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Abstract

A probabilistic forecast is the estimated probability with which a future event will
satisfy a specified criterion. Economic forecasts of this type are increasingly often pro-
duced, but have been subject to relatively little formal evaluation. By contrast, meteo-
rological probability forecasts which fall into discrete categories are routinely evaluated
with respect to their calibration error (a measure of the match between forecast and
actual probabilities) and resolution (measuring the ability of forecasts to distinguish
cases of differing conditional probability). We show here that we can also estimate
these quantities in economic contexts in which the forecast probability may take any
value in the unit interval, and we evaluate the empirical evidence on calibration error
and resolution for a number of important economic applications, including recession
and inflation prediction. We also indicate the maximum horizons at which forecasts
have useful resolution and compare calibration and resolution across alternative mod-
els. Real-time data are used as much as possible in these applications to obtain realistic
estimates of performance. Although a number of the forecasts that we evaluate show
low calibration error and substantial resolution at short horizons, we also observe cases
in which models show poor performance.
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1. Introduction

A probabilistic forecast is the estimated probability with which a future event will
satisfy a specified criterion, such as the probability that there will be precipitation
tomorrow or the probability that a particular political party will form the next gov-
ernment. Probabilistic forecasts are produced for economic events such as recession,
failure to meet inflation targets, stock market crashes and bond defaults.1 In each of
these cases the event is binary (an outcome occurs in a given time interval, or not) and
the forecast is an estimated probability of the event, on the continuous interval [0, 1].
While probabilistic forecasts of economic events are increasingly common, they have not
been subjected to much of the verification that meteorological precipitation-probability
forecasts, for example, routinely undergo; with the exception of a few studies such as
that of Diebold and Rudebusch (1989), little is known about key features of sequences
of economic probability forecasts.

Although it is possible to generate sequences of historical pseudo-forecasts by ap-
plying probabilistic forecasting models to historical time series, the resulting forecasts
typically do not correspond to those that could have been made at a given historical
date, even if parameter estimation and model selection are carried out only on data
available at that date. A primary reason for this is the revision of important macroe-
conomic data: typically, the currently-available data corresponding to a historical date
not only differ from those available at the time, but differ by having higher information
content. It is well known that, as a result, the use in forecast evaluation of measures
based on current vintages of data may overstate the actual usefulness of these measures
in real-time forecasting; see for example Croushore and Stark (2003).

To evaluate probabilistic forecast sequences, therefore, we prefer sequences of fore-
casts made and recorded in real time, or alternatively pseudo-forecasts computed re-
cursively on real-time vintages of data (that is, the forecast computed for historical
date t uses only the revision of each data point which was actually available to the fore-
caster at t). The existence of a number of sets of vintage macroeconomic data makes
these computations feasible.2 As well, some actual sequences of historical probability
forecasts have been recorded and stored and are available for evaluation.

For each of these sequences, this study will evaluate the calibration, resolution,
and other features of the forecasts. Calibration measures the match between forecast
probabilities and actual conditional probabilities of an event occurring in a given state;
resolution is a measure of the ability of forecasts to distinguish states with relatively
high conditional probabilities of the event from states with relatively low conditional

1Probabilistic forecasts on financial variables are commonly traded in markets as binary
or digital options.
2The Federal Reserve Banks of St. Louis and Philadelphia make vintage data avail-
able. The Federal Reserve Bank of Philadelphia makes available a number of series of
historical forecasts, both point and probability. The Bank of England also publishes
historical forecasts from their Quarterly Report on Monetary Policy.
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probabilities. These terms will be made precise below. Together, the calibration and
resolution of a sequence of forecasts exhaust the model-specific information in the mean
squared error. Clearly, one aim of this evaluation is to provide a direction for improve-
ment of forecasting models: the bias implied by calibration error, for example, can be
estimated and removed (see for example Hamill et al. (2003) on the usefulness of this
procedure in precipitation probability forecasts).

The present paper will work with several sequences of probabilistic forecasts of
recessions or of breaching inflation targets. In the former case, evaluation is complicated
by the fact that the actual state of the economy never becomes perfectly observable; we
use both real-time and final-revision estimates of the economy’s state in the evaluation.
Section 2 of the paper defines the measures of interest and procedures for pointwise and
uniform statistical inference. Section 3 describes the data, vintages, and forecasts or
forecasting models that are subject to evaluation. Section 4 implements these measures
and tests.

2. Methods for probabilistic forecast evaluation

2.1 Definitions

The evaluation of probability forecasts begins with the observation that both fore-
casts and outcomes are random variables, and that the two sequences have a joint
distribution; see in particular Murphy (1973), from which much subsequent work fol-
lows. Numerous decompositions of the forecast MSE are possible; in particular, we can
treat either the forecast or the outcome as conditioning variables.

