estimation:

u (q) = ln (q + κ)− ln(κ), U (x) = B ln(x), f (e, k) = e1−αkα,

where κ is set equal to 1E-4 to make sure qt = 0 can be handled.8 The parameter B determines the relative

weight of the utility from consuming the CM and DM goods. We use a natural logarithm for both utility

functions and use the same Cobb-Douglas production function as the function used by the intermediate good

producers in the CM as these are necessary conditions for balanced-growth in this model as Waller (2009)

shows. The functional form assumption for f(e, k) implies that

c (q, k, Z) =
1

Z1/(1−α)
q1/(1−α)k−α/(1−α).

3.4 Restricted Parameters and Prior Distributions

One goal of our empirical analysis is to compare the propagation of shocks and the steady state welfare

implications for various specifications of our model. Hence, it is desirable to normalize and restrict a subset

of the model parameters prior to estimation. A summary is provided in Table 1. The steady states of real

GDP, Y∗, and the DM preference shock process, χ∗, are normalized to one. The steady state log inverse

velocity is fixed at the sample mean -0.38. Average inverse labor productivity in our sample is 0.03 (a worker

8In the bargaining problem in the DM, the threat point of a buyer is having q = 0 and moving on to the next CM. With

this functional form u(0) = 0 and this threat point is well-defined.
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produces about $33 of real GDP in one hour) and we use this value to restrict H∗/Y∗. These restrictions

imply unique values for the the preference parameters A and B as well as the steady state level of technology

Z∗.

We log-linearize our DSGE model around the average inflation rate in our sample, which is approximately

4%. We let rA be equal to the difference of the average Federal Funds Rate and the average inflation rate

between 1965 and 2005 and set β = 1/(1 + rA/400). We set g∗ = 1.2, which is computed from the average

ratio of government consumption plus investment and GDP. We fix the depreciation rate δ at 0.014. This

value is obtained as the average ratio of fixed asset depreciation and the stock of fixed assets between 1959

and 2005.9

It is well known that the central bank’s reaction to inflation deviations, ψ1, is difficult to identify. Since

the primary focus of the paper is not to estimate monetary policy rules we set ψ1 = 1.7. This value is taken

from Schorfheide (2005), who estimated a model with a regime-switching target inflation rate over a similar

time period. Finally, we let F = 0 (no fixed costs) and π∗∗ = 1, meaning that there is no static indexation

for the firms that cannot change their prices.

Suppose we stack the remaining DSGE model parameters in the vector ϑ with elements ϑi, i = 1, . . . , k.

Our prior distribution for ϑ takes the form

p(ϑ) ∝ f(ϑ)
k∏
i=1

pi(ϑi).

The marginal densities pi(ϑi) capture prior information for individual parameters and are summarized in

the first four columns of Table 2. Following Del Negro and Schorfheide (2008), the function f(ϑ) is used to

incorporates beliefs about steady states that are a function of multiple parameters.

The two household-related parameters are related to the search and matching frictions that generate a

role for money demand. We guide our priors for these parameters using the calibration in AWW. Specifically,

σ, the probability of a single coincidence in the DM, is bounded between zero and 0.5 and has a fairly wide

prior around 0.2. As we demonstrate further below, this parameter affects the steady state velocity and the

responsiveness of money demand to changes in the interest rate. In the bargaining version of our model

the parameter θ measures the bargaining power of the buyer and affects the mark-up in the decentralized

market. The prior for the bargaining power is uniform over its range of [0, 1].

Turning to the firms, we use a uniform prior on the indexation parameter ι. As we discuss further

below and as Schorfheide (2009) argues, previous studies fixed or estimated ι to be a wide range of numbers,

including zero (no dynamic indexation) and one (full dynamic indexation). Our prior for ζ is broadly

9We use NIPA-FAT11 (current cost net stock) and NIPA-FAT13 (current cost depreciation) for fixed assets and consumer

durables).
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consistent with micro-evidence on the frequency of price changes. The parameter λ corresponds to the

markup in the centralized market and is centered at 15%. The prior distributions for ρg, ρz, and ρχ reflect

the belief that the government spending (demand) disturbance, the technology shock, and the DM preference

shock are fairly persistent. The priors for the shock standard deviations were loosely chosen such that the

implied distribution of the variability of the endogenous variables is broadly in line with the variability of

the observed series over a pre-sample from 1959 to 1964.

The function f(ϑ) summarizes beliefs about the investment-output (I∗/Y∗) ratio, the labor share (lsh),

and the mark-ups in the decentralized market (muDM ) as well as the overall economy (mu):

f(ϑ) = exp
{
−1

2

[
(I∗(ϑ)/Y∗(ϑ)− 0.16)2

0.0052
+

(lsh(ϑ)− 0.60)2

0.012
+

(muDM (ϑ)− 0.15)2

0.012
+

(mu(ϑ)− 0.15)2

0.012

]}
.

Thus, f(ϑ) down-weighs the overall prior density at parameter combinations for which the investment output

ratio, the labor share, and the mark-ups deviates from 0.16, 0.60, and 0.15, respectively. For the price-taking

version of the search-based DSGE model the mark-up in the decentralized market is zero and we drop the

corresponding term from the function f(ϑ).

3.5 Parameter and Steady State Estimates

The posterior distribution is obtained by combining the prior distribution described in the previous subsection

with the likelihood function for output, inflation, interest rates, inverse velocity, and the target inflation rate

derived from the state-space representations of the linearized DSGE models. We then use a random-walk

Metropolis algorithm to generate draws from the posterior distribution of the parameters. To make inference

about steady states, impulse responses, and variance decompositions, we convert the parameter draws into

the statistics of interest. Further technical details are described in An and Schorfheide (2007). Posterior

means and 90% credible intervals for the estimated DSGE model parameters are reported in Table 2. The

bargaining model is abbreviated as SBM(B) and the price-taking model as SBM(PT).

The estimated single-coincidence probability is around 0.3. We will document in Section 3.7, that this

estimate captures the fairly low short-run elasticity of money demand with respect to interest rates in the

data. The estimate of θ = 0.95 in SBM(B) is strongly influenced by the prior distribution that favors

parameter values consistent with a mark-up of about 15% throughout the sectors of the economy. This leads

to a DM markup of 17% and this along with the 14% markup in the CM and the DM share of 20% matches

our target of aggregate markup. To provide a comparison, in AWW, θ was calibrated to be around 0.90

using a DM markup of 30% as the target.10

10The steady state growth rate of GDP, which is parameterized by γ in the interest rate feedback rule, is set equal to one

since we model deviations from the steady state.
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Turning to the firms we have a number of departures from standard parameter estimates due to both

the two-sector structure of our model and the differences in pricing mechanisms in the two sector. The

estimate of the CM mark-up is higher in the price taking model, because the DM mark-up is zero and we

are using a fairly tight prior that implies an economy-wide mark-up of about 15%. The capital share α

is estimated to be significantly larger in SBM(B) than in SBM(PT). This is due to the holdup problems

in SBM(B) which, everything equal, reduces the steady state capital stock. Since we are using priors that

restrict the investment-output ratio to be approximately 16% in both models, the hold-up problem present

in the bargaining model requires a larger capital share parameter in the production function.

The estimates of the price-stickiness parameter ζ and the degree of indexation ι are relatively high

in both models, implying an average duration between price re-optimizations in the centralized market of

about 6 quarters and a dynamic indexation of 60%-70%. In a model in which the rate of static indexation

corresponds to the steady state inflation rate, that is π∗∗ = π∗, the Phillips curve is given by

π̃t =
ι

1 + βι
π̃t−1 +

β

1 + βι
IEt[π̃t+1] +

(1− ζ)(1− ζβ)
ζ(1 + βω)

M̃Ct.

Note that we log-linearize our model around 4% annual inflation and use π∗∗ = 1 which leads to a dynamic

Phillips curve where lags of MCt appear. Nevertheless, interpreting our estimates under the restrictions

above, our coefficient estimates would translate into a Phillips curve slope of 0.02 (with respect to marginal

costs) and the coefficient on lagged inflation would be about 0.42. Compared to the slope estimates surveyed

in Schorfheide (2009), which range from 1E-3 to about 4, our estimate is fairly small but not unreasonable.

Since the degree of indexation is inherently difficult to identify, the estimates of the coefficient on lagged

inflation reported in the literature are essentially uniformly distributed over the range 0 to 0.5 and are very

sensitive to auxiliary assumptions about the law of motion of exogenous shocks.

To understand why we obtain a fairly flat Phillips curve and a large degree of dynamic indexation, note

that in a standard New Keynesian model ζ and ι are identified from the dynamic properties of inflation and

the correlation between inflation and marginal cost. For example if ι = 0 then inflation simply inherits the

persistence of the sum of discounted expected marginal costs and if ζ = 0 there is no Phillips-curve link

between inflation and marginal cost fluctuations. In our model, these parameters govern the said properties

for only CM inflation and aggregate inflation is a weighted average of the inflation in the CM and the DM.

We will document subsequently that inflation in the DM lack persistence and prices in the DM are essentially

flexible. This means that in order to match the same aggregate properties, CM inflation needs to be more

persistent (large ι) and CM prices need to be more rigid (large ζ). This also means that, in the aggregate, the

average duration of a price in our model is in line with other studies that use a one-sector model. The CM

firms comprise 80% of total production which means the probability that a given price cannot be changed

is 0.8× 0.83 = 0.66. This implies an average duration of 8.8 months between price changes in the aggregate,

perfectly in line with other empirical studies.
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Table 2 contains two parameters that have not been discussed previously: π̃∗0,A is the value of the target

inflation process in period t = 0, measured in deviations from the log-linearization point, which is set to

4% annualized inflation. The parameter σR,2 measures the standard deviation of the monetary policy shock

εR,t between 1979:I and 1982:IV, a period when interest rate feedback rules are known to fit poorly. The

estimates of the parameters that describe the central bank behavior and the evolution of the exogenous

shocks are very similar across SBM(B) and SBM(PT). The estimated reaction coefficient to output growth

is about 0.85 and the interest rate smoothing parameter is 0.6. The preference shock for DM goods is the

most persistent among the shocks with an autocorrelation of about 0.97.

The implied posterior distribution of the steady states of SBM(B) and SBM(PT) is reported in Table 3.

As we explained in Section 3.4, one of our goals in the estimation of our models was to have them display

similar long-run characteristics, which are in line with the U.S. post-war experience. Thus, due to our choice

of prior distribution the estimated investment-output ratio, capital-output ratio, labor share, and economy-

wide mark-up are very similar across the two model economies. The estimated share of the decentralized

market is about 20%. The economies differ, however, with respect to the implied preference parameters A

and B and the steady state level of technology Z∗. Agents in the price-taking economy assign a slightly larger

weight to CM consumption and the disutility from working. Moreover, the steady state level of technology

is higher in the SBM(PT) economy. The differences in the SBM(B) and SBM(PT) parameter estimates are

due to the absence of a hold-up problem under price-taking, and the larger New Keynesian distortion due

to a lower estimate of ι.

3.6 Dynamics

We now explore the dynamics of our model. Variance decompositions for output, inflation, and interest rates

are reported in Table 4. The decompositions are computed for business cycle frequencies ranging from 6 to

32 quarters per cycle. Since the decompositions for SBM(B) and SBM(PT) are very similar, we will focus

on the bargaining version. Our model was built upon the assumption that the target inflation shock only

affects low frequency movements and hence its contribution to business cycle fluctuations is essentially zero.

Technology shocks cause about 45% of the output fluctuations and the demand or government spending

shocks explain roughly 30%. Technology shocks are also the most important source of inflation dynamics

and generate almost 70% of its business cycle movements. A part of this last observation is due to the

Phillips-curve relationship between technology shocks (and therefore marginal costs) and inflation in the

CM and a part of it is due to the effect of the technology shock on DM production, which in turn affect

inflation in DM.

A key feature of the search-based models is their non-separable structure, meaning that even under an
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interest-rate feedback rule, the economy is not insulated from money demand shocks. These money demand

shocks arise from time-varying taste for the goods produced in the decentralized market and explain around

5% of the output and inflation fluctuations and about 60% of the cyclical fluctuations of real money balances.

The remaining fluctuations in money holdings can be attributed equally to the government spending shock,

the (short-run) monetary policy shock and the technology shock.

Impulse response functions to a technology shock for SBM(B) are depicted in Figure 2. Recall that

according to our timing convention time t real money balances reflect end-of-period holdings. A positive

technology shock decreases current and future expected marginal costs. The equilibrium of the SBMs has

the property that DM output in period one, valued in terms of the CM good, is pre-determined by the real

money balances (also valued in terms of the CM good) at the end of period zero. As a result the increase in

technology on impact creates an immediate decrease in prices in the DM, which is reflected in the response

of DM/CM relative price and DM inflation. After period 1, DM inflation also increase as does CM inflation.

Due the rise in productivity, CM and DM production increase on impact.

According to the estimated monetary policy rule, the central bank responds to negative inflation and

positive GDP growth by lowering the nominal interest rate. The drop in interest rates reduces the opportunity

costs of holding money and raises the demand for DM goods and, hence, real money balances. Price

adjustments in the CM are subject to the Calvo friction and hence sluggish while DM inflation closely

mimics the changes in the interest rate. Except for the initial decline which is due to the timing assumption

we made, the DM inflation seems to react instantly to the shock, in contrast to the gradual increase of the

CM inflation. We consider this to be evidence that DM prices are less sticky than CM prices. Output and

consumption in both markets show a hump-shaped response after the shock prolonged by the expansionary

policy of the central bank. Since the technology shock is transitory, CM and DM output eventually return

to their steady state levels.

