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Abstract

A surprising but robust characteristic of workers’ migration patterns across locations
(states and metropolitan areas) within the U.S. is the positive correlation between
inflow and outflow rates. This pattern cannot be accounted for by standard equilibrium
models of employment reallocation across geographic areas in which net and gross flows
of workers coincide. Further, micro-level evidence shows that inflows and outflows of
workers tend to simultaneously occur within narrowly defined demographic groups,
suggesting that the positive inflow-outflow correlation is not the symptom of a changing
demographic composition of employment across locations. This paper develops and
estimates a dynamic general equilibrium model of gross and net migration flows to
explain this pattern. Due to a selection effect, workers migrating into a location have
a higher propensity to migrate again than workers already living there. Thus, U.S.
states that absorb large numbers of internal migrants also tend to display relatively
large outflow rates. The time-series pattern of inflow and outflow rates across states is
consistent with this interpretation.
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1 Introduction

A surprising but robust characteristic of workers’ migration patterns across locations within
the U.S. is the positive correlation between inflow and outflow rates. In other words, locations
that attract large numbers of internal migrants relative to their population also tend to
experience relative large out-migration in relative terms. Figure 1 plots gross outflow rates
of workers from U.S. states against gross inflow rates using pooled data from the 1970-
2000 U.S. Censuses. Controlling for year effects, the correlation coefficient between these
two variables is 0.56 and statistically significant. A similar relationship holds also across
metropolitan areas. For example, the cross-sectional correlation between inflow and outflow
rates of workers across the 100 largest U.S. metropolitan areas in 2000 is 0.41 and also
statistically significant.1

.0
5

.1
.1

5
.2

.2
5

O
ut

flo
w

 R
at

e

0 .1 .2 .3 .4
Inflow Rate

Figure 1: Scatter plot of inflow and outflow rates of workers across U.S. states, 1970-2000. The
correlation coefficient between inflow and outflow rates is 0.56 and has been computed using year
fixed-effects and weighting each state by its relative population in the relevant Census year. The
figure also reports a regression line. Data source: my computations based on data from the U.S.
Census of Population and Housing.

The positive correlation between inflow and outflow rates cannot be accounted for by
standard models of employment reallocation across geographic areas in which net and gross

1Both correlation coefficients were computed by weighting each location by its relative workforce. The p-
values associated with the correlation coefficients are both smaller than 0.0001. Worker flows are constructed
using information on the worker’s state (or metropolitan area) of residence at the time of the Census and her
state (or metropolitan area) of residence 5 years before the Census year. Section 2 and Appendix A describe
the data and provide details on how inflow and outflow rates are computed.
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flows of workers coincide (e.g. Lucas and Prescott, 1974). Less obviously, micro data from
the Census reveal that workers moving into a U.S. state tend to be observationally similar
to workers migrating out of it. In particular, these workers tend to have the same age and
education and to work in the same industries. This evidence runs counter to the argument
advanced by Larry Sjaastad (1962, 1961), who in his classic work on migration stated that the
“somewhat paradoxical relation between gross in- and out-migration may be substantially
an aggregation problem,” meaning that “gross migration reflects the degree to which the
labor force is being reshaped by changing demand and supply conditions among industries.”

This paper explains the positive cross-sectional relationship between inflow and outflow
rates using a dynamic general equilibrium model of net and gross migration across locations.
The model economy is composed by a set of local labor and land markets. Labor demand
shocks drive the net reallocation of workers across markets while both ex-ante and ex-post
heterogeneity among workers gives rise to “excess” geographic reallocation of workers. The
estimated version of the model accounts well for the cross-sectional and time-series properties
of net and gross worker flows and the relationship between worker flows and the local prices
of labor and land.

The key features of the model that explain the positive cross-sectional correlation between
inflow and outflow rates are a selection effect and the presence of location-specific shocks. The
selection effect implies that workers who recently moved to a new location are characterized
by a higher propensity to migrate again than workers who had lived there for a longer
period of time. The presence of location-specific shocks gives rise to dispersion in net and
gross inflows of workers across locations. Putting these two elements together, in the model
locations hit by positive shocks attract a relatively large number of internal migrants as
a fraction of their population and experience in subsequent periods a relatively high gross
outflow rate. Since gross inflow rates are persistent in the model as well as in the data, gross
inflow and outflow rates are also contemporaneously positively correlated.

In the model, recent migrants display a higher propensity to migrate again than workers
who remained in the same location. This result is due to two sources of heterogeneity among
workers. First, following Jovanovic (1979), Flinn (1986) and, more recently, Kennan and
Walker (2006), I assume that workers can observe aspects of their match with a location
only after having migrated there. Thus, recent migrants will be characterized on average
by a relatively lower match with the location than workers already living there. Second,
following Farber (1994), I also allow for ex-ante heterogeneity. Some workers are assumed to
be characterized by higher mobility rates than other workers. Thus, high-mobility workers
will tend to be disproportionately represented in the pool of migrants, also leading to a high
rate of out-migration from fast-growing locations.

In addition to being consistent with the key facts about worker flows, labor and land
prices, the model generates two additional predictions that are consistent with the selection
effect described above. First, the latter implies that states with relatively large gross inflow
rates in the current period should experience relatively large gross outflow rates in future
periods. The contemporaneous correlation between inflow and outflow rates obtains because
gross inflow rates are persistent over time. This implication of the model can be tested using
data on gross worker flows across several Census decades. The results are consistent with the
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model’s mechanism: in a regression of current outflow rates on both contemporaneous and
lagged inflow rates, the estimated coefficient on current inflows is not statistically different
from zero, while the coefficient on lagged inflows is positive and significant. Second, the
feedback from lagged inflows to current outflows implies that gross inflow rates should be
more persistent than net flow rates. The additional persistence of gross inflows is due to the
need of a location to replace workers who migrate for idiosyncratic reasons: relative high
gross inflow rates lead to relative high gross outflow rates, which, for given process followed
by net flows, induce more gross inflows, etc. The higher persistence of gross inflow rates is
clearly evident in the Census data.

A novel contribution of the paper is to use micro data from the U.S. Census of Popula-
tion and Housing to construct measures of net and gross flows of workers across U.S. states
and to characterize the main cross-sectional and time-series properties of these flows. Demo-
graphic information about workers’ education, age, and industry of employment allows me to
control for possible composition effects. Similarly, individual-level information on earnings
and housing unit rents can be used to construct measures of state and time-specific labor
earnings and land rents. The Census data reveals interesting information about the features
of migration flows and the nature of the shocks responsible for net employment reallocation
at the state-level. First, differences in net flows rates across U.S. states are mainly due to
differences in gross inflow rates. Outflow rates tend to be relatively high in locations ex-
periencing large positive as well as large negative net flows. Second, net and gross flows of
workers are very persistent across different Census years. Thus, while state-level business
cycles might give rise to some of the observed migration flows, much of the observed reallo-
cation of employment across states is due to shocks characterized by much lower frequency
than cyclical shocks. Third, in the cross-section, states with relatively high earnings are
also characterized by relatively high land prices. This pattern points to the importance of
labor demand rather than labor supply shocks in driving geographical reallocation of workers
(Roback, 1982). The estimated version of the theoretical model developed in this paper is
consistent with these stylized facts.

The rest of the paper is organized as follows. Section 1.1 reviews the related literature.
Section 2 describes the data and the stylized facts. Section 3 presents the model. Section 4
describes the estimation of the model. Section 5 discusses the model’s fit. Section 6 provides
some empirical evidence on the mechanism of the model. Section 7 evaluates the relative
importance of ex-ante and ex-post heterogeneity. Section 8 concludes. The appendices offer
a more detailed description of the data, of the construction of the flow variables, and of the
algorithm used to solve and estimate the model.

1.1 Related Literature

This paper is related to several literatures. The general equilibrium approach to “migration”,
broadly meant to include moves from one employment status or sector to another, was
pioneered by Lucas and Prescott (1974)’s island model of the labor market.2 In the latter,

2Kambourov and Manovskii (2004) use the Lucas-Prescott model to study trends in occupational mobility
and wage inequality. Alvarez and Veracierto (2000 and 2006) analyze labor market policies. Alvarez and
Shimer (2007) study a continuous-time version of the Lucas-Prescott model to study different types of
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net and gross flows of workers coincide and net flows across locations are driven by shocks
to local labor demand. The present paper is a version of Lucas and Prescott’s model in
which also workers are hit by idiosyncratic location-specific shocks, giving rise to gross flows
of workers in excess to net flows.

The focus on gross flows links this paper to Jovanovic and Moffitt (1990) who consider an
overlapping-generations version of the Lucas-Prescott model to study gross flows of workers
across industries. Similarly to this paper, Jovanovic and Moffitt focus on learning about
match quality as a mechanism to generate excess reallocation of workers across sectors. In
addition to focusing on geographic, as opposed to sectoral, mobility, my paper differs from Jo-
vanovic and Moffitt (1990) in two other important dimensions. First, in their model workers
live for only two periods and can therefore move only once in their lifetime. This assumption
simplifies the analysis considerably but is ill-suited for empirical analysis. Second, Jovanovic
and Moffitt focus on an equilibrium in which sectoral productivity shocks are small enough
that gross inflows into each sector are always strictly positive. In this case unit wages are
equalized across sectors and gross outflows from sectors occur only because workers real-
ize that the match with their employer is of a relatively low quality. This implies that the
Jovanovic-Moffitt model cannot account for the U-shaped relationship between net flow rates
and gross outflow rates of workers across U.S. states. In order to account for the latter it is
necessary to take explicitly into account the possibility of corner solutions in which voluntary
gross inflows into a location are occasionally zero. Allowing for this possibility complicates
the analysis substantially relative to Jovanovic and Moffitt (1990).

Kennan and Walker (2006) formulate a partial equilibrium model of optimal migration
across U.S. states. In their model, as in my model and in Jovanovic and Moffitt (1990),
workers need to migrate to a location in order to observe the value of their idiosyncratic match
with it.3 They exploit the panel structure of the NLSY data to identify wage differences
among workers due to location matching effects. One of Kennan and Walker’s contributions
is to study return migration, an important issue from which I abstract in this paper in order
to study migration decisions in general equilibrium.