Following most of the notation of Murphy and Winkler (1987), let x be a 0/1
binary variable representing an outcome and let p̂ ∈ [0, 1] be a probability forecast of
that outcome. Since the variance of the binary outcomes is fixed, it is useful to use
a decomposition that conditions on the forecasts: in this case the mean squared error
E((p̂ − x)2) of the probabilistic forecast can be decomposed as follows:

E(p̂ − x)2 = E(x − E(x))2 + Ef (p̂ − E(x|p̂))2 − Ef (E(x|p̂) − E(x))2, (2.1)

where Ef (z) =
∫

zf(z)dz with f(.) the marginal distribution of the forecasts, p̂. Note
that the first right-hand side term, the variance of the binary sequence of outcomes,
is a fixed feature of the problem and does not depend on the forecasts. Hence all
information in the MSE that does depend on the forecasts is contained in the second
and third terms on the right-hand side of (2.1).

The first of these,

Ef (p̂ − E(x|p̂))2, (2.2)

will be called the (mean squared) calibration error, and measures the deviation from a
perfect match between the predicted probability and the true probability of the event
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when a given forecast is made.3 If for any forecast value p̂i the true probability that the
event will occur is also p̂i, then the forecasts are perfectly calibrated. If for example
we forecast that the probability of a recession beginning in the next quarter is 20%,
and if over all occasions on which we would make this forecast the proportion in which
a recession will begin is 20%, and if this match holds for all other possible predicted
probabilities, then the forecasts are perfectly calibrated. If by contrast a recession
will only occur 5% of the time when p̂ = 10%, the calibration error will be positive.
Note that perfect calibration can be achieved by setting p̂ = E(x), the unconditional
probability of a recession, since the expectation is taken over the possible values or
range of values that the probability forecast can take on.

The last term on the right-hand side of (2.1), Ef (E(x|p̂) − E(x))2, is called the
forecast resolution, and measures the ability of forecasts to distinguish among relatively
high-probability and relatively low-probability cases. Note again that the expectation
is taken with respect to the marginal distribution of the forecasts. If resolution is high,
then in typical cases the conditional expectation of the outcome differs substantially
from its unconditional mean: the forecasts are successfully identifying cases in which
probability of the event is unusually high or low. The resolution enters negatively
into the MSE decomposition; high resolution lowers MSE. To return to the previous
example, the simple forecast that always predicts a 5% probability of recession, where
5% is the unconditional probability, will have zero resolution. Perfect forecasts would
have resolution equal to variance (and zero calibration error, so that MSE = 0).

These concepts are employed in the meteorological literature in the evaluation of
discretely-distributed probability forecasts which may take on only values in a finite
set (e.g. precipitation-probability forecasts may take on the values {0, 0.2, 0.4, . . . , 1.}).
By contrast, econometric probability forecasts are normally allowed to take any value
in the interval [0, 1]. In the next subsection we consider methods that will allow us to
estimate these quantities for continuously-distributed probability forecasts.

The calibration error has a minimum value of zero; its maximum value is 1, where
forecasts and conditional expectations are perfectly opposed. The resolution also has a
minimum value of zero, but its maximum value is equal to the variance of the binary
outcome process. In order to report a more readily interpretable measure, scaled into
[0, 1], we divide the resolution by the variance of the binary outcome process. Let
n be the number of observed forecasts and µ = E(x); then the maximum resolution
achievable arises where there are nµ 1’s and n−nµ 0’s constituting the sequence E(x|p̂)i.

The resulting maximum total is nµ(1 − µ)2 + n(1 − µ)µ2. Divide by n for the mean;
this quantity is then the maximum resolution and is also equal to the variance of a 0/1

3This quantity is often called simply the ‘calibration’ or ‘reliability’ of the forecasts. We
prefer the term calibration error to emphasize that this quantity measures deviations
from the ideal forecast, and we will use ‘calibration’ to refer to the general property of
conformity between predicted and true conditional probabilities.
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random variable with mean µ. Therefore

Ef (E(x|p̂) − µ)2

µ(1 − µ)2 + (1 − µ)µ2
∈ [0, 1]. (2.3)