Responses to technology shocks in DSGE models tend to be difficult to compare across studies because

they are sensitive to assumptions about shock persistence – random-walk versus stationary technology shock

– and the central bank’s reaction to output fluctuation – reaction to output growth or to deviations of output

from a particular measure of potential output. Nonetheless, a comparison with Smets and Wouters (2003,

henceforth SW) is instructive. SW estimated a DSGE model with both Calvo price and wage stickiness

using a Euro Area data set that included linearly detrended output. They obtain an estimate of ζ of about

0.9 and an estimate of ι of 0.48. According to their estimates (SW, Figure 3) the output response to a

positive technology shock is hump shaped, with a peak after 5 quarters. Both inflation and interest rate fall,

reaching a trough after 3 periods and then slowly returning to their steady state values. Hours worked also

fall after a positive technology shock. We obtain very similar results. The negative CM inflation response

(not shown) is hump shaped. Moreover, due to the large price stickiness in the CM hours worked (not shown)



This Version: March 13, 2009 24

fall after a positive technology shock. Thus, we conclude that the output and price dynamics in the CM

resemble those of other estimated New Keynesian models. Due to the presence of the DM, in which prices

are effectively flexible, our response of aggregate inflation is stronger than in SW, essentially monotonic, and

fairly short-lived.

The effect of a shock to preferences for the DM good is depicted in Figure 3. The responses resemble

those to a typical demand shock with a shift to the DM and an increase in the relative price of DM goods.

On impact DM output cannot change since money balances are pre-determined. Moreover, since money

becomes more valuable tomorrow (due to the persistence of the increase in χ), DM prices decline on impact.

In order to finance higher DM consumption the households accumulate more money which reduces CM

consumption and output initially. Once DM variables start to adjust in period 2, DM inflation shoots up

due to increased demand which triggers the central bank to increase interest rates and stabilize the economy

after a few oscillations due to overshooting in both directions. There is a long-lived response of output due

almost solely to the persistent increase in DM output.

Finally, responses to a contractionary short-run monetary policy shock are provided in Figure 4. Real

GDP and aggregate inflation (at annualized rates) both drop approximately by 50 basis points. Compared

to the papers surveyed in Schorfheide (2009) this estimate of the relative output and inflation response is

on the high side, albeit not unreasonably large. It indicates that the overall level of nominal rigidity in the

model economy, despite the fairly large ζ estimate for the CM, is small as we explained above. The rise in

the nominal interest rate increases the opportunity costs of holding money and reduces the relative demand

for goods produced in the DM as evidenced by the drop in relative prices. After the initial impact, the fall

in output and inflation prompts the central bank to lower the interest rate to essentially undo the initial

increase which starts a recovery in both CM and the DM. After a few oscilations due to the large response

of DM inflation and output, the economy converges back to the steady state in a somewhat sluggish pace. A

discussion of dynamic responses to a change in the target inflation rate is deferred to the subsequent section.

Before we conclude the discussion of model dynamics, we want to provide some evidence about the lack

of persistence of DM inflation, which was key in understanding why ι is large. Using a simulation of our

model, we find that the aggregate inflation has an autocorrelation of between 0.34− 0.53, which is broadly

in line with the data, as it should be. This can be decomposed in to CM inflation persistence of between

0.74− 0.91 and the DM inflation persistence of around −0.10.

3.7 Model Fit

In order to assess the fit of the estimated search-based DSGE model, we will consider two reference models.

The first reference model is a standard New Keynesian DSGE model in which real money balances directly
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enter the utility function in an additively separable manner. We will refer to this model as the MIU model.

The second reference model is a restricted vector autoregression, in which the target inflation rate evolves

exogenously. We consider various measures of relative fit, including marginal log likelihood values, in-

sample root-mean-squared errors (RMSE), and discrepancies between the DSGE model and the VAR impulse

response functions.

MIU Model: We construct the MIU model by shutting down (σ = 0) the decentralized market in the

search-theoretic models described in Section 2 and adding a real-money balance term to the households’

instantaneous utility function:

Ut = U(xt)−Aht +
χt

1− ν

(
mt

Pt

A

Z
1/1−α
∗

)1−ν

, (44)

The shock χt captures time-varying preferences for money and the parameter ν controls the interest-rate

elasticity of money demand. The scaling by A/Z
1/(1−α)
∗ can be interpreted as a re-parameterization of χt,

which has the effect that steady state velocity stays constant as we change A and Z. To mimic the timing

conventions in the search-based models, we assume that mt is the (pre-determined) money stock at the

beginning of the period, and Pt is the price at which the final good is sold in period t. For the common

parameters, we impose the same restrictions and use the same prior distributions as in the estimation of

SBM(B) and SBM(PT). In addition, we assume that the parameter ν is a priori distributed according to a

gamma distribution with mean 20 and variance 5.11

VAR: We collect output, inflation, interest rates, and inverse velocity in the 4 × 1 vector y1,t and the

target inflation rate in the 1× 1 vector y2,t. Moreover, we let yt = [y′1,t, y2,t]′. We assume that yt follows a

Gaussian vector autoregressive law of motion subject to the restrictions that the target inflation rate evolves

according to a random walk process and that the innovations to the target inflation rate are orthogonal to

the remaining shocks. These restrictions are consistent with the assumptions that underly our DSGE model

and identify the propagation of unanticipated changes in the target inflation. The VAR takes the form

y1,t = Φ0 + Φ1yt−1 + . . .+ Φ2yt−p + ψ∆y2,t + u1,t (45)

y2,t = y2,t−1 + σπ∗επ∗,t, (46)

where u1,t ∼ N (0,Σ11) and is independent of επ∗,t. We estimate the VAR comprised of (45) and (46) with

p = 4 using a version of the “Minnesota” prior (see Doan, Litterman, and Sims (1984) and Sims and Zha

(1998)) described in Lubik and Schorfheide (2006).12

11Large estimates of this parameter is common in the literature. Levin et al. (2005) report an estimate of 11.4 and Christiano

et al. (2005) report 10.6.
12The Minnesota prior tilts the estimates of the VAR coefficients toward univariate unit root representations. The hyperpa-

rameters are τ = 0.1, d = 3.1, w = 5, λ = 1, µ = 1. Our prior assumes that the elements of Ψ are independently distributed

according to N (0, λ−2).
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Log marginal data densities and in-sample RMSEs for SBM(B), SBM(PT), MIU, and the VAR are

reported in Table 5. If two models have equal prior probabilities, then differences of log marginal data

densities can be interpreted as log posterior odds. Moreover, since for any model with a k dimensional

parameter vector θ

ln p(Y T ) =
T∑
t=1

ln p(yt|Y t−1) =
T∑
t=1

ln
∫
p(yt|θ, Y t−1)p(θ|Y t−1)dθ

where Y t collects y1, . . . , yt−1 and Y 0 signifies prior information, log marginal likelihoods can be interpreted

as pseudo-out-of-sample one-step ahead predictive scores. Finally, the approximation

ln p(Y T ) = ln
∫
p(Y T |θ)p(θ)dθ ≈ ln p(Y T |θ̂T ) + ln p(θ̂T ) + ln

∫
exp{−1

2
(θ − θ̂T )′Ĥ(θ − θ̂T )}dθ

≈ ln p(Y T |θ̂T ) + ln p(θ̂T ) +
k

2
ln(2π) +

1
2

ln |ĤT |,

where θ̂T is the maximum likelihood estimator (MLE) and ĤT is the Hessian evaluated at the MLE, highlights

that the log marginal data density adjusts the maximized log likelihood function by a penalty for model

complexity, namely the log determinant of the Hessian.

According to the log marginal likelihoods, the bargaining version of the SBM is slightly preferred over

the price taking version. A comparison of the RMSEs suggests that the ranking is mainly due to differences

in the RMSE for inverse velocity.13 The MIU model attains an even larger marginal likelihood value than

SBM(B). While the MIU’s in-sample output predictions are slightly less precise, the inflation, interest rate,

and velocity forecasts are more accurate than those of the search-based models. The two main differences

between the MIU model and the SBMs are that, first, the MIU model only has one sticky-price sector whereas

the SBMs are comprised of a sticky price and a flexible price sector that are aggregated into GDP. Second,

the MIU model has a separable structure that insulates the economy from money demand shocks. We will

focus on the latter aspect.

For the SBM(PT) it is fairly straightforward to derive the log-linear approximation to the money demand

function. The same can be done for the MIU model:14

SBM(PT) : M̃t+1 ≈ −
R∗

(R∗ − 1) + σ
R̃t + IEt[X̃t+1] + IEt[π̃t+1] + IEt[χ̃t+1] (47)

MIU : M̃t+1 = − R∗
ν(R∗ − 1)

R̃t +
1
ν
IEt[X̃t+1] + IEt[π̃t+1] + IEt[χ̃t+1], (48)

13This and the subsequent statements relating marginal log likelihoods and RMSEs need to be taken with a grain of salt.

In a model with normally distributed shocks, ln p(Y T |θ̂T ) is approximately a function of the log determinant of the in-sample

one-step ahead forecast error covariance matrix. This log determinant does not only depend of the diagonal elements of the

forecast error covariance matrix, but also on the off-diagonal elements.
14The expression for SBM(PT) is approximate because IEt[q̃t+1] enters with a coefficient that is very close to zero but not

exactly zero.
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where M̃t+1 is the real money balance based on end-of-period t money holdings. In the SBM(PT) the

interest semi-elasticity is given by R∗/(R∗ − 1 + σ) which is a decreasing function of σ.15 Recall that the

nominal return on a bond is Rt, whereas the expected nominal return on holding money is

IEt[σ
χt+1u

′(qt+1)
cq(qt+1,Kt+1, Zt+1)

+ (1− σ)].

which depends on the realization of the idiosyncratic taste shock as well as the money demand shock. The

term χt+1u
′(qt+1) captures the marginal utility of consuming qt+1 units of the DM good, and cq captures

the marginal disutility of producing it. Thus, the smaller the probability of participating in the DM, the

more interest rate sensitive the return to holding money conditional on participating in the DM has to be

to equate the expected returns on bond and money holdings. Since in equilibrium the return to holding

money is (inversely) proportional to money balances, the interest rate elasticity of money demand has to be

decreasing in σ. According to our posterior estimates, the interest semi-elasticity is about 3 in SBM(PT).

The interest semi-elasticity in the MIU model is R∗/(ν(R∗ − 1)). Our estimate of ν is 31.8, which

translates into an MIU interest semi-elasticity of about 2. With the exception of the consumption elasticity,

the money demand functions derived from SBM(PT) and the MIU model are very similar.16 So, why does

the MIU model deliver more precise forecasts of real money balances and velocity? The estimated value of ρχ

in the MIU model is 0.98 and most of the variation in real money is explained by the highly persistent money

demand shock χ̃t, which has no effect on output, inflation, and interest rates. Thus, the weak correlation

between real money and the other variables in the data allows the money demand shock in the MIU model

to capture real money balance fluctuations without compromising the fit for any other variable. In contrast,

aggregate output and inflation in the search-based models are not insulated from money demand shocks.

The relative ranking of MIU model and the search-based models is consistent with Ireland’s (2004) finding

that when money is included as observable U.S. data tend to reject non-separabilities in a more general MIU

model.

The vector autoregression removes the restrictions that the DSGE models place on the joint dynamics

of output, inflation, interest rates, and velocity. As is common in marginal likelihood comparisons between

estimated DSGE models and VARs, the VAR dominates SBM(B), SBM(PT), and the MIU model by a fairly

large margin. As discussed in detail in Schorfheide (2000), since the VAR attains a better time series fit than

the DSGE models, we can use its implications with respect to the propagation of shocks as a benchmark to

assess the search-based models. Figure 5 depicts impulse responses to a target inflation shock that raises

inflation by about 20 basis points in the long run computed from the VAR (90% credible sets), SBM(B)

15Note that for small interest rates, the elasticity with respect to the gross interest rate is equal to the semi-elasticity with

respect to the net interest rate.
16The non-unit elasticity in the MIU model is due to the additively separable form of the households’ preferences.
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(posterior mean), and the MIU model (posterior mean). The DSGE model restrictions imply that the long-

run responses of inflation, nominal interest rates, and target inflation are identical. While the long-run

responses of the VAR are unconstrained, the impulse response bands for inflation and interest rates are

approximately consistent with a 20 basis point increase over long horizons.

The most striking discrepancy between VAR and DSGE model responses arises for inverse velocity.

According to the VAR, the initial response of inverse velocity is sluggish, but after 20 periods it has fallen

100 basis points below its mean value, whereas the DSGE model based responses are a magnitude smaller.

The VAR estimates indicate that the interest elasticity of money demand is much lower in the short-run

than in the long-run. According to the posterior mean VAR responses interest rates increase 5 basis points

in the first period and velocity drops roughly 10 basis points below its steady state value. After five periods,

the interest rate is up 26 basis points and and velocity is down 58 basis points. In the long-run, after 200

periods (not shown in Figure 5), the interest rate has increased by 29 basis points, whereas velocity has

fallen about 210 basis points.

If one interprets the ratio of inverse velocity and interest rate response as interest semi-elasticity, then

the short-run elasticity is about 2 and the long-run elasticity roughly 7. These figures are consistent with

other numbers that have been reported in the literature. Goldfeld and Sichels (1990) estimate the short-run

interest semi-elasticity to be around one. Estimates of the long-run semi-elasticity reported in Lucas (1988,

2000), Stock and Watson (1993), and Ball (2001) range from 5 to 11. It is apparent from Equations (47)

and (48) that short and long-run elasticities in our DSGE models are essentially identical. The likelihood-

based estimation picks up the low short-run elasticity. In Figure 5, this is reflected in DSGE-model based

velocity responses, that are small at all horizons.

