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Abstract

We construct a framework for measuring economic activity in real time (e.g.,

minute-by-minute), using a variety of stock and flow data observed at mixed frequen-

cies. Specifically, we propose a dynamic factor model that permits exact filtering. We

explore the efficacy of our methods both in simulation environments and in a sequence

of progressively richer empirical examples.
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1 Introduction

Aggregate business conditions are of central importance in the business, finance, and policy

communities, worldwide, and huge resources are devoted to assessment of the continuously-

evolving state of the real economy. Literally thousands of newspapers, newsletters, television

shows, and blogs, not to mention armies of employees in manufacturing and service industries,

including the financial services industries, central banks, government and non-government

organizations, grapple daily with the real-time measurement and forecasting of evolving

business conditions.

Against this background, we will propose and illustrate a framework for real-time business

conditions assessment in a systematic, replicable, and statistically optimal manner. Our

framework has four key parts.

Part 1. We work with a dynamic factor model, treating business conditions as an unob-

served variable, related to observed indicators. The appeal of latency of business conditions

comes from its close coherence with economic theory, which emphasizes that the business

cycle is not about any single variable, whether GDP, industrial production, sales, employ-

ment, or anything else. Rather, the business cycle is about the dynamics and interactions

(“co-movements”) of many variables, as forcefully argued by Lucas (1977) among many

others.

Treating business conditions as latent is also a venerable tradition in empirical business

cycle analysis, ranging from the earliest work to the most recent, and from the statistically

informal the statistically formal. On the informal side, latency of business conditions is

central to many approaches, from the classic early work of Burns and Mitchell (1946) to the

recent workings of the NBER business cycle dating committee, as described for example by

Hall et al. (2003). On the formal side, latency of business conditions is central to the popular

dynamic factor framework, whether from the “small data” perspective of Geweke (1977),

Sargent and Sims (1977), Stock and Watson (1989, 1991), and Diebold and Rudebusch

(1996), or the more recent “large data” perspective of Stock and Watson (2002) and Forni,

Hallin, Lippi and Reichlin (2000).1

Part 2. We explicitly incorporate business conditions indicators measured at different

frequencies. Important business conditions indicators do in fact arrive at a variety of fre-

quencies, including quarterly (e.g., GDP), monthly (e.g., industrial production), weekly (em-

ployment), and continuously (e.g., asset prices), and we want to be able to incorporate all

1For definition and discussion of small-data vs. large-data dynamic factor modeling, see Diebold (2003).
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of them, to provide continuously-updated assessments in real time.

Part 3. We explicitly incorporate a continuously-evolving indicator. Given that our goal

is to track the evolution of real activity in real time, it is crucial to incorporate (or at least not

exclude from the outset) the real-time information flow associated with continuously-evolving

indicators, such as the yield curve. For practical purposes we equate “continuously-evolving”

with ”daily,” but intra-day information could be used as well.

Part 4. We extract and forecast latent business conditions using linear yet statistically

optimal procedures, which involve no approximations. The appeal of exact as opposed to

approximate procedures is obvious, but achieving exact optimality is not trivial and has

proved elusive in the literature, due to complications arising from temporal aggregation of

stocks vs. flows in systems with mixed-frequency data.

Related to our concerns and framework is a small but nevertheless significant litera-

ture, including Stock and Watson (1989, 1991), Mariano and Murasawa (2003), Proietti and

Moauro (2006), and Evans (2005). Our contribution, however, differs from all of them.2

Stock and Watson (1989, 1991) work in a dynamic factor framework with exact linear

filtering, but they don’t consider data at different frequencies or at high frequencies. We

include data at different and high frequencies, while still achieving exact linear filtering. This

turns out to be a non-trivial task, requiring an original modeling approach.

Mariano and Murasawa (2003) work in a dynamic factor framework and consider data

at different frequencies, but not high frequencies, and their filtering algorithm is not exact.

In particular, they invoke an approximation essentially equivalent to assuming that the log

of a sum equals the sum of the logs.

Proietti and Moauro (2006) work in the Mariano-Murasawa framework and are able to

avoid the Mariano-Murasawa approximation, but only at the cost of moving to an extended

Kalman filter, which is more tedious and involves approximations of its own.

Evans (2005) does not use a dynamic factor framework and does not use high-frequency

data. Instead, he equates business conditions with GDP growth, and he uses state space

methods to estimate daily GDP growth using data on preliminary, advanced and final releases

of GDP, as well as a variety of other macroeconomic variables.