Ex-ante heterogeneity among workers in mobility rates might represent an alternative
explanation to learning about match quality by ex-ante identical workers (Jovanovic, 1979)
to account for why most new jobs end early (or in this setting, for why newly arrived
workers in a location tend to migrate with higher probability than workers already living
there). Existing empirical evidence (see e.g. Flinn, 1986 and Farber, 1994) supports both
kinds of effect and thus the model allows for both.

In my model workers care about consumption of goods and consumption of an immobile
factor, land. The presence of land in the utility function is necessary in order for the
model to generate the observed dispersion in average labor earnings across locations. From

unemployment. Topel (1986) considers a variant of the Lucas-Prescott model that allows for heterogeneity in
experience among workers. Differently from these contributions based on a competitive setting, Lkhagvasuren
(2005) adopts a Mortensen-Pissarides style of model to explain the existence of persistent differentials in
unemployment rates across U.S. states.

3Miller (1984) and Flinn (1986) are earlier contributions that build on Jovanovic (1979)’s matching model.
Differently from these papers, I abstract for simplicity from multiperiod learning effects: a worker is assumed
to learn about his match with a location immediately after arriving there.
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this perspective, the model generalizes Roback (1982)’s classic model of the effect of local
amenities on local land prices and wages to a dynamic setting in which local amenities evolve
stochastically over time, giving rise to the dynamics of local employment.4 A related paper
by Van Nieuwerburgh andWeill (2006) uses a version of Lucas and Prescott’s island model to
study the effect of increased wage dispersion across U.S. metropolitan areas on local housing
prices. Differently from the latter, my paper focuses mainly on the dynamics of worker flows
rather than on the behavior of average housing prices over time.5

On the empirical front, the paper also builds on the seminal contribution of Blanchard
and Katz (1992), who document the existence of very persistent differences in employment
growth rates across U.S. states. Differently from Blanchard and Katz who only consider net
worker flows, this paper also focuses on gross flows.6

2 Data and Stylized Facts

In this section I briefly describe the data used in the paper and then organize the main
features of worker flows into a series of stylized facts.

2.1 The Data

I use the Integrated Public Use Microdata Series (IPUMS) from the U.S. Census of Pop-
ulation for 1970, 1980, 1990, and 2000 (Ruggles et al., 2004).7 The Census questionnaire
includes a question regarding the state where an individual was living five years before the
Census interview. Using this information, I construct rates of gross and net flows of pop-
ulation across the 48 contiguous United States.8 The population flows always refer to the
five year period preceding the Census year, and represent a lower bound on the actual flows,
as some individuals moved more than once during these five years. In order to focus on
geographic mobility that is not motivated by college attendance or retirement, I restrict
attention to individuals who were between 27 and 60 years of age and in the labor force at
the time of the Census. The sample includes both U.S. born workers as well as foreign-born
ones who immigrated to the U.S. at least five years prior to the Census year. This restriction

4Roback (1982) allows for amenities to affect both the local production and utility functions. While in
my benchmark model employment reallocation is driven by shocks to the production function, Appendix C
shows how the model can be modified to allow for amenities that enter into workers’ production functions.

5In a related paper, Morris and Ortalo-Magne (2007) study the joint distribution of housing prices and
wages across metropolitan areas.

6The paper is also related to the research on the determinants of population flows within the U.S.,
surveyed by Greenwood (1975) and more recently developed by Greenwood and Hunt (1984), Treyz et al.
(1993), Rappaport (2004), and Armenter and Ortega (2007).

7This is available online at http://usa.ipums.org/usa/. Appendix A contains more detailed informa-
tion on the data, issues of sample selection, and on the construction of the variables used in the paper.

8The levels of inflow and outflow of population for a given state were standardized by the number of
workers satisfying the sample selection criteria who were surveyed in the Census year and reported living
in that state 5 years before. Net flow rates were defined as the difference between gross inflow and outflow
rates.
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guarantees that aggregate net flows of workers equal zero.9 From now on, for simplicity, I
will refer to a state’s “population” as the collection of individuals satisfying these sample
selection criteria.

Before proceeding, it is necessary to briefly comment on the choice of U.S. states as
primary units of analysis. Since the focus of the paper is the geographic mobility of workers,
the ideal unit of analysis should be a local labor market. The latter concept is intuitive but
not simple to define unambiguously. In practice, a local labor market is often associated
with a metropolitan area. In this paper I have chosen not to take a metropolitan area
as the basic unit of analysis for several reasons. First, the 1970 Census does not report
information on an individual’s metropolitan area of residence in 1965. This information is
instead available at the state level. This is important because the information contained
in the 1970-2000 Censuses is used below to estimate the stochastic process for local labor
demand shocks. The lack of the 1970 data would further reduce the time-series dimension
of the data. Second, about 20 percent of the U.S. population did not live in a metropolitan
area at the time of the 2000 Census. This figure has increased by about 10 percentage points
since 1970, and it displays a non-trivial geographic variation. Third, a non-negligible number
of metropolitan areas in the 1980-2000 Censuses were only incompletely identified, meaning
that a subset of the households of a given metro area were not coded as living in that area.
This creates problems as this subset of households is not random.

In summary, using a state as a unit of analysis, while in principle is less satisfactory than
using a metropolitan area, allows for a more consistent definition of a “location” over time.
This is important because the time-series dimension of the data provides useful information
on the mechanism emphasized in the paper. Last, as mentioned in the introduction, the key
fact on which I focus - the positive cross-sectional correlation between inflow and outflow
rates - also holds at the level of metropolitan areas.

2.2 Stylized Facts

In what follows I introduce the main features of the data on worker flows using simple
descriptive statistics.

2.2.1 Magnitude of Gross Flows

I start by summarizing the magnitude of gross and net flows. The statistics in the following
tables are computed weighting each state by its relative population in order to avoid assigning
disproportional importance to small outlier states. The first column of Table 1 reports gross
worker reallocation - defined as the sum of gross inflows and outflow rates - across U.S.
states. Column 2 represents the average absolute value of net flow rates across U.S. states,
while column 3 reports the excess reallocation of workers, defined as the difference between
columns 1 and 2.10 Notice that gross flows are large relative to net flows. On average, a
state gains or loses about 2.39 percent of its workforce in a 5-year period due to migration.

9In Appendix A.2, I show that recent immigration from outside of the U.S. does not affect significantly
the stylized facts presented in Section 2.2.
10Appendix A provides further detail on the construction of these measures.
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In the same period, the average state experiences a combined inflow and outflow of workers
of 16.8 percent of its workforce.

Table 1
Magnitude of Worker Flows Across U.S. States

Census Gross Worker Average Absolute Excess Worker
Year Reallocation Net Flow Rates Reallocation
1970 13.86 1.74 12.12
1980 17.98 2.59 15.14
1990 18.12 2.87 15.25
2000 17.26 2.11 15.15

Average 16.80 2.39 14.41

2.2.2 Cross Sectional Correlations Among Worker Flows

The cross-sectional correlations among workers flow rates are reported in Table 2. The
table shows partial correlation coefficients among worker flows computed using all state-year
observations and after controlling for Census year dummies.

Table 2
Correlation Coefficients Among Worker Flows

Outflow Rate Inflow Rate
Net Flow Rate 0.02 0.84∗∗

Inflow Rate 0.56∗∗

Note: ∗∗ significant at 1% level. ∗ significant at 5% level.

The basic relationships between outflows, inflows, and net flows are evident from the
scatter plots in Figures 1-3, which were constructed by pooling all state-year observations.
Three features of the data stand out. First, as shown in the introduction, gross outflow rates
tend to be relatively high in states characterized by relatively high gross inflow rates (Figure
1). Second, there is a U-shaped relationship between gross outflow and net flow rates (Figure
2), with the resulting correlation between these two variables being close to zero. It follows
that states that tend to lose workforce due to migration do so by experiencing lower than
average inflows, rather than higher than average outflows. For example, in the 2000 Census
North Dakota and Nevada have both very large outflow rates (around 13-14 percent), even
if they are at the opposite extremes of the distribution of net flow rates. Last, and less
surprisingly, gross and net inflow rates are highly positively correlated (Figure 3).
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Figure 2: Scatter plot of net flow and outflow rates of workers across U.S. states, 1970-2000. The
correlation coefficient between net flow and outflow rates is 0.02 and has been computed using year
fixed-effects. Data source: my computations based on data from the U.S. Census of Population
and Housing.
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Figure 3: Scatter plot of net flow and inflow rates of workers across U.S. states, 1970-2000. The
correlation coefficient between net flow and gross inflow rates is 0.84 and has been computed using
year fixed-effects. Data source: my computations based on data from the U.S. Census of Population
and Housing.
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The positive cross-sectional correlation between gross inflow and gross outflow rates re-
ported in Table 2 might be symptomatic of a changing industry or demographic mix of
states’ workforce (Sjaastad, 1962). To answer the question of whether gross worker flows
occur mainly within or between demographic and industry groups, I divided the 2000 Census
sample into 385 demographic groups defined according to age, education, and industry.11 I
then computed gross and net flow rates for each state and for each demographic group. A
way to consider exclusively within-group flows is to calculate the cross-sectional correlations
among worker flow rates separately for each of the 385 demographic groups. Table 3 reports
the median of these correlation coefficients for the 2000 Census:12

Table 3
Adjusted Correlation Coefficients Among Worker Flows

Outflow Rate Inflow Rate
Net Flow Rate −0.20 0.80∗∗

Inflow Rate 0.43∗∗

Note: ∗∗ significant at 1% level. ∗ significant at 5% level.

Notice that the correlations in Table 3 are almost the same as the ones in Table 2. In
particular, the within-group correlation between inflow and outflow rates, while slightly lower
than the value of 0.56 reported in Table 2, is still positive and statistically significant. Thus,
for a given state, incoming workers tend to have a similar age and level of education and to
work in the same industry as outgoing ones. This result is consistent with Miller (1967) who
finds that inflow and outflow rates across U.S. metropolitan areas are positively correlated
even after controlling for workers’ sex, race, and occupation.

A complementary exercise which confirms these results is to compute for each U.S. state
the fraction of excess worker reallocation that is due to between-group employment shifts.
The population-weighted average of this measure across U.S. states for the 2000 Census was
0.08, suggesting that most flows occur within the demographic/industry groups described
above. Similar results obtained for the other Census years.