Guerron-Quintana (2009) considers a New Keynesian DSGE model in which demand for money arises

because of the presence of reduced-form transaction costs. He assumes that in every period only a fraction

of households are able to re-optimize their money balances. This arguably ad-hoc mechanism generates

an initially sluggish response of velocity to interest rate movements and disentangles short and long-run

interest semi-elasticities of money demand. GMM estimation of the model-implied money demand function

based on a sample from 1960 to 2005 yields a short-run elasticity of about one and a long-run elasticity of

approximately 13. Moreover, Guerro-Quintana (2009) provides some evidence that the two elasticities have

dropped to 0.4 and 5 after 1984.

Returning to our estimation, Figure 6 depicts the steady state relationship between log inverse velocity

and the target inflation rate for SBM(B) and SBM(PT) at the posterior mean parameter estimates and

provides a scatter plot of U.S. data. According to our estimated search-based models, consistent with the

previously presented impulse response function evidence, changes in the target inflation rate have a small

effect on inverse velocity. Note that at the steady state the nominal interest rate is given by R∗ = π∗/β. This
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shows that the elasticity of money demand with respect to the nominal interest rate and that with respect

to inflation are identical since interest rate can only change due to changes in the inflation target. In order

to capture the negative relationship between interest rates and inverse velocity present in the data we have

to lower σ from 0.31 to about 0.06, which raises the interest-semi elasticity from 3 to 13 in SBM(PT) and

shrinks the size of the decentralized market from 20% to 4% of GDP.17 Choosing σ to match the steady state

relationship between interest rates and velocity (as a function of the target inflation rate) to the correlation

observed in U.S. data ignores the fact that much of the variation in the actual data is caused by other

exogenous shocks. However, if we compare the implied posterior predictive distributions for the correlation

between velocity and interest rates conditional on only the target inflation shock, we find that σ = 0.06

yields a very good match between VAR and DSGE model implied predictive distributions.

To examine the effects of inducing a high long-run interest rate elasticity of money demand we re-

estimate SBM(B) and SBM(PT) subject to the restriction that σ = 0.06. Only the estimates of parameters

that govern the dynamics of the money demand shock and the price rigidity in the CM are significantly

affected by lowering σ. The estimated persistence of χ drops slightly and the standard deviation σχ increases

dramatically because the velocity forecasts are deteriorating. Since the size of the flexible price DM is now

lower, we obtain smaller estimates for ζ and ι. Less price rigidity in the CM is needed to capture the same

aggregate inflation dynamics.

The log marginal data density for the two search-based models drops by more than 100 points (see

Table 5) and the in-sample RMSE of inverse velocity rises from 2.17 to 3.22 for SBM(B) and from 2.32 to

3.20 for SBM(PT). The RMSEs for output, inflation, and interest rates do not change by the same order of

magnitude. Thus, imposing a low value of σ in the search-based models leads to an unambiguous deterioration

of time series fit. We also re-estimated the MIU model subject to the high elasticity restriction ν = 5.15,

which implies an increase of the interest semi-elasticity from 2 to 12, and found a similar deterioration in fit

as for SBM(B) and SBM(PT).

In Figure 7 we overlay the posterior mean impulse response to an inflation target shock from the unre-

stricted and the restricted version of SBM(B). For σ = 0.06 the initial response of inverse velocity is almost

100 basis points, which lies outside the VAR credible interval while the unrestricted model captures the small

short-run response of inverse velocity. After 20 periods inverse velocity is about 10 basis points below its

steady state level in the restricted model which is still small but closer to the VAR credible interval. The

long-run response (not shown in the figure) is about -50 basis points, whereas the 90% VAR credible interval

ranges from -60 to -390 points. Thus, given the restrictions generated by the search-based DSGE models,

we can either match the short-run or the long-run interest rate elasticity of money demand, but not both.

17The benchmark annual calibration in AWW, who use long-run observations including the interest elasticity of money

demand, use σ = 0.25. A quarterly calibration, which is comparable to our estimation, yields exactly σ = 0.06.
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4 Policy Analysis

One of the advantages of having a structural model is the ability to conduct policy experiments. In our case,

having a deeply-founded money demand motive enables us to juxtapose the frictions that it brings against

the (admittedly reduced-form) frictions that arise from the firms’ problem. The particular policy experiment

we consider is one where we change the long-run inflation target of the central bank, π∗ and assess its effect

on welfare in a steady state in which the only sources of uncertainty are the realization of the Calvo shock

on the firm side and households’ opportunity to engage in a bilateral exchange in the DM. All aggregate

shocks are set to zero and hence aggregate outcomes are non-stochastic. We hereby expect to capture the

most important first-order effects. An extension of the welfare analysis to an environment with aggregate

uncertainty is left for future research.

4.1 Welfare Cost Channels

There are five potential channels through which changes in the long-run inflation target can affect welfare

in our model. First, inflation acts as a tax on money holdings and this reduces welfare. In our model,

an increase in inflation increases the opportunity cost of holding money, reduces real money balances and

reduces the equilibrium consumption in the DM, which will directly reduce welfare. In addition to this direct

channel, since capital is used as an input to DM production, the return to holding capital falls due to the

fall in DM consumption, leading to reduced investment in the CM. This will then reduce all real activity in

the CM, including consumption, reducing welfare further. This channel is present in virtually all monetary

models and it underlies Friedman’s prescription of a zero percent net nominal interest rate, which has come

to be known as the Friedman rule, as this eliminates the opportunity cost of holding money. We will label

this effect of a change in the long-run inflation target on welfare the Friedman channel.

Unlike in cash-in-advance, MIU, or consumption transaction costs models, in our search-based environ-

ment the Friedman channel arises through the explicit modelling of bilateral exchanges. A traditional way to

think about the opportunity cost of holding money is the welfare triangle (the area under the money demand

curve), which has first been discussed by Bailey (1956) and subsequently by Lucas (2000). It can be shown

that in the absence of any other distortions, the welfare cost of inflation can be very well approximated by

(in fact for some models exactly equal to) the area under the money demand curve between the two rates

being compared.18 As such, the shape of the steady state relationship between inverse velocity and interest

rate depicted in Figure 6 is key for determining the strength of the Friedman channel.

18Craig and Rocheteau (2008) show that in the basic Lagos-Wright model, in the absence of any holdup problems, the area

under the money demand curve very closely approximates the consumption-equivalent welfare measure we will also use. When

holdup problems are present, the area under the money demand curve underestimates the welfare loss.
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Second, our model has a nominal rigidity where some firms cannot optimally change their prices, which

creates a relative price distortion.19 This distortion is captured by the deviation of Dt in (35) from unity

which would move the economy inside the production possibilities frontier by effectively destroying some of

the outputs of the intermediate good firms. At the steady state, D∗ is given by

D∗ =
(1− ζ)

[
1

1−ζ −
ζ

1−ζ

(
1
π∗

)− 1−ι
λ

]1+λ

1− ζ
(

1
π∗

)− (1+λ)(1−ι)
λ

which shows that for a given level of markup λ and inflation, this distortion is affected by the fraction of

firms that cannot adjust their price (ζ) and the fraction of the firms out of those that cannot adjust their

price that can still dynamically index their price to lagged inflation (ι). In particular if either ζ = 0 or ι = 1,

then D∗ = 1, which means this distortion is shut down. Moreover, holding the other parameter constant,

an increase in ζ and a decrease in ι makes this distortion more severe. Finally, holding the parameters

constant, the distortion becomes more severe as the steady state inflation rate moves away from 0% (in both

directions) which in turn will reduce welfare. We will label this channel the relative-price distortion channel.

Third, monopolistic competition among intermediate good producers create an additional distortion in

our model. This distortion is captured by a positive markup in the CM, given by λ and by moving the

real wage rate away from the marginal product of labor, it can be thought of creating a wedge similar to a

labor income tax. To see this, shutting down the second channel above by setting ζ = 0, the intratemporal

optimality condition becomes
U ′(X∗)
A

=
1 + λ

(1− α)Z∗
(
H∗
K∗

)−α
where the left-hand side is the marginal rate of substitution between CM consumption and labor and λ > 0

creates a wedge between this and the marginal rate of substitution.20 While it is not obvious from this

equation, as Wolman (2001) shows this distortion is minimized at a slightly positive inflation rate. We will

label this channel the markup channel and will refer to the this and the previous channel collectively as the

New-Keynesian channel. The price-taking version of our model will only display these three channels.

There are two more distortions in the bargaining version of our model which are explained in detail in

AWW. To summarize, the bilateral nature of trade and the fact that the surplus in a meeting is split by

the two parties in the DM create two holdup problems: the buyers do not bring in the optimal amount of

money (a money demand holdup problem) and the sellers do not bring in the optimal amount of capital (an

investment holdup problem). These holdup problems are aggravated as inflation increases since this further
19See Wolman (2001) for a more in-depth discussion of this and the next channel.
20It is common to use a labor income subsidy to offset the effect of the positive markup. As Schmitt-Grohe and Uribe (2007)

also note, we find this arbitrary and refrain from doing so, especially given our objective of finding the net welfare effect of all

the distortions in our model.
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reduces the payoffs in the DM by reducing q. We will collectively refer to these two sources of welfare loss

as the holdup problem channel.

Our discussion so far makes it clear that the Friedman channel and the New-Keynesian channel have

different implications for welfare. The welfare loss of inflation from the Friedman channel is minimized (in

fact eliminated) at the Friedman rule of zero percent net nominal interest rate (or an inflation target for

the central bank equal to the minus the rate of time preference). On the other hand, the loss due to the

New-Keynesian channel is minimized around zero percent inflation target. When both of these channels are

present, the inflation rate that minimizes the overall distortions may be at either of the two extremes or

somewhere in between.

The key parameters that control the strength of the New Keynesian channel are ζ and ι. While the

importance of ζ is well recognized in the literature, the sensitivity of welfare analysis to ι is less appreciated.

ζ and ι control the shape of the New Keynesian Phillips curve and are identified from the output and

inflation dynamics, where ι in particular adjusts to capture the inflation persistence. The strength of the

Friedman channel is mostly determined by the DM participation probability σ, which is identified from the

comovements of velocity and interest rates. As explained in the previous section, we will consider two sets

of estimates. One obtained from the likelihood-based estimation of the search-based DSGE models, and

the other one by matching the model’s implied interest elasticity of money demand to estimates of long-run

elasticities and re-estimating the rest of the parameters.

The trade-off between the New Keynesian channel and the Friedman channel are not well fleshed out

in the literature. Much of the work following Woodford (2003) considers cashless economies in which the

Friedman channel is eliminated. Moreover, the treatment of the New Keynesian channel varies substantially

across studies. Many authors, including for instance Onatski, Levin, Williams, and Williams (2006) ignore

the steady state distortion generated by D∗ by assuming that the static indexation rate π∗∗ equals the steady

state inflation rate π∗. In this case, D̃t would be zero in a log-linear approximation of the DSGE model and

only appear in higher-order approximations to the equilibrium dynamics.

Schmitt-Grohe and Uribe (2007) is one of the very few previous studies which considers the Friedman and

New Keynesian channel. They show that in a medium-scale New Keynesian model, one with more frictions

than ours, and with a transaction cost of consumption to motivate money demand, the welfare-maximizing

inflation target may be between the Friedman rule and price stability, crucially depending on the degree of

price stickiness. Their setup features no dynamic indexation, that is ι = 0, and for ζ = 0.6 and ζ = 0.8, two

popular calibrations, the optimal policy is an inflation target of −2% and −0.5%, respectively. Khan et al.

(2003) use somewhat different framework – one where the probability of a price change for a firm depends

on the time since last change – where they also consider an explicit money demand motive and nominal

rigidities. The optimal long-run inflation target in their benchmark calibration is −0.75%. This calibration
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resembles, but not equivalent to, a parametrization of our model with ζ = 0.8 and ι = 0. As such, it seems

that these two papers are similarly calibrated and they both find a small level of deflation to be optimal.

4.2 Welfare Calculations

Before we turn to the results, a brief discussion about how we compute the welfare loss is in order. In our

model, the reduced-form steady state welfare, or equivalently the social welfare function which places equal

weights on all households, up to a constant is given by

V (π∗) = σ [u(q∗)− c(q∗, k∗, Z∗)] + U(x∗)−Ah∗ (49)

We solve for the percentage change required in x∗ and consumption in the DM (the q∗ in u(q∗)) to make the

households indifferent between two economies with different steady state inflation rates. We use an annual

inflation rate of 2.5% as a benchmark, which is the average inflation rate at the end of our sample. Finally,

as a technical point, we replace
(

1− 1
g∗

)
Y∗ with simply a constant G∗ obtained from the estimations to

prevent any welfare effects coming through this term.

Figure 8 plots the welfare cost of deviating from the benchmark target of 2.5% inflation for the four

versions of the our model we considered in the previous section using the posterior mean parameter estimates.

The versions differ on whether the holdup problems are presents (B) or not (PT) and whether σ was

estimated to capture short-run interest elasticity of money demand (SR) or fixed to capture the long-run

interest elasticity (LR). All versions show that some target in the interval between the Friedman rule and

price stability is strictly better than the benchmark target, with a gain between 0.2%-0.6% of consumption.

This is not surprising since all the channels we identified above agree that positive inflation is not desirable.

While welfare costs are fairly steep to the right of 0%, they are quite flat to the left of 0%. For some versions,

the welfare difference between the Friedman rule and price stability is less than 0.05%. Thus, in this target

inflation region the Friedman channel and the New Keynesian channel work in opposite directions and their

strengths are similar. This finding contrasts with the MIU version of the New Keynesian model discussed in

the previous section, where welfare loss is almost symmetric around 0% inflation.