We proceed as follows. In section 2 we provide a detailed statement of our methodological

framework, covering the state space formulation with missing data, optimal filtering and

smoothing, and estimation. In section 3 we report on two pilot exercises, one based on

2Other related and noteworthy contributions include Shen (1996), Abeysinghe (2000), Altissimoet
al.(2002), Liu and Hall (2001), McGuckin, Ozyildirim and Zarnowitz (2003), and Ghysels, Santa Clara
and Valkanov (2004).
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simulated data and one on real data, which let us illustrate our methods and assess their

efficacy. In section 4 we report the results of a four-indicator system, containing quarterly

GDP, monthly employment, weekly initial claims, and the daily yield curve term premium.

In section 5 we conclude and offer directions for future research.

2 Methodology

Here we propose a state space macroeconomic model with an ultra-high base observational

frequency, treating specification, estimation, state extraction and state prediction. Our

framework facilitates exactly optimal filtering and forecasting, which we achieve throughout.

2.1 Missing Observations and Temporal Aggregation

We assume that the state of the economy evolves at a very high frequency; without loss

of generality, call it “daily.”3 Similarly, we assume that all economic and financial variables

evolve daily, although many are not observed daily. For example, we view an end-of-year

wealth variable as observed each December 31, and as “missing data” for every other day of

the year.

Let yi
t denote a daily economic or financial variable, and let ỹi

t denote the same variable

observed at a lower frequency (without loss of generality, call it “tilde”). The relationship

between ỹi
t and yi

t depends on whether yi
t is a stock or flow variable. In the case of a stock

variable, which by definition is a point-in-time snapshot, we have:

ỹi
t =

{
yi

t if yi
t is observed

NA otherwise,

where NA denotes missing data. In the case of a flow variable, the lower-frequency observa-

tions of which are functions of current and past daily observations, we have

ỹi
t =

{
f(yi

t, y
i
t−1, ..., y

i
t−Di

) if yi
t is observed

NA otherwise,

where Di denotes the relevant number of days for the temporal aggregation. For ease of

exposition we assume for now that Di is fixed, but in our subsequent implementation and

3In our subsequent empirical work, we will indeed use a daily base observational frequency, but much
higher frequencies such as second-by-second could be used if desired.
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empirical work we allow for time-varying Di, which allows us to accommodate, for example,

the fact that some months have 28 days, some have 29, some have 30, and some have 31.

Satisfactory treatment of temporal aggregation remains elusive in the literature. Most

authors work in logarithms and are effectively forced into the unappealing “approximation”

that the log of a sum equals the sum of the logs. Mariano and Murasawa (2003), for example,

assume that quarterly GDP is the geometric average of the intra-quarter monthly GDP’s.

Similarly, Evans (2005) assumes that the quarterly GDP growth rate is the sum of the

intra-quarter daily growth rates. Proietti and Moauro (2004) use an extended Kalman filter

in conjunction with a linear-Gaussian approximating model, but that approach involves a

significant approximation as well.

In contrast, our framework permits exact aggregation. We work in levels, so that flow

variables aggregate linearly and exactly. Specifically, we model the levels of all observed

variables as stationary deviations from polynomial trends of arbitrary order. The result is a

linear state space system for which the standard Kalman filter is optimal, as we now describe

in detail.

2.2 State Space Formulation

We assume that underlying business conditions xt evolve daily with AR(p) dynamics,

xt = ρ1xt−1 + ... + ρpxt−p + vt, (1)

where vt is a white noise innovation with unit variance.4 We are interested in tracking and

forecasting real activity, so we use a single-factor model; that is, xt is a scalar, as for example

in Stock and Watson (1989). Additional factors could of course be introduced to track, for

example, wage/price developments.

We assume that all economic variables yi
t evolve daily, although they are not necessarily

observed daily. Except when yi
t is observed daily, a case which we treat seperately below, we

assume that yi
t depends linearly on xt and possibly also various exogenous variables and/or

lags of yi
t:

yi
t = ci + βixt + δi1w

1
t + ... + δikw

k
t + γi1y

i
t−Di

+ ... + γiny
i
t−nDi

+ εi
t, (2)

where the w are exogenous variables, we include n lags of the dependent variable, and the

4As is well-known, identification of factor models requires normalization either on a factor loading or on
the factor variance, and we choose to normalize the factor variance to unity.
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εi
t are contemporaneously and serially uncorrelated innovations. Notice that we introduce

lags of the dependent variable yi
t in multiples of Di, because the persistence in yi

t is actually

linked to the lower (tilde) observational frequency of ỹi
t. Persistence modeled only in the

higher daily frequency would be inadequate, as it would decay too quickly. We use (2) as

the measurement equation for all (non-daily) stock variables.

Temporal aggregation in our framework is very simple: flow variables observed at a tilde

frequency lower than daily are the sums of the corresponding daily variables,

ỹi
t =


Di−1∑
j=0

yi
t−j if yi

t is observed

NA otherwise.