2.2 Estimation of the calibration error and resolution

Estimation of either (2.2) or (2.3) requires estimation of the conditional expectation
function E(x|p̂) (estimation of the unconditional probability E(x) is of course by the
sample mean x of the binary outcome). When the forecasts take on only a certain
number of values, e.g. p̂i = {0, 0.1, 0.2, . . . , 1.0}, the conditional expectation in (1) is
estimated by a simple sub-sample mean of x for each value of p̂. When the forecasts
can take any value in the interval [0, 1], the forecasts may be grouped into cells and
calibration may be investigated for each cell. This is the approach taken by, for example,
Diebold and Rudebusch (1989), who divide the forecasts into J cells each containing N j

forecasts; the authors then compute the local squared bias measure N−1
∑J

j=1 2nj(p̂
j−

xj), where p̂
j

and xj are the mean forecast probability and the mean outcome on the N j

values of cell j. These authors, and others such as Casillas-Olvera and Bessler (2006),

also compute the ‘global squared bias,’ 2(N−1
∑N

i=1 p̂i − N−1
∑N

i=1 xi)2, a measure
of the match of the unconditional mean probability forecast and unconditional mean
probability of the outcome. Note that the local measure is analogous to the use of a
histogram to estimate a continuous density, with the corresponding loss of efficiency.

We can estimate the continuous conditional expectation function without imposing
linearity or artificial grouping into cells by nonparametric (e.g. kernel) regression of x
on p̂. Note that this allows us in principle to evaluate calibration at any point in the
continuous interval [0, 1], rather than only globally or within a set of discrete cells.

There are various possible choices of estimator, including the Nadaraya- Watson
(locally- constant) and locally-linear kernel regression, nearest-neighbour methods, etc.
The methods estimate the true conditional mean function,

f(X|P̂ = p̂) =
∫ ∞

−∞
xf(x, p̂)/fP̂ (p̂)dx,

where fP̂ (p̂) is the (continuous) marginal distribution of the probability forecasts, by

substituting estimates f̂(x, p̂) and f̂P̂ (p̂) of the densities. See Pagan and Ullah (1989) for

a general review and exposition of these methods which notes the discrete/continuous
distinction. We use the Nadaraya-Watson kernel estimator in all results recorded below.
Any such method requires a choice of bandwidth parameter and kernel function; while
cross-validation will be our primary method for bandwidth choice, we report results for
various values of the bandwidth parameter to indicate sensitivity to this choice.
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2.3 Statistical inference on calibration

Our ability to conduct inference on the estimated conditional expectation functions
is limited by the dependence which exists in both forecasts and outcomes. However,
kernel regression estimates have been shown to remain consistent and asymptotically
normal with dependent data under various conditions; see for example Robinson (1983,
1986).4 Pointwise inference on calibration error (that is, a test of H0 : pi = E(X|pi) at
any given probability pi) can therefore be conducted using asymptotic confidence bands
for the nonparametric regression functions. Nonetheless the sizes of sample available
in macroeconomic applications yield wide confidence bands outside the central region
where most observations lie, so there is little power to reject deviations from correct
calibration.

A ‘global’ test would address the question of whether or not the entire function
E(X|pi) can be reduced to the linear form a + bpi with a = 0, b = 1, as is implied
by the null hypothesis of correct calibration throughout the interval [0, 1] (recall that
for correctly-calibrated data, the conditional expectation function takes a linear form;
E(X|pi) = p). For iid data, tests of a linear specification vs a general nonparametric
alternative have been given by, e.g., Härdle and Mammen (1993) and Azzalini and
Bowman (1993), but no such procedure appears to be available for dependent data. A
more limited global test can however be conducted by testing the hypotheses a = 0 and
b = 1 jointly, or individually, within a linear model. Such a test loses power against
nonlinear deviations from the null, but is feasible in a general context. Dependence
in deviations from the model does imply inconsistency of the covariance matrix used
in standard asymptotic tests, so a heteroskedasticity- and autocorrelation-consistent
covariance matrix estimator must be used in a context such as this. We compute such
statistics below using the Newey-West estimator for the covariance matrix and test the
joint hypothesis using a Wald statistic.

3. Data, forecasts and pseudo-forecasts

We implement the measures described in Section 2 on two classes of data: recession
probability forecasts and forecasts of the probability that inflation will exceed a target
(taken as 3% annually in these evaluations). In each case we evaluate several sets
of forecasts or forecasting models, and a variety of forecast horizons. In examining
multiple horizons we are in part interested in the point beyond which forecasts cease
to be useful for each series. In the context of point forecasts, Galbraith (2003) refers
to this point as the content horizon and gives a definition based on an arbitrary loss

4Nonparametric estimates are asymptotically normal at each point of estimation under
standard assumptions which include smoothness of the conditional expectation func-
tion and a bandwidth parameter h that converges to zero with sample size n, having
asymptotic variance f(x)(−1)σ2

