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Abstract

Combination of forecasts from survey data is complicated by the frequent entry

and exit in real time of individual forecasters which renders conventional least squares

regression approaches to estimation of the combination weights infeasible. We explore

the consequences of this for a variety of forecast combination methods in common use

and propose a new method that projects actual outcomes on the equal-weighted forecast

as a means of adjusting for biases and noise in the underlying forecasts. Through

simulations and an empirical application to in�ation forecasts we show that the entry

and exit of individual forecasters can have a large e¤ect on the real time performance of

conventional forecast combination methods. We also �nd that the proposed projection

on the equal-weighted forecast works well in practice.
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1 Introduction

Evidence of in-sample predictability�established on the same sample used to estimate and
select the forecasting model�is widely regarded as being insu¢ cient to demonstrate the
value of the resulting forecasts to a decision maker. By ignoring problems associated with

parameter estimation errors, model uncertainty and data availability, in-sample forecasts can

grossly overstate evidence of genuine predictability. Real-time forecasting experiments are

designed to deal with such problems. Establishing that a variable could have been predicted

in real time requires using the original data vintages (Croushore and Stark (2001), Amato

and Swanson (2001)), but also accounting for recursive parameter estimation and even the

uncertainty surrounding model selection in real time (Pesaran and Timmermann (2005)).

Many of these issues are not a concern when it comes to evaluating forecasts from survey

data. By construction, such forecasts were computed in real time. However, when interest

lies in real-time combination of survey forecasts, new problems arise. An important issue

that has largely been ignored in the literature on forecast combinations is that most expert

surveys take the form of unbalanced panels as individual forecasters frequently enter and

exit from the surveys. This issue is pervasive and a¤ects the Livingston survey, the Survey

of Professional Forecasters (both maintained by the Federal Reserve Bank of Philadelphia),

the Michigan surveys (Survey Research Center, University of Michigan), the survey of the

Confederation of British Industry (CBI), Consensus Forecasts (Consensus Economics) and

surveys of �nancial analysts�forecasts of corporate earnings (Institutional Brokers�Estimate

System, IBES).

As an illustration of this problem, Figure 1 shows how participation in the Survey of

Professional Forecasters, available from the Philadelphia Federal Reserve Bank, evolved over

the 5-year period from 1995 to 1999.1 Each quarter, participants are asked to predict the

implicit price de�ator for Gross Domestic Product. Forecasters constantly enter, exit and re-

enter following a period of absence, creating problems for standard combination approaches

that rely on estimating the full covariance matrix for the individual forecasts. This is clearly

not feasible since many forecasters do not have overlapping data. Similar data structures are

found for analyst forecasts of earnings and business forecasts of sales and economic activity.2

This paper considers ways to combine expert opinions that work even in the presence

of forecast data that is incomplete with many missing observations. We consider methods

such as the equal-weighted average, odds ratio or the previous best forecast in addition to

1For more on the Survey of Professional Forecasters see Croushore (1993).
2See, for example, the Livingston survey (Federal Reserve Bank of Philadelphia), the Michigan surveys

(Survey Research Center, University of Michigan), the survey of the Confederation of British Industry (CBI)
and the data from Consensus Forecast (Consensus Economics).
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least squares and shrinkage methods modi�ed by trimming forecasters who do not have a

minimum number of data points. We also propose a new and very simple approach that

�rst computes the equal-weighted forecast and then projects the realized value on a constant

and this forecast. This a¢ ne transformation of the equal-weighted forecast does not require

each of the underlying forecasts to be unbiased. Furthermore, it can be shown to be optimal

for a wider set of parameterizations of the covariance matrix of forecasts than the simple

equal-weighted forecast. The method only requires estimating an intercept and a slope

parameter through linear projection. Finally, since the method nests the standard equal-

weighted forecast (obtained with a zero intercept and a slope of unity), it is easy to test if it

improves upon the standard forecast.

We compare the real-time forecasting performance of these methods through Monte Carlo

simulations in the context of a common factor model that allows for bias in the individual

forecasts, dynamic dependencies in the common factors, and heterogeneity in individual fore-

casters�ability. In situations with a balanced panel of forecasts the least squares combination

methods perform quite well except for when the cross-section of forecasts is large relative

to the length of the time-series. If the parameters in the Monte Carlo simulations are cho-

sen so that equal-weights are su¢ ciently suboptimal in population, least-squares combination

methods dominate the equal-weighted forecast. Interestingly, the simple modi�cation of pro-

jecting the outcome on an intercept and the equal weighted forecast continues to outperform

regression-based and shrinkage combination forecasts even in these situations.

In the simulations that use an unbalanced panel of forecasts calibrated to match actual

survey data, the real-time forecasting performance of the least squares combination methods

deteriorates relative to that of the equal-weighted combination. This happens because the

panel of forecasters must be trimmed to get a balanced subset of forecasters from which the

combination weights can be estimated by least squares methods. This step entails a loss

of information relative to using the equal-weighted forecast which is based on the complete

set of individual forecasts. The out-of-sample forecasting performance of the projection

on the equal-weighted forecast continues to be very good in the unbalanced panel as this

approach makes use of the full set of forecasts in the �rst stage and then adjusts for any

biases remaining in the equal-weighted forecasts in the second stage.

These conclusions are con�rmed in an application to in�ation forecasts based on the

Survey of Professional Forecasters (the data shown in Figure 1). Our analysis estimates

combination weights recursively and uses these to compute out-of-sample forecasts. We

evaluate these forecasts using both real-time and revised data for actual values. The method

that bases the forecast on a projection of the actual value on the equally weighted forecast

is found to do very well out-of-sample compared to a range of alternatives in common use.
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The plan of the paper is as follows. Section 2 presents a theoretical framework that allows

us to establish conditions under which equal-weights are optimal in population. Section 3

describes commonly used estimation methods from the forecast combination literature and

introduces the projection on the mean forecast. Section 4 conducts a Monte Carlo simulation

experiment based on the common factor model from Section 2, while Section 5 provides an

empirical application to in�ation forecasting. Section 6 concludes.

2 Theoretical Results

Forecast combinations such as simple averages have proven surprisingly di¢ cult to out-

perform. This seems to be a robust �nding and has been reported in large forecasting

experiments involving di¤erent types of modeling approaches and a variety of variables in

economics, �nance and other �elds (see, e.g., Clemen (1989), Stock and Watson (2001, 2004)

and Makridakis and Hibon (2000)).

The robustness of the simple average forecast across di¤erent data types, time periods,

and forecasting methods remains a puzzle. One would expect to �nd considerable hetero-

geneity in experts� forecasting ability and this ought to be exploitable by di¤erentiating

the weights applied to di¤erent forecasts. In practice, however, the individual forecasters�

true ability�and consequently the combination weights�are unknown and improving upon
the equally weighted average requires having a procedure for estimating the combination

weights which ensures that the sample estimates do not get too far removed from their true

but unknown values. Least-squares procedures (e.g., Granger and Ramanathan (1984)) re-

quire estimating the covariance matrix of the forecast errors. Achieving a precise estimate

of this is often either very di¢ cult or simply not feasible due to (i) the availability of short

and incomplete data samples for individual forecasters; (ii) the dimensionality of the prob-

lem at hand with a large number of forecasters relative to the length of the time-series; or

(iii) instability of the covariance matrix (Kang (1986), Elliott and Timmermann (2005)) re-

�ecting structural breaks, time-varying coe¢ cients or other changes in the underlying data

generating process.