The relationship between an observed flow variable and the factor then follows from (2),

ỹi
t =



Di−1∑
j=0

ci + βi

Di−1∑
j=0

xi
t−j + δi1

Di−1∑
j=0

w1
t−j + ... + δik

Di−1∑
j=0

wk
t−j

+γi1

Di−1∑
j=0

yi
t−Di−j + ... + γin

Di−1∑
j=0

yi
t−nDi−j + ε∗it

if yi
t is observed

NA otherwise,

(3)

where

Di−1∑
j=0

yi
t−Di−j is by definition the observed flow variable one period ago (ỹi

t−Di
), and ε∗it

is the sum of the εi
t over the tilde period. Note that although ε∗it follows a serially correlated

moving average process of order Di − 1 at the daily frequency, it nevertheless remains white

noise when observed at the tilde frequency, due to the cutoff in the autocorrelation function

of an MA(Di − 1) process at displacement Di − 1. Hence we will appropriately treat ε∗it as

white noise in what follows and we have var (ε∗it ) = Dvar (εi
t) .

The exogenous variables wj
t are the key to handling trend. In particular, in the important

special case where the wj
t are simply deterministic polynomial trend terms (t, t2 and so on),

we have that

Di−1∑
j=0

[
ci + δi1 (t− j) + ... + δik (t− j)k

]
≡ c∗i + δ∗i1t + ... + δ∗ikt

k, (4)
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which yields

ỹi
t =


c∗i + βi

Di−1∑
j=0

xi
t−j + δ∗i1t + ... + δ∗ikt

k + γi1ỹ
i
t−Di

+ ... + γinỹ
i
t−nDi

+ ε∗it if yi
t is observed

NA otherwise.

(5)

In the appendix we derive the mapping between (c, δ1, δ2, δ3) and (c∗, δ∗1, δ
∗
2, δ

∗
3) for the first 3

trend polynomials. In our implementation, for numerical stability, we use t/1000, (t/1000)2

and (t/1000)3 instead of simply t, t2 and t3.5 We use (5) as the measurement equation for

all (non-daily) flow variables.

Finally, we treat variables observed at daily frequency differently, allowing them to de-

pend on a distributed lag of the state. To promote parsimony, we use a polynomial dis-

tributed lag (PDL) specification. Specifically, the measurement equation for a daily variable

is

yi
t = ci + β0

i xt + β1
i xt−1 + ... + βD̃

i xt−D̃ + δi1w
1
t + ... + δikw

k
t + γi1y

i
t−1 + ... + γiny

i
t−n + εi

t, (6)

where the elements of {βj
i }D̃

j=0 follow a low-ordered polynomial.6 In our subsequent empirical

implementation we use a third-order polynomial.

This completes the specification of our model, which has a natural state space form, to

which we now turn.

2.3 Initialization, Filtering and Smoothing

Assembling the discussion thus far, the state space representation of our model is

yt = Ztαt + Γwt + εt

αt+1 = Tαt + Rηt (7)

εt ∼ (0, H) , ηt ∼ (0, Q) ,

where yt is an N × 1 vector of observed variables, αt is an m × 1 vector of state variables,

wt is a e × 1 vector of exogenous variables, and εt and ηt are vectors of measurement and

5This is simply a normalization and does not affect the other parameters of interest or the log-likelihood.
We impose it because in our subsequent empirical work we have over 16,000 daily observations, in which
case t3 can be very large, which might create numerical problems.

6Because we assume that daily frequency is the highest available, we can treat flow and stock variables
identically when they are observed daily.
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transition shocks. The vector wt includes an entry of unity for the constant, k trend terms

and N × n lagged dependent variables, n for each of the n elements of the yt vector. The

exact structure of these vectors will vary across the different setups we consider below. The

observed data vector yt will have many missing values, reflecting those variables observed at

a frequency lower than daily, as well as missing daily data due to holidays. At a minimum,

the state vector αt will include p lags of xt, as implied by (1). Moreover, because the presence

of flow variables requires a state vector containing all lags of xt inside the aggregation period,

in practice the dimension of αt will be much greater than p. The system parameter matrices

T,R and Q, are constant, while Z, Γ and H are not, because of the variation in the number

of days in a quarter or month (Di for each i). Time-varying matrices pose no problem for

the Kalman filter.