∫
K2(ω)dω; see for example Pagan and Ullah (1999,

section 3.4) in the iid case. The kernel constant
∫

K2(ω)dω is equal to 0.2821 for the
Gaussian kernel used in our estimation.
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function, usually implemented using the mean squared error; in the present context, the
analogue of this content horizon will be the point at which forecast resolution becomes
approximately zero.
3.1 Recession probability forecasts

The recession forecasts that we consider come from the Survey of Professional Fore-
casters (SPF), compiled since the last quarter of 1968 first by the American Statistical
Association and National Bureau of Economic Research, more recently by the Federal
Reserve Bank of Philadelphia. Quarterly recession probability forecasts are among
the many series (most of which are point forecasts) that have been recorded since the
beginning of the survey. The forecasts are estimated probabilities that the economy
will experience negative GDP growth in quarter t + h, h = 0, 1, 2, 3, 4. Note that the
definition of a ‘recession’ in the SPF is not the standard two-quarter definition, but a
single quarter of contraction; note also that these are not cumulative probabilities of a
recession at any point up to t + h, but are specific to quarter t + h. The first of these,
for h = 0, is a roughly contemporaneous estimate of the current binary state (recession
or expansion) of the economy. Since the true state never becomes observable, we con-
sider two estimates of the economy’s binary state, one based on the initial (‘real time’)
estimate of GDP growth, and the other based on the final estimate, made some time
later.

Figure 3.1.1 depicts the actual recession forecasts, divided into cases in which the
economy did/did not subsequently enter a recession state in the relevant quarter. The
revision in GDP growth figures causes the small difference between the real time (based
on first-released estimates of growth) and final (2006Q1) estimates of GDP growth; both
of these are reported in Figure 3.1.1. Note that, at least for shorter horizons, the panels
describing expansion quarters show a concentration of forecasts at low probabilities,
whereas those describing recession quarters show fewer low probability results. By
horizon 4, however, there is little visible difference in the range of typical outcomes.
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Figure 3.1.1
Dispersion of probabilistic forecasts

Survey of Professional Forecasters data

We now compute the calibration and resolution measures for these data. We have
two choices of outcome data series (real time estimate and 2006 vintage estimate) by
which to measure the 0/1 outcome.

Recall that we also must estimate the continuous conditional expectation function
E(x|p̂) in order to evaluate (2.2) and (2.3). We have choices of bandwidth and kernel
function to make in order to do so. The tables below will report results from the
standard Nadaraya-Watson kernel estimator with a Gaussian kernel function; results are
typically much less sensitive to kernel choice than to the choice of bandwidth parameter.
For bandwidth parameter selection we begin with cross-validation, which estimates an
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optimal bandwidth close to 0.08 on most of these data sets, although results are more
erratic on the longer-horizon forecast data. We therefore take the value 0.08 as a base
case and report results in which this value is varied by ±50%.

Figure 3.1.2 illustrates the estimated conditional expectations produced for the
five forecast horizons and two data vintages, using the base bandwidth of 0.08. The
conditional expectation function for the ideal forecast would be a 45 degree line showing
equality between forecast and E(x|p̂). The conditional expectation functions are plotted
over the actual range of observed probability forecasts, which can be found from Figure
3.1.1; note in particular that there are forecasts near zero at all horizons, whereas there
are no observations of probability forecasts near one at the longer horizons.

Figure 3.1.2
Kernel-estimated conditional expectation of outcome given forecast

Survey of Professional Forecasters data

The following tables record the root mean squared calibration error and scaled
resolution results; point estimates of calibration error suggest prima facie that the
forecasts are quite well calibrated.
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Table 3.1.1
RMS calibration error (∈ [0, 1])

Recession probability forecasts, SPF data

Horizon:
(quarters)

0 1 2 3 4
Real-time outcome series
h=0.08 0.08 0.08 0.07 0.06 0.09
h=0.04 0.08 0.09 0.08 0.06 0.09
h=0.12 0.09 0.08 0.07 0.07 0.08

2006 vintage outcome series
h=0.08 0.10 0.08 0.09 0.07 0.09
h=0.04 0.10 0.09 0.10 0.07 0.10
h=0.12 0.10 0.09 0.09 0.08 0.08

Table 3.1.2b
Scaled resolution measure (∈ [0, 1])

Recession probability forecasts, SPF data

Horizon:
(quarters)

0 1 2 3 4
Real-time outcome series
h=0.08 0.42 0.21 0.06 <0.01 <0.01
h=0.04 0.48 0.26 0.12 0.02 <0.01
h=0.12 0.37 0.16 0.03 <0.01 <0.01