As we compare the four DSGE model versions, we need to account for several simultaneous changes.

First, as we replace bargaining by price-taking, the holdup problem channel disappears which reduces the

desirability of the Friedman rule. Accordingly the welfare gain of moving to the Friedman rule is lowered.

Second, as we move from SR to LR versions two effects are present. As Figure 6 illustrates, the money

demand curve becomes steeper, which increases the area underneath in the region to the left of 0% inflation.

This rotation strengthens the Friedman channel. However, after we the model is re-estimated, the estimates

of ζ are only slightly lower, while the estimates of ι drop significantly. The reduced dynamic indexation
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strengthens the New Keynesian channel substantially. As a result, the welfare cost curve for the LR ver-

sions are lower (reflecting the increased Friedman channel) and more convex (reflecting the increased New

Keynesian channel).

To isolate the effects of holdup channel and the slope of the money demand curve from that of the

New Keynesian channel, Figure 9 plots welfare costs holding the New Keynesian channel fixed at ζ = 0.81

and ι = 0.09. Now it becomes clear that the Friedman channel is larger in the bargaining version than in

the price taking version, and it becomes stronger as one increases the interest elasticity of money demand.

Therefore, returning to Figure 8, it seems that going from SR to LR, the New Keynesian channel increases in

strength compared to the Friedman channel. We deduce that except for the bargaining (SR) version, which

has a very sharp prediction about welfare, the welfare gains of reducing the target inflation rate below 0%

are fairly insensitive to the actual value that is chosen.

4.3 Accounting for Uncertainty

The central question we want to address is finding the optimal inflation target for the central bank in

the presence of all (or some) of the five channels we discussed above. From Figure 8 we can see that for

the bargaining version (SR), Friedman rule is the optimal policy which means that the Friedman channel,

the desire to avoid the opportunity cost of holding money, together with the holdup problem channel is

significantly bigger than the New Keynesian channel. In other versions of the model, the optimal inflation

appears to be between the Friedman rule and price stability, but never very close to price stability.

The evidence from the analysis thus far and other related studies makes it clear that the answer to

this question crucially depends on the parameter choices, especially ζ, ι, and σ. Our Bayesian framework is

perfectly suited to account for parameter (and model) uncertainty. A casual inspection of Table 2 indicates

that the degree of indexation ι is least precisely estimated among the three key parameters and this large

uncertainty about ι is likely to translate into substantial uncertainty with respect to policy effects.

While we could convert the marginal data densities reported in Table 5 into posterior model probabilities

and average across models, we decided in view of the overall model misspecification concerns to report results

for each version separately. For each draw ϑ from the posterior distribution of a particular DSGE model

specification we can compute the π∗ that yields the largest welfare gain, which we denote as πopt∗ (ϑ). Now

suppose we consider a particular target inflation rate π̄∗. For each draw ϑ, we can calculate a “regret,” that

is, the differential between the welfare gains attained with πopt∗ (ϑ) and π̄∗, respectively. Figure 10 depicts

the posterior probability that this regret is less than 0.01% as a function of π̄∗.

Our results indicate that by and large the welfare differences among inflation targets between 0 and

-2.5% is fairly small. For example, if we consider a posterior probability of 0.5 as a threshold, the low
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regret inflation targets range from -2% and -1% (SBM(B-LR)), Friedman rule and -1% (SBM(PT-SR)),

and -1.25% and -0.3% (SBM(PT-LR)), respectively. Thus, even the SBM(PT-LR) which has a strong New

Keynesian channel and no holdup problem channel, does not rule out inflation targets less than -1%. The

only specification that yields fairly sharp policy prescriptions is SBM(B-SR). It strongly favors inflation rates

that are very close to the Friedman rule with rates above −2% receiving a posterior probability of less than

0.05. We want to emphasize that this specification attains the highest marginal likelihood among the four

versions of the model we consider. This means that if we were to use the model weights implied by the

marginal log-likelihoods, this version would get virtually all the weight.

To summarize, a target inflation rate of -1%, which is substantially lower than the 2% rate favored by

most inflation targeting countries, works well in all of the search-based models we considered. Someone who

is willing to rely on the estimated posterior model weights, might want to lower that target inflation rate

even further to realize all potential welfare gains. Our analysis has one important caveat. We do not account

for aggregate uncertainty. Since the Friedman channel favors near-zero nominal interest rates, the stochastic

analysis requires a careful treatment of the zero lower-bound. We will leave such an analysis for future work.

5 Conclusion

As an alternative to the commonly used cashless New Keynesian model, or its “cash-filled” MIU counterpart,

we have developed an estimable DSGE model in which the presence of a decentralized market creates an

incentive for households to hold money and money’s role as a medium of exchange emerges endogenously.

The model specification is closely tied to the theoretical literature that is developing micro-founded models

of monetary exchange, in particular Lagos and Wright (2005), and Aruoba, Waller, and Wright (2008). We

discipline our model by making fairly standard choices about utility and production functions defined over

consumption goods, instead of choosing arguably arbitrary functional forms for the utility derived from real

money balances or the cost of transactions.

Using post-war U.S. data on output, inflation, interest rates, and (inverse) velocity, we estimate several

versions of our search-based DSGE model. Most importantly, we obtain estimates for the parameters that

determine the exchange in the decentralized market and the price rigidity in the centralized market. Thus,

the econometric analysis provides us with a measurement of the relative strength of the various channels

through which target inflation rates affects welfare. We explore the steady state welfare implications of our

model, taking parameter uncertainty into account. Our findings suggest that the regret of a central bank

(of not choosing the policy that is optimal under the “true” parameters) is fairly small in the region of

[−2.5%, 0%] inflation. Moreover, considering uncertainty about the pricing mechanism in the DM, which

has implications about the presence of holdup problems, and whether to match the short or long-run interest
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elasticity of money demand, we find that negative inflation targets, especially those less than −1% are

desirable. Thus, the standard prescription of a cashless New Keynesian model, 0% long-run inflation, is

never optimal according to our model.

A caveat remains. Our quantitative result is certainly at odds with the general practice in central banks

around the world. We know of no central bank that either explicitly or implicitly follow a deflationary policy

in the long-run. This suggests that the motives behind non-negative inflation targets of central banks are not

explicit in our model, or in many related models. Billi and Kahn (2008) list a number of reasons why a low

but positive level of inflation may be useful. Among these are measurement errors – that observed inflation

may not be accurate assessment of actual inflation, – the effect of deflation on debts, and downward nominal

wage rigidity, neither of which are present in our model. Finally, an aspect of monetary policy that we have

not addressed is optimal short-run stabilization in the presence of a lower bound on nominal interest rates.

Another reason why central banks may prefer a positive long-run inflation target is that otherwise aggregate

shocks may push the economy too close to the zero bound. We leave a formal analysis of stabilization policies

to future work.
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Figure 1: Inflation, Target Inflation, M1-Velocity and Interest Rates
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Table 1: Parameters Fixed During Estimation

Preference Parameter χ∗ 1.00

Preference Parameter κ 1E-4

Depreciation Rate δ .014

Fixed Costs F 0.00

Indexation π∗∗ 1.00

Steady State GDP Y∗ 1.00

Steady State ln(H∗/Y∗) -3.35

Steady State Inv Velocity ln(M∗/Y∗) -0.38

Share of Government Spending g∗ 1.20

Steady State Real Rate rA 2.50

Central Bank’s Reaction to Inflation ψ1 1.70

Notes: We use the following transformations: β = 1/(1 + rA/400), π∗ = 1 + πA/400. The model is log-

linearized around πA = 4.00.
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Table 2: Prior and Posterior Distributions

Prior Distributions Posterior Distributions

SBM(B) SBM(PT)

Name Domain Density Para (1) Para (2) Mean 90% Intv Mean 90% Intv

Households

θ [0, 1) Uniform 0.00 1.00 0.95 [0.95, 0.96]

2σ [0, 1) Beta 0.40 0.20 0.63 [0.56, 0.70] 0.59 [0.52, 0.66]

Firms

α [0, 1) Beta 0.30 .025 0.32 [0.31, 0.34] 0.27 [0.26, 0.28]

λ IR+ Gamma 0.15 0.05 0.14 [0.12, 0.16] 0.19 [0.18, 0.21]

ζ [0, 1) Beta 0.60 0.15 0.83 [0.79, 0.87] 0.84 [0.80, 0.88]

ι [0, 1) Beta 0.50 0.25 0.72 [0.54, 0.91] 0.57 [0.31, 0.82]

S′′ IR+ Gamma 5.00 2.50 4.89 [2.50, 7.36] 5.08 [2.42, 7.71]

Central Bank

ψ2 IR+ Gamma 0.20 0.10 0.86 [0.64, 1.06] 0.83 [0.64, 1.02]

ρR [0, 1) Beta 0.50 0.20 0.61 [0.56, 0.66] 0.60 [0.55, 0.65]

σR IR+ InvGamma 0.50 4.00 0.36 [0.31, 0.41] 0.37 [0.31, 0.42]

σR,2 IR+ InvGamma 1.00 4.00 0.85 [0.63, 1.07] 0.85 [0.62, 1.08]

π̃∗A,0 IR Normal 0.00 2.00 0.05 [-3.21, 3.26] 0.02 [-3.22, 3.28]

σπ IR+ InvGamma 0.05 4.00 0.05 [0.04, 0.05] 0.05 [0.04, 0.05]

Shocks

ρg [0, 1) Beta 0.80 0.10 0.84 [0.81, 0.88] 0.87 [0.83, 0.90]

σg IR+ InvGamma 1.00 4.00 1.01 [0.90, 1.11] 1.06 [0.94, 1.16]

ρχ [0, 1) Beta 0.80 0.10 0.97 [0.97, 0.98] 0.96 [0.95, 0.97]

σχ IR+ InvGamma 1.00 4.00 1.80 [1.63, 1.97] 1.88 [1.70, 2.05]

ρZ [0, 1) Beta 0.80 0.10 0.83 [0.76, 0.90] 0.83 [0.77, 0.89]

σZ IR+ InvGamma 1.00 4.00 1.04 [0.90, 1.17] 1.06 [0.91, 1.21]

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions;

the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma distribution,

where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.
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Table 3: Posterior Steady States

SBM(B) SBM(PT)

Mean 90% Intv Mean 90% Intv

A 16.1 [15.5, 16.7] 24.3 [23.8, 24.8]

B 0.44 [0.41, 0.46] 0.65 [0.62, 0.68]

Z∗ 4.10 [3.70, 4.47] 5.48 [5.05, 5.89]

I∗/Y∗ 0.16 [0.15, 0.16] 0.16 [0.16, 0.17]

K∗/Y∗ 11.1 [10.6, 11.6] 11.8 [11.3, 12.3]

W∗H∗/Y∗ 0.60 [0.58, 0.61] 0.61 [0.60, 0.62]

Overall Markup 0.14 [0.13, 0.16] 0.16 [0.14, 0.17]

DM Share 0.21 [0.19, 0.24] 0.20 [0.18, 0.22]

DM Markup 0.17 [0.11, 0.24] 0.000

Notes: Aggregate output is normalized to Y∗ = 1 in the two versions of the search-based DSGE model.
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Table 4: Posterior Variance Decomposition (Business Cycle Freq)

Shock SBM(B) SBM(PT)

Mean 90% Intv Mean 90% Intv

Output

Gov Spending 0.31 [0.25, 0.39] 0.29 [0.21, 0.34]

Money Demand 0.03 [0.02, 0.04] 0.05 [0.03, 0.06]

Monetary Policy 0.19 [0.13, 0.24] 0.18 [0.12, 0.27]

Technology 0.46 [0.36, 0.57] 0.47 [0.36, 0.57]

Target Inflation 0.01 [0.01, 0.02] 0.01 [0.01, 0.02]

Inflation

Gov Spending 0.11 [0.08, 0.14] 0.10 [0.06, 0.12]

Money Demand 0.02 [0.01, 0.03] 0.04 [0.02, 0.05]

Monetary Policy 0.14 [0.10, 0.18] 0.12 [0.09, 0.16]

Technology 0.68 [0.62, 0.75] 0.70 [0.66, 0.77]

Target Inflation 0.04 [0.03, 0.06] 0.04 [0.03, 0.05]

Real Money Balances

Gov Spending 0.13 [0.10, 0.17] 0.13 [0.10, 0.17]

Money Demand 0.62 [0.57, 0.69] 0.61 [0.55, 0.67]

Monetary Policy 0.14 [0.10, 0.17] 0.13 [0.10, 0.17]

Technology 0.11 [0.07, 0.14] 0.12 [0.08, 0.15]

Target Inflation 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

Notes: Real money balances are measured in terms of the CM good.
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Figure 2: Impulse Responses to Technology Shock

Notes: Figure depicts pointwise posterior mean and 90% credible interval of impulse responses for SBM(B)

model. Responses of inflation and Fed Funds rate are measured in percentage points and responses of real

output, real money balances, and relative prices are measured in percentage deviations from the steady state.
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Figure 3: Impulse Responses to DM Taste Shock

Notes: Figure depicts pointwise posterior mean and 90% credible interval of impulse responses for SBM(B)

model. Responses of inflation and Fed Funds rate are measured in percentage points and responses of real

output, real money balances, and relative prices are measured in percentage deviations from the steady state.
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Figure 4: Impulse Responses to Monetary Policy (εR,t) Shock

Notes: Figure depicts pointwise posterior mean and 90% credible interval of impulse responses for SBM(B)

model. Responses of inflation and Fed Funds rate are measured in percentage points and responses of real

output, real money balances, and relative prices are measured in percentage deviations from the steady state.
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Table 5: Marginal Data Densities and RMSEs