In this section we establish conditions under which it is optimal (in a population sense)

to use equal-weighted forecast combinations and when it is not. This sets a benchmark that

proves helpful in understanding the �nite-sample forecasting performance in simulations and

experiments with actual data. It also points towards directions for improving on the simple

average forecast.

Let the variable we are interested in forecasting given information at time t be denoted

by Yt+1 and assume that an N�1 vector of forecasts computed at time t, Ŷt+1;t, is available.
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We follow common practice and minimize mean squared error (MSE) loss so only the �rst

two moments of the joint distribution of the predicted variable and forecasts matter:3�
Yt+h

Ŷt+h;t

�
�
 �

�y
�

� 
�2y �0yŷ
�yŷ �ŷŷ

!!
: (1)

De�ne the forecast errors associated with the N forecasts as et+1;t = Yt+1� � Ŷt+1;t;

where � is an N � 1 vector of ones. From (1) the covariance matrix of the forecast errors,

�e = E[et+1;te
0
t+1;t], is given by:

�e = (�
2
y + �2y)��

0 + ��0 +�byby � ��0yby � �yby�0 � �y��
0��y��0: (2)

Consider minimizing the expected forecast error variance subject to the constraint that the

weights add up to one:

min!0�e! (3)

s:t: !0� = 1:

The constraint ensures unbiasedness of the combined forecast provided that � =�y�. As-

suming that �e is invertible and solving the associated Lagrangian optimization, we get the

standard solution for the optimal weights:

!� = (�0��1
e �)

�1��1
e �: (4)

In general the optimal weights depend on the full covariance matrix, �e. Only in very

special cases does (4) reduce to equal weights�the most prominent special case being when
the forecast errors have identical variance, �2, and identical pair-wise correlations, �, (�1 <
� < 1). In this case we get:

��1e =
1

�2(1� �)

�
I� �

1 + (N � 1)���
0
�

=
1

�2(1� �)(1 + (N � 1)�) ((1 + (N � 1)�)I� ���0) ;

3To simplify the notation we drop t subscripts on these moments, but it is implicit that all moments can
depend on the period of the forecast, t.
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where I is the N �N identity matrix. Inserting this expression in (4), we have:

��1e � =
�

�2(1 + (N � 1)�)

(�0��1e �)
�1 =

N

�2(1 + (N � 1)�) ;

and it follows that the optimal weight is given by:

!� =

�
1

N

�
�: (5)

Hence equal-weights are optimal in situations with an arbitrary number of forecasts when

the individual forecast errors have the same variance and (arbitrary) identical pair-wise

correlations. The weights add up to unity only as a result of imposing these constraints and

will not otherwise hold in general. In the absence of some notion of the underlying data

generating process, it is di¢ cult to tell how plausible such constraints are so we next turn

to a model that allows us to better interpret the constraints.

2.1 A Common Factor Model

Realistic and empirically plausible covariance structures can be obtained from common factor

models which are widely used empirically to forecast macroeconomic and �nancial time series

(see, e.g. Stock and Watson (2005)). Moreover, intuition can be gained in terms of the

structure of the factor loadings and variability of the individual factors. Accordingly, let the

target variable and the individual forecasts be driven by the following common factor model:

Yt+1 = �y + �
0
yFFt+1 + "yt+1; "yt+1 � N(0; �2"Y )

Ŷit+1 = �i + �
0
iFFt+1 + "it+1; "it+1 � N(0; �2"i), i = 1; :::; N; (6)

where we assume that E ["it+1"jt+1] = 0 if i 6= j, and E["it+1"yt+1] = 0 for i = 1; :::; N: As

we shall see, an advantage of the model is that it is su¢ ciently rich to cover a variety of

empirically relevant scenarios.

Factor dynamics can be introduced through:

Ft = BFFt�1 + "Ft ; "Ft � N(0;D"F ); (7)
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where D"F is an nf � nf diagonal matrix with entries:

D"F =

0BBBB@
�2F1 0 � � � 0

0 �2F2 � � � 0
...

. . . . . . 0

0 0 �2Fnf

1CCCCA ;

and E["yt+1"Ft] = E["it+1"Ft] = 0, for i = 1; :::; N: We assume that the eigenvalues of BF
all lie outside the unit circle so (I�BF )�1 exists and the initial value F0 can be drawn from
the unconditional distribution of the factors. This gives the following convenient form of the

(unconditional) covariance-matrix of the joint distribution of Y and bY:
�2y = �0yF (I�B2F )�1D"F�yF + �2"Y ;

�yŷ[i] = �0iF (I�B2F )�1D"F�yF (8)

�ŷŷ[i; j] = �0iF (I�B2F )�1D"F�jF+Ifi=jg�2"i ;

where Ifi=jg is an indicator function that equals unity if i = j and otherwise is zero.

This model nests several cases of common interest. The forecast is unbiased when �i = �y,

�iF = �yF and �
2
"i
= 0. As �2"i increases, an increasingly important noise component is added

to the forecasts which become less valuable. Such noise may be due to model misspeci�cation

such as when the wrong predictor variables or predictor variables subject to measurement

errors are used in the forecaster�s model. When �2"Y > 0, the target variable, Yt+1, comprises

an unpredictable component and as �2"Y goes up, the predictive R
2 of each individual forecast

declines and it becomes more attractive to combine forecasts rather than using a single

prediction. Cross-sectional heterogeneity in the individual forecasters�performance can be

introduced by letting any one of the parameters (�i; �iF ; �
2
"i
) di¤er across forecasters.

Since the factor model is quite general, we impose additional structure to ensure that the

individual forecasts are sensible. In particular, notice that the best linear projection of Yt
on Ŷit is given by:

�0iF (I�B2F )�1D"F�yF
�0iF (I�B2F )�1D"F�

0
iF+�

2
"i

: (9)

We can choose parameter values such that this is equal to unity, ensuring that the individual

forecasts are unbiased, a restriction often deemed sensible.

Furthermore, letting �2Fi = �2F for i = 1; ::; nf ; �
2
"i
= �2" for i = 1; ::; N; assuming (purely

for simplicity) that there is no factor dynamics (BF = O) and letting �iF = ��, �yF = �y�,
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we have:

��1
ŷŷ =

1

�2"

�
I� Nnf�

2�2F
�2" +Nnf�

2�2F
��0
�
:

This means that the optimal combination weight is:

!� = ��1
ŷŷ�yŷ

=
1

�2"

0BBBBB@
1� Nnf�

2�2F
�2"+Nnf�

2�2F

�Nnf�2�2F
�2"+Nnf�

2�2F
� � � �Nnf�2�2F

�2"+Nnf�
2�2F

�Nnf�2�2F
�2"+Nnf�

2�2F
1� Nnf�

2�2F
�2"+Nnf�

2�2F

�Nnf�2�2F
�2"+Nnf�

2�2F
...

. . .
...

�Nnf�2�2F
�2"+Nnf�

2�2F
� � � 1� Nnf�

2�2F
�2"+Nnf�

2�2F

1CCCCCA
0BBBB@

nf��y�
2
F

...

nf��y�
2
F

1CCCCA :

Equal weights that sum to unity are optimal in this setting provided that:

nf��y�
2
"�
2
F

�2"(�
2
" +Nnf�

2�2F )
=
1

N
:

This constraint only holds in the special case where:

�2" = nfN��
2
F (�y � �): (10)

Using identical combination weights that sum to unity is clearly only optimal as a very special

case and restricting the individual forecasts to be unbiased through (9) does not, in general,

ensure that it is optimal to use equal weights. Furthermore, variations in the variance-

covariance parameters introduce heterogeneity in forecasting performance and generally have

the e¤ect of moving the optimal weights even further away from 1=N .