2006 vintage outcome series
h=0.08 0.35 0.15 0.03 <0.01 <0.01
h=0.04 0.39 0.19 0.07 <0.01 0.01
h=0.12 0.31 0.11 0.01 <0.01 <0.01
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With respect to resolution, the measures show substantial resolution at horizons 0
and 1, but very little at horizons 3 and 4, a result which mirrors the fact that quarterly
GDP forecasts have approximately zero ‘skill’ or ‘forecast content’ at these horizons
(see for example Galbraith and Tkacz 2006). Roughly speaking, the horizon beyond
which these forecasts have little or no remaining resolution appears to be about two
quarters. Lower resolution appears in the vintage-2006 estimates of where recessions
actually occurred than in the estimates made at the time.

Pointwise statistical inference on the hypothesis that calibration error is zero at
each point yields very few rejections (none at horizons 0–2) and will not be reported
in detail; the tests have little power in regions where there are relatively few forecasts,
and confidence intervals are often very wide. A more powerful test uses the entire set of
calibration results to test zero intercept and unit slope in the conditional expectation,
as required by correct calibration. The p-values for Wald tests of this null hypothesis
are reported in Figure 3.1.3.

Figure 3.1.3
p-values of Wald tests

H0 : zero intercept and unit slope of E(X|pi)
Survey of Professional Forecasters data, two outcome measures

Perfect calibration is rejected decisively at horizons 0 and 4, and at horizon 1
with real time outcomes. Note however that, while evidence against perfect calibration
is strong at these points, the deviation from (0,1) slope and intercept is small: at
horizon 0, the slope and intercept estimates are (−0.05, 0.99) for real-time outcomes,
and (−0.03, 0.87) for 2006-vintage outcomes. That is, the forecasts appear to be well,
but clearly not perfectly, calibrated. At horizons 3 and 4, the estimates of the linear
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form are imprecise, but there is nonetheless sufficient evidence at horizon 4 to reject
perfect calibration decisively.
3.2 Probability of exceeding an inflation target

Probabilistic inflation forecasts are sometimes made in the form of estimated prob-
abilities that inflation will exceed a particular level. In this section we evaluate two
types of such forecasts: model-based pseudo-forecasts and a sequence of forecasts de-
rived from density forecasts published by the Bank of England. For the model-based
pseudo-forecasts, we take care to use only information that would have been available
at the time in model selection, estimation and forecasting, while the Bank of England
forecasts represent true conditional forecasts published in real time by the central bank.

For US inflation, we use the models and forecasting methodology described by Or-
phanides and van Norden (2005). That study compared inflation pseudo-forecasts at
various horizons from a set of fifteen simple linear models using only real-time data in
their specification and construction.5 The authors concluded that none of the forecasts
using real-time output gap estimates seemed to perform better than models without
such gaps (e.g. using output growth instead of the gap, or simply using autoregressive
models of inflation) in the sense of having a consistently lower mean-squared forecast
error (MSFE.) However, in inflation-targeting countries the central banks may have
an asymmetric forecast loss function. For example, they may be particularly inter-
ested in the probability that inflation stays below some upper bound that is considered
consistent with explicit or implicit targets, so as not to reduce the policy framework’s
credibility. This suggests that evaluating the performance of probabilistic inflation fore-
casts may give additional information on whether such models can be of use to policy
makers.

These models are used for forecasts of cumulative US CPI inflation over 2-, 4-,
6- and 8-quarter horizons. As there has been no explicit inflation target in the US,
we considered forecasts of the probability that inflation would exceed a 3% per annum
threshold.6

Figures 3.2.1a-c, like Figure 3.1.1, record the actual pseudo-forecasts made by these
models over the sample period of 1969 Q2 through 2002 Q3. The upper panel in each
figure records cases in which the eventual outcome was that inflation exceeded the 3 per
cent threshold, while the lower panel shows the remaining cases. The fifteen different

5The 15 models are 1. Linear trend; 2. Quadratic trend; 3. Broken trend; 4. Hodrick-
Prescott; 5. Band pass; 6. Beveridge-Nelson; 7. SVAR–Blanchard-Quah; 8. Watson
(1986); 9. Harvey-Clark; 10. Harvey-Jaeger; 11. Kuttner; 12. Gerlach-Smets; 13.
TOFU; 14. Nominal output; 15. Autoregressive. See Orphanides and van Norden
(2005) for references and details on model specification and estimation. In some cases
our results are numbered rather than labeled to conserve space; however we present all
model results in the order shown above.
6Probabilistic forecasts are based on OLS estimates of linear forecasting equations with
conventional standard error estimates and assumed Gaussian errors.
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models are distributed along the horizontal axis. Here, in contrast with recession-
forecast case, the inflation data are not subject to substantial revision and there is no
real-time/final distinction. Because of the large number of models, a separate figure is
used for each forecast horizon. Figures 3.2.1a-c plot every probabilistic forecast from
each of the models and superimpose on them the box-whisker plot for their distribution.
(The mark in the interior of the box indicates the median of the distribution, the box
itself covers the interquartile range, and the whiskers extend from the 10th to the 90th
percentile.)
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Figure 3.2.1a
Dispersion of probabilistic forecasts of US cumulative 2Q inflation