Last, to further assess the nature of worker flows, it is possible to compare weekly earnings
of workers who are migrating into a given state with the weekly earnings of workers who are
leaving that same state. If outgoing and incoming workers belong to the same demographic
groups we should not observe sizable differences between those. Without controlling for any
observable worker characteristic, the average weekly labor earnings of a worker moving out
of a state are about three percent lower than the weekly earnings of a worker moving into
that same state. This difference is quite small, further confirming the within-group nature
of gross migration flows.

Differences among observationally equivalent workers could be ex-post or ex-ante in na-
ture. Ex-post heterogeneity might reflect idiosyncratic matching effects between workers and
locations, as in Kennan and Walker (2006). Given that in Table 3 I am controlling for work-
ers’ age and education, ex-ante heterogeneity is likely to pertain to unobserved individual
11See Appendix A.1.3 for a detailed explanation of how these groups were constructed.
12Each of the correlations reported in Table 3 is the weighted median among 385 correlation coefficients.

The weights used are the shares of the demographic groups’ populations in the total population of migrants
for the U.S. The significance level refers to the median correlation in Table 3.
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attributes such as, for example, disutility of migration. The theoretical model of Section 3
incorporates both kinds of heterogeneity.

2.2.3 Worker Flows Over Time

Thus far I have focused on the cross-sectional correlations among worker flows. The advan-
tage of using several Census years is that it is possible to assess the persistence of worker flows
over time. Table 4 reports, for each type of flow, its first order autocorrelation coefficient
across Census years, computed by pooling all state-year data points together.

Table 4
First-Order Autocorrelation of Worker Flows

Net Flow Rate Outflow Rate Inflow Rate
0.58∗∗ 0.69∗∗ 0.85∗∗

Note: ∗∗ significant at 1% level. ∗ significant at 5% level.

The autocorrelation coefficients imply that worker flows are very persistent across decades,
suggesting that low-frequency shocks play a major role in reallocating employment across
U.S. states. This finding is in accordance with the evidence on states’ employment growth
presented by Blanchard and Katz (1992). More subtly, notice that gross inflow rates are
more highly autocorrelated over time than net flow rates. In Section 5 below, I show that
this difference is consistent with the selection effects highlighted in the paper.

3 Model

In order to account for these stylized facts I now introduce a general equilibrium model of
gross and net migration flows.

3.1 Description

The model builds on the island-model of the labor market developed by Lucas and Prescott
(1974) and on Roback (1982)’s static analysis of workers’ and firms’ location decisions. The
force that drives the dynamics of the local labor and land markets in the model is a persistent
shock to total factor productivity. The latter generates temporary increases in local wages
and land prices that are then followed by net inflows of workers. Simultaneously, idiosyncratic
match shocks give rise to workers’ gross flows. In equilibrium, the value of migrating from
one labor market to another is pinned down by the requirement that aggregate net flows of
workers are zero.

Production and Firms. The economy is populated by a continuum of locations (“islands”)
of measure one, indexed by j ∈ [0, 1]. Each location is endowed with one unit of a local and
immobile factor of production (“land”). There is only one good in this economy whose
price is normalized to unity. The good is produced in each location by a large number of
competitive firms, each endowed with the constant returns to scale production technology
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zF (y, lf). The production input y represents the units of labor located in the island while
lf is land used in production.13 The production function F is concave and is characterized
by the following Inada conditions: limy→0 Fy(y, l

f) → ∞ and limlf→0 Fl(y, l
f) → ∞. The

variable z represents total factor productivity in the island. Firms solve static optimization
problems hiring labor at the rate w and units of land at the rate r after observing the
productivity shock z.

Exogenous Shock. The law of motion for z0 depends on z and another random variable
ε. Letting ζ = (z, ε) , the exogenous state vector for a location is assumed to evolve over
time according to a stationary Markov process with transition function Q (ζ 0, ζ) . The exact
details of this process will be specified in Section 4.
There are two complementary ways of thinking about the nature of the shock z. Ac-

cording to the first, z captures location-specific productivity differentials that in principle
affect different industries in the same way. Examples of such factors are state-level corporate
and union legislations. Holmes (1998) provides empirical evidence supporting the view that
right-to-work laws and other probusiness policies (such as weak environmental and safety
regulations) have a positive causal effect on the concentration of manufacturing activity
across U.S. states.14 Clark (1998) finds evidence of “significant region-specific components
in the cyclical variation” of employment growth fluctuations across U.S. Census regions after
controlling for industry mix effects.
According to a second view, z is not a productivity shock to all sectors in a location,

but instead represents, in a reduced-form way, the effect that sectoral shocks have on the
local economy, once local intersectoral interactions are accounted for. For example, the
decline of the steel industry in Pennsylvania was also reflected in lower demand for local
services (education, health, etc.) and construction. While the original shock affected one
industry, over a sufficiently long time-horizon the disaggregated data showed a broad decline
in employment across most sectors of the local economy.15

While the model assumes that productivity shocks are the main driving force behind
employment reallocation across U.S. states, it is possible to modify it to allow for stochastic
“amenity” shocks that affect workers’ utility in a location (e.g., the introduction and diffusion
of air conditioning made hot and humid summers in the south-western part of the U.S. more
tolerable). Appendix C shows that this version of the model would have exactly the same
implications for migration flows across locations as the model considered in this section. The

13The production function could also be made a function of physical capital. Under the assumption of
perfect capital mobility, the latter would move to equalize its rate of return across locations. In this case, the
function F in the text should be interpreted as the reduced form production function obtained by solving
out for the optimal amount of capital in a location and replacing the latter back into the original production
function. I take physical capital into account when calibrating the model in Section 4. See Rappaport (2004)
for the analysis of a two-location model economy with adjustment costs to physical capital.
14More generally, in the post-WWII period the manufacturing industry has progressively moved away from

the North-East and toward the South-West of the U.S., attracted by more favorable union and corporate
legislation and fiscal incentives (see Peet, 1983, Cobb, 1993, and English, 2006 for an historical perspective
on this issue).
15For example, using yearly employment data on one-digit industry employment by U.S. state from the

Bureau of Labor Statistics, 1969-2001, I find that national trends in employment shares by industry can
explain about 40 percent of the variance of employment growth across states over a one year period. However,
over a five year period this figure drops to 7 percent, and over a ten year period to only 1 percent.
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model’s focus on labor demand rather than labor supply shocks as a source of employment
reallocation across locations is consistent with the positive cross-sectional correlation between
state-level earnings and rents. The cross-sectional correlation between these two variables,
computed by pooling all state-year data together and controlling for year dummies, is 0.80
and highly significant.16

Ex-Ante Heterogeneity. The economy is populated by a measure one of infinitely-lived
dynasties. At a point in time only one worker is alive in each dynasty. In order to allow
for ex-ante heterogeneity in mobility rates across workers, I assume that there are two types
of dynasties. To keep the model simple, I assume that a measure θ of the dynasties are
comprised by workers who always exogenously relocate in every period. A measure 1− θ of
dynasties, instead, includes workers who do not relocate exogenously, but instead choose to
migrate or not based on idiosyncratic shocks and the state of the local economy. In what
follows, I describe the preferences, constraints, and the decision problem of this latter type
of dynasty.

Preferences, Timing, and Ex-Post Heterogeneity. A worker who belongs to the dy-
nasty in which there is no exogenous relocation has the following instantaneous utility func-
tion:17

u = c+ φ (lc)− υ, (1)

where c denotes consumption of goods, lc represents consumption of land, and υ is an
idiosyncratic shock to utility that summarizes a worker’s match with the location in which
she lives.18 The function φ is such that φ0 > 0, φ00 < 0, and limx→0 φ

0(x)→∞. An agent i’s
flow budget constraint in period t and location j is:19

wjt = ct + rjtl
c
t .

Workers discount future utility at the rate β < 1.

In detail, the sequence of events in the life of a worker whose probability of exogenous
relocation is zero (recall that these comprise a fraction 1− θ of the population) is as follows:

• An agent is born in a location at the end of period t− 1.

• At the beginning of t, the agent draws the idiosyncratic match shock υ. For simplicity,
the shock υ is assumed to take only two values:

υ =

½
υ1 w.p. p

υ2 w.p. 1− p
. (2)

16State-level earnings and rents are measured as state fixed-effects in hedonic regressions of weekly earnings
and rents on observable characteristics of workers and renter-occupied housing units. See Appendix A for
details.
17Van Nieuwerburgh and Weill (2006) consider a similar specification for the static utility of the agent

as a function of consumption of goods and housing services. In their model, though, housing is elastically
supplied and does not enter into the firms’ production function.
18In a previous version of the paper, I adopted Kennan and Walker (2006) specification and assumed

that workers first moved into a location and then discovered their efficiency units of labor there. These two
versions of the model produce nearly identical quantitative implications.
19Notice that this budget constraint does not include land income. This is without loss of generality given

the specification of the instantaneous utility function adopted here.
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The idiosyncratic shock υ represents an agent’s match with the location and remains
the same as long as the agent stays in the same location.

• The agent optimally chooses c and lc and receives a utility flow given by equation (1).

• With probability 1 − δ the agent dies and is replaced by another agent of the same
dynasty that starts her life in a random location at the end of period t. In this
random assignment, the probability that a newly born agent starts her economic life in
a given location at the end of period t is assumed to be proportional to that location’s
population at the beginning of period t. With probability δ < 1 the agent survives
into the next period.

• If the worker survives the death shock, she can decide whether to stay in the same
location or move to another location. The information available to the agent when
making this choice will be specified later. If she decides to move she obtains expected
utility e.

• At the beginning of period t+1, if the agent had remained in the same location in which
she was living in t, she keeps the same idiosyncratic shock υ. If the agent had chosen
to move to a new location, she pays a utility cost k, and draws a new idiosyncratic
location-match from the distribution in equation (2).