On the other hand, if �iF = �jF and �
2
"i
= �2"j for all i; j, then all diagonal elements

of �ŷŷ are identical as are the o¤-diagonal elements. This means that equal weights are

optimal although the weights will not necessarily sum to one. In such situations the optimal

forecast is formed as a scalar (not necessarily equal to one) times the equal-weighted average

of the individual forecasts. While still a special case, this covers many more situations than

the case where the simple equal-weighted forecast is optimal.

3 Methods for Estimating Combination Weights

The theoretical analysis in the previous section suggested that equal-weighted combinations

are only optimal under a set of highly restrictive conditions on the joint distribution of the

forecasts and target variable. That this forecasting method generally performs so well em-

8



pirically can therefore in all likelihood be attributed to the fact that it does not require the

estimation of any combination weights. In practice, parameter estimation error is an impor-

tant determinant of relative forecasting performance. This also explains why least squares

methods which require estimating the covariance matrix of forecast errors tend to perform

poorly empirically and why shrinkage towards equal-weights�a practice that introduces bias
but reduces the e¤ect of parameter estimation errors�often is found to improve on least
squares methods. Clearly the e¤ect of estimation error on forecasting performance can be

very signi�cant.

To address this point we next describe a variety of methods for forecast combination

in common use and propose a new and simple method that modi�es the equal-weighted

forecast, �Yt+1;t = N�1
t

PNt
i=1 Ŷt+1;t;i, which serves as a natural benchmark. Another option is

simply to use the previous best model based on past performance. This approach places all

the weight on the single forecast with the lowest historical MSE-value. While it may seem

that this method does not require any estimation, this is not quite true since the ranking of

the various models itself follows a stochastic process that may lead to shifts in the selected

model as new data emerges.

3.1 Least Squares Estimation of Combination Weights

It is common to estimate combination weights by ordinary least squares, regressing realiza-

tions of the target variable, Y� on the N -vector of forecasts, Ŷ� using data over the period

� = 1; :::; T :

!̂T = (
T�1X
�=1

Ŷ�+1;�Ŷ
0
�+1;� )

�1
T�1X
�=1

Ŷ�+1;�Y�+1. (11)

Di¤erent versions of this least squares projection have been proposed. Granger and Ra-

manathan (1984) consider three regressions:

(i) Yt+1 = !0t + !
0
tŶt+1;t + "t+1

(ii) Yt+1 = !0tŶt+1;t + "t+1 (12)

(iii) Yt+1 = !0tŶt+1;t + "t+1; s.t. !0t� = 1:

The �rst and second of these regressions can be estimated by standard OLS, the only dif-

ference being that the second equation omits an intercept term. The third regression omits

an intercept and can be estimated through constrained least squares. The �rst and more

general regression does not require the individual forecasts to be unbiased since any bias can

be adjusted through the intercept term, !0t. In contrast, the third speci�cation is motivated
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by an assumption of unbiasedness of the individual forecasts. Imposing that the weights

sum to one then guarantees that the combined forecast is also unbiased.4 One could further

impose convexity constraints 0 � !it � 1; i = 1; ::; Nt to rule out that the combined forecast

lies outside the range of the individual forecasts.

An obvious problem with this approach is that it is very poor at handling unbalanced data

sets such as the Survey of Professional Forecasters shown in Figure 1. It is simply not feasible

to estimate the complete covariance matrix for this type of data. In such cases, minimum

data requirements must be imposed and the set of forecasters trimmed. For example, one

can require that forecasts from a certain minimum number of (not necessarily contiguous)

common periods be available.

3.2 Shrinkage

Shrinkage methods have been widely used in forecasting. For example, Stock and Watson

(2004) propose shrinkage towards the arithmetic average of forecasts. Let !̂it be the least-

squares estimator of the weight on the ith model in the forecast combination obtained, e.g.,

from one of the regressions in (12). The combination weights considered by Stock andWatson

take the form:

!it =  !̂it + (1�  )(1=Nt);

 t = max(0; 1� �Nt=(T � 1�Nt � 1));

where � regulates the strength of the shrinkage with larger values of � implying a lower  t
and thus a greater degree of shrinkage towards equal weights. As the sample size, T , rises

relative to the number of forecasts, N , the least squares estimate gets a larger weight. While

this approach can be assumed to work well in some situations, since it is based on the least

squares estimator it is also likely to su¤er from the de�ciencies of that approach. On the

other hand, for �xed values of T and N; larger values of � correspond to more shrinkage

towards equal-weighting (smaller  t) and hence present some of the problems associated

with using equal weights.

3.3 Odds Matrix Approach

The odds matrix approach (Gupta andWilton (1987)) computes the combination of forecasts

as a weighted average of the individual forecasts where the weights are derived from a matrix

4This speci�cation may not be e¢ cient, however, as the latter constraint can lead to e¢ ciency losses as
E[Ŷt+1;t"t+1] 6= 0.
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of pair-wise odds ratios. Each entry in the matrix is interpreted as the odds that forecast i

will outperform forecast j. If the odds matrix is denoted O, then the weight vector, w, is

obtained from the solution to (O�NI)w = 0; where I is the identity matrix.5 Estimation

of the matrix O is accomplished by estimating the pair-wise probabilities �ij that represent

the probability that the ith forecast will outperform the jth forecast in the next realization.

The entries of the O matrix are then oij =
�ij
�ji
: There are several ways to estimate the pair-

wise probabilities. Following the empirical application of Gupta and Wilton (1987), we use

�ij =
aij

(aij+aji)
; where aij is the number of times forecast i had a smaller absolute error than

forecast j in the historical sample.6

3.4 Projection on the (Equal-Weighted) Mean

We next propose a new method for forecast combination that exploits some of the advan-

tages of using the equal-weighted average but uses information in this average in a more

�exible manner. To motivate the approach, consider the following insights from the lit-

erature on forecast combination (see Timmermann (2006) for a survey): (i) estimation of

additional parameters used to combine the forecasts quickly leads to deteriorating forecast-

ing performance; (ii) individual expert forecasts are often biased and the slope coe¢ cient in

a regression of the realized value on individual forecasts often di¤ers from unity;7 (iii) bias

correction is best done at the level of the combined forecast by including a single intercept

and more re�ned adjustments generally do not lead to large improvements; (iv) forecasts

from data sources such as surveys are generally highly unbalanced which makes standard

covariance-based approaches di¢ cult to apply.

Based on these considerations, we propose a simple a¢ ne transformation of the equal-

weighted forecast, �Yt+1;t :
~Yt+1;t = �+ � �Yt+1;t. (13)

This extension of the equal-weighted combination only requires estimating two parameters,

� and �, which can be done through least squares regression. As in the case with the simple

equal-weighted average, information from forecasters with no more than a single data point

5Gupta and Wilton (1987, 1988) report that the eigenvector associated with the eigenvalue that solves
Ow = �maxw (the largest positive eigenvalue), once normalized, can be treated as an estimate of the weight
vector. This is the approach we follow.