Real-time pseudo-forecasts from fifteen models
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Figure 3.2.1b
Dispersion of probabilistic forecasts of US cumulative 4Q inflation

Real-time pseudo-forecasts from fifteen models
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Figure 3.2.1c
Dispersion of probabilistic forecasts of US cumulative 8Q inflation

Real-time pseudo-forecasts from fifteen models

These figures allow simple prima facie comparisons of the various models. An
excellent model will have forecasts tightly clustered around 1.0 in the upper panel and
0.0 in the lower panel. For comparison, model 15 shows the results from a univariate
AR forecast of inflation, model 14 uses a bivariate VAR in nominal output growth and
inflation, while model 13 uses a bivariate VAR in real output growth and inflation.

The graphs suggest that all models have at least some resolution; the distribu-
tions of the forecasts are systematically lower when inflation turns out to be below the
threshold than when it turns out to be above it. We also see that while some models
display a smaller downward shift (indicative of lower resolution) than the benchmark
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AR and VAR models, three models display signs of higher resolution; models 1 (Linear
Trend), 8 (Watson) and 11 (Kuttner.) These results appear to be robust across the
three different forecast horizons (2, 4 and 8 quarters) shown here. The relatively good
apparent performance of these three models is surprising given all three assume the
presence of a constant trend growth rate of real output. Orphanides and van Norden
(2002) note that such models tend to produce much less reliable estimates of output
gaps, as evidenced by the particularly large ex post revisions in their estimates of the
output gap.7 We return to the discussion of resolution below with numerical measures.

Next we apply the methods used in the previous section to these forecasts of the
probability of breaching an inflation target, beginning with estimates of the conditional
expectation functions. These are depicted for the base bandwidth and for each of the
four cumulative horizons in Figure 3.2.2. The models are not individually labeled;
the purpose of the figure is to indicate the dispersion across models in these estimated
functions. These functions are again plotted only over the ranges of observed probability
forecasts: a number of the models show no forecast probabilities near zero.

In considering the results for the 2Q horizon, we see that all models show large
distortions for low forecast probabilities. When models estimate the probability of
inflation> 3% to be under 30 per cent, it is systematically higher. This distortion
increases as we go lower; when they estimate the probability to be around 10%, inflation
exceeds the threshold about 50 per cent of the time. This is common across all models:
all output gaps, the AR model of inflation, TOFU and YN.

As we move to longer forecast horizons, the overall results change. First, perfor-
mance varies more across models. Six of the 15 models show the same type of problem
mentioned above but to an even stronger degree. There is increased dispersion of the
results at low probabilities; at high probabilities, nearly all the models overstate the
probability of exceeding the threshold.

7Orphanides and van Norden(2002), Table 3 shows that these three models all had
noise-to-signal ratios above 1, compared with 0.69 for their best-performing model. One
possible explanation for this surprising result is that the consistent over-estimation of
the output gap these models tended to produce in the 1970s helped them correctly fore-
cast an increase in inflation, and the reverse in the 1990s as output growth accelerated.
We intend to investigate this hypothesis further.
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Figure 3.2.2
Kernel-estimated conditional expectation of outcome given forecast

Fifteen inflation forecasting models

The RMS calibration error and scaled resolution estimates are in Tables 3.2.1 and
3.2.2. To avoid an excessively large number of entries, we report only the estimates
using the base bandwidth, which are typical: as with the recession probability forecasts,
sensitivity to the ±50% changes in bandwidth is modest.