Search. The literature has typically made two different kinds of assumptions about the
nature of search in this class of models. One approach is to make search directed, so that
a migrating agent relocates to the location that offers the highest expected utility. An
alternative (see e.g. Kambourov and Manovskii, 2004) is to make search undirected and
therefore assume that agents are randomly reallocated across locations.20 Here, I allow for
both possibilities. Specifically, with probability η a migrating agent is directed toward the
location that offers the highest expected utility, denoted by ed. The timing of the model is
such that an agent must decide whether to migrate or not from a certain location before the
realization of next period’s aggregate shock z0 in that location. An agent that has decided to
migrate, and has to determine where to direct herself, is assumed to know only the expected
realization of the shock z0 in all potential locations of choice. With probability 1−η, instead,
the agent is randomly reallocated and obtains expected utility er. Also in this case, as for
newly born individuals, the probability of arriving to a given location at the end of period t
is assumed to be proportional to that location’s population at the beginning of period t. By
definition, then:

e ≡ ηed + (1− η)er.

Intuitively, if η = 0 (undirected search), inflow rates will be the same for all locations. Vari-
ations in outflow rates will accommodate changes in net flow rates, and these two variables
will tend to be strongly negatively correlated in the cross-section. At the other extreme,
if η = 1 (directed search), the model tends to generate a positive and large cross-sectional
correlation between net flow and outflow rates. A continuity argument, therefore, implies

20A natural interpretation of “undirected search” in models of geographical mobility is that an agent is
drawn to a given location by idiosyncratic factors, such as the presence of family and friends.
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that for middle values of η the model can reproduce the observed correlation between gross
outflows and net flows, which is about zero in the data (see Table 2). In Section 4 below I
estimate the parameter η in order to reproduce the observed value of this correlation.

Value Function. At the beginning of a period the state of a location is fully character-
ized by the vector (y, n,m, ζ) , where n denotes the measure of workers with match value
υ1, and m denotes the measure of workers who always migrate for exogenous reasons. De-
note the laws of motion for y, n, and m by Y (s, ζ), N(s, ζ), and M(s, ζ) respectively,
and summarize the three in the law of motion for s = (y, n,m) : s0 = S(s, ζ), where
S(s, ζ) = [Y (s, ζ) , N (s, ζ) ,M(s, ζ)]. The dynamic programming problem of a worker char-
acterized by idiosyncratic match υ with the location is given by:

V (s, ζ, υ) = max
c,lc

½
c+ φ (lc)− υ + βδmax

∙Z
V (s0, ζ 0, υ)Q(ζ, dζ 0), e− k

¸
+ β (1− δ) er

¾
s.t. (3)

w (s, ζ) = c+ r (s, ζ) lc,

s0 = S (s, ζ) .

Inflows and Outflows. Denote gross inflows into a location characterized by state (s, ζ)
by x(s, ζ) and gross outflows from that location by o(s, ζ). Gross inflows can be written as:

x(s, ζ) = xd(s, ζ) + x (1− η) y, (4)

where the first term on the right-hand side of this equation represents the component of gross
inflows due to directed search while the second term represents the one due to undirected
search. The latter is equal to the product of the aggregate level of inflows x (1− η) that are
undirected and the share y of those assumed to flow into the location.

Let δnq(s, ζ, υ1) denote the measure of workers with idiosyncratic shock υ1 that chooses
to leave the location and by δ (y − n−m) q(s, ζ, υ2) the equivalent measure of workers with
idiosyncratic shock υ2. Outflows o(y, ζ) are then equal to:

o(s, ζ) = δnq(s, ζ, υ1) + δ (y − n−m) q(s, ζ, υ2) + δm, (5)

where the last term on the right-hand side of this equation represents out-migration by the
type of workers who are assumed to always migrate in each period.

Then, the laws of motion Y (s, ζ), N (s, ζ) , and M (s, ζ) can be written as:

Y (s, ζ) = y + x(s, ζ)− o(s, ζ), (6)

N (s, ζ) = δn (1− q(s, ζ, υ1)) + p (1− δθ/x)x(s, ζ) + p (1− θ) (1− δ)y, (7)

M (s, ζ) = (δθ/x)x(s, ζ) + yθ(1− δ). (8)

Equation (6) states that changes in the workforce equal the difference between inflows
and outflows.21 Equation (7) gives the measure of workers characterized by idiosyncratic

21Notice that by construction there is no change in the workforce due to the death/birth process: workers
who die are replaced by newly born ones who are distributed across locations proportionately to their initial
relative size.
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shock υ1 at the beginning of next period as the sum of three terms. The first term on
the right-hand side of (7) represents the measure of workers who drew the shock υ1 in the
previous period and decided not to migrate. The second term represents the share p of
workers who migrates into the location and draws the shock υ1. Notice that while x(s, ζ)
represents the total measure of workers migrating in the location, only a fraction (1− δθ/x)
of those workers belong to dynasties that are not exogenously relocated in each period. The
third term on the right-hand side of equation (7) represents the fraction p of newly born
workers who start their lives in the location. Only a fraction 1−θ of those belong to dynasties
that are not exogenously relocated in each period. Equation (8) states that at the beginning
of next period the measure of workers who always relocate exogenously equals to the fraction
(δθ/x) of inflows x(s, ζ) plus a fraction θ of newly born workers who start their lives in the
location.

Stationary Distribution. I consider a stationary environment with a location-invariant
distribution of workers across locations μ (s, ζ). The latter is such that:

μ (S0,Ξ0) =

Z
{s,ζ:s0∈S0}

Q(ζ,Ξ0)μ (ds, dζ) . (9)

3.2 Equilibrium

A recursive stationary equilibrium for this economy is represented by a value function
V (s, ζ, υ) , a probability q (s, ζ, υ) , laws of motion S (s, ζ) = [Y (s, ζ) , N (s, ζ) ,M (s, ζ)] ,
gross inflows x(s, ζ), gross outflows o(s, ζ), the expected utility of being randomly reallo-
cated er, the expected utility of directed migration ed, an aggregate level of inflows x, a
stationary distribution μ (s, ζ) , demand for land by consumers lc (s, ζ), demand for land by
firms lf (s, ζ) , a wage function w(s, ζ), and a rent function r(s, ζ) such that:

• The value function V (s, ζ, υ) satisfies the Bellman equation (3) given er, ed and the
law of motion S (s, ζ) . In addition, the demand for land by consumers in location (s, ζ)
satisfies the first order condition:

r(s, ζ) = φ0 (lc(s, ζ)) . (10)

• The law of motion S (s, ζ) is related to x(s, ζ), o(s, ζ) and q (s, ζ, υ) by equations (6)-
(8).

• Inflows x(s, ζ) are consistent with directed search by migrating workers:

— If x(s, ζ) = yx (1− η) then:

ed ≥ p

Z
V (S (s, ζ) , ζ 0, υ1)Q(ζ, dζ

0) + (1− p)

Z
V (S (s, ζ) , ζ 0, υ2)Q(ζ, dζ

0).

— If x(s, ζ) > yx (1− η) then:

ed = p

Z
V (S (s, ζ) , ζ 0, υ1)Q(ζ, dζ

0) + (1− p)

Z
V (S (s, ζ) , ζ 0, υ2)Q(ζ, dζ

0).
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• Outflow probabilities q(s, ζ, υ) are consistent with individual optimization:

— If q(s, ζ, υ) = 0 then:Z
V (S (s, ζ) , ζ 0, υ)Q(ζ, dζ 0) ≥ ηed + (1− η)er − k,

— If q(s, ζ, υ) = 1 then:Z
V (S (s, ζ) , ζ 0, υ)Q(ζ, dζ 0) ≤ ηed + (1− η)er − k,

— If q(s, ζ, υ) ∈ (0, 1) then:Z
V (S (s, ζ) , ζ 0, υ)Q(ζ, dζ 0) = ηed + (1− η)er − k.

• The value of being randomly reallocated er is:

er = p

Z
V (s, ζ, υ1) yμ (ds, dζ) + (1− p)

Z
V (s, ζ, υ2) yμ (ds, dζ) .

• Aggregate population has measure one:Z
yμ (ds, dζ) = 1.

• The invariant distribution μ (s, ζ) is consistent with individual decisions, so equation
(9) holds.

• The wage and rent functions in each location are such that:

r(s, ζ) = zFl

¡
y, lf(s, ζ)

¢
, (11)

w(s, ζ) = zFy

¡
y, lf(s, ζ)

¢
.

• The land market in each location clears:

ylc(s, ζ) + lf(s, ζ) = 1. (12)

• Aggregate gross inflows are given by:

x =

Z
x(s, ζ)μ (ds, dζ) .
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4 Empirical Implementation

When bringing the model to the data, one has to keep in mind that the model assumes the
existence of a continuum of locations, and therefore a constant expected utility of migration
e. The assumption of a continuum of location is mainly for feasibility: allowing for a finite
number of locations in the theoretical model would make it virtually impossible to solve
because a worker in a location would have to take into account the distribution and dynamics
of the state vector (s, ζ) across all other locations when solving her dynamic programming
problem.

Some of the model’s parameters are set a-priori and others are estimated using a version
of the method of simulated moments (see Lee and Ingram, 1991 and Duffie and Singleton,
1993). Consider first the parameters that are set a-priori. A period in the model is taken to
represent 5 years. The discount factor β is set equal to 0.82, implying a yearly interest rate
of 4 percent. The parameter δ determines the size of the cohort entering the labor market
in each period. In the data workers in the age group 27-32 represent about 15 percent of the
sample, which implies δ = 0.85.

The parameters that determine ex-ante and ex-post heterogeneity in the population are
set to strike a balance between empirical plausibility and computational considerations. The
random variable υ can take one of two values, υ1 and υ2, with probability p and 1 − p,
respectively. The value of the shock υ2 is normalized to zero. I pick a value for υ1 that is
large enough so that poorly matched workers always migrate independently of the state of
the local economy where they reside (i.e., q(s, ζ, υ1) = 1). Since there are many values of
υ1 that are consistent with this condition, I select the approximate minimum from this set,
υ1 = 0.08, by solving analytically the steady state version of the model, and then checking
ex-post that agents drawing υ1 always choose to migrate in each possible state of the local
economy, once location-specific shocks are introduced.22

The parameter p is not set-ex-ante but rather estimated in order to match the average
migration rate across all Census years (see below). Census data provide little guidance on
how to set the share θ of dynasties who always migrate. This is because the Census is a
cross-section and it only provides information about one move per worker. Kennan and
Walker (2006) analyze longitudinal data on young workers and report that in their sample
about 82 percent of workers never move in a period of 13 years, or about 3 model periods. I
use this information to compute an approximate value of θ as a function of p in the following
way. Consider a just-born worker of a dynasty that is not always exogenously reallocated.
With probability 1 − p this worker draws a “good” match with the location and does not
choose to migrate for idiosyncratic reasons. Thus, the unconditional probability she never
migrates for idiosyncratic reasons is (1− θ) (1− p) . However, she might migrate for location-
specific reasons even if her idiosyncratic match with the location is good. From Table 1, one
obtains that the migration rate for location-specific reasons is about 1.2 percent over a 5-year
period.23 Thus, setting the probability that a worker never moves in 3 model periods equal

22Appendix B provides details on the characterization of the model’s equilibrium in this situation in which
poorly matched workers always choose to migrate.
23This figure is obtained by dividing the average absolute net flow rate (2.39 percent in Table 1) by two.
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to the Kennan-Walker figure yields the following implicit relationship between θ and p:

(1− θ) (1− p) (1− 0.012)3 = 0.82.