6Shrinkage and the odds matrix approach can both be viewed as Bayesian combination methods. More
formal Bayesian methods could also be employed, for example, Bayesian Model Averaging (see Jacobson and
Karlsson (2004)) or Bagging (see Inoue and Kilian (Forthcoming)).

7Zarnowitz (1985) �nds evidence against e¢ ciency in individual forecasters�predictions. Davies and Lahiri
(1995) report evidence that informational e¢ ciency is rejected for up to half of the survey participants in
their data.
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can be used. By including a constant, the forecast combination method adjusts for biases

that may be present in the individual forecasts as well as in the aggregate. By allowing for

a slope coe¢ cient di¤erent from unity, as shown in Section 2, the method is likely to work

well under a much broader set of scenarios than the simple equal-weighted forecast.

4 Monte Carlo simulations

To analyze the determinants of the performance of the various forecast combination methods,

we next conduct a series of Monte Carlo experiments in the context of the factor model

described in Section 2. In all experiments we use two factors, nf = 2, so that F = 1; 2. We

let the sample size, T , vary from 100 to 500 and 1000 and let the number of forecasts (N)

assume values of 4, 10 and 20. This covers situations with large N relative to the sample

size t (e.g., N = 20; t = 100) as well as situations with plenty of data points relative to the

number of estimated parameters (e.g., N = 4, t = 1; 000). All forecasts are one-step-ahead,

simulated out-of-sample, and are computed based on recursive parameter estimates using

only information available at the time of the forecast. To forecast Yt+1 we therefore use

information only up to period t, including for the estimates of the combination weights, !̂t.

The �rst set of experiments assumes that the individual forecasts are unbiased and set

�y = �i = 0 (i = 1; :::; N). In the base experiment (experiment 1) we further assume that �i1
solves (10) for all i so the true optimal weights are identical and sum to unity. Furthermore,

we set:

�y = (1 1)0

�"Y = �"F1 = �"F2 = 1; �"i = 1 i = 1; ::; N

BF = 0.

In experiments 2-7 we assume that �i1 = 0:5; (i = 1; ::::; N ) while �i2 solves (9) for

i = 1; ::::; N ensuring that the regression coe¢ cient of Yt+1 on the individual forecasts Ŷit+1;t
is unity. Factor dynamics is introduced in experiment 3 by letting BF = 0:9�I. Heterogene-
ity in the individual forecasters�ability is introduced by drawing the factor loadings, �if ,

from a Beta distribution centered on 0.5 with either low dispersion (Beta(5; 5) in experiment

4) or high dispersion (Beta(1; 1) in experiment 5). To allow for the possibility that di¤erent

experts capture di¤erent predictable components (thus enhancing the role of forecast combi-

nations over the individual models), experiment 6 considers a scenario where di¤erent groups

of forecasts load on di¤erent factors. Finally, forecast biases are introduced by allowing for

a non-zero intercept in experiment 7. To summarize, we alter the base scenario as follows:

12



Scenarios Change in Parameters

1 Base scenario (!0� = 1) �
2 Identical weights (!0� 6=1) �i solves (9)

3 Factor Dynamics BF = 0:9� I
4 Weak heterogeneity �if � Beta(5; 5)

5 Strong heterogeneity �if � Beta(1; 1)

6 Factor-loadings in blocks

�0i1 =

(
1 if 1 � i � N=2

0 if N=2 < i � N

�0i2 =

(
0 if 1 � i � N=2

1 if N=2 < i � N

7 Biased forecast �i =

(
1/2 if 1 � i � N=2

0 if N=2 < i � N
:

:

Following the analysis in Section 3, we compare the following nine combination methods:

Label Combination Method

EW Equal-weighted forecast

PEW Projection on constant and equal-weighted forecast

GR1 Unconstrained OLS: (12, (i))

GR2 OLS w/o constant: (12, (ii))

GR3 Constrained OLS w/o constant: (12, (iii))

Shrink1 Shrinkage with � = 0:25

Shrink2 Shrinkage with � = 1

Odds Odds ratio

Previous Best Forecast from previous best model

4.1 Balanced Panel of Forecasters

Results for the case with a balanced panel of forecasts are reported in Table 1 in the form

of out-of-sample MSE-values computed relative to the MSE-value associated with the equal-

weighted forecast (which is thus always equal to unity). In the base scenario the simple

equal-weighted forecast performs best since it imposes a true constraint on the combination

weights and hence achieves e¢ ciency gains.8 However, the simple equal-weighted forecast

is not producing particularly precise forecasts in the other scenarios (experiments 2-6) even

though the parameters of the Monte Carlo experiments are chosen such that the population

8The odds ratio approach seems to marginally beat the equal-weighted average but the numbers are very
close to one and more likely the result of sampling variability.
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value of a regression of Yt+1 on the individual forecasts bYit+1;t is unity. The reason is that
although using equal weights is optimal in settings without cross-sectional heterogeneity (see

our discussion in Section 2), the optimal weights need not add up to unity.

In the base scenario (experiment 1) the best combination scheme among those proposed

by Granger and Ramanathan (1984) is to exclude an intercept and impose that the weights

sum to unity. This holds across all sample sizes and cross-sections�imposing a true constraint
ensures e¢ ciency gains. The improvement over the most general least squares regression

(GR1) is, however, quite marginal�about 1-2%. Conversely, when the true weights do not
sum to unity, as in the second experiment, the most constrained least squares combination

(GR3) produces MSE-values that are far worse than the less constrained models (GR1 and

GR2). Constraining the intercept to be zero (GR2) leads to marginally better performance

than under the unconstrained least squares model (GR1) when this constraint holds as in

experiments 2-6, although it leads to inferior performance when the underlying forecasts are

in fact biased (experiment 7).

Turning to the shrinkage forecasts, these generally improve on the benchmark equal-

weighted combination�s performance. In most cases the shrinkage approach does as well as

or slightly better than the best least squares approach. When the sample size is small, the

model with the largest degree of shrinkage does best. However, using a smaller degree of

shrinkage becomes superior as the sample size, t, is raised (for �xed N). The bene�t from

shrinkage is particularly sizeable when the number of models is large as when N = 20.

Although the di¤erences in MSE-values are small, the odds matrix approach generally

dominates using equal-weights. In contrast, choosing the single best model does not lead

to good forecasting performance in the experiments without heterogeneity where (ex ante)

the forecasting models are equally good. Combining forecasts therefore works well in such

settings as it allows the user to dilute the noise in the individual forecasts. As expected,

the out-of-sample forecasting performance of the previous best model improves as the degree

of heterogeneity across models gets stronger and a clearer picture of the single best model

emerges.

Factor dynamics�introduced in the third Monte Carlo experiment�leads to deteriorating
forecasting performance across all combination schemes. This is not surprising since the

e¤ective sample size is smaller in the presence of persistent factors. Interestingly, factor

dynamics also has the e¤ect of improving the relative performance of the most general least

squares methods (GR1 and GR2), shrinkage and projection on the equal-weighted mean

(PEW ).