17



Table 3.2.1
RMS calibration error (∈ [0, 1])

Probability of US Inflation > 3%, 15 models

Horizon (cumulative, quarters)
2 4 6 8

Model 1 Linear trend 0.17 0.13 0.13 0.13
Model 2 Quadratic trend 0.15 0.20 0.21 0.28
Model 3 Broken trend 0.09 0.09 0.14 0.22
Model 4 Hodrick-Prescott 0.12 0.12 0.21 0.29
Model 5 Band pass 0.11 0.09 0.15 0.23
Model 6 Beveridge-Nelson 0.11 0.15 0.13 0.21
Model 7 SVAR–Blanchard-Quah 0.17 0.22 0.27 0.32
Model 8 Watson (1986) 0.14 0.10 0.09 0.11
Model 9 Harvey-Clark 0.13 0.11 0.10 0.17
Model 10 Harvey-Jaeger 0.09 0.10 0.14 0.25
Model 11 Kuttner 0.14 0.10 0.08 0.10
Model 12 Gerlach-Smets 0.13 0.11 0.10 0.15
Model 13 TOFU 0.13 0.17 0.09 0.17
Model 14 Nominal output 0.11 0.13 0.08 0.07
Model 15 Autoregressive 0.08 0.10 0.14 0.23

While a number of these forecasts appear to be quite well calibrated at short
horizons (comparable with the SPF recession forecasts), there are a number for which
calibration is markedly poorer, notably models 7 (SVAR) and 2 (Quadratic Trend).
As we saw in Figure 3.2.2, as we move to larger horizons the performance of some
models tends to improve while others tend to deteriorate. Model 14 (Nominal Output)
improves at longer horizons, becoming the best model in terms of RMS calibration
at the 8Q horizon. The constant-trend models (numbers 1, 8 and 11) also all appear
better calibrated at long horizons than at short horizons. In contrast, models such as
the breaking trend or the AR model perform much more poorly at long horizons than
short.

As in the recession forecast data, pointwise statistical inference, on H0 : calibration
error = zero at each point yields very few rejections, and we record instead potentially
more powerful global tests of zero intercept and unit slope in the linear approximation to
the conditional expectation function. The Wald test p-values are recorded graphically
in Figure 3.2.3.
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Figure 3.2.3
p-values of Wald tests

H0 : zero intercept and unit slope of E(X|pi)
Fifteen inflation forecasting models, four horizons

While the point estimates of calibration are in many cases farther from zero than in
the SPF data, perfect calibration is more difficult to reject in these inflation forecasting
models: standard errors of estimated parameters tend to be higher. However, at longer
horizons (at eight quarters, and to some extent at six quarters), models 2, 3, 4, 6 and
7 tend to show significant deviations from perfect calibration at conventional levels.
While there is some evidence against the null at some horizon for models 8, 10, 11,
models 8 through 15 tend overall to show a pattern not too dissimilar from the uniform
distribution of p-values over [0, 1] which characterizes a true null.
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Table 3.2.2
Scaled resolution measure (∈ [0, 1])

Probability of US Inflation > 3%, 15 models

Horizon (cumulative, quarters)
2 4 6 8

Model 1 Linear trend 0.35 0.37 0.42 0.40
Model 2 Quadratic trend 0.22 0.13 0.08 0.08
Model 3 Broken trend 0.28 0.17 0.20 0.24
Model 4 Hodrick-Prescott 0.25 0.18 0.18 0.22
Model 5 Band pass 0.30 0.22 0.22 0.27
Model 6 Beveridge-Nelson 0.32 0.27 0.40 0.41
Model 7 SVAR–Blanchard-Quah 0.29 0.25 0.38 0.46
Model 8 Watson (1986) 0.34 0.36 0.37 0.41
Model 9 Harvey-Clark 0.28 0.21 0.22 0.22
Model 10 Harvey-Jaeger 0.24 0.19 0.22 0.27
Model 11 Kuttner 0.35 0.36 0.36 0.38
Model 12 Gerlach-Smets 0.26 0.20 0.23 0.21
Model 13 TOFU 0.34 0.26 0.27 0.31
Model 14 Nominal output 0.32 0.23 0.34 0.41
Model 15 Autoregressive 0.26 0.23 0.33 0.31

Table 3.2.2 shows, as we saw in Figure 3.2.1, that all models have some resolution.
Differences between the best and worst models appear to be smaller at shorter horizons
and tend to increase somewhat with the forecast horizon; the best model has a scaled
resolution of roughly four times greater than the worst model at the longest horizon.
At the shorter horizon, the ratio of resolutions is approximately 1.5. We also see that
the constant trend models (1, 8 and 11) identified in Figure 3.2.1 again show good
resolution and are among the best performing models at all horizons. However, their
performance now appears to be equaled or surpassed by several other models. At the
shortest horizons, the TOFU (real output growth) models performs roughly as well,
while at the longest horizons they are joined by the Nominal Output and Beveridge-
Nelson models, and surpassed by the SVAR.