This equation determines the parameter θ as a function of p.

The structure of the model and the cross-sectional nature of the Census data do not
allow me to identify the magnitude of the moving cost parameter k. Instead, the latter is
set equal to 0.1. This represents 11.5 percent of the average wage income in the model. To
place this value in perspective, notice that the average labor income earned by a worker in
the 2000 Census sample I consider is about 44,000 in 2005 US$. Given that one period in
the model represents 5 years, this implies that the moving cost is about 25,000 expressed in
2005 US$.24

The production technology and the utility function are assumed to take the following
forms:

F (y, l) = yτ l1−τ , τ ∈ (0, 1) , (13)

φ (l) =
A

α
lα, α ∈ (−∞, 1) , A > 0. (14)

The parameter τ represents the share of labor income in total output. To calibrate this
parameter, it is necessary to take into account the fact that physical capital has already been
solved out of the profit optimization problem of the firm. The parameter τ is set equal to
0.9091. I obtain this number using Caselli and Coleman (2001)’s computation of the share
of land and labor in the manufacturing sector. The elasticity parameter α is set equal to
1 − τ . This value greatly facilitates the numerical solution of the model because it implies
that land can be solved out of the model analytically (see Appendix B).

The transition function Q (ζ 0, ζ) is assumed to take the form:

z0 = zε0, (15)

ε0 = zψ−1ερu0 (16)

where ψ < 1, ρ < 1, and u0 is independent and identically distributed both over time
and across locations according to a lognormal distribution with mean one and variance
(exp {σ2u}− 1) . The specification of the exogenous shocks in equations (15)-(16) is somewhat
non-standard because it assumes that the growth rate of productivity ε0 is persistent. This
is necessary in order to generate persistent net flows in the Lucas-Prescott model. If ρ were
equal to zero, net flows would be negatively autocorrelated over time, which is strongly at

24Kennan and Walker (2006) obtain estimates of moving costs between $229,000 and $176,000 in 2005 $.
Calibrating the model to a higher moving cost while simultaneously adjusting the value of υ1 to guarantee
that poorly matched workers always choose to migrate does not substantially alter the quantitative results
of the paper. The only major difference is that this version of the model tends to yield a positive, rather
than zero, cross-sectional correlation between net flow and outflow rates. This is because workers with
idiosyncratic shock υ2 never choose to migrate if moving costs are so large.
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odds with the data (see Table 4).25 The parameter ρ is estimated (see below). In order to
obtain a stationary process for {z} it is necessary that the parameter ψ be strictly smaller
than one. The value of the parameter ψ is set exogenously equal to 0.999. This value is such
that the growth rate of the shock process z is approximately an AR(1), while at the same
time preserving the stationarity of z.

The remaining vector of parameters to be estimated is then φ = (ρ, σu, p, A, η). First, ρ
and σu are estimated by matching some of the cross-sectional and time-series moments of
states’ net inflow rates reported in Section 2.2. Specifically, the parameter σu is identified
by the average (across U.S. states and the four Census decades) absolute value of net inflow
rates, whose value is 2.39 percent (Table 1). The parameter ρ is identified by the first-
order autocorrelation coefficient of net inflow rates across Census years. The value of this
coefficient is 0.58 (Table 4).

Second, the parameter p determines the probability of drawing a low idiosyncratic shock.
Since agents drawing these shocks always choose to migrate, the parameter p is set to match
the average (across the four Census years) interstate migration rate in the U.S. economy.
From Table 1, this value is 8.40 percent.

Third, the parameter A is set to match the standard deviation of the logarithm of state-
level weekly labor earnings across states and Census years. State-level labor earnings for
a given Census year are measured as state fixed-effects in cross-sectional regressions of log
weekly earnings on workers’ observable characteristics (see Appendix A for details). Accord-
ing to this measure, the dispersion in labor earning across states is 9.29 percent. In the
model, a higher value of A implies that the fixed factor (“land”) becomes relatively more
important in workers’ utility. In equilibrium, locations with higher productivity z are char-
acterized by higher rents because these locations are more attractive to firms. Since workers
are also affected by the higher price of the fixed factor, these locations need to offer higher
wages as well in order to attract the desired amount of labor. Thus, a higher value of A
translates immediately into a higher dispersion of observed wages.

Last, the parameter η determines the extent to migrating workers choose to locate on
the basis of the aggregate state of alternative locations (directed search), or on the basis
of unmodelled idiosyncratic factors (undirected search). This parameter is identified by the
cross-sectional correlation between net flow and outflow rates, which is equal to 0.02 (see
Table 2). On the one hand, a higher value of η tends to increase the correlation between
outflow and net flow rates as poorly matched workers and workers who always relocate tend
to migrate out of locations that attract a disproportionate number of migrants. At the
opposite extreme, when η = 0, and search in entirely undirected, all locations receive the
same proportion of migrants. Thus, the only channel of adjustment of a location to shocks is
represented by variations in outflow rates, which are relatively high in locations with negative
net flows and low in locations with positive net flows. Thus, when η is close to zero, net flow

25An alternative way of obtaining persistent net flows would be to introduce less-than-perfect capital
mobility in the model, as opposed to the current setting in which capital is assumed to be perfectly mobile.
The parameter governing capital adjustment costs would then determine the extent of autocorrelation in
net flows. Given the lack of independent evidence on the magnitude of these costs, I choose the simpler
specification in which the shock process is characterized by persistent innovations.
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and gross outflow rates are negatively correlated. The estimation procedure pins down the
value of η that yields the observed correlation between outflow and net flow rates.

The following table summarizes the calibrated and estimated values of the model’s para-
meters:

Table 5
The Model’s Parameters
Parameter Estimate

β discount factor 0.8200
δ probability of death 0.8500
τ production function parameter 0.9091
α utility function parameter 0.0909
A utility function parameter 0.0834
υ1 value of low idiosyncratic shock 0.0800
υ2 value of high idiosyncratic shock 0.0000
k moving cost 0.1000
η search parameter 0.3467
ψ mean-reversion parameter 0.9990
ρ persistence of labor demand shock 0.8360
σu volatility of labor demand shock 0.0034
p probability of low idiosyncratic shock 0.0962
θ share of dynasties who always relocate 0.0593

Several features of the parameters’ estimates stand out. First, the growth rate of produc-
tivity is found to exhibit very large persistence with a first-order autocorrelation coefficient
of about 0.83 at 5-year intervals. Notice that if the productivity shock z, rather than its
growth rate ε, had followed an AR(1) process, the first order autocorrelation coefficient of
net flow rates would have been slightly negative, which is strongly at odds with the data.

Second, the estimate of the parameter A implies that a worker spends, on average, 9
percent of her labor income on the fixed factor. This is consistent with Roback (1982) who
finds that the budget share of land in the data is about 6 percent.

Third, the estimate of η suggests that directed search accounts for about one third of all
moves. To the best of my knowledge, there are no available estimates of this parameter in
the labor or macro literatures that would allow for a comparison with the figure obtained
here.

Fourth, the share of workers that always relocate accounts for about 5.93 percent of the
population. Given an average migration rate of 8.4 percent, these workers account for about
70 percent of the moves in a 5-year period. Since migration due to local economic conditions
accounts for about 14 percent of the moves, ex-post heterogeneity due to matching effects
explains the remaining 16 percent.
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5 Model’s Fit

In this section I present the main quantitative results of the model. The first dimension along
which I evaluate the model’s fit is the relationship between net flow rates, on the one hand,
and labor earnings and land rents, on the other. While the paper focuses on changes in the
quantity of labor located in each state, it is important to check whether its predictions for
prices are also consistent with the data. Given the lack of state-level price indices, I focus on
nominal labor earnings and land rents, where the latter is meant to capture the price of the
local immobile input used for both production and consumption purposes. Specifically, state-
level labor earnings and land rents are measured as state fixed-effects in hedonic regressions
of individual earnings and rents on observable characteristics of workers and renter-occupied
housing units (see Appendix A for details). Table 6 presents the summary statistics on labor
earnings, land rents and worker net flow rates.26

Table 6
State-Level Earnings, Rents, and Net Flow Rates

Cross-Sectional Correlations Spearman
Rents Net Flow Rates Rank Correlation

Data Model Data Model Data Model
Earnings 0.80 0.96 −0.06 0.15 0.77 0.99
Rents −0.06 0.02 0.76 0.99

Both in the model and in the data, the cross-sectional correlation between net flow rates
and average earnings and rents is quite small. The intuition for this result is that net flow
rates depend on the growth rate of total factor productivity in a location, ε, while wages and
rents depend on the level of productivity, z. In locations with higher levels of productivity
land rents and wages must be higher than in locations where productivity is low to make
both firms and workers indifferent with respect to their choice of location (Roback, 1982).
Thus, wages and rents are positively correlated in the cross-section. Moreover, the rank
correlation coefficients between state-level earnings and rents in one Census year and the
equivalent measures ten years before (in the previous Census year) are positive and large
both in the data and in the model, suggesting considerable persistence in states’ rankings.
This parallels the persistence observed in worker flows.

The cross-sectional correlation patterns among worker flows in the benchmark model
and in the data are reported in Table 7. Here and in what follows, I emphasize in bold the
moments that were targeted in the estimation of the model.