Once the model is cast in state space form, we can apply the standard Kalman filter and

smoother, because our setup is a stationary one. Although these are standard and do not

require explanation, we state the algorithm here for contrast with the modified algorithm

that accounts for missing values, which we present subsequently. For now, assume that there

are no missing observations in Yt for all t. Denote {Y1, ..., Yt} by Yt for t = 1, ..., T , where

T denotes the last time-series observation. For given parameters, we initialize the Kalman

filter using α1 ∼ N (a1, P1) where a1 = 0m×1 and P1 solves

(I − T ⊗ T ) vec (P1) = vec (RQR′) . (8)

Given a1 and P1, for t = 1, ..., T , we use the contemporaneous Kalman filtering equations,

which incorporate the computation of the state vector estimate and its associated covariance

matrix, denoted by at|t and Pt|t.
7 Given at ≡ E (αt|Yt−1) and Pt = var (αt|Yt−1) the

prediction equations that produce at+1 and Pt+1 are

vt = Yt − Ztat − ΛXt (9)

Ft = ZtPtZ
′
t + H (10)

at|t = at + PtZ
′
tF

−1
t vt (11)

Pt|t = Pt − PtZ
′
tF

−1
t ZtP

′
t (12)

at+1 = Tat|t (13)

Pt+1 = TPt|tT
′ + RQR′. (14)

7We find that using this version of the filter improves the efficiency of the algorithm. See Durbin and
Koopman (2001) for details.
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Given a set of parameters and the estimates {at, Pt}Tt=1 given those parameters, we com-

pute the log likelihood using the prediction error decomposition,

log L = −1

2

T∑
t=1

[
p log 2π +

(
log |Ft|+ v′tF

−1
t vt

)]
. (15)

The Kalman smoother computes the conditional expectation of the state vector and

its covariance matrix using all the information in the data set, which we denote by α̂t ≡
E (αt|YT ) and Vt ≡ var (αt|YT ) for t = 1, ..., T . The Kalman smoother recursions start

from t = T and work backward. The vector rt is a weighed average of the innovations vt

that happen after period t with the variance matrix Nt. We initialize the smoother with

rT = 0m×1 and NT = 0m×m and for t = 1, ..., T -1 we use

Kt = TPZ ′F−1
t (16)

Lt = T −KtZt (17)

rt−1 = Z ′
tF

−1
t vt + L′

trt (18)

Nt−1 = Z ′
tF

−1
t Zt + L′

tNtLt (19)

α̂t = at + Ptrt−1 (20)

Vt = Pt − PtNt−1Pt, (21)

where we store the matrices {Ft, vt, at, Pt}Tt=1 from one run of the Kalman filter. We use the

appropriate element of the α̂t vector as the extracted factor and the corresponding diagonal

element of Vt as its standard error to compute confidence bands.

Before we turn to estimation, we describe how the Kalman filter handles missing obser-

vations. If for a period t, all elements of the vector Yt are missing, we skip updating and the

recursion becomes

at+1 = Tat (22)

Pt+1 = TPtT
′ + RQR. (23)

9



If some (but not all) elements of Yt are missing, we replace the observation equation with8

Y ∗
t = Z∗

t αt + ΛXt + ε∗t (24)

ε∗t ∼ N (0, H∗
t ) , (25)

where Y ∗
t are the elements of the Yt vector that are observed. The two vectors are linked

by Y ∗
t = WtYt where Wt is a matrix that carries the appropriate rows or Ip×p, Z∗

t = WtZt,

ε∗t = Wtεt and H∗
t = WtHtW

′
t . The Kalman filter and smoother work exactly as described

above replacing Yt, Zt and H with Y ∗
t , Z∗

t and H∗
t for period t.

In calculating the log likelihood, if all elements of Yt are missing, the contribution of

period t to the likelihood is zero. When some elements of Yt are observed, the contribution

of period t will be
[
p∗ log 2π +

(
log |F ∗

t |+ v∗′t F ∗−1
t v∗t

)]
where p∗ is the number of observed

variables and the other matrices and vectors are obtained using the Kalman filter recursions

on the modified system with Y ∗
t .

2.4 Estimation

2.4.1 Classical Implementation

The latent factor is stationarity in our framework. To impose that constraint on our estimates

we use a result of Barndorff-Nielsen and Schou (1973), who show that under stationarity there

is a one-to-one correspondence between the parameters of an AR(p) process and the first p

partial autocorrelations. Hence we can parameterize the likelihood in terms of the relevant

partial autocorrelations, which require searching only over the unit interval.

In our subsequent empirical analysis we use an AR(3) process for the factor, which allows

for one real root and two imaginary roots and hence a rich variety of dynamics. Denoting the

AR(3) parameters by ρi and the partial autocorrelations by πi, the Barndorff-Nielsen-Schou

mapping between the two is

ρ1 = π1 − π1π2 − π3π2 (26)

ρ2 = π2 − π1π3 + π1π2π3 (27)

ρ3 = π3. (28)

8By construction, whenever there is an observation for a particular element of Yt, there is a corresponding
element of Xt.
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We then optimize over πi ∈ [−1, 1].9

We also use two restrictions in our estimation. We guarantee the non-negativity of

the variance terms in the diagonal elements of Q and H matrices by estimating natural

logarithms of these elements. We also restrict the factor loading on some of the variables to

have a certain sign (e.g. positive for GDP and negative for initial jobless claims) using the

same transformation.