In-Sample RMSE

Model ln p(Y T ) Output Inflation Interest Inv. Velocity

SBM(B) -998.43 0.81 1.18 1.41 2.17

SBM(PT) -1,007.26 0.83 1.18 1.42 2.32

MIU -949.14 0.86 1.08 1.06 1.43

VAR(4) -924.14 0.85 0.96 0.87 1.31

SBM(B) σ = 0.06 -1,126.00 0.83 1.08 1.15 3.22

SBM(PT) σ = 0.06 -1,126.59 0.83 1.08 1.15 3.20

MIU ν = 5.15 -1,092.52 0.86 1.09 1.07 2.39

Notes: The marginal data densities for all models are computed conditional on the four observations 1964:I

to 1964:IV that are used to initialize the lags of the VAR. The RMSEs are computed at the posterior mode

and measured as follows: output is in percentage deviations from the linear trend, inverse velocity is in

percentage deviations from the sample mean, inflation and interest rates are in annualized percentages.
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Figure 5: Impulse Responses to Inflation Target (επ,t) Shock

Notes: Figure depicts pointwise posterior 90% credible interval of impulse responses for VAR (red, dashed)

and posterior mean responses for SBM(B) (blue, solid) and MIU model (green, dashed). Responses of

inflation and Fed Funds rate are measured in annualized percentages and responses of real output, and

inverse velocity are measured in percentage deviations from the steady state.
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Figure 6: Steady State Relationship Between Inverse Velocity and Inflation Target
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Notes: The dots correspond to inflation and inflation target pairs in our sample and the lines are obtained

from different versions of our model.
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Figure 7: Impulse Responses to Inflation Target (επ,t) Shock

Notes: Figure depicts pointwise posterior 90% credible interval of impulse responses for VAR (red, dashed)

and posterior mean responses for SBM(B): σ estimated (blue, solid) σ = 0.06 (green, dashed). Responses

of inflation and Fed Funds rate are measured in annualized percentages and responses of real output, and

inverse velocity are measured in percentage deviations from the steady state.
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Figure 8: Steady State Welfare Costs

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Inflation Target (%)

W
el

fa
re

 C
os

t (
%

 o
f C

on
su

m
pt

io
n)

SBM(B-SR)
SBM(B-LR)
SBM(PT-SR)
SBM(PT-LR)

Notes: Welfare costs of deviating from a 2.5% target in terms of consumption. They are calculated at the

posterior mean parameter estimates of the four models. Negative numbers correspond to welfare gains.
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Figure 9: Steady State Welfare with Fixed New Keynesian Channel
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Notes: Figure depicts welfare costs fixing the parameters of the New Keynesian channel at ζ = 0.81 and

ι = 0.09.
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Figure 10: Optimal Long-run Inflation

-2.5 -2 -1.5 -1 -0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SBM(B-SR)

Inflation Target (%)

P
ro

ba
bi

lit
y

-2.5 -2 -1.5 -1 -0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SBM(B-LR)

Inflation Target (%)

P
ro

ba
bi

lit
y

-2.5 -2 -1.5 -1 -0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SBM(PT-SR)

Inflation Target (%)

P
ro

ba
bi

lit
y

-2.5 -2 -1.5 -1 -0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SBM(PT-LR)

Inflation Target (%)

P
ro

ba
bi

lit
y

Notes: Figure depicts the posterior probability of the welfare difference between a particular inflation target

and the optimal one being less than 0.01%.
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A Solving the Search-Based Model

This Appendix provides detailed derivations of the equilibrium conditions presented in the main text.

A.1 The Households’ Problem

Using Υt to denote the Lagrange multiplier for (2) and after eliminating h using (1), the FOC are

xt : U ′(xt) =
A

Wt
(A.1)

mt+1 :
U ′(xt)
Pt

= βE[V DMt+1,m(mt+1, kt+1, it, bt+1,St+1)] (A.2)

it : U ′(xt) = Υt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βE[V DMt+1,i(mt+1, kt+1, it, bt+1,St+1)] (A.3)

kt+1 : Υt = βE[V DMt+1,k(mt+1, kt+1, it, bt+1,St+1)] (A.4)

bt+1 :
U ′(xt)
Pt

= βE[V DMt+1,b(mt+1, kt+1, it, bt+1,St+1)] (A.5)

assuming that an interior solution exists. Second, we have the following envelope conditions,

V CMt,m (m̂t, kt, it−1, bt,St) =
A

PtWt

V CMt,k (m̂t, kt, it−1, bt,St) =
ARkt
Wt

+ (1− δ)Υt

V CMt,i (m̂t, kt, it−1, bt,St) = Υt

(
it
it−1

)2

S′
(

it
it−1

)
V CMt,b (m̂t, kt, it−1, bt,St) =

ARt−1

Wt

which show that V CMt (.) is linear in m̂t.

We now turn to the analysis of household activity in the decentralized market. To solve (A.2)-(A.5), we

need:

V DMt,m (mt, kt, it−1, bt,St) =
A

PtWt
+ σ

[
χtu
′ (qbt) ∂qbt∂mt

− A

PtWt

∂dbt
∂mt

]
+σ
[

A

PtWt

∂dst
∂mt

− cq(qst , kt, Zt)
∂qst
∂mt

]
(A.6)

V DMt,k (mt, kt, it−1, bt,St) =
ARkt
Wt

+ (1− δ)Υt + σ

[
χtu
′ (qbt) ∂qbt∂kt

− A

PtWt

∂dbt
∂kt

]
+σ
[

A

PtWt

∂dst
∂kt
− cq(qst , kt, Zt)

∂qst
∂kt
− ck(qst , kt, Zt)

]
(A.7)

V DMt,i (mt, kt, it−1, bt,St) = V CMt,i (mt, kt, it−1, bt,St) (A.8)

V DMt,b (mt, kt, it−1, bt,St) =
A

PtWt
Rt−1 (A.9)
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It remains to specify how the terms of trade (q, d) are determined, so that we can substitute for their

derivatives in (A.6) and (A.7) which we turn to next. We consider two alternatives: bilateral bargaining via

generalized Nash bargaining and price taking.

Bargaining: The bargaining problem takes the form

max
q,d

[
χu(q)− Ad

PW

]θ [
Ad

PW
− c(q, ks, Z)

]1−θ

s.t. d ≤ mb.

Inserting d = mb and taking the FOC with respect to q, we obtain:

mbA

PW
= g(q, ks, χ, Z), (A.10)

where

g(·) =
θχc(q, ks, Z)u′(q) + (1− θ)χcq(q, ks, Z)u(q)

θχu′(q) + (1− θ)cq(q, ks, Z)
.

Turning to the partial derivatives, we obtain

∂d

∂mb
= 1,

∂q

∂mb
=

A

PWgq(q, k, χ, Z)
> 0, and

∂q

∂ks
= −gk(q, k, χ, Z)

gq(q, k, χ, Z)
> 0,

while the other derivatives in (A.6) and (A.7) are 0. Now reintroducing the time subscripts and inserting

these results, (A.6) and (A.7) reduce to

Vt,m(mt, kt, it−1, bt,St) =
(1− σ)A
PtWt

+
σAχtu

′(qt)
PtWtgq(qt, kt, χt, Zt)

(A.11)

Vt,k(mt, kt, it−1, bt,St) =
ARkt
Wt

+ (1− δ)Υt − σΓ(qt, kt, χt, Zt), (A.12)

where

Γ(·) =
ck(·)gq(·)− cq(·)gk(·)

gq(·)
.

determines the the marginal return of having capital in the DM when the household is a seller.

Price-Taking: Recall that V CMm (·) = A
PW and does not depend on m. The first-order conditions for buyer

and seller are

χu′(q) = p̃V CMm (m− p̃q, ·) + λp̃, cq(·) = p̃V CMm (m+ p̃q, ·),

where λ here denotes the Lagrange multiplier associated with the constraint p̃q ≤ m. Assuming that the

constraint is binding p̃q = m and the FOC of the seller yields:

m

P
=
qcq(·)W

A
.

Turning to the partial derivatives, we obtain:

∂d

∂mb
= 1,

∂q

∂mb
=

1
p̃

=
A

PWcq(q, k, Z)
> 0,

∂q

∂ks
= −cqk(q, k, χ, Z)

cqq(q, k, χ, Z)
> 0 and

∂d

∂ks
= p̃

∂q

∂ks
,
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while the other derivatives in (A.6) and (A.7) are 0. Finally, reintroducing time subscripts and using these

results we get the envelope conditions

Vt,m(mt, kt, it−1, bt,St) =
(1− σ)A
PtWt

+
σAχtu

′(qt)
PtWtqtcq(qt, kt, Zt)

(A.13)

Vt,k(mt, kt, it−1, bt,St) =
ARkt
Wt

+ (1− δ)Υt − σck(qt, kt, Zt). (A.14)

We obtain the optimality conditions for the household under bargaining by simply substituting (A.8),

(A.9), (A.11) and (A.12) in to the household’s FOC. For the price taking model we replace (A.11) and (A.12)

by (A.13) and (A.14).

A.2 Firms in the Centralized Market

The setup of the centralized market resembles that of a New Keynesian DSGE model. Production is carried

out by two types of firms in the CM: final good producers combine differentiated intermediate goods. In-

termediate goods producing firms hire labor and capital services from the households to produce the inputs

for the final good producers. To introduce nominal rigidity we follow Calvo (1983) by assuming that only a

constant fraction of the intermediate goods producers is able to re-optimize prices.

Final Good Producers solve the problem

max
Yt,Yt(i)

PtYt −
∫ 1

0

Pt(i)Yt(i)di s.t. (24) (A.15)

taking Pt(i) as given. The first-order condition is:

Pt(i) = PtY
λ

1+λ
t Yt(i)−

λ
1+λ . (A.16)

A free entry condition ensures that profits are zero in equilibrium.

Intermediate Goods Producers: Cost minimization subject to (27) yields the conditions:

PtWt = µt(i)Pt(i)(1− α)ZtKt(i)αHt(i)−α (A.17)

PtR
k
t = µt(i)Pt(i)αZtKt(i)α−1Ht(i)1−α, (A.18)

where µt(i) is the Lagrange multiplier associated with (27). In turn, these conditions imply:

Kt(i) =
α

1− α
Wt

Rkt
Ht(i).

If we integrate both sides of the equation with respect to di and define Kt =
∫
Kt(i)di and Ht =

∫
Ht(i)di

we obtain a relationship between aggregate labor and capital:

Kt =
α

1− α
Wt

Rkt
Ht. (A.19)



This Version: March 13, 2009 A-4

Thus, the aggregate capital labor ratio is a linear function of the ratio of factor prices. Total variable cost

(V Ct) is given by

V Ct(i) =
(
Wt +Rkt

Kt(i)
Ht(i)

)
Ht(i) =

(
Wt +Rkt

Kt(i)
Ht(i)

)
Z−1
t

(
Kt(i)
Ht(i)

)−α
Y vt (i),

where Y vt (i) = ZtKt(i)αHt(i)1−α is the “variable” part of output Yt(i). The real marginal cost MCt is the

same for all firms and equal to:

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )αZ−1

t . (A.20)

The first-order condition for an intermediate good producing firm is:

IEt

{ ∞∑
s=0

ζsβsΞpt+s|t
1

P ot (i)

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+s

[
P ot (i)πadjt+s|t − (1 + λ)Pt+sMCt+s

]}
= 0. (A.21)

Define and rewrite

F (1)
t = IEt

[ ∞∑
s=0

ζsβsΞpt+s|t

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+sπ
adj
t+s|t

]
(A.22)

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβIEt

[ ∞∑
s=0

ζsβsΞpt+1+s|t

(
P ot (i)πadjt+1+s|t

Pt+1+s

)− 1+λ
λ

Yt+1+sπ
adj
t+1+s|t

]

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβ
(
πιtπ

(1−ι)
∗∗

)−1/λ

×IEt
[(

P ot (i)
P ot+1(i)

)− 1+λ
λ

Ξpt+1|t

∞∑
s=0

ζsβsΞpt+1+s|t+1

(
P ot+1(i)πadjt+1+s|t+1

Pt+1+s

)− 1+λ
λ

Yt+1+sπ
adj
t+1+s|t+1

]

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt + ζβ
(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
P ot (i)
P ot+1(i)

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
.

Similarly,

F (2)
t = IEt

[ ∞∑
s=0

ζsβsΞt+s

(
P ot (i)πadjt+s|t

Pt+s

)− 1+λ
λ

Yt+s
Pt+sMCt+s

P ot (i)

]
(A.23)

=
(
P ot (i)
Pt

)− 1+λ
λ

Yt
PtMCt
P ot (i)

+ ζβ
(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
P ot (i)
P ot+1(i)

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
.

and the first-order condition becomes

F (1)
t = (1 + λ)F (2)

t . (A.24)

We are considering only the symmetric equilibrium in which all firms that can readjust prices will choose

the same P ot (i) and hence will drop the i index. Moreover, let pot = P ot /Pt and πt = Pt/Pt−1. Then we can
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write the first-order conditions as:

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(A.25)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(A.26)

F (1)
t = (1 + λ)F (2)

t (A.27)

To capture the evolution of the price distribution we introduce the variable

Dt =
∫ (

Pt(i)
Pt

)− (1+λ)
λ

di

Its law of motion can be derived as follows:

Dt = (1− ζ)
∞∑
j=0

ζj

(
(πt−1πt−2 · · ·πt−j)ιπj(1−ι)∗∗

πtπt−1 · · ·πt−j+1

P ot−j
Pt−j

)− 1+λ
λ

= (1− ζ)
[
P ot
Pt

]− 1+λ
λ

+(1− ζ)ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι) P ot−1

Pt−1

]− 1+λ
λ

+(1− ζ)ζ2

[(
πt−2

πt

)ι(
π2
∗∗

πtπt−1

)(1−ι)
P ot−2

Pt−2

]− 1+λ
λ

. . . .