Heterogeneity in the factor loadings of the various forecasts�introduced by drawing these
from a beta distribution�has two e¤ects. First, it means that the true performance now
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di¤ers across forecasting models. Models with larger factor loadings have a higher R2 than

models with small factor loadings. Secondly, the combination schemes that are based on

equal weights now perform worse. This follows from our discussion in Section 2 which

showed that (generically) equal weights are optimal only when the forecasts errors have

identical variances with the same pair-wise correlations. The e¤ect of weak heterogeneity on

the performance of the various combination schemes (�if � Beta(5; 5) in experiment 4) is

quite minor. However, as stronger heterogeneity is introduced in the distribution of factor

loadings (�if � Beta(1; 1) in experiment 5), the simple equal-weighted forecasts perform

worse and using the previous best forecasting model becomes more attractive�although this
strategy is still dominated by many of the other combination methods.

When half of the forecasts track factor one while the remaining half of the forecasts track

factor two (experiment 6), the bene�ts from combining over using the single best model

(which can only track one factor at a time) tend to be particularly large. Moreover, the

projection on equal weights (PEW ) performs very well and the least constrained OLS and

shrinkage forecasts also continue to perform well relative to the benchmark.

When we let half of the forecasts be biased with a bias equal to one-half of the standard

deviation parameters, the e¢ ciency gain due to omitting an intercept in the least squares

combination regression is now more than out-done by the resulting bias. This explains

why the general Granger-Ramanathan scheme (GR1) which includes an intercept term now

produces better results than the constrained Granger-Ramanathan regressions (GR2 and

GR3). The previous best model produces worse forecasting performance than in the case

without bias, as there is always the risk of selecting a biased model. Since the shrinkage

methods pull the least squares forecast towards the biased equal-weighted forecast, this

also explains why the shrinkage schemes perform worse than in the case without a bias and

generally produce worse results than the least squares methods. In contrast, the performance

of the forecast that uses a projection on an intercept and the equal-weighted forecast is

unchanged compared with the results in the second experiment as only the intercept is

changed.

Overall, the best forecasting performance is produced by the simple combination method

that regresses Yt+1 on an intercept and the equal-weighted forecast, Y t+1 = (1=N)
PN

i=1
bYit+1.

This approach produces better results than the equal weighted forecast in all experiments

except the �rst one (for which a small under-performance of up to two percent is observed).

Furthermore, it generally does best among all combination schemes in experiments 2-7, with

slightly better results observed for the least squares and shrinkage methods in the presence

of strong heterogeneity (experiment 5).9

9Under strong heterogeneity among the forecasters, the equal-weighted forecast is sub-optimal. This

15



4.2 Unbalanced Panel of Forecasters

We next perform the same set of experiments on data generated from the two-factor model

�ltered so as to mimic the unbalanced panel structure of the Survey of Professional Fore-

casters data shown in Figure 1. To this end we �rst group the experts into frequent and

infrequent forecasters de�ned according to whether a forecaster participated in the survey a

minimum of 75 percent of the time. Next, we pool observations within each of the two groups

of forecasters and estimate two-state Markov transition matrices for each group, where state

one represents participation in the survey while state 2 is absence from the survey. The

estimated transition matrices were:

Frequent Participation :

 
0:84 0:16

0:41 0:59

!
; (14)

Infrequent Participation :

 
0:69 0:31

0:03 0:97

!
: (15)

Among frequent forecasters there is an 84 percent chance of observing a forecast next period

if a forecast was reported in the current period. This probability declines to 40 percent if no

forecast was reported in the current period. Conversely, the extremely high probability (0.97)

of repeated non-participation among the infrequent forecasters shows that this category

covers forecasters who rarely participate in the survey.

We use these transition matrices to generate a matrix of zeros and ones that indicates

when a forecaster participated in the survey. We then multiply, element-by-element, the zero-

one participation matrix with the matrix of one-step forecasts generated from the two-factor

model and apply the combination methods to the resulting (unbalanced) set of forecasts.

To apply least-squares combination methods we trimmed those forecasters with fewer

than 20 contiguous forecasts and/or no prediction for the following period. Among the

remaining forecasters we next used the largest common data sample to estimate the com-

bination weights. If there were no forecasters with at least 20 contiguous observations or if

there are fewer remaining forecasters than parameters to be estimated, we simply use the

average forecast for next period. Our simulations assume that the proportion of frequent

forecasters is set at 40 percent. This means that we only have to resort to using equal-weights

one-third of the time�a number similar to that found in the empirical application in the
next section.

Results are reported in Table 2 in the form of out-of-sample MSE-values again measured

explains why in experiment 5 regression-based approaches which assign di¤erent weights to the individual
forecasters perform relatively better than methods based on the equal-weighted forecast.
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relative to the values generated by the equal-weighted forecast combination. Since unbal-

anced panels are more likely to occur in settings with a relatively large number of forecasters,

we only report results for N = 20.

Compared with the earlier results in Table 1, the previous best and odds matrix ap-

proaches perform more like the equal-weighted approach in the unbalanced panel. A similar

�nding holds for the least squares combination and shrinkage approaches. The performance

of such methods (relative to the simple equal-weighted approach) is therefore relatively worse

in the unbalanced panel. Two reasons explain this �nding. First, in about one-third of the

periods the regression methods revert to using the equal-weighted forecast because a bal-

anced subset of forecasters with a su¢ ciently long track record cannot be found. Second,

since the regression methods trim the set of forecasters to obtain a balanced subset of fore-

casts, they discard potentially valuable information. Consequently, these methods perform

worse than the equal-weighted average when conditions are in place for the latter to work

well and only outperform by a small margin otherwise.

Overall, the PEW method continues to perform better than the other approaches even

with an unbalanced panel of forecasts. Moreover, the relative performance of this approach

generally improves over the case with a balanced panel. For example, in the second exper-

iment the relative MSE-value associated with this approach goes from 0.72 in the balanced

panel to 0.56 in the unbalanced panel. Similar improvements are observed in experiments 4

and 5. The only experiment where a worse (relative) performance is observed is in the sixth

experiment with a block diagonal factor structure. However, even in this case the PEW

approach remains the best overall.

We conclude that, across the board, the proposed equal-weighted projection method is

better than the other methods that can be used when estimation of the full covariance matrix

of the forecast errors is not feasible (equal weights, odds matrix or previous best forecast).

It also performs better than the regression and shrinkage approaches modi�ed so they can

be used on a balanced subset of forecasters. Although the PEW approach does better in

most experiments irrespective of whether a balanced or an unbalanced panel of forecasts is

available, the extent to which the PEW approach outperforms tends to be greater in the

unbalanced panel.

5 Application to In�ation Forecasts

To illustrate the performance of the combination methods on actual data we use one- and

four-step-ahead in�ation forecasts from the Survey of Professional Forecasters. In�ation

is measured as the annualized quarterly change in the output de�ator using either fully
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revised data or real-time data from the Federal Reserve of Philadelphia�s web site. Fully

revised data is the last revision as of January 2006, whereas real-time data corresponds to

the �rst revision. We restrict the data sample to start in the fourth quarter of 1979 to take

into account the change in monetary policy that occurred when Paul Volcker took o¢ ce as

Chairman of the Federal Reserve. This change is widely regarded as having a¤ected the

behavior of in�ation (see Clarida, Galí, and Gertler (2000) among others). Our sample ends

with the forecasts made for the third quarter of 2006. At each period in time there are

between 9 and 49 forecasters, with a median value of 32.