Once we obtain the log likelihood for a given set of parameters, we can proceed with

estimation using standard methods. In particular, we use a quasi-Newton optimization

routine with BFGS update of the inverse Hessian.

Searching for a global optimum in a parameter space with more than 30 dimensions is

a challenging problem. It is not intractable, however, if the the iterations are initialized

cleverly. To do so, we exploit knowledge gained from certain auxilliary regressions, as well

as a series of pilot experiments, which we describe in section 3.

2.4.2 Bayesian Implementation

[To be completed]

3 Examples

We provide a number of examples to illustrate the details of our method before we proceed

to analyze a full model in the next section. We first show the effectiveness of our method in a

simulation exercise, and then we proceed to a “toy” example with real data which resembles

a simplified version of our full model, followed by a more complete and serious example.

3.1 A Simple Simulation Example

We use this example to demonstrate how our methodology works. We use a simplified version

of the setup in our full model to generate an artificial data set. Specifically, we assume that

the true daily factor follows an AR(1) process and that 3 daily variables are linked to this

daily factor and a linear trend term. For simplicity we do not use the PDL specification,

higher order trend terms or lagged dependent variables. We generate 40 years’ worth of

daily data, which roughly corresponds to our actual data set. After we generate the daily

data, we transform them to obtain the dataset that the economist observes. For y1
t , which

9We use a hyperbolic tangent function to search over πi, because for y ∈ R, x = tanh(y) ∈ [−1, 1] .
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is a daily financial variable, we eliminate the observations for the weekends. For y2
t , which

is a monthly stock variable we eliminate all the observations except for the last observation

for each month. Finally, for y3
t , which is a quarterly flow variable, all observations except

for the last observation in the quarter are missing and the last observation of the quarter is

simply the sum of all the daily observations. After obtaining the data set we estimate the

state space system described in (7) where the system vectors and matrices are defined as

follows:

Yt =

 ỹ1
t

ỹ2
t

ỹ3
t

 , αt =



xt

xt−1

xt−2

...

xt−qmax+1

xt−qmax


, Xt =

[
1

t

]
, εt =

 ε2
t

ε2
t

ε∗3t

 , vt = ηt, R =



1

0
...

0

0

0

0


(29)

Z =

 β1 0 · · · 0 0 0

β2 0 · · · 0 0 0

β3 β3 · · · β3 or 0 β3 or 0 β3 or 0

 , Λ =

 c1 δ1

c2 δ2

c∗3 δ∗3

 , T =



ρ1 ρ2 ρ3 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0

0 0 0 · · · 1 0


[

εt

vt

]
∼ N

([
03×1

0

]
,

[
H 0

0 Q

])
, H =

 σ2
1 0 0

0 σ2
2 0

0 0 σ∗2
3

 , Q = 1

where qmax is the maximum number of days in a quarter. Even though in the notation

we treat q, the number of days in a quarter (the counterpart of Di in the discussion in

the previous section) as a fixed number, in our implementation we make the necessary

adjustments to take into account the exact number of days in a quarter.10 All of the relevant

matrices and vectors allow for the largest possible value, qmax and we adjust the matrices

10This number is either 90, 91 or 92, depending on the quarter and whether or not the year is a leap year.
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Z, Λ and H every quarter in the following way.11 At each quarter, if q < qmax the first q

elements of the third row of Z are set to β3 while the remaining elements are set equal to

zero. Next, we use D = q in the formulas derived in the appendix that map our original

parameters c3, δ31 to c∗3, δ∗31 and substitute in Λ. Finally, the third diagonal element of H is

set to σ∗2
3 = qσ2

3.
12

To mimic our estimation procedure with real data we first estimate a smaller version of

this model: we use only the first two variables. Once we have estimates from this model, we

use the Kalman smoother to extract the factor. We then run the auxiliary regression

ỹ3
t =

q−1∑
j=0

[a + d (t− j)] + b (xt + xt−1 + ... + xt−q) + et (30)

using OLS and use the estimates for a, b, d and var (et) /qmax as the starting values for the

estimation of the full model for c3, β3, δ3 and σ2
3 while for all the other parameters in the full

model common to the smaller model we use the estimated values from the smaller model.13

In Table 1 we report the estimation results from the two stages along with the true pa-

rameters that we used to generate the data. The first column reports the true parameters

used in the simulation and the second column reports the in-sample values for these pa-

rameters, obtained by running OLS using the simulated time series for xt, y1
t , y2

t , and y3
t

which do not match the true values due to sampling error given our “small” sample. The

third column reports the estimates from the smaller system, the next column reports the

results from the auxiliary regression (30) and the last column reports the estimates from the

full system, using the parameters from the previous two columns as starting values for the

optimization routine. We also report the values of the log likelihood from each estimation.