Table 7
Correlation Coefficients Among Worker Flows

Outflow Rate Inflow Rate
Data Model Data Model

Net Flow Rate 0.02 0.02 0.84 0.77
Inflow Rate 0.56 0.65

26The cross-sectional correlations in the data were computed by pooling all state-year observations together
and controlling for year dummies.
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As the table shows, the model can account quite well for the positive correlation between
gross inflow and outflow rates. Also, consistently with the empirical evidence the almost-
zero correlation between gross outflow and net flow rates conceals a U-shaped relationship
between these two variables. This is represented in Figure 4, which plots gross flow rates
against net flow rates using data generated by the benchmark version of the model.

The intuition behind these results is as follows. As shown in Figure 4, locations char-
acterized by positive net flows tend to display relatively high gross inflow rates and also
relatively high gross outflow rates. The positive correlation between inflow and outflow rates
in this region is due to the selection mentioned in the introduction, as incoming workers tend
to have a higher propensity to migrate from the location to which they have arrived than
workers already living there. Both ex-ante and ex-post heterogeneity among workers tend to
produce this effect. First, the pool of in-migrating workers is disproportionately represented
by workers characterized by ex-ante high mobility rates who will move again after spending
one period in the location. Second, upon arrival incoming workers draw their idiosyncratic
match with the location from the unconditional distribution of υ. It follows that a fraction p
of these will draw a low idiosyncratic match with the location and choose to migrate again
at the end of the period.
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Figure 4: Scatter plot of gross inflow rates against net flow rates using data generated by the
benchmark version of the model (10,000 observations).

To understand the decreasing side of the U-shaped relationship between net flow and
outflow rates, notice that, as net flow rates become negative, gross inflow rates reach their
lower bound (i.e., xd(s, ζ) = 0), and the location adjusts to further negative productivity
shocks by means of higher gross outflows. In this region, also some of the workers who have
a good idiosyncratic match with the location choose to migrate. Hence, gross outflow rates
are relatively large for both large positive and large negative net flow rates.
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Table 8 represents the first-order autocorrelation coefficients of net and gross worker
flows.

Table 8
First-Order Autocorrelations of Worker Flows
Net Flow Rate Outflow Rate Inflow Rate
Data Model Data Model Data Model
0.58 0.58 0.69 0.62 0.85 0.80

The moments implied by the model are quite close to their empirical counterpart. Specif-
ically, the model correctly predicts that gross inflow rates are more persistent than net flow
rates. This is what one would expect if recent migrants into a location had a higher propen-
sity to migrate than workers already living there. In this case relatively large inflow rates
in the current period would give rise to relatively large outflow rates in the future. In turn,
higher than average outflows would further lead to higher inflows in order to accommodate
a given process of net flows. To see this formally, notice that by definition of inflow rate, the
covariance between a location’s inflows in t and in t− 1 can be written as:

covariance (inflow ratet, inflow ratet−1) = covariance (outflow ratet, inflow ratet−1)

+covariance (net flow ratet, inflow ratet−1) .

Now, assume for sake of illustration that the net flow rate is i.i.d. over time for a given
location, in which case the second covariance term on the right-hand side of this equation
is equal to zero. In this case, a positive correlation between current outflows and lagged
inflows implies a positive autocorrelation of inflow rates, despite the fact that the underlying
process for net flows displays no persistence.27

6 Additional Evidence on the Mechanism

A key prediction of the model is that states with large inflow rates in one period should ex-
perience relatively large outflow rates in subsequent periods, rather than contemporaneously.
In other words, the observed positive contemporaneous correlation between gross inflow and
outflow rates documented in Tables 2 and 3 should really be interpreted as the by-product
of the positive correlation between current outflows and lagged inflows combined with the
high persistence displayed by gross inflow rates (Table 4). I can evaluate the extent to which
this argument is correct by using the time-series dimension of worker flow data across several
Census decades. Ideally, one would want to regress the outflow rates between years T − 5
and T on both the contemporaneous inflow rates between T −5 and T and the lagged inflow
rates between T − 10 and T − 5. In order for the data to be consistent with the model,
the current outflow rate should display a higher correlation with the lagged inflow rate than

27In the version of the model without heterogeneity among workers (θ = p = 0) , and the same remaining
parameters as the benchmark model, the first-order autocorrelation coefficient of gross inflow rates is basically
the same as the one for net flow rates.
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with the current inflow rate. Unfortunately, given that Census data are only available once
every decade, the second-best option is to use, as proxy for lagged inflows, the inflows that
occurred between year T −15 and year T −10, instead of the one between T −10 and T −5.
The results of this exercise are reported in Table 9.

Table 9
Current Outflows and Lagged Inflows

Gross Outflow RateT−5,T
Gross Inflow RateT−5,T −0.04
Gross Inflow RateT−15,T−10 0.33∗∗

Year dummies yes
Number of observations 192
R2 0.37

Note: ∗∗ significant at 1% level. ∗ significant at 5% level.

The results are quite clear. Controlling for lagged inflows, current inflows display no
significant correlation with current outflows. This evidence is consistent with the mechanisms
highlighted in this paper.

7 Ex-Ante vs Ex-Post Heterogeneity

Given that the model embeds two kinds of heterogeneity among workers, ex-ante and ex-post,
it is interesting to provide some evidence on the relative importance of each in accounting
for the positive cross-sectional correlation between gross inflow and outflow rates. To do so,
I perform three experiments. First, I consider an economy in which all workers are ex-ante
identical (θ = 0), while keeping the other parameters the same as in Table 5. Second, I
consider an economy in which all workers are ex-post identical (p = 0), while keeping the
other parameters the same as in Table 5. Last, I also consider a version of the model in
which there is no ex-ante heterogeneity (θ = 0) and the model’s parameters are estimated
once again to match the same moments as in Section 4. Table 10 presents the correlation
coefficients between gross outflow rates and net and gross inflow rates implied by these
different versions of the model.28

28As before, the moments targeted in the estimation of the model are reported in bold. In all three cases,
the cross-sectional correlation between gross and net inflow rates is positive and large.
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Table 10
Comparisons Across Model Economies

Cross-Sectional Correlations
Inflow-Outflow Net Flow-Outflow

Data 0.56 0.02
Benchmark Model 0.65 0.02
No Ex-Ante Heterogeneity −0.15 −0.78
(θ = 0 and constant parameters)
No Ex-Post Heterogeneity 0.62 −0.14
(p = 0 and constant parameters)
No Ex-Ante Heterogeneity 0.39 0.02
(θ = 0 and re-estimated parameters)

The quantitative implications of the model with no ex-post heterogeneity are quite similar
to those of the benchmark model. In contrast, the version of the model without ex-ante
heterogeneity that keeps constant all other parameters produces correlations that are strongly
counterfactual. These results are not entirely surprising given that ex-post heterogeneity
accounts for only 16 percent of total migration. This estimate is in turn due to the fact
that the fraction θ of workers who are ex-ante movers is set to target the fraction of young
workers who never move in 3 model-periods. According to Kennan and Walker (2006), 82
percent of the individuals in their sample never move. This figure implies a relatively large
value for θ and, conversely a relative low value for the parameter p. Lower values of the
latter are associated with a smaller role for ex-post heterogeneity.

A version of the model in which there is no ex-ante heterogeneity (θ = 0) and in which the
remaining parameters are re-estimated along the lines described in Section 4, can account for
the positive cross-sectional correlation between inflow and outflow rates (last row of Table
10). However, it tends to generate a value of this correlation that is smaller than in the
data. The intuition why a positive amount of repeat movers (θ > 0) helps to improve the
model’s fit in this dimension is simple. In the model with only ex-post heterogeneity, the
positive inflow-outflow correlation relies on the fact that a fraction p of incoming workers
decides to migrate again in the following period.29 If θ > 0, instead, a fraction (δθ/x+ p)
of incoming workers decides to migrate again. This higher figure contributes to increase the
cross-sectional correlation between inflow and outflow rates.

Last, while for tractability the modelling of ex-ante heterogeneity in the paper takes the
extreme form of postulating a type that moves in every period, a plausible source of these
ex-ante differences among workers is heterogeneity in moving costs. I leave this extension to
future research. However, I conjecture that explicitly allowing for such form of heterogeneity
would increase the quantitative importance of matching effects in accounting for the positive
association between inflow and outflow rates. In such a version of the model, in fact, all
workers moving to a new location would learn something about their idiosyncratic match.

29Notice that p is pinned down by the average migration rate in the economy, so it cannot be chosen to
target the observed correlation between outflow and inflow rates.

26



Thereafter, poorly matched workers with relatively low costs of migration would migrate
again. Without idiosyncratic matching effects the only source of migration in the model
would be location-specific shocks, which fail to generate sizable migration flows.

8 Summary and Conclusions

This paper constructs a general equilibriummodel of gross and net migration across locations
to account for the fact that, in the data, U.S. states with relative high inflow rates of workers
are also characterized by relatively high outflow rates. Standard models of employment
reallocation across geographic areas cannot account for this pattern. Moreover, Census data
on worker flows suggest that the latter occur within narrowly defined education, experience,
industry cells. Therefore, explanations based on a changing composition of states’ labor
force cannot readily account for this fact, either. The model is estimated and can account
for many of the cross-sectional and time-series facts about worker flows, and state-level labor
earnings and rents.

The main mechanism emphasized in the theoretical model is unobserved heterogeneity
among otherwise similar workers. The model allows for both ex-post differences among
workers due to matching effects between a worker and a location, and ex-ante differences due
to fixed workers’ characteristics different from education and age. The quantitative results
suggest that heterogeneity in fixed characteristics play an important role in accounting for
the positive association between inflow and outflow rates across locations.