We calculate the mean forecast at each point in time (equal-weighted combination,

Y t+h = (1=Nt)
PNt

i=1
bYit+h, where h, the forecast horizon, is either 1 or 4) and use the �rst

R forecasts to estimate the parameters of the regression of Yt+h on an intercept and the

equal-weighted forecasts. This projection is then used to generate out-of-sample forecasts

for observation R + h. Denoting the full sample size as T + h; up to P = T + 1 � R out-

of-sample forecasts can be generated in this way. We use either recursive estimation�where
the estimation window expands so the �rst window has R observations and the last window

R + P � 1 observations�or rolling window estimation where the length of the estimation
window remains �xed at R observations. In both cases we set R = 30; so that we end up

with 77 out of sample forecasts for h = 1 and 74 for h = 4:

For the other combination methods we �rst select the forecasters that answered the survey

for the next period. Among these, we keep forecasters with a minimum of 10 contiguous

observations. Finally, we estimate the combination weights on the largest common sample.10

We also calculated an equal weights combination and estimated a projection among these

forecasters.

Figure 2 shows time-series plots of the four-step-ahead forecast errors, calculated using

real-time data and based on the equal-weighted, rolling window projection, and unrestricted

least squares (GR1) approaches. Due to their use of a common target (actual) value, there

is a substantial common component in the series. Even so, it is clear that the di¤erences

between the three sets of forecasts are economically large, suggesting that it makes a material

di¤erence which of the approaches is used for forecasting. One of the features that also comes

across from these �gures is the advantage of bias-adjusting the simple average.

Empirical results in the form of (pseudo real time) root mean squared error values for the

various combination methods and estimation procedures (recursive or rolling) for one-step-

10We also did the application allowing at least 20 contiguous observations, with the rule that if there are no
forecasters with at least 20 contiguous observations or if there are fewer observations than parameters (arising
in about a third of the cases), we simply use the equal-weighted average forecast (this rule is not necessary
when we restrict the application to at least 10 contiguous observations). The results are qualitatively the
same as in the case reported in the main text.
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ahead and four-steps-ahead forecasts are presented in Table 3. The table presents separate

results for revised and real-time data.

The PEW combinations generate the smallest RMSE-values in the great majority of

cases. However, this cannot be conclusive evidence in favor of PEW combinations as sample

variability in forecasting performance needs to be taken into account, as indicated by Granger

and Newbold (1986), Meese and Rogo¤ (1988), and Diebold and Mariano (1995). To �nd

out if the di¤erential performance of the various forecasts is signi�cantly di¤erent from zero,

we calculate three sets of p�values. First, we apply the Diebold and Mariano (1995) test to
the MSE di¤erences (PEW vis-a-vis alternative models) using:

bvt+h = �Yt+h � \PEW_rollt+h
�2
�
�
Yt+h �

�dAM t+h

��2
: (16)

Here \PEW_roll represents the forecasts calculated using the PEW method under a rolling

estimation window and dAM stands for the alternative model under consideration. Under

the null that the expected di¤erence in MSE-values equals zero, E [vt+h] = 0, a standard

application of the central limit theorem yields P
1
2v �! N (0; S) ; where v = P�1

PT+1
t=R bvt+h;

and S is the spectral density of v at frequency zero scaled by 2�:11 This approach does not

account for recursive parameter updating. Because of this�and because we do not know
how the individual forecasts were generated by the survey participants�we also adopt the
forecast evaluation approach recently proposed by Giacomini and White (2006). Their null

hipothesis, E [bvt+h j It] = 0; is di¤erent to the one used by Diebold and Mariano in two

aspects. First, the losses depend on parameter estimates, rather than on their probability

limits. And second, the expectation is conditional on the information set It: Giacomini and

White show that under their null, PZ
0
(Sg)�1 Z �! �2q; where Z = P�1

PT+1
t=R htbvt+h; and

ht is a qx1 test function, with ht � It: To implement this test, we use a constant and the

lagged di¤erence as instruments, and Newey and West�s procedure to estimate Sg:12

The second and third panels of Table 3 report the associated p-values of these tests applied

to our data. First consider the results with the revised data. At the one-quarter forecast

horizon, the Diebold-Mariano p�values suggest that the performance of the PEW method

is signi�cantly better than two of the Granger-Ramanathan approaches and both of the

shrinkage methods. It is also signi�cantly better than the previous best forecast. However,

it is not possible to distinguish statistically between the PEW forecasts and those produced

11We estimate S using Newey and West�s (1987) autocorrelation and heteroskedasticity consistent variance
estimator.
12All the combination methods that we use satisfy Giacomini and White�s limited memory requirement

except PEW_rec: The requirement is satis�ed because for EW we only use the forecasts available that
period, for PEW_roll we use a �xed estimation window, and for the other methods we use, each period,
the largest common sample among the forecasters that have a minimum of 10 contiguous forecasts.
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by the equal-weighted and the most constrained least squares regression approach (GR3) as

well as the odds ratio method. This could be due to the shortness of our evaluation sample.

Similar results are produced by the Giacomini-White p�values and when four-step-ahead
forecasts rather than one-step-ahead forecasts are considered.

However, the results change substantially when real-time data is used for the actual

values. In this case, despite continuing to produce the smallest RMSE-value, the PEW

forecasts are only signi�cantly better than the GR1 forecasts. These results suggest that

while the PEW forecasts produce better forecasts independently of whether revised or real-

time data is used to measure the �actual�value, the evidence in support of this approach is

strongest when revised data is used as the forecast target.

The third and �nal set of p�values is based on the test statistic recently proposed by
Clark and West (2006). In e¤ect this approach allows us to decompose the previous test

statistic and obtain a sharper comparison between the equal-weighted forecast and the PEW

method. When nested models are compared, uncertainty introduced by the estimation of

additional parameters under the alternative and more general model (the projection method

in our case compared to the simple null that � = 0; � = 1) must be accounted for. Under

the null of identical forecasting performance of the two approaches, the sample di¤erence

of the mean MSE-values is therefore not zero but negative. To account for this, Clark and

West suggest the following adjustment to the test statistic:

bvat+h = �Yt+h � Y t+h

�2 � �Yt+h � �b�� + b��Y t+h

��2
+
�
Y t+h �

�b�� + b��Y t+h

��2
: (17)

Clark and West establish conditions under which the distribution of va = P�1
PT+1

t=R bvat+h is
given by P

1
2va �! N (0; Sa). Again we use Newey and West�s procedure to estimate Sa: P -

values for the null that the di¤erence in MSE-values (equal�weighted vis-a-vis PEW ) equals

zero are shown in the �nal panel of Table 3. The �rst two p-values compare PEW recursive

and PEW rolling with equal weights, respectively, whereas the third p-value compares PEW

using only forecasters with at least 10 contiguous forecasts with equal weights applied to the

same subset of forecasters. In all cases the null gets rejected at the 5% level. The projection

on the mean forecast is therefore better than the equal-weighted forecast irrespective of the

method used to estimate the parameters of the projection and independently of how in�ation

is measured.
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6 Conclusion

Successful schemes for real-time combination of expert forecasts achieve a favorable trade-o¤

between the bias induced by using sub-optimal forecast combination weights and the e¤ect

of parameter estimation error arising from the use of estimated combination weights. This

trade-o¤ is key to the real-time performance of di¤erent combination approaches and is the

explanation for our �nding that the entry and exit of experts from surveys of professional

forecasters has such a large e¤ect on the merit of the di¤erent approaches. Essentially, the

unbalanced panel structure of survey data means that the real-time performance of com-

bination methods that require estimating the full covariance between the experts�forecasts

deteriorates relative to that of more robust methods such as equal-weighting or using pos-

terior odds. It also explains the good overall performance of the new approach proposed

here of projecting the outcome variable on a constant and the equal-weighted forecast. This

approach uses information in the full set of individual forecasts (incorporated into the equal-

weighted average) but then adjusts for possible bias and noise in this aggregate forecast.