Comparing the estimates from stage 2 to the true parameters, we see that with the possible

exception of c1 and c2 the estimates are almost identical to the true values, up to a rounding

error and the estimates of c1 and c2 are fairly close to their true counterparts. It is also

interesting to point out that the log L for Stage 2 is very close to the sum of the log L of

Stage 1 and the auxiliary model. We will use this fact as an informal diagnostics tool when

11The third rows of Z, Λ and H are only relevant when ỹ3
t is observed. For all other days, the contents

of the third rows of these matrices does not affect any calculations. When there is an observation for ỹ3
t we

look at the number of days in that particular quarter, q, and make the adjustments.
12These all follow from the discussion in the previous section. The quarterly flow variable requires

summing the factors over the quarter and setting some of the elements of the third row of Z would make
sure we sum only the relevant factors. The adjustment of the trend coefficients should be obvious. Finally,
since ε∗3t is the sum of q iid normal innovations each with variance σ2

3 , its variance is qσ2
3 .

13In this regression we adjust q according to the actual number of days in the quarter.
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estimating our full model.

Perhaps more important than the parameter estimates is the ability of our methodology

to extract a factor which is close to the true factor we used to generate the data. Table 2

reports the correlations of the true factor with three smoothed factors using our methodology:

using the in-sample values for the parameters (with no estimation), from Stage 1 and from

Stage 2. All correlations are greater than 0.96, which shows that under these fairly realistic

conditions our methodology is able to extract a factor which is very close to the true one.

To illustrate the performance of our methodology we also plot the observed, smoothed and

true versions for the first two signals (daily financial variable and monthly stock variable) over

a 6-month period. In the first panel, the observed and the true signals are identical except for

the weekends, and the smoothed signal tries to fill in the missing values in the observed signal

by using the information from other variables. In the second panel, the observed signal is

represented by blue dots which are the end-of-month-values of the true signal. Our smoothed

signal tries to fill in the other values and performs quite well. Overall, this example shows

that our methodology is well-suited to extract the factor in an environment with missing

data and/or time aggregation issues.

3.2 A Simple Empirical Example

Our first example with real data uses daily observations on the slope of the yield curve (the

term premium) and monthly observations on payroll employment.14 The state variable xt

follows an AR(3) process and we assume an AR(3) structure for both observed variables at

their observation frequency. For monthly employment, this means the value of employment

in the previous 3 months is an element of the Xt vector and we denote these by ỹ2
t−M , ỹ2

t−2M

and ỹ2
t−3M .15 For the term premium, on the other hand, we choose to model this structure by

assuming an AR(3) process for the measurement equation innovation. If we had no missing

observations for the term premium, either method would yield identical results. We choose

to follow this route because of the missing term premium observations due to non-business

days. If we used the lagged term premium as an element of Xt this would mean we only

have 2 valid observations for each week and it would make the analysis less reliable.16 As a

14See Section 4.1 for details on the data.
15Once again, the notation in the paper assumes M is constant over time but in the implementation we

adjust M according to the number of days in a month.
16Alternatively we could have used AR(3) measurement errors for all variables. But this persistence in

the daily frequency would essentially disappear when we aggregate the variables to the monthly or quarterly
frequency.
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result, the system we use for this example can be summarized as follows

Yt =

[
ỹ1

t

ỹ2
t

]
, αt =



xt

xt−1

xt−2

ε1
t

ε1
t−1

ε1
t−2


, Xt =



1

t

t2

t3

ỹ2
t−M

ỹ2
t−2M

ỹ2
t−3M


, εt =

[
0

ε2
t

]
, vt =

[
ηt

v1
t

]
, R =



1 0

0 0

0 0

0 1

0 0

0 0



Z =



β1 β2

0 0

0 0

1 0

0 0

0 0



′

, Λ =



c1 c2

δ11 δ21

δ12 δ22

δ13 δ23

0 γ21

0 γ22

0 γ23



′

, T =



ρ1 ρ2 ρ3 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 γ11 γ12 γ13

0 0 0 1 0 0

0 0 0 0 1 0


(31)

[
εt

vt

]
∼ N

([
02×1

02×1

]
,

[
H 0

0 Q

])
, H =

[
0 0

0 σ2
2

]
, Q =

[
1 0

0 σ2
1

]

where the matrices and vectors correspond to the system in Section 2.2 and we have p = 2,

k = 7, m = 6 and r = 2. When estimating this system, we restrict β2 to be positive to

impose a positive relationship between the factor and employment.