From a macro perspective, the main message of the paper is that cross-sectional het-
erogeneity in out-migration rates across U.S. states cannot be explained by the observable
sources of heterogeneity among workers, such as age and education, traditionally emphasized
in the migration literature. It also cannot be accounted for exclusively by aggregate shocks
to locations, as emphasized in the macro-labor literatures. Instead, the model generates
dispersion in outflow rates across states through the interaction of location-specific shocks
and a mix of ex-ante and ex-post heterogeneity among workers. From this perspective, this
paper has made progress toward bridging the gap between the mostly partial equilibrium lit-
erature on migration (e.g., Kennan and Walker, 2006) with the general equilibrium approach
to employment reallocation across locations which typically does not allow for workers’ idio-
syncratic shocks (e.g. Lucas and Prescott, 1974).
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A Data Appendix

A.1 Sample Selection and Definitions

A.1.1 Sample Selection

Data are from the 5% samples of the 2000 Census, the 1990 Census (State Sample), the
1980 Census (State Sample), and from the 1% sample from the 1970 Census (Form 1 State
Sample).30 All the measures of gross and net flows and the stock of population that are
reported in the paper are computed using a sample of individuals that, at the time of the
relevant Census, satisfy the following restrictions:

• were between 27 and 60 years of age;

• were not living in group quarters;

• were in the labor force but not in the armed forces;

• if foreign-born, had immigrated to the U.S. at least 5 years before the Census year;

• were not living abroad 5 years before the Census year;

• were not living in the Census year or 5 years before the Census year, in either Alaska,
Hawaii, or the District of Columbia.

A.1.2 Measures of Worker Flows

In order to construct measures of gross and net flows I adopt the following procedure. Indi-
vidual i is observed living in state j in Census year τ . The same individual is also observed
living in state k in year τ − 5. Construct an indicator function Iiτ (j) for each individual i
such that Iiτ (j) = 1 if individual i was recorded as living in location j in Census year τ and
zero otherwise. Also, define an indicator function Iiτ (j) such that Iiτ (j) = 1 if individual
i, interviewed in Census year τ , reported living in location j in year τ − 5. Total outflow of
population from location j between τ − 5 and τ is then defined as

outflowsjτ =
X
i

X
k 6=j

μiτI iτ (j) Iiτ (k) ,

where μiτ is the person weight (perwt) assigned by the year τ Census to individual i. The
total inflow of population into location j between τ − 5 and τ is analogously defined as:

inflowsjτ =
X
i

X
k 6=j

μiτIiτ (k) Iiτ (j) .

30Extending the analysis before 1970 presents some difficulty. The 1960 Census does not report a person’s
state of residence in 1955, but only if the person migrated across states or not. Thus, in 1960 it is only
possible to compute gross inflows, but not gross outflows or net flows. In the 1950 Census, the migration
question pertains to one year before, rather than 5 years before.
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Let yjτ denote the total population that was interviewed in Census year τ and that was
living in location j in year τ − 5:

yjτ =
X
i

μiτI iτ (j) .

An outflow rate from location j between τ − 5 and τ is then defined as follows:

outflow ratejτ =
outjτ
yjτ

.

Analogously an inflow rate into location j between τ − 5 and τ is defined as

inflow ratejτ =
injτ
yjτ

.

The net flow rate into location j between τ − 5 and τ is defined as the difference between
inflow and outflow rates. The absolute net flow rate for a location j is simply the absolute
value of the net flow rate. Excess reallocation for a state j is defined as the sum of outflow
and inflow rates minus the absolute net flow rate.

A.1.3 Demographic Groups

In order to control for demographic differences across states I construct 385 demographic
groups based on the following variables (2000 Census):

• age (age); 7 age groups: 27-31, 32-36, 37-41, 42-46, 47-51, 52-56, 57-60;

• education (educ99); 5 education groups: high-school dropout, high-school diploma,
some college, college degree, above college;

• industry of employment (ind1990); 11 industries: (1) agriculture, fishing, forestry,
hunting and mining, (2) construction, (3) manufacturing non-durables, (4) manufactur-
ing durables, (5) transportation, communication and other public utilities, (6) whole-
sale and retail trade, (7) finance, insurance, and real estate, (8) business and repair
services, (9) personal services, entertainment and recreation services, (10) professional
and related services, (11) public administration.

Denote each cell by g and the collection of cells by G. There are 385 cells. For each cell g
it is possible to construct the equivalents of total outflows, inflows, and population defined
above in the following way:

outflowsjgτ =
X
i∈g

X
k 6=j

μiτI iτ (j) Iiτ (k) ,

inflowsjgτ =
X
i∈g

X
k 6=j

μiτI iτ (k) Iiτ (j) ,

yjgτ =
X
i∈g

μiτI iτ (j) .
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Group-specific outflow and inflow rates are then defined as

outflow ratejgτ =
outflowsjgτ

yjgτ
,

inflow ratejgτ =
inflowsjgτ

yjgτ
.

A.1.4 Weekly Earnings

Workers’ weekly earnings were computed using data from the Census of Population and
Housing. The same sample selection criteria listed above in Section A.1.1 were also applied in
this case. Weekly earnings were obtained by summing, for each worker, annual wage income
(incwage) and business and farm income (incbus+incfarm), and dividing the sum by the
number of weeks worked (wkswork1). Each source of income refers to the year preceding
the Census year. I have dropped from the sample a very small number of observations for
which an individual reported zero annual earnings but a positive number of weeks worked.
In a few instances, reported earnings by self-employed individuals were negative, and these
observations have been dropped as well. Given that earnings refer to the year prior to the
Census and the worker’s labor force participation status refers to the time of the survey, a
small fraction of individuals (about 2.5 percent of the sample) reported zero annual earnings
and zero weeks worked in the year prior to the Census. I have also dropped these individuals
from the sample.
For each Census year, the logarithm of weekly earnings was regressed on the following

variables: 48 dummies for workers’ state of residence in the Census year (statefip), a
measure of workers’ experience (computed subtracting years of education from the workers’
age) and experience squared, 17 education dummies (educ99), a workers’ sex (sex), 3 race
dummies (“white”, “black” and “others”, constructed from raced), 11 sectoral dummies
(constructed from ind1990), and 6 occupational dummies (constructed from occ1990). The
R2 of these regressions was typically 30 percent.
The measure of average weekly earnings for each state is represented by the estimates of

state fixed effects in this regression.

A.1.5 Rents

The Census of Population and Housing provides data on the gross monthly rent (rentgrs)
paid by a renter. This variable reports the gross monthly rental cost of the housing unit,
including contract rent plus additional costs for utilities (water, electricity, gas) and fuels
(oil, coal, kerosene, wood, etc.). This information is used to derive a measure of land rents
in each U.S. state. Observations on rents were obtained for those workers renting a housing
units who satisfy the sample selection criteria listed above in Section A.1.1. In each Census
year, about 30 percent of the sample obtained from applying those selection criteria rents (as
opposed to owns) its housing unit. For example, in the 2000 Census more than one million
observations are available for renters.
In order to remove the influence of observable characteristics of a housing unit from the

monthly rent, I ran an hedonic regression of the logarithm of the rent on state fixed effects and
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a list of observable characteristics of the housing units. These include: a dummy for whether
the housing unit is located in a metropolitan area (metro), a dummy for whether the unit
is used commercially (commuse), a dummy about the acreage of the property (acreprop), a
dummy about the acreage of the house (acrehous), a dummy on whether meals are included
in the rent (rentmeal), a dummy for whether the housing unit is in a condominium (condo),
a dummy on whether the housing unit contains a kitchen (kitchen), a dummy on the
number of rooms (rooms), a dummy about the availability of plumbing facilities (plumbing),
a dummy about the age of the unit (builtyr), a dummy about the number of bedrooms
(bedrooms), a dummy about the number of units in the structure (unitsstr).
The measure of average rents at the state level is represented by the estimated state fixed

effects from this regression.

A.2 Immigration

The sample of workers selected according to the criteria spelled out in Section A.1.1 includes
foreign-born workers provided they migrated to the U.S. at least 5 years before the Census
year. In what follows I refer to these workers as “recent” immigrants. While this selection
guarantees that aggregate net flows of workers across U.S. states are zero in each Census
year, it also assumes away recent immigration flows. The latter might potentially play an
important role in affecting internal migration flows from and into certain states. In order to
quantify these effects and to place the magnitude of internal migration flows in perspective,
relative to their international counterpart, I have used the 2000 Census data to compute for
each U.S. state the ratio between the number of recent immigrants that were located in that
state in the year 2000 and the state’s 1995 population. The data indicate that the average
rate of recent immigration across U.S. states is about 1.5 percent, while Table 1 indicates
that the average inflow rate of workers from the rest of the U.S. in the 2000 Census is
about 8.6 percent. Thus, for the average state internal migration is much larger than recent
immigration. Of course, it is well known that recent immigrants tend to cluster in a few
locations. There are three states for which the recent immigration rate is at least 30 percent
as large as the gross inflow rate due to internal migration: California (47 percent), New York
(56 percent), and New Jersey (34 percent). It turns out, however, that for the cross-section
of U.S. states there is no significant association between rates of recent immigration and
both gross and net flow rates due to internal migration. So, there is no evidence supporting
the view that states with low gross inflow rates experienced larger than average immigration
from abroad. This result is consistent with the findings of Card (2001) for U.S. metropolitan
areas.

B The Benchmark Model

Under the assumption that the shock υ1 is sufficiently large, workers whose match is bad
will always choose to migrate. Their value function is then given by:

V (s, ζ, υ1) = max
c,lc

{c+ φ (lc)− υ1 + βδ (e− k) + β (1− δ) er} . (17)
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The first order condition for land is:

r (s, ζ) = φ0 (lc) .

This equation can be solved for the optimal lc, denoted by lc (s, ζ) , which can then be
plugged back into the value function:

V (s, ζ, υ1) = u (s, ζ, υ1) + βδ (e− k) + β (1− δ) er,

where, for convenience, I have defined the following indirect utility function for agents which
draw a shock υ:

u (s, ζ, υ) = w (s, ζ)− r (s, ζ) lc (s, ζ) + φ (lc (s, ζ))− υ.

It is possible to simplify the expression for u (s, ζ, υ) using the functional form (14) for
φ (with α = 1− τ) and using the fact that due to the constant returns to scale assumption
unit cost of production must equal one (the price of output). The latter equation, which
can be easily obtained by manipulating the firms’ first order condition, can then be used to
solve for r (s, ζ) as a function of w (s, ζ) and the shock z:

r (s, ζ) =

"
z (1− τ)1−τ (τ)τ

w (s, ζ)τ

# 1
1−τ

. (18)

The indirect utility function u (s, ζ, υ) in this case becomes:

u (s, ζ, υ) = w (s, ζ)

Ã
1 + z−

1
τ

µ
A

1− τ

¶ 1
τ

!
− υ. (19)

Land can be completely solved for by using the equilibrium conditions (11) and (12)
together with the worker’s first order condition for land (10). Replace the latter into equation
(12) to get:

y

µ
A

r (s, ζ)

¶ 1
1−α

+ lc (s, ζ) = 1.