Rather than using a simple linear projection of the outcome on a constant and the equal-

weighted forecast, �Yt+1;t, more �exible functions can of course be adopted if the sample size

permits their estimation. For example, one could use Ŷt+1;t = f( �Yt+1;t; �), where f(�) is given
by a neural net or sieve estimator with parameters �. The median or a trimmed mean could

also be used instead of the mean forecast in situations where �extreme� forecasts would

otherwise lead to poor performance.
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Table 1: Simulation results from forecast combinations under factor structure 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best

4 100 1.000 1.015 1.052 1.046 1.037 1.045 1.043 0.993 1.538
4 500 1.000 1.004 1.010 1.008 1.006 1.008 1.008 0.998 1.653
4 1000 1.000 1.002 1.002 1.001 1.000 1.001 1.001 0.999 1.664
10 100 1.000 1.021 1.133 1.123 1.110 1.116 1.098 0.986 2.620
10 500 1.000 1.004 1.020 1.017 1.015 1.017 1.016 0.997 2.943
10 1000 1.000 1.002 1.012 1.011 1.010 1.011 1.011 0.999 3.027
20 100 1.000 1.020 1.253 1.236 1.222 1.206 1.129 0.981 4.357
20 500 1.000 1.006 1.040 1.037 1.034 1.036 1.034 0.996 4.970
20 1000 1.000 1.002 1.021 1.019 1.019 1.019 1.019 0.998 5.293

4 100 1.000 0.873 0.905 0.899 1.036 0.899 0.897 0.995 1.126
4 500 1.000 0.862 0.867 0.866 1.006 0.866 0.866 0.999 1.179
4 1000 1.000 0.864 0.864 0.864 1.000 0.864 0.864 0.999 1.184
10 100 1.000 0.785 0.868 0.859 1.108 0.854 0.843 0.993 1.111
10 500 1.000 0.769 0.780 0.779 1.016 0.779 0.779 0.998 1.204
10 1000 1.000 0.773 0.781 0.781 1.009 0.781 0.781 0.999 1.235
20 100 1.000 0.735 0.907 0.893 1.229 0.872 0.832 0.991 1.082
20 500 1.000 0.715 0.740 0.737 1.034 0.737 0.736 0.998 1.196
20 1000 1.000 0.721 0.735 0.735 1.022 0.735 0.734 0.999 1.240

4 100 1.000 0.730 0.757 0.752 1.032 0.752 0.751 0.993 1.279
4 500 1.000 0.722 0.726 0.724 1.004 0.724 0.724 0.998 1.369
4 1000 1.000 0.719 0.720 0.721 1.003 0.721 0.721 0.999 1.431
10 100 1.000 0.513 0.567 0.563 1.103 0.561 0.557 0.990 1.340
10 500 1.000 0.503 0.511 0.510 1.021 0.510 0.510 0.998 1.488
10 1000 1.000 0.494 0.500 0.500 1.010 0.500 0.500 0.999 1.512
20 100 1.000 0.406 0.498 0.491 1.221 0.481 0.486 0.988 1.300
20 500 1.000 0.405 0.418 0.417 1.032 0.417 0.417 0.997 1.494
20 1000 1.000 0.403 0.410 0.410 1.019 0.410 0.409 0.999 1.572

4 100 1.000 0.870 0.886 0.877 0.980 0.876 0.874 0.983 1.029
4 500 1.000 0.877 0.876 0.874 0.976 0.873 0.873 0.990 1.105
4 1000 1.000 0.853 0.845 0.845 0.958 0.845 0.845 0.989 1.087
10 100 1.000 0.766 0.830 0.821 0.980 0.817 0.808 0.979 1.013
10 500 1.000 0.765 0.775 0.773 0.920 0.773 0.772 0.986 1.076
10 1000 1.000 0.755 0.757 0.755 0.906 0.755 0.755 0.987 1.070
20 100 1.000 0.739 0.916 0.903 1.041 0.881 0.838 0.978 1.002
20 500 1.000 0.725 0.745 0.743 0.870 0.743 0.742 0.985 1.038
20 1000 1.000 0.714 0.722 0.722 0.853 0.722 0.721 0.986 1.055

Experiment 1 : Equal weights summing to one

Experiment 2: Equal weights

Experiment 3: Factor Dynamics

Experiment 4: Weak heterogeneity
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Table 1: Simulation results (continuation) 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best

4 100 1.000 0.861 0.851 0.843 0.898 0.842 0.841 0.959 0.939
4 500 1.000 0.860 0.828 0.826 0.887 0.826 0.826 0.966 0.962
4 1000 1.000 0.840 0.815 0.814 0.882 0.814 0.814 0.966 0.972
10 100 1.000 0.762 0.816 0.809 0.858 0.804 0.794 0.949 0.881
10 500 1.000 0.743 0.721 0.719 0.767 0.719 0.719 0.953 0.877
10 1000 1.000 0.748 0.724 0.724 0.762 0.724 0.723 0.953 0.882
20 100 1.000 0.734 0.866 0.851 0.871 0.832 0.799 0.943 0.809
20 500 1.000 0.706 0.710 0.708 0.733 0.708 0.707 0.950 0.813
20 1000 1.000 0.705 0.700 0.700 0.725 0.700 0.700 0.951 0.828

4 100 1.000 0.778 0.807 0.802 1.033 0.802 0.800 0.995 1.060
4 500 1.000 0.765 0.769 0.768 1.007 0.768 0.768 0.999 1.104
4 1000 1.000 0.760 0.761 0.760 1.002 0.760 0.760 0.999 1.114
10 100 1.000 0.642 0.708 0.701 1.105 0.697 0.690 0.994 1.032
10 500 1.000 0.629 0.639 0.638 1.018 0.637 0.637 0.999 1.108
10 1000 1.000 0.631 0.637 0.637 1.008 0.637 0.637 1.000 1.122
20 100 1.000 0.566 0.697 0.687 1.233 0.671 0.654 0.993 1.008
20 500 1.000 0.550 0.567 0.565 1.032 0.565 0.565 0.998 1.082
20 1000 1.000 0.554 0.566 0.565 1.023 0.565 0.565 1.000 1.143

4 100 1.000 0.841 0.872 0.924 1.019 0.923 0.922 0.991 1.123
4 500 1.000 0.830 0.835 0.901 0.996 0.901 0.901 0.995 1.161
4 1000 1.000 0.830 0.830 0.890 0.987 0.890 0.890 0.995 1.159
10 100 1.000 0.756 0.836 0.892 1.087 0.887 0.875 0.988 1.095
10 500 1.000 0.737 0.749 0.799 0.991 0.799 0.799 0.994 1.172
10 1000 1.000 0.741 0.749 0.807 0.987 0.807 0.807 0.995 1.192
20 100 1.000 0.706 0.871 0.909 1.191 0.887 0.844 0.986 1.084
20 500 1.000 0.690 0.714 0.750 1.008 0.749 0.749 0.994 1.185
20 1000 1.000 0.691 0.705 0.742 0.990 0.742 0.742 0.995 1.210