The parameter estimates for this system along with other statistics are provided in the

Appendix. We will turn to the smooth factor from this example when we complete the

analysis of the full model below.

4 A Four-Variable Model

4.1 Data

Our analysis covers the period from April 1, 1962 through February 20, 2007, which is over

45 years of daily data. Since assuming economic activity stops over the weekends is not

realistic, we use a 7-day week instead of using only business days. We use 4 variables in our

analysis. Below we list these variables along with how we handle the missing data / time
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aggregation issues.

• Yield curve term premium defined as the difference between the yield of the 10-year

and the 3-month Treasury yields. [TERM] This is a daily variable.

• Average weekly initial claims for unemployment insurance. [IJC] This is a weekly

flow variable covering the 7-day period from Sunday through Saturday. The value for

Saturdays is the sum of the daily values for the previous 7-days.

• Employees on nonagricultural payrolls. [EMP] This is a monthly stock variable, ob-

served on the last day of the month.

• Real GDP. [GDP] This is a quarterly flow variable. The value for the last day of the

quarter is the sum of the daily values for all the days in the quarter.

For numerical stability we adjust the units of some of our observed variables. (e.g. we

divide EMP by 10,000 and IJC by 1,000)

4.2 Model

Ordering the observed variables in decreasing frequency, The matrices that define the full

model are given by

Yt =


ỹ1

t

ỹ2
t

ỹ3
t

ỹ4
t

 , αt =



xt

xt−1

...

xt−q̄−1

xt−q̄

ε1
t

ε1
t−1

ε1
t−2


, Xt =



1

t

t2

t3

ỹ2
t−W

ỹ2
t−2W

ỹ2
t−3W

ỹ3
t−M

ỹ3
t−2M

ỹ3
t−3M

ỹ4
t−q

ỹ4
t−2q

ỹ4
t−3q



, εt =


0

ε2
t

ε3
t

ε4
t

 , vt =

[
ηt

v1
t

]
, R =



1 0

0 0
...

...

0 0

0 0

0 1

0 0

0 0


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Z =



β0
1 β2 β3 β4

β1
1 β2 0 β4

...
...

...
...

β6
1 β2 0 β4

β7
1 0 0 β4

...
...

...
...

β q̄−1
1 0 0 β4

β q̄
1 0 0 β4

1 0 0 0

0 0 0 0

0 0 0 0



′

, Λ =



c1 c∗2 c3 c∗4

δ11 δ∗21 δ31 δ∗41

δ12 δ∗22 δ32 δ∗42

δ13 δ∗23 δ33 δ∗43

0 γ21 0 0

0 γ22 0 0

0 γ23 0 0

0 0 γ31 0

0 0 γ32 0

0 0 γ33 0

0 0 0 γ41

0 0 0 γ42

0 0 0 γ43



′

(32)

T =



ρ1 ρ2 ρ3 0 · · · 0 0 0 0 0

1 0 0 0 · · · 0 0 0 0 0

0 1 0 0 · · · 0 0 0 0 0

0 0 1 0 · · · 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 · · · 0 0 0 0 0

0 0 0 0 · · · 1 0 0 0 0

0 0 0 0 · · · 0 0 γ11 γ12 γ13

0 0 0 0 · · · 0 0 1 0 0

0 0 0 0 · · · 0 0 0 1 0


[

εt

vt

]
∼ N

([
04×1

02×1

]
,

[
H 0

0 Q

])
, H =


0 0 0 0

0 σ∗2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
∗4

 , Q =

[
1 0

0 σ2
1

]

where the matrices and vectors correspond to the system in Section 2.2 and we have p = 4,

k = 13, m = 95 and r = 2. W denotes the number of days in a week, M denotes the number

of days in a month and q denotes the number of days in a quarter. While W = 7, M and q

vary according to the specific month and quarter. As we did in the artificial data example,

we use the transformation given in the appendix to convert the coefficients with ∗ to those

without.
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We use the current and 91 lags of the factor in our state space system since the maximum

of days possible in a quarter is 92, which we denote by q̄.17 In every quarter, we adjust the

number of non-zero elements in the fourth row of the Z matrix to reflect the number of days

in that quarter. When estimating this system, we restrict β3 and β4 to be positive and β2

to be negative to reflect our expectation of the relationship between these variables and the

common factor.18

4.3 Classical Results

We use the classical methods described above to this model. It is worth emphasizing the

size of this model. We have 16,397 daily observations, 95 state variables and 42 coefficients.