Lagging Dt by one period yields

Dt−1 = (1− ζ)
[
P ot−1

Pt−1

]− 1+λ
λ

+(1− ζ)ζ

[(
πt−2

πt−1

)ι(
π∗∗
πt−1

)(1−ι) P ot−2

Pt−2

]− 1+λ
λ

+(1− ζ)ζ2

[(
πt−3

πt−1

)ι(
π2
∗∗

πt−1πt−2

)(1−ι)
P ot−3

Pt−3

]− 1+λ
λ

. . . .

Therefore, we obtain the following law of motion for the price dispersion:

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ)
[
P ot
Pt

]− 1+λ
λ

. (A.28)

A.3 Aggregate Resource Constraint and National Accounting

To take the model to the data we will now construct a GDP deflator and a measure of real output that

is consistent with this GDP deflator. Following NIPA conventions, we use a Fisher price index. However,
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to simplify the analysis we replace time-varying nominal shares by steady state shares. The DM share of

nominal output in the steady state is

s∗ =
σM∗

Y∗π∗ + σM∗
. (A.29)

Define πDMt = PDMt /PDMt−1 and let

πGDPt = ln
PGDPt

PGDPt−1

= (1− s∗) lnπt + s∗ lnπDMt . (A.30)

Thus,

PGDPt = PGDP0

t∏
τ=1

π1−s∗
τ (πDMτ )s∗ . (A.31)

We now define real GDP as

YGDPt =
Y(n)
t

PGDPt

= Yt
Pt

PGDPt

. (A.32)

It can be verified that up to a first-order approximation changes in real GDP evolve according to a

Fisher quantity index with fixed (steady state) weights. Let X∗ denote the steady state of a variable Xt and

X̃t = lnXt/X∗. Log-linearizing and differencing our expression for real output in terms of the CM good

yields

∆Ỹt = (1− s∗)∆Ỹt + s∗[∆M̃t −∆π̃t].

Here ∆ denotes the temporal difference operator. According to the definition of prices in the DM

π̃DMt = ∆M̃t −∆q̃t.

Combining the two previous equations leads to:

∆Ỹt = (1− s∗)∆Ỹt + s∗[∆q̃t + π̃DMt − π̃t].

Thus,

∆ỸGDPt = ∆Ỹt + π̃t − (1− s∗)π̃t − s∗π̃DMt = (1− s∗)∆Ỹt + s∗∆q̃t. (A.33)

Hence, the level of GDP in period t is given by

ỸGDPt = (1− s∗)Ỹt + s∗q̃t + [ỸGDP0 − (1− s∗)Ỹ0 − s∗q̃0].

Under the normalizations PGDP0 = 1 and P0 = 1 we obtain

ỸGDP0 = (1− s∗)Ỹ0 + s∗(M0 − π0).

We can therefore further simplify our expression for GDP to

ỸGDPt = (1− s∗)Ỹt + s∗q̃t + s∗(M̃0 − π̃0 − q̃0). (A.34)
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A.4 Functional Forms

We use a slightly more general specification of the utility and production functions in the subsequent expo-

sition:

U(x) = B
x1−γ

1− γ
, u(q) =

(q + κ)1−η − κ1−η

1− η
.

Moreover, we let f(e, k) = eΦk1−Φ.

A.5 Equilibrium Conditions

We now summarize the equilibrium conditions for the search-based model. The timing is such that all t shocks

are realized at the beginning of t and S̄t = (Zt, gt, χt) and Rt are observed. S̄t summarizes the exogenous

state variables. We define St =
(
S̄t, Rt

)
which will be the aggregate state variables of the household’s

problem. In the following definitions, we do not track ht (individual labor supply) and Bt (the bond supply

of the government). We also do not track nominal money balances but instead trackMt = Mt/Pt−1. Recall

that Mt is determined based on t − 1 information and so is Mt. Finally, we use πt ≡ Pt/Pt−1 and do not

track the level of prices. Given exogenous states
{
S̄t
}∞
t=0

, a monetary equilibrium is defined as allocations

{qt, Xt, Ht,Kt, It, µt, Yt,Mt,Yt}∞t=0 , policy {Rt}∞t=0 and prices
{
Wt, R

k
t , p

0
t , πt, Dt

}∞
t=0

such that :

Household’s Problem: Given exogenous states, policy and prices,
{
qt, Xt, Ht,Kt, It, µt,Mt,Ξ

p
t+1|t

}∞
t=0

satisfy

Wt =
A

U ′(Xt)
(A.35)

1 = βEt

[
U ′(Xt+1)
U ′(Xt)

Rt
πt+1

]
(A.36)

1 = µt

[
1− S

(
It
It−1

)
+

It
It−1

S′
(

It
It−1

)]
+ βEt

{
µt+1

U ′(Xt+1)
U ′(Xt)

(
It+1

It

)2

S′
(
It+1

It

)}
(A.37)

Kt+1 = (1− δ)Kt +
[
1− S

(
It
It−1

)]
It (A.38)

µt = βEt

{
U ′(Xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(Xt)
γ(qt+1,Kt+1, χt+1, Zt+1)

}
(A.39)

Mt =
g (qt,Kt, χt, Zt)Wtπt

A
(A.40)

U ′(Xt) = βEt

{
U ′(Xt+1)
πt+1

[
σχt+1u

′(qt+1)
gq(qt+1,Kt+1, χt+1, Zt+1)

+ (1− σ)
]}

(A.41)

Ξpt+1|t =
U ′(Xt+1)
U ′(Xt)πt+1

(A.42)
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In the price-taking version we replace (A.39), (A.40) and (A.41) with

µt = βEt

{
U ′(Xt+1)
U ′(xt)

[
Rkt+1 + (1− δ)µt+1

]
− σ

U ′(Xt)
ck(qt+1,Kt+1, Zt+1)

}
(A.43)

Mt =
qtcq (qt,Kt, Zt)Wtπt

A
(A.44)

U ′(Xt) = βEt

{
U ′(Xt+1)
πt+1

[
σχt+1u

′(qt+1)
cq(qt+1,Kt+1, Zt+1)

+ (1− σ)
]}

(A.45)

Intermediate Goods Producing Firms’ Problem: Intermediate goods firms choose their capital labor

ratio as a function of the factor prices to minimize costs:

Kt =
α

1− α
Wt

Rkt
Ht. (A.46)

Firms that are allowed to change prices are choosing a relative price pot (i) (relative to the aggregate price

level) to maximize expected profits subject to the demand curve for their differentiated product, taking the

aggregate price level Pt as well as the prices charged by other firms as given, which leads to

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )αZ−1

t (A.47)

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(A.48)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(A.49)

F (1)
t = (1 + λ)F (2)

t (A.50)

Final Good Producing Firms’ Problem: Final goods producers take factor prices and output prices

as given and choose inputs Yt(i) and output Yt to maximize profits. Free entry ensures that final good

producers make zero profits and leads to

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
(A.51)

Aggregate Resource Constraint for CM is given by

Yt = D−1
t (ZtKα

t H
(1−α)
t −F), (A.52)

where

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ) (pot )
− 1+λ

λ . (A.53)

Market Clearing: The goods market in the CM clears:

Xt + It +
(

1− 1
gt

)
Yt = Yt (A.54)
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GDP and GDP Deflator: Prices and inflation in the DM are given by

PDMt =
σMtPt−1

qt
, πDMt =

PDMt

PDMt−1

=
Mtqt−1

Mt−1qt
πt−1. (A.55)

According to our (approximate) Fisher index the GDP deflator evolves according to

πGDPt = (πt)(1−s∗)(πDMt )s∗ . (A.56)

Real output in terms of the CM good and GDP are

Yt = Yt +
σMt

πt
, YGDPt = YtPt/PGDPt . (A.57)

Finally, measured real money balances and (inverse) velocity in the data are given by

Mt+1

PGDPt

=Mt+1
Pt

PGDPt

,
Mt+1

PGDPt Y GDPt

=
Mt+1

(PGDPt /Pt)YGDPt

=
Mt+1

Yt
. (A.58)

Monetary Policy: The central bank supplies the quantity of money necessary to attain the nominal interest

rate

Rt = R1−ρR
∗,t RρRt−1 exp{σRεR,t}, R∗,t = (r∗π∗,t)

(
πGDPt

π∗,t

)ψ1 ( YGDPt

γYGDPt−1

)ψ2

(A.59)

A.6 Steady States

For estimation purposes it is useful to parameterize the model in terms of Y∗, H∗, and M∗ and solve the

steady state conditions for A, B, and Z∗. Suppose q∗ and K∗ are given then we can solve for the following
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steady states recursively:

R∗ = π∗/β

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
π∗∗
π∗

)− 1−ι
λ

]−λ

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

Y∗ = Y∗ − σM∗/π∗

Ȳ∗ = Y∗D∗

Z∗ = (Ȳ∗ + F)/(Kα
∗H

1−α
∗ )

Rk∗ =
αZ∗p

o
∗

1 + λ

 1− ζβ
(
π∗∗
π∗

)−(1−ι)/λ

1− ζβ
(
π∗∗
π∗

)−(1−ι)(1+λ)/λ


−1(

H∗
K∗

)1−α

W∗ =
1− α
α

K∗
H∗

Rk∗

I∗ = δK∗

X∗ = Y∗ − I∗ − (1− 1/g∗)Y∗

A =
g(q∗,K∗, χ∗, Z∗)W∗π∗

M∗
(A.60)

U ′∗ = A/W∗

B = U ′∗X
γ
∗

πDM∗ = πGDP∗ = π∗

To determine q∗ and K∗ we solve the following equations jointly:

R∗ = 1 + σ

[
χ∗u

′(q∗)
gq(q∗,K∗, χ∗, Z∗)

− 1
]

(A.61)

1 = β(1 +Rk∗ − δ)− σβ
γ(q∗,K∗, χ∗, Z∗)

U ′∗
(A.62)

In the price-taking version, we replace (A.60), (A.61) and (A.62) with

A =
q∗cq(q∗,K∗, χ∗, Z∗)W∗π∗

M∗

R∗ = 1 + σ

[
χ∗u

′(q∗)
cq(q∗,K∗, Z∗)

− 1
]

1 = β(1 +Rk∗ − δ)− σβ
ck(q∗,K∗, Z∗)

U ′∗
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We deduce from the firms’ problems:

F (1)
∗ =

(
1− ζβπ∗

(
π∗∗
π∗

)−(1−ι)/λ
)−1

(po∗)
− 1+λ

λ Y∗

F (2)
∗ =

(
1− ζβπ∗

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ
)−1

(po∗)
− 1+λ

λ −1Y∗MC∗

F (1)
∗ = (1 + λ)F (2)

∗

MC∗ = α−α(1− α)−(1−α)W 1−α
∗ (Rk∗)

αZ−1
∗

π∗ =
[
(1− ζ) (π∗po∗)

− 1
λ + ζ

(
πι∗π

1−ι
∗∗
)− 1

λ

]−λ
which lead to the conditions for po∗ above. The term D∗ measures the steady state price dispersion. The

larger π∗/π∗∗, that is, the faster the price of the non-adjusters is eroding in real terms, the bigger D∗. Finally,

in steady state the DM share of nominal output and the DM markup are given by

s∗ =
σM∗

σM∗ + Y∗π∗

markup(dm) =
g(q∗,K∗, χ∗, Z∗)
q∗cq(q∗,K∗, Z∗)

− 1.

A.7 Log-Linearizations

In the subsequent presentation of the log-linearized equations we adopt the convention that we abbreviate

time t expectations of a t+ 1 variable simply by a time t+ 1 subscript, omitting the expectation operator.