· · ·
The second set of inflation forecasts that we evaluate is from the Bank of England

(BoE) Quarterly Monetary Policy Report. We examine thirty-six quarterly forecasts
made from 1998Q1 through 2006Q4 inclusive; because of the small sample size we
report a more limited set of results.

20



The Bank of England’s Quarterly Monetary Policy Report provides probabilistic
forecasts of inflation in the form of ‘fan charts,’ indicating quantiles of the forecast
distribution. Fan charts for RPIX inflation forecasts were published from 1993Q1 to
2003Q4, when they were replaced by CPI inflation forecasts. The GDP fan chart was
first published in the 1997Q3 report. In addition to providing forecast distributions for
roughly 0 to 8 quarters into the future, from the 1998Q1 forecast onwards these are
provided conditional on the assumption of both fixed interest rates, and a “market-
expectation-based” interest rate profile. The two assumptions typically provide very
similar results; here, we limit ourselves to the analysis of the market-based interest rate
results.

While the published charts provide only a visual guide to the degree of uncertainty
that the BoE associate with their forecasts, they are based on an explicit parametric
model of forecast uncertainty, as documented by Brittan, Fisher and Whitley (1998)
and Wallis (2004), among others. Forecast errors are assumed to follow a two-piece
normal or “binormal” distribution, whose behaviour is completely characterized by
three parameters: a mean µ, a measure of dispersion σ, and a parameter γ which
controls skewness.8 These parameters therefore allow us to estimate the implied forecast
probabilities that inflation or GDP growth would exceed any given threshold level; we
use 2% here.9

Because there is only one short series, we will summarize these results in the text
rather than in tabular form. Calibration is poor beyond horizon 0: estimated RMS
calibration error ranges from 0.13 at horizon 0 to 0.44, 0.51, 0.49 at horizons 6–8. Tests
of the null of (0,1) slope and intercept for calibration yield strong rejections for all
horizons beyond 1. These results are compatible with other evaluations of the BoE
density forecasts (again see Wallis 2004), which suggest that, particularly in the earlier
forecasts, an excessively high estimate of the variance of future inflation was implicit
in the forecast density. Scaled resolution is high at horizon 0 (0.73), but drops rapidly
thereafter to estimated values in the range 0.03–0.11 for horizons 4–8.

4. Concluding remarks

Estimation of the calibration and resolution of continuous probabilistic economic
forecasts estimation can be carried out without arbitrary grouping into intervals, using

8See Wallis (2004, p.66, Box A), for a discussion of the binormal distribution and its
alternative parameterizations. Spreadsheets containing the parameter settings for all
of the published fan charts are available on the Bank of England’s web site (presently
http://www.bankofengland.co.uk/publications/inflationreport/irprobab.htm).
9Like the normal distribution, the binormal lacks an exact closed-form formula for its
cumulative distribution function (cdf). We therefore estimated the implied forecast
probabilities by numerical integration from the probability density function. The re-
sulting cdf estimates appear to be accurate to at least 0.001. Additional details and
code are available from the authors upon request.
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kernel regression estimates of the necessary conditional expectation function. In com-
puting these estimates on a number of data sets, we find results that are quite stable
across reasonable choices of smoothing parameter. The estimates provide insight into
the performance of forecasts and information that may be useful in improving these
forecasts, either through direct adjustment to correct biases observed in past forecasts
(again see Hamill et al. 2003, for example), or through the impetus that the analysis
provides to revisit and respecify the forecasting model itself.

We have analyzed both forecasts made and recorded in real time, and pseudo-
forecasts from models estimated after the forecast dates. In the latter case, we use only
the vintage of data that was available at date t in estimating, and in forecasting with,
a given model. Even in the former case, different data vintages can have an effect on
the results, since current and past estimates of whether or not the event took place
(recession, breaching an inflation target) may differ.

The overall picture of the quality of economic forecast calibration is mixed. The
Survey of Professional Forecasters recession probability forecasts show low calibration
error at all horizons, although there are a number of statistically significant deviations
from perfect calibration. Resolution of these forecasts is substantial at horizons 0 and
1 (quarters), but is approximately zero at horizons 3 and 4, a fact which is compatible
with studies of the performance of point forecasting models for quarterly real GDP
growth.

With respect to the inflation forecasting models evaluated, calibration error ap-
pears to be substantial in both the US and UK data examined here. While the UK
fan charts appeared to have high resolution at short horizons and little or no resolution
at long horizons, the pseudo-forecasts examined for US inflation provided more mixed
results. One surprise they provided was the relatively high resolution of output gap
models which assume a constant growth trend. Given the existing evidence on the bias
and lack of precision in such estimates, we think this finding should be investigated
further.
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