Now, solve for lc (s, ζ) and replace it in the inverse demand function for labor:

w (s, ζ) = τzyτ−1

Ã
1− y

µ
A

r (s, ζ)

¶ 1
1−α
!1−τ

.

Use (18) to replace r (s, ζ) on the right-hand side of this equation. This yields an equation
withw (s, ζ) on both the right and left-hand sides. The advantage of the assumption α = 1−τ
is that this equation can be solved in closed-form to yield the wage as a function of the state
variables of the model:

w (s, ζ) =
τzyτ−1h

1 + z−
1
τ

¡
A
1−τ
¢ 1
τ

i1−τ . (20)
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I have then shown that it is possible to solve out for r (s, ζ) and land from the original
specification and rewrite the model as one in which the utility functions take the form (19)
and the unit wage is given by (20).
With these preliminary steps, the model’s equilibrium can then be characterized as fol-

lows. Given the calibration of the model, workers who draw the idiosyncratic shock υ = υ1
always choose to move, so that q(s, ζ, υ1) = 1. This fact allows me to merge the state variables
n and m into a new state variable

n = n+m,

which includes both workers who belong to a dynasty that always relocates exogenously and
workers who draw a low idiosyncratic shock υ = υ1. The state vector s is now comprised of
the following variables:

s = (y, n, ζ).

It is then possible to characterize the equilibrium of the model in relation to the behavior
of workers for whom υ = υ2. Following Lucas and Prescott (1974), we need to distinguish
among three different regions:

• Region 1. Some (or all) of these workers choose to leave and some (or none) choose to
remain. In this case, the value of staying must be less or equal to the value of leaving,
with strict inequality prevailing if everybody chooses to leave:Z

V (s0, ζ 0, υ2)Q(ζ, dζ
0) ≤ e− k. (21)

Notice that in this case, endogenous inflows are zero, xd(s, ζ) = 0, because workers
with a high location shock choose to leave and the expected location shock of incoming
workers would be strictly less than υ2. Thus, the components of s0 are:

Y (s, ζ) = δ (y − n) (1− q(s, ζ, υ2)) + y (1− δ + x (1− η)) ,

N (s, ζ) = (p (1− δθ/x) + δθ/x) yx (1− η) + (p (1− θ) + θ) y (1− δ)

Notice that q(s, ζ, υ2) ≤ 1 is implicitly defined by (21) in case of equality.

• Region 2. None of the υ2 workers chooses to leave and no new worker chooses to
locate there. In this case: Z

V (s0, ζ 0, υ2)Q(ζ, dζ
0) > e− k, (22)

p

Z
V (s0, ζ 0, υ1)Q(ζ, dζ

0) + (1− p)

Z
V (s0, ζ 0, υ2)Q(ζ, dζ

0) < ed. (23)

The first inequality expresses the fact that it is better for a υ2 type of worker to remain
in the location, while the second inequality expresses the fact that no migrating worker
will choose to migrate to this location. The endogenous components of s0 are:

Y (s, ζ) = δ (y − n) + y (1− δ + x (1− η)) ,

N (s, ζ) = (p (1− δθ/x) + δθ/x) yx (1− η) + (p (1− θ) + θ) y (1− δ) .
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Notice that, using equation (17), the two inequalities (22) and (23) can be rewritten
as:31

e−k <

Z
V (s0, ζ 0, υ2)Q(ζ, dζ

0) <
ed − p

¡R
u(s0, ζ 0, υ1)Q(ζ, dζ

0) + βδ (e− k) + β (1− δ) er
¢

1− p
.

• Region 3. None of the υ2 workers chooses to leave and some new workers choose to
locate there. In this case, equation (22) still holds, while equation (23) holds as an
equality:

e−k <

Z
V (s0, ζ 0, υ2)Q(ζ, dζ

0) =
ed − p

¡R
u(s0, ζ 0, υ1)Q(ζ, dζ

0) + βδ (e− k) + β (1− δ) er
¢

1− p
.

(24)
The endogenous components of s0 are:

Y (s, ζ) = xd(ζ, s) + δ (y − n) + y (1− δ + x (1− η)) ,

N (s, ζ) = (p (1− δθ/x) + δθ/x) (xd(ζ, s) + yx (1− η)) + (p (1− θ) + θ) y (1− δ) .

where xd(s, ζ) is implicitly defined by the equality condition in (24).

C Extension: Amenities in the Utility Function

It is easy to modify the model to include location-specific amenities and to show that an
appropriate choice of functional forms yields exactly the same implications for net and gross
flows of labor as the one derived in the previous section. Suppose that there are no location-
specific productivity shocks z, but rather that each location is characterized by a time-varying
amenity a. The utility function takes the form:

u = h (a) (c+ φ (lc))− υ,

where h(.) is an increasing function of a.
Solving for the optimal choice of land and consumption yields the following indirect utility

function:

u
³
s,bζ, υ´ = h (a)

³
w
³
s,bζ´− r

³
s,bζ´ lc ³s,bζ´+ φ

³
lc
³
s,bζ´´´− υ,

where bζ denotes the vector (a, ε).
Replacing the expressions for the wage and rent yields:

u
³
s,bζ, υ´ = h (a)w

³
s,bζ´Ã1 +µ A

1− τ

¶ 1
τ

!
− υ.

31It is straightforward to check that the condition βδ < 1 guarantees that the left-most term is smaller
than the right-most term in this equation.
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Since wages are given by:

w
³
s,bζ´ = τyτ−1h

1 +
¡

A
1−τ
¢ 1
τ

i1−τ ,
I obtain that

u
³
s,bζ, υ´ = h (a) τyτ−1

Ã
1 +

µ
A

1− τ

¶ 1
τ

!τ

− υ.

This model has the same reduced-form utility function as the benchmark model as long
as h(a) takes the functional form:

h(a) =

³
a
1
τ +

¡
A
1−τ
¢ 1
τ

´τ
³
1 +

¡
A
1−τ
¢ 1
τ

´τ ,

and a follows the same stochastic process as z:

a0 = aε0,

ε0 = aψ−1ερu0.

Notice that the model with amenities has the same implications for flows of workers
across states, but has different implications for prices of labor and land. Specifically, rents
would tend to be higher and wages lower in locations with better amenities (as in Roback,
1982).

D Details On Numerical Implementation

This section describes the steps that I followed in solving and estimating the model. The
algorithm is comprised of three loops: one for finding the value function conditional on
x, ed, er, and the parameter vector φ, one for finding the equilibrium values (x, ed, er) , of
the model for given φ, and one for finding φ in order to match the empirical moments of
interest. Every change in φ entails new equilibrium values for (x, ed, er), while a new guess
for (x, ed, er) requires the computation of the associated value function.

Step 1 (Guess). Start from an initial guess for the parameter vector φ and for the values
of directed and undirected search ed and er. The guess for (x, ed, er) is updated in Step 3
below, while the guess for φ is updated in Step 4.

Step 2 (Dynamic Programming). Solve the dynamic programming problem for workers
such that υ = υ2. This is the most time-consuming step of the procedure because there are
four continuous state variables in the problem (recall that s includes y and n while z includes
ζ and ε) and because the procedure involves numerical integration of the value function with
respect to the density of the innovation u. The solution of the dynamic programming problem
yields gross inflows x(s, ζ) and the probability of outflow q(s, ζ, υ2) for an agent with match
υ2 as functions of the state vector (s, ζ). These two functions allow one to recover all the
other variables of interest conditional on (s, ζ).
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Step 3 (Equilibrium). Solve for the equilibrium value of (x, ed, er) by defining the function
f (x, ed, er) with the following components:

f1 (x, ed, er) =

Z
x(s, ζ)μ (ds, dζ)− ηx, (25)

f2 (x, ed, er) =

Z
yμ (ds, dζ)− 1, (26)

f3 (x, ed, er) = p

Z
V (s, ζ, υ1) yμ (ds, dζ) + (1− p)

Z
V (s, ζ, υ2) yμ (ds, dζ)− er. (27)

The integral in equations (25)-(27) are computed by simulating the economy for a very large
number of periods (5 million), obtaining {xt, yt, V1t, V2t}Tt=1 and approximating the integrals
in (25)-(27) with the corresponding sample averages. For example, the integral in (26) is
approximated by:

1

T

TX
t=1

yt.

The vector (x∗, e∗d, e
∗
r) such that f (x

∗, e∗d, e
∗
r) = 0 is computed using Broyden’s algorithm

described in the Step 4. Notice that for each candidate value of (x, ed, er) it is necessary to
go back to Step 2 and solve the dynamic programming problem again.

Step 4 (Estimation). Given (x∗, e∗d, e
∗
r) , it is feasible to compute the equilibrium value of

all the variables of interest. The vector φ is estimated by constructing the model counterpart
of the five moments listed in the text (Section 4) and choosing φ so that the model-generated
moments are exactly equal to their empirical counterparts. Since there are five parameters
and five moments, this is an exactly identified model. The problem then becomes one of
solving five non-linear equations in five unknowns. The model-generated moments are con-
structed by using 5 million simulated data drawn from the model. Each simulated moment
is then compared with its empirical counterpart. In order to find a solution for this non-
linear system of five equations in five unknowns I have used Broyden’s algorithm. The latter
operates in the following way (for a more detailed description, see Press et al., 1996, chapter
9). First, it numerically approximates the Jacobian matrix associated with the non-linear
system. It then uses this approximate Jacobian to find an updated vector φ by implementing
the Newton step, which guarantees quadratic convergence if the initial guess is close to the
solution. If the Newton step is not “successful”, the algorithm tries a smaller step by back-
tracking along the Newton dimension. When an acceptable step is determined, φ is updated
and the algorithm can proceed in the way described above, once an updated Jacobian has
been obtained. Since the numerical computation of the Jacobian can be costly (and in this
model it is), the Jacobian at the new vector φ is iteratively approximated using Broyden’s
formula. The non-linear solver stops when the maximum percentage difference between the
simulated moments and the empirical moments is, in absolute value, smaller than 10−4.
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