Household’s Problem: The optimality conditions for the household can be expressed as

W̃t = γX̃t (A.63)

X̃t = X̃t+1 −
1
γ

(R̃t − π̃t+1) (A.64)

ĩt =
1

1 + β
ĩt−1 +

β

1 + β
ĩt+1 +

1
(1 + β)S′′

µ̃t (A.65)

k̃t+1 = (1− δ)k̃t + δĩt (A.66)

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γβ(1− δ +Rk∗)X̃t+1 + βRk∗R̃
k
t+1 (A.67)

+(1− β(1− δ +Rk∗))Γ̃t+1

M̃t = g̃t + W̃t + π̃t (A.68)

R̃t =
R∗ − 1 + σ

R∗
[χ̃t+1 − g̃q,t+1 − η

q∗
(q∗ + κ)

q̃t+1] (A.69)

Ξ̃pt|t−1 = −γ(X̃t − X̃t−1)− π̃t (A.70)

Equations (A.63) to (A.70) determine wages, CM consumption, investment, capital, the shadow price of

installed capital, the rental rate of capital, real money balances, the stochastic discount factor used in the
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firms’ problem, and DM consumption. For the price-taking version, we replace (A.67), (A.68) and (A.69)

with

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γβ(1− δ +Rk∗)X̃t+1 + βRk∗R̃
k
t+1 (A.71)

+(1− β(1− δ +Rk∗))c̃k,t+1

M̃t = q̃t + c̃q,t + W̃t + π̃t (A.72)

R̃t =
R∗ − 1 + σ

R∗
[χ̃t+1 − c̃q,t+1 − η

q∗
(q∗ + κ)

q̃t+1] (A.73)

Decentralized Market: We now determine the law of motion for g̃q,t, Γ̃t, and g̃t. In addition, we are

introducing some auxiliary variables. We begin with (omitting t subscripts),

u =
(q + κ)1−η − κ1−η

1− η
u′ = (q + κ)−η

u′′ = −η(q + κ)−η−1

c = exp{−Z̃}qψk1−ψ

cq = ψ exp{−Z̃}qψ−1k1−ψ

ck = (1− ψ) exp{−Z̃}qψk−ψ

cqq = ψ(ψ − 1) exp{−Z̃}qψ−2k1−ψ

ckk = ψ(ψ − 1) exp{−Z̃}qψk−ψ−1

cqk = ψ(1− ψ) exp{−Z̃}qψ−1k−ψ

which can be log-linearized as follows

ũu∗ =
q∗

(q∗ + κ)η
q̃

ũ′ = −η q∗
q∗ + κ

q̃

ũ′′ = −(η + 1)
q∗

q∗ + κ
q̃

c̃ = −ψZ̃ + ψq̃ + (1− ψ)k̃

c̃q = −ψZ̃ + (ψ − 1)q̃ + (1− ψ)k̃

c̃k = −ψZ̃ + ψq̃ − ψk̃

c̃qq = −ψZ̃ + (ψ − 2)q̃ + (1− ψ)k̃

c̃kk = −ψZ̃ + ψq̃ − (1 + ψ)k̃

c̃qk = −ψZ̃ + (ψ − 1)q̃ +−ψk̃

Recall that

Γt =
ck,tgq,t − cq,tgk,t

gq,t
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which implies that Γ̃t evolves according to

g̃q,t + Γ̃t =
ck∗gq∗

ck∗gq∗ − cq∗gk∗
[c̃k,t + g̃q,t]−

cq∗gk∗
ck∗gq∗ − cq∗gk∗

[c̃q,t + g̃k,t]. (A.74)

Now consider the equation

gt(θχu′t + (1− θ)cq,t) = θχctu
′
t + (1− θ)χcq,tut,

which can be written in log-linear form as

[θχ∗u′∗ + (1− θ) cq∗] g∗g̃t

= θχ∗u
′
∗ (c∗ − g∗) ũ′t + (1− θ)χ∗cq∗u∗ũt + (1− θ) cq∗ (χ∗u∗ − g∗) c̃q,t (A.75)

+θχ∗c∗u′∗c̃+ [−θχ∗g∗u′∗ + θχ∗c∗u
′
∗ + (1− θ)χ∗cq∗u∗] χ̃t (A.76)

and determines g̃t. Now consider

gq =
χu′cq[θχu′ + (1− θ)cq] + θ(1− θ)(χu− c) (χu′cqq − cqχu′′)

[θχu′ + (1− θ)cq]2

In log-linear form, the equation can be rewritten as

gq∗ [θχ∗u′∗ + (1− θ) cq∗]
2
g̃q,t

= −ηgq∗ [θχ∗u′∗ + (1− θ) cq∗] [θχ∗u′∗ (ũt + χ̃t) + (1− θ) cq∗c̃q,t] (A.77)

+χ∗u′∗cq∗ [θχu′∗ + (1− θ) cq∗] (ũ′t + χ̃t + c̃q,t)

+θ (χ∗u′∗)
2
cq∗ (ũ′t + χ̃t) + χ∗ (1− θ)u′∗c2q∗c̃q,t

+θ (1− θ)χ∗ (u′∗cqq∗ − cq∗u′′∗)
[
χ∗u∗ (ũt + χ̃t)− c∗ ˜c, t

]
+θ (1− θ)χ∗ (χ∗u∗ − c∗)u′∗cqq∗ (ũ′t + χ̃t + c̃qq,tt)

−θ (1− θ)χ∗ (χ∗u∗ − c∗)u′′∗cq∗ (ũ′′t + χ̃t + c̃q,t) .

Moreover,

gk =
θχu′ck [θχu′ + (1− θ)cq] + θ(1− θ)(χu− c)χu′cqk

[θχu′ + (1− θ)cq]2
,

which leads to an equation for g̃k,t:

gk∗[θχu′∗ + (1− θ)cq∗]2g̃k,t

= −2gk∗[θχ∗u′∗ + (1− θ)cq∗]
(
θχ∗u

′
∗(ũtχ̃t) + (1− θ)cq∗c̃q,t

)
(A.78)

+θχ∗u′∗ck∗ [θχ∗u′∗ + (1− θ) cq∗] (ũ′t + χ̃t + c̃k,t)

+ (θχ∗u′∗)
2
ck∗ (ũ′t + χ̃t) + χ∗θ (1− θ)u′∗ck∗cq∗c̃q,t

+θ (1− θ)χ∗ (χ∗u∗ − c∗)u′∗cqk∗ (ũ′t + χ̃t + c̃qk,t)

+θ (1− θ)χ∗u′∗cqk∗ [χ∗u∗ (ũt + χ̃t)− c∗c̃t] .
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To summarize, Equations (A.74) to (A.78) determine Γ̃t, g̃t, g̃q,t, and g̃k,t. The first three variables appear

in the characterization of the households’ problem above.

Firms’ Problems: Marginal costs evolve according to

M̃Ct = (1− α)w̃t + αR̃kt − Z̃t.. (A.79)

Conditional on capital and factor prices, the labor demand is determined according to

H̃t = K̃t + R̃kt − W̃t. (A.80)

Since F (1)
t and F (2)

t are proportional, F̃ (1)
t = F̃ (2)

t = F̃t. The remaining optimality conditions can be written

as follows.

F̃t = (1−A)
[
−1 + λ

λ
p̃ot + Ỹt

]
(A.81)

+A
[
− ι
λ
π̃t −

1 + λ

λ
p̃ot +

1 + λ

λ
π̃t+1 +

1 + λ

λ
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A = ζβ

(
π∗∗
π∗

)−(1−ι)/λ

and

F̃t = (1−A)
[
−
(

1 + λ

λ
+ 1
)
p̃ot + Ỹt + M̃Ct

]
(A.82)

+A
[
− ι(1 + λ)

λ
π̃t −

(
1 + λ

λ
+ 1
)
p̃ot +

(
1 + λ

λ
+ 1
)
π̃t+1

+
(

1 + λ

λ
+ 1
)
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A = ζβ

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

.

The relationship between the optimal price charged by the adjusting firms and the inflation rate is given by

p̃ot = (A− 1)π̃t −Aιζ
(
π∗∗
π∗

)−(1−ι)/λ

π̃t−1 (A.83)

A =
(po∗)

1/λ

1− ζ

Equations (A.81) to (A.83) determine π̃t, F̃t, and π̃ot .

Resource Constraint, Market Clearing Conditions in the CM: Aggregate output across evolves

according to
˜̇Yt = Ỹt + D̃t = (1 + F/Ẏ∗)[Z̃t + αK̃t + (1− α)H̃t]. (A.84)

and the steady state price dispersion follows

D̃t = ζ

(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

[
D̃t−1 +

(1 + λ)
λ

π̃t −
ι(1 + λ)

λ
π̃t−1

]
− po∗(1 + λ)(1− ζ)

λD∗
p̃ot (A.85)
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The goods market clearing condition is of the form

Ỹt =
X∗
Y∗
X̃t +

I∗
Y∗
Ĩt +

(
1− 1

g∗

)
Y∗
Y∗
Yt +

Y∗
Y∗g∗

g̃t (A.86)

and determines investment.

Aggregate Output and Prices, Measured Real Money Balances In log-linear terms, inflation in the

DM evolves according to

π̃DMt = M̃t − M̃t−1 − (q̃t − q̃t−1) + π̃t−1. (A.87)

Since all inflation rates share the same steady state, changes in the GDP deflator are given by

π̃GDPt = (1− s∗)π̃t + s∗π̃
DM
t . (A.88)

Real output in terms of the CM final good evolves according to

Ỹt = (1− s∗)Ỹt + s∗(M̃t − π̃t). (A.89)

As we showed in the main text, real GDP can be expressed as

ỸGDPt = (1− s∗)Ỹt + s∗q̃t + s∗(M̃0 − π̃0 − q̃0). (A.90)

Finally, inverse velocity evolves according to

M̃t+1/Yt = M̃t+1 − Ỹt. (A.91)

Monetary Policy: The monetary policy rule can be written as

R̃t = ρRR̃t−1 + (1− ρR)[ψ1(π̃GDPt − π̃∗t ) + ψ2(ỸGDPt − ỸGDPt−1 )] + εR,t. (A.92)

B The MIU Model

The subsequent exposition is based on a slightly more general utility function:

U(x) = B
x1−γ

1− γ
.
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B.1 Equilibrium Conditions

Household’s Problem: Given exogenous states, policy and prices,

U ′(xt) =
A

Wt
(A.93)

1 = βEt

[
U ′(xt+1)
U ′(xt)

Rt
πt+1

]
(A.94)

1 = µt

[
1− S

(
it
it−1

)
+

it
it−1

S′
(

it
it−1

)]
+ βEt

{
µt+1

U ′(xt+1)
U ′(xt)

(
it+1

it

)2

S′
(
it+1

it

)}
(A.95)

kt+1 = (1− δ)kt +
[
1− S

(
it
it−1

)]
(A.96)

µt = βEt

{
U ′(xt+1

U ′(xt)
[
Rkt+1 + (1− δ)µt+1

]}
(A.97)

U ′(xt)
Pt

= βEt

[
U ′(xt+1)
Pt+1

+
χt+1

Pt+1

(
A

Z
1/1−α
∗

)1−νm (Mt+1

Pt+1

)−νm]
(A.98)

Ξpt+1|t =
U ′(xt+1)
U ′(xt)πt+1

(A.99)

As in the search-based model, we define Mt+1 = Mt+1/Pt.

Intermediate Goods Producing Firms’ Problem: Intermediate goods firms choose their capital labor

ratio as a function of the factor prices to minimize costs:

Kt =
α

1− α
Wt

Rkt
Ht. (A.100)

Firms that are allowed to change prices are choosing a relative price pot (i) (relative to the aggregate price

level) to maximize expected profits subject to the demand curve for their differentiated product, taking the

aggregate price level Pt as well as the prices charged by other firms as given, which leads to

MCt = α−α(1− α)−(1−α)W 1−α
t (Rkt )αZ−1

t (A.101)

F (1)
t = (pot )

− 1+λ
λ Yt + ζβ

(
πιtπ

(1−ι)
∗∗

)−1/λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ

Ξpt+1|tF
(1)
t+1

]
(A.102)

F (2)
t = (pot )

− 1+λ
λ −1YtMCt + ζβ

(
πιtπ

(1−ι)
∗∗

)− 1+λ
λ

IEt

[(
pot

πt+1pot+1

)− 1+λ
λ −1

Ξpt+1|tF
(2)
t+1

]
(A.103)

F (1)
t = (1 + λ)F (2)

t (A.104)

Final Good Producing Firms’ Problem: Final goods producers take factor prices and output prices

as given and choose inputs Yt(i) and output Yt to maximize profits. Free entry ensures that final good

producers make zero profits and leads to

πt =
[
(1− ζ) (πtpot )

− 1
λ + ζ(πιt−1π

1−ι
∗∗ )−

1
λ

]−λ
(A.105)
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Aggregate Resource Constraint: is given by

Yt = D−1
t (ZtKα

t H
(1−α)
t −F), (A.106)

where

Dt = ζ

[(
πt−1

πt

)ι(
π∗∗
πt

)(1−ι)
]− 1+λ

λ

Dt−1 + (1− ζ) (pot )
− 1+λ

λ . (A.107)

The gross domestic product of this economy is given by Yt = Yt.

Market Clearing: The goods market in the CM clears:

Xt + It +
(

1− 1
gt

)
Yt = Yt (A.108)

Monetary Policy: The central bank supplies the quantity of money necessary to attain the nominal interest

rate

Rt = R1−ρR
∗,t RρRt−1 exp{σRεR,t}, R∗,t = (r∗π∗,t)

(
πt
π∗,t

)ψ1
(

Yt
γYt−1

)ψ2

(A.109)
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B.2 Steady States

For estimation purposes it is useful to parameterize the model in terms of Y∗ = Y∗, H∗, and M∗ and solve

the steady state conditions for A, B, and Z∗.

R∗ = π∗/β

po∗ =

[
1

1− ζ
− ζ

1− ζ

(
π∗∗
π∗

)− 1−ι
λ

]−λ
Rk∗ =

1
β

+ δ − 1

D∗ =
(1− ζ)(po∗)

− 1+λ
λ

1− ζ
(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

Ȳ∗ = Y∗D∗

Z∗ = (Ȳ∗ + F)/(Kα
∗H

1−α
∗ )

K∗ =
α(Ȳ∗ + F)po∗

(1 + λ)Rk∗

 1− ζβ
(
π∗∗
π∗

)−(1−ι)/λ

1− ζβ
(
π∗∗
π∗

)−(1−ι)(1+λ)/λ


−1

W∗ =
1− α
α

K∗
H∗

Rk∗

I∗ = δK∗

X∗ = Y∗ − I∗ − (1− 1/g∗)Y∗

A =
1
M∗

[
χ∗π

νm
∗ W∗

(R∗ − 1)Z(1−νm)/(1−α)
∗

]1/νm

U ′∗ = A/W∗

B = U ′∗X
γ
∗

B.3 Log-Linearizations

We will frequently use equation-specific constants, such as A and B. Variables dated t + 1 refer to time t

conditional expectations.