Experiment 6: Block-diagonal factor structure

Experiment 7: Bias in individual forecasts

Experiment 5: Strong heterogeneity

Notes: Results are based on 10,000 simulations. EW: equal-weighted forecast, PEW: projection of actual value 
on an intercept and EW forecast, GR1: unconstrained OLS, GR2: OLS w/o constant, GR3: OLS w/o constant and 
weights constrained to add to unity, Shrink1: shrinkage with κ=0.25, Shrink2: shrinkage with κ=1, Odds: Odds 
ratio approach, Previous Best: forecast from previous best model. 
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Table 2: Simulation results from forecast combinations under factor structure with 
survey-like data 

# of 
Forecasts

Sample 
Size EW PEW GR1 GR2 GR3 Shrink 1 Shrink 2 Odds Previous 

Best

20 100 1.000 1.000 1.040 1.030 1.520 1.030 1.030 1.520 1.540
20 500 1.000 0.986 1.040 1.030 1.510 1.030 1.030 1.510 1.520
20 1000 1.000 0.990 1.030 1.020 1.530 1.020 1.020 1.530 1.550

20 100 1.000 0.583 0.988 0.982 0.979 0.982 0.981 0.978 0.979
20 500 1.000 0.555 0.994 0.988 0.984 0.988 0.987 0.983 0.984
20 1000 1.000 0.575 0.995 0.989 0.984 0.989 0.988 0.984 0.985

20 100 1.000 0.355 0.973 0.976 0.975 0.976 0.976 0.975 0.976
20 500 1.000 0.337 0.966 0.973 0.974 0.973 0.973 0.974 0.975
20 1000 1.000 0.338 0.962 0.971 0.969 0.971 0.970 0.969 0.969

20 100 1.000 0.577 0.990 0.985 0.980 0.984 0.984 0.980 0.980
20 500 1.000 0.551 0.984 0.980 0.976 0.980 0.980 0.977 0.977
20 1000 1.000 0.561 0.999 0.991 0.985 0.991 0.991 0.985 0.985

20 100 1.000 0.563 0.987 0.981 0.976 0.981 0.981 0.976 0.976
20 500 1.000 0.552 0.988 0.983 0.980 0.983 0.983 0.981 0.981
20 1000 1.000 0.557 0.988 0.983 0.977 0.983 0.982 0.977 0.977

20 100 1.000 0.761 1.000 0.998 0.993 0.997 0.997 0.992 0.992
20 500 1.000 0.739 1.010 0.999 0.993 0.999 0.998 0.993 0.993
20 1000 1.000 0.754 1.000 0.998 0.994 0.998 0.998 0.994 0.994

20 100 1.000 0.586 0.987 0.992 0.990 0.992 0.992 0.990 0.991
20 500 1.000 0.564 0.994 0.998 0.997 0.998 0.998 0.996 0.997
20 1000 1.000 0.579 0.995 0.997 0.995 0.997 0.997 0.995 0.995

Experiment 5: Strong heterogeneity

Experiment 6: Block-diagonal factor structure

Experiment 7: Bias in individual forecasts

Experiment 1 : Equal weights summing to one

Experiment 2: Equal weights

Experiment 3: Factor Dynamics

Experiment 4: Weak heterogeneity

Notes: Results are based on 10,000 simulations. The minimum number of contiguous observations used by the 
least squares and shrinkage combinations is 20. EW: equal-weighted forecast, PEW: projection of actual value on 
an intercept and EW forecast, GR1: unconstrained OLS, GR2: OLS w/o constant, GR3: OLS w/o constant and 
weights constrained to add to unity, Shrink1: shrinkage with κ=0.25, Shrink2: shrinkage with κ=1, Odds: Odds 
ratio approach, Previous Best: forecast from previous best model. 
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Table 3: Empirical application to inflation forecasts from the  
Survey of Professional Forecasters.1/

RMSE
EW 0.877 0.903 1.151 1.146
EWc 1.005 0.978 1.008 0.998
PEW, Recursive 0.896 0.899 0.998 0.976
PEW, Rolling 0.788 0.881 0.831 0.926
PEW c 0.903 0.972 0.780 0.996
GR1 2.860 2.921 1.096 1.207
GR2 1.241 1.817 1.120 1.087
GR3 4.499 11.480 1.070 1.113
Shrink 1 1.398 2.918 1.850 1.033
Shrink 2 3.107 7.015 5.503 1.503
Odds 0.892 0.893 1.070 1.092
Previous Best 0.937 0.876 1.053 1.092

P-Values Diebold-Mariano Test 2/ 

EW 0.163 0.674 0.012 ** 0.098 *
EWc 0.011 ** 0.150 0.114 0.505
PEW, Recursive 0.021 ** 0.427 0.061 * 0.294
PEWc 0.219 0.226 0.404 0.494
GR1 0.030 ** 0.016 ** 0.081 * 0.043 **
GR2 0.000 *** 0.092 * 0.042 ** 0.102
GR3 0.287 0.304 0.008 *** 0.109
Shrink 1 0.033 ** 0.199 0.191 0.276
Shrink 2 0.090 * 0.202 0.216 0.230
Odds 0.104 0.813 0.048 ** 0.180
Previous Best 0.055 * 0.924 0.033 ** 0.103

P-Values Giacomini-White Test 3/

EW 0.146 0.276 0.000 *** 0.007 ***
EWc 0.021 ** 0.079 * 0.000 *** 0.033 **
PEWc 0.015 ** 0.265 0.240 0.128
GR1 0.068 * 0.059 * 0.205 0.042 **
GR2 0.001 *** 0.133 0.165 0.301
GR3 0.356 0.366 0.010 ** 0.073 *
Shrink 1 0.071 * 0.290 0.308 0.590
Shrink 2 0.210 0.293 0.279 0.174
Odds 0.059 * 0.225 0.000 *** 0.113
Previous Best 0.037 ** 0.244 0.000 *** 0.251

P-Values Clark-West Test 4/ 

PEW Recursive 0.006 *** 0.045 ** 0.002 *** 0.001 ***
PEW Rolling 0.000 *** 0.024 ** 0.000 *** 0.000 ***
PEWc 0.000 *** 0.029 ** 0.000 *** 0.029 **

1-Step-Ahead 4-Steps-Ahead
Revised Data Real-Time Data Revised Data Real-Time Data

 
* p<0.10. ** p<0.05. *** p<0.01. 
1/ The minimum number of contiguous observations required is 10, except for EW, PEW 
Recursive, and PEW Rolling, where no restriction was imposed. For PEW Rolling a fixed window 
with 30 observations was used. The number of out-of-sample forecasts equals 77 for 1-step-ahead 
and 74 for 4-steps-ahead. 
2/ Computed with respect to PEW Rolling. 
3/ Computed with respect to PEW Rolling. Test is conditional on the (first/fourth) lag of the 
difference of the losses. 
4/ The first two comparisons are with respect to EW, the third one is with respect to EWc. 
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Figure 1: Participants in the Survey of Professional Forecasters (inflation forecasts) 
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Notes: The ID corresponds to the identification number assigned to each forecaster in the survey. The 
columns represent the quarter when the survey was taken. The Xs show when a particular forecaster 
responded to the inflation part of the survey and provided a one-step-ahead forecast. 
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Figure 2: Forecast Errors, Four-Steps-Ahead, Real-Time Data 
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