This Version: March 13, 2009 A-19

Household’s Problem: The optimality conditions for the household can be expressed as

W̃t =
1
γ
X̃t (A.110)

−γX̃t = −γX̃t+1 + (R̃t − π̃t+1) (A.111)

ĩt =
1

1 + β
ĩt−1 +

β

1 + β
ĩt+1 +

1
(1 + β)S′′

µ̃t (A.112)

k̃t+1 = (1− δ)k̃t + δĩt (A.113)

µ̃t − γX̃t = β(1− δ)µ̃t+1 − γX̃t+1 + βRk∗R̃
k
t+1 (A.114)

νmM̃t+1 = γX̃t + νmχ̃t+1 − (1− νm)π̃t+1 −
1

R∗ − 1
R̃t (A.115)

Ξ̃pt|t−1 = −γ(X̃t − X̃t−1)− π̃t. (A.116)

Equations (A.110) to (A.116) determine wages, consumption, investment, capital, the shadow value of in-

stalled capital, the rental rate of capital, real money balances, and the stochastic discount factor.

Firms’ Problems: Marginal costs evolve according to

M̃Ct = (1− α)w̃t + αR̃kt − Z̃t. (A.117)

Conditional on capital, the labor demand is determined according to

H̃t = K̃t + R̃kt − W̃t (A.118)

Since F (1)
t and F (2)

t are proportional, F̃ (1)
t = F̃ (2)

t = F̃t. The remaining optimality conditions can be written

as follows.

F̃t = (1−A)
[
−1 + λ

λ
p̃ot + Ỹt

]
(A.119)

+A
[
− ι
λ
π̃t −

1 + λ

λ
p̃ot +

1 + λ

λ
π̃t+1 +

1 + λ

λ
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A1 = ζβ

(
π∗∗
π∗

)−(1−ι)/λ

and

F̃t = (1−A)
[
−
(

1 + λ

λ
+ 1
)
p̃ot + Ỹt + M̃Ct

]
(A.120)

+A
[
− ι(1 + λ)

λ
π̃t −

(
1 + λ

λ
+ 1
)
p̃ot +

(
1 + λ

λ
+ 1
)
π̃t+1

+
(

1 + λ

λ
+ 1
)
p̃ot+1 + F̃t+1 + Ξ̃pt+1|t

]
A2 = ζβ

(
π∗∗
π∗

)−(1−ι)(1+λ)/λ

.
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The relationship between the optimal price charged by the adjusting firms and the inflation rate is given by

p̃ot = (A− 1)π̃t −Aιζ
(
π∗∗
π∗

)−(1−ι)/λ

π̃t−1 (A.121)

Ap =
(po∗)

1/λ

1− ζ

Equations (A.119) to (A.121) determine π̃t, F̃t, and p̃ot .

Resource Constraint, Market Clearing Conditions: Aggregate output across evolves according to

˜̄Yt = Ỹt + D̃t = (1 + F/Ȳ∗)[Z̃t + αK̃t + (1− α)H̃t]. (A.122)

and the steady state price dispersion follows

D̃t = ζ

(
π∗∗
π∗

)− (1+λ)(1−ι)
λ

[
D̃t−1 +

(1 + λ)
λ

π̃t −
ι(1 + λ)

λ
π̃t−1

]
− po∗(1 + λ)(1− ζ)

λD∗
p̃ot (A.123)

The goods market clearing condition is of the form

Ỹt =
X∗

X∗ + I∗
X̃t +

I∗
X∗ + I∗

Ĩt + g̃t. (A.124)

Monetary Policy: The monetary policy rule can be written as

R̃t = ρRR̃t−1 + (1− ρR)[ψ1(π̃t − π̃∗t ) + ψ2(Ỹt − Ỹt−1)] + εR,t. (A.125)
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C Supplemental Tables and Figures

Table A-1: compares unrestricted and restricted (σ = 0.06) parameter estimates for the SBM(B) model.

Table A-2: compares unrestricted and restricted (σ = 0.06) parameter estimates for the SBM(PT) model.

Table A-2: compares unrestricted and restricted (ν = 5.17) parameter estimates for the MIU.

Table A-4: compares posterior means of DSGE model implied steady states.

Table A-5: conditional on the posterior mean parameter estimates, we simulate a sample of 10,000 observa-

tions and report inflation standard deviations and first-order autocorrelations. While the autocorrelation of

CM inflation is around 0.9, the autocorrelation of DM inflation is slightly negative. As a consequence, the

autocorrelation of GDP deflator inflation is between 0.35 to 0.5, which is smaller than in the estimated MIU

model.

Table A-6: we construct posterior predictive distribution for the correlation between interest rates and

inverse velocity conditional on the target inflation shock. It is only if we fix σ and ν in the DSGE models to

values that imply large interest rate elasticities of money demand that the DSGE model implied posterior

predictive distribution matches that implied by the VAR.

Figure A-1: The top panel depicts the welfare gain of reducing the target inflation rate below 2.5%. In the

bottom panel we report the posterior expected probability that the regret of choosing a particular target

inflation rate is more than 0.01%. For the estimated value of ν welfare is maximized at 0% inflation, which

is the prediction of a cashless DSGE model. If ν is choosen to match the long-run interest rate elasticity,

the optimal target inflation rate is around -1%.



This Version: March 13, 2009 A-22

Table A-1: Posterior Distributions: Unrestricted versus Restricted SBM(B)

SBM(B) σ estim. SBM(B) σ = 0.06

Name Mean 90% Intv Mean 90% Intv

Household

θ 0.95 [0.95, 0.96] 0.96 [0.95, 0.97]

σ̃ 0.63 [0.56, 0.70] 0.13 [0.13, 0.13]

Firms

α 0.32 [0.31, 0.34] 0.29 [0.28, 0.30]

λ 0.14 [0.12, 0.16] 0.16 [0.15, 0.18]

ζ 0.83 [0.79, 0.87] 0.79 [0.75, 0.83]

ι 0.72 [0.54, 0.91] 0.14 [0.00, 0.28]

S′′ 4.89 [2.50, 7.36] 5.40 [3.05, 8.02]

Central Bank

ψ2 0.86 [0.64, 1.06] 0.87 [0.71, 1.03]

ρR 0.61 [0.56, 0.66] 0.65 [0.61, 0.70]

σR 0.36 [0.31, 0.41] 0.33 [0.28, 0.37]

σR,2 0.85 [0.63, 1.07] 0.78 [0.58, 0.98]

π̃∗0,A 0.05 [-3.21, 3.26] -0.68 [-3.57, 2.75]

σπ 0.05 [0.04, 0.05] 0.05 [0.04, 0.05]

Shocks

ρg 0.84 [0.81, 0.88] 0.87 [0.83, 0.90]

σg 1.01 [0.90, 1.11] 1.09 [0.96, 1.21]

ρχ 0.97 [0.97, 0.98] 0.91 [0.88, 0.95]

σχ 1.80 [1.63, 1.97] 4.08 [3.67, 4.51]

ρz 0.83 [0.76, 0.90] 0.77 [0.70, 0.84]

σz 1.04 [0.90, 1.17] 1.89 [1.40, 2.40]
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Table A-2: Posterior Distributions: Unrestricted versus Restricted SBM(PT)

SBM(PT) σ estim. SBM(PT) σ = 0.06

Name Mean 90% Intv Mean 90% Intv

Household

θ 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

σ̃ 0.59 [0.52, 0.66] 0.13 [0.13, 0.13]

Firms

α 0.27 [0.26, 0.28] 0.28 [0.27, 0.29]

λ 0.19 [0.18, 0.21] 0.17 [0.16, 0.19]

ζ 0.84 [0.80, 0.88] 0.80 [0.75, 0.86]

ι 0.57 [0.31, 0.82] 0.20 [0.00, 0.41]

S′′ 5.08 [2.42, 7.71] 5.48 [2.71, 8.11]

Central Bank

ψ2 0.83 [0.64, 1.02] 0.88 [0.69, 1.06]

ρR 0.60 [0.55, 0.65] 0.65 [0.61, 0.70]

σR 0.37 [0.31, 0.42] 0.33 [0.29, 0.38]

σR,2 0.85 [0.62, 1.08] 0.80 [0.58, 1.01]

π̃∗0,A 0.02 [-3.22, 3.28] 0.01 [-3.40, 3.33]

σπ 0.05 [0.04, 0.05] 0.05 [0.04, 0.05]

Shocks

ρg 0.87 [0.83, 0.90] 0.87 [0.83, 0.90]

σg 1.06 [0.94, 1.16] 1.09 [0.96, 1.21]

ρχ 0.96 [0.95, 0.97] 0.91 [0.88, 0.94]

σχ 1.88 [1.70, 2.05] 4.11 [3.67, 4.53]

ρz 0.83 [0.77, 0.89] 0.75 [0.67, 0.83]

σz 1.06 [0.91, 1.21] 2.13 [1.38, 2.88]
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Table A-3: Posterior Distributions: Unrestricted versus Restricted MIU

MIU ν estim. MIU ν = 5.17

Name Mean 90% Intv Mean 90% Intv

Households

ν 31.754 [24.764, 38.079] 5.167 [5.167, 5.167]

Firms

α 0.282 [0.271, 0.293] 0.282 [0.271, 0.292]

λ 0.165 [0.151, 0.179] 0.165 [0.151, 0.178]

ζ 0.756 [0.728, 0.784] 0.750 [0.719, 0.785]

ι 0.036 [0.000, 0.073] 0.039 [0.000, 0.079]

S′′ 5.285 [2.640, 7.963] 4.988 [2.460, 7.468]

Central Bank

ψ2 1.027 [0.846, 1.224] 1.024 [0.836, 1.209]

ρR 0.669 [0.622, 0.719] 0.658 [0.606, 0.710]

σR 0.338 [0.284, 0.389] 0.346 [0.290, 0.403]

σR,2 0.810 [0.572, 1.020] 0.830 [0.591, 1.052]

π̃∗0,A -0.058 [-3.439, 3.126] 0.033 [-3.262, 3.461]

σπ 0.049 [0.044, 0.053] 0.049 [0.044, 0.053]

Shocks

ρg 0.896 [0.865, 0.931] 0.884 [0.847, 0.923]

σg 1.140 [0.989, 1.299] 1.095 [0.938, 1.239]

ρχ 0.982 [0.974, 0.991] 0.954 [0.929, 0.979]

σχ 1.298 [1.170, 1.415] 3.279 [2.985, 3.611]

ρz 0.799 [0.719, 0.887] 0.823 [0.745, 0.904]

σZ 2.082 [1.451, 2.696] 1.927 [1.293, 2.576]
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Table A-4: Steady States (Posterior Means)

SBM(B) SBM(PT) MIU

σ estim. σ = 0.06 σ estim. σ = 0.06 ν estim. ν = 5.17

A 16.1 14.6 24.3 20.6 18.6 40.0

B 0.44 0.52 0.65 0.73 0.70 1.48

Z∗ 4.10 5.32 5.48 5.56 5.54 5.54

I∗/Y∗ 0.16 0.16 0.16 0.17 0.17 0.17

K∗/Y∗ 11.1 11.7 11.8 11.9 12.0 12.0

W∗H∗/Y∗ 0.60 0.61 0.61 0.62 0.62 0.62

Overall Markup 0.14 0.16 0.16 0.16 0.17 0.17

DM Share 0.21 0.04 0.20 0.04

DM Markup 0.17 0.12 0.000

Notes: Aggregate output is normalized to Y∗ = 1 in all economies.
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Table A-5: Inflation Volatility and Persistence

Model Std Dev AC(1)

π̃GDP π̃CM π̃DM π̃GDP π̃CM π̃DM

SBM(B) σ estimated 1.54 1.13 5.13 0.34 0.91 -0.11

SBM(B) σ = 0.06 1.39 1.20 10.5 0.53 0.74 -0.17

SBM(PT) σ estimated 1.43 1.04 5.26 0.40 0.90 -0.06

SBM(PT) σ = 0.06 1.35 1.16 11.2 0.51 0.75 -0.18

MIU ν estimated 1.70 0.80

MIU ν = 5.17 1.64 0.78

Notes: Sample moments are computed based on simulated time series of 10,000 observation, conditional on

posterior mean estimate. The target inflation shock is set to zero. AC(1) is the first-order autocorrelation.
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Table A-6: Sample Moments Conditional on Target Inflation Shocks

StD(Interest) STD(Inv.Veloc.) Corr(Interest, Inv.Veloc.)

Mean 90% Intv Mean 90% Intv Mean 90% Intv

SBM(B) σ estimated 1.18 [0.53, 1.97] .003 [.001, 005] -0.44 [-0.99, 0.45]

SBM(B) σ = 0.06 1.20 [0.59, 1.85] 0.02 [0.01, 0.04] -0.90 [-0.99, -0.80]

SBM(PT) σ estimated 1.19 [0.52, 2.11] .003 [.001, 005] -0.28 [-0.97, 0.54]

SBM(PT) σ = 0.06 1.18 [0.51, 1.91] 0.02 [0.01, 0.04] -0.91 [-0.99, -0.81]

MIU ν estimated 1.21 [0.55, 1.87] 0.01 [.004, 0.02] 0.54 [0.09, 0.94]

MIU ν = 5.17 1.20 [0.55, 1.89] 0.03 [0.01, 0.04] -0.96 [-0.99, -0.92]

VAR(4) 0.39 [0.10, 0.71] 0.01 [.002, 0.03] -0.88 [-0.99, -0.93]

Notes: For the three models we report means and 90% credible intervals of the predictive distribution of

sample moments (computed from 200 artificial observations) conditional on the target inflation shock επ,t.
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Figure A-1: Welfare Implications of Estimated MIU Model
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Notes: The top panel depicts the welfare gain of reducing the target inflation rate below 2.5%. MIU(SR)

refers to the unrestricted version and MIU(LR) refers to the version in which we restrict ν = 5.17. In the

bottom panel we report the posterior expected probability that the regret of choosing a particular target

inflation rate is more than 0.01%.