Using a fairly efficiently programmed Kalman filter routine in MATLAB, one evaluation of

the log-likelihood takes about 25 seconds. As such, one iteration (including the calculation

of the Jacobian) takes a minimum of 18 minutes. Clearly, it is very costly to look over an

“irrelevant” part of the parameter space as it may take the estimation routine many hours

or days to find the “right” path, if at all. To tackle this problem, we follow the algorithm

outlined earlier: We start by a smaller system, one that has only TERM and EMP. Once

we estimate this system we get the smoothed factor and estimate the auxiliary regression

for GDP. Using the estimated values from the smaller system and the auxiliary regression

as the starting guesses, we estimate the system with GDP. We repeat this for IJC.

Here we focus on the factor and its properties.19 Figure 2 plots the smoothed factor from

the estimation along with 95% error bands, with the NBER recession dates superimposed.

Since the NBER provides only months, we assume recessions start on the first day of the

month and end on the last day of the month. There a few important observations. First, the

smoothed factor declines sharply around the recessions dates announced by the NBER. The

beginning of recessions and the downturn of the smoothed factor does not always coincide

however, the factor shows the same sharp decline pattern at the start of each of the 6

recessions in the sample. There can also be slight mismatch due to the monthly structure of

the NBER’s recession timing. Second, recoveries show different patterns. For the recessions

in 1974, 1980 and 1982 the recoveries are almost as sharp as the declines. For the three

17If there are Q days in a quarter, on the last day of the quarter, we need the current and the Q− 1 lags
of the factor for the measurement equation of GDP.

18In our experience with smaller systems, when we do not impose a sign restriction the estimation may
yield a factor which is negatively correlated with GDP. Imposing the sign restriction reverses the correlation
with virtually no change in the likelihood.

19The parameter estimates for the full system are reported in the appendix.
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remaining recessions, as well as the 1961 recession which is just before our sample starts, the

recoveries are slower, especially so for the 1990 recession as is well-known. Fourth, it seems

that the recovery from the last recession in our sample displays different characteristics from

the previous one. The latter displays a slow but consistent recovery while the former stays

low for about 2 years after the official end of the recession, even going down after a small

recovery. It seems by the end of our sample February 2006, the economy has recovered from

the recession, following a sharp increase in the factor in 2004. Finally, there seems to be

few, if any, “false positives” where our factor shows patterns similar to recessions in a period

which is not a recession. Overall, we conclude that our smoothed factor is able to follow the

business cycles of the US in our sample very well.

Figure 3 plots the smooth factors from the term premium / employment example and

the full model. The two factors have a correlation of 0.86 and while they agree on the

turning points for the most part, they show differences regarding the extent of recessions for

especially the last two recessions. There are two main differences in the models for these

two factors. First, the full model uses information from GDP. Second, the full model uses

the PDL structure for the term premium and allows for a richer interaction between the

yield curve and the aggregate economic activity. To see the effect of the latter, we plot the

estimated PDL coefficients for the term premium in Figure 4. We see a strong negative

relationship between the term premium at time t and the factor at time t − s for about

s = 20 days.

4.4 Bayesian Results

[To be completed.]

5 Summary and Concluding Remarks

We have constructed a framework for measuring macroeconomic activity in real time, using

a variety of stock and flow data observed at mixed frequencies, including ultra-high frequen-

cies. Specifically, we have proposed a dynamic factor model that permits exactly optimal

extraction of the latent state of macroeconomic activity, and we have illustrated it both in

simulation environments and in a sequence of progressively richer empirical examples.

We look forward to a variety of variations and extensions of our basic theme, including

but not limited to:
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(1) Incorporation of indicators beyond macroeconomic and financial data. In particular,

it will be of interest to attempt inclusion of qualitative information such as headline news.

(2) Construction of a real time composite leading index (CLI). Thus far we have focused

only on construction of a composite coincident index (CCI), which is the more fundamental

problem, because a CLI is simply a forecast of a CCI. Explicit construction of a leading

index will nevertheless be of interest.

(3) Allowance for nonlinear regime-switching dynamics. The linear methods used in this

paper provide only a partial (linear) statistical distillation of the rich business cycle literature.

A more complete approach would incorporate the insight that expansions and contractions

may be probabilistically different regimes, separated by the “turning points” corresponding

to peaks and troughs, as emphasized for many decades in the business cycle literature and

rigorously embodied Hamilton’s (1989) Markov-switching model. Diebold and Rudebusch

(1996) and Kim and Nelson (1998) show that the linear and nonlinear traditions can be nat-

urally joined via dynamic factor modeling with a regime-switching factor. Such an approach

could be productively implemented in the present context, particularly if interest centers on

turning points, which are intrinsically well-defined only in regime-switching environments.

(4) Comparative assessment of experiences and results from “small data” approaches,

such as ours, vs. “big data” approaches. Although much professional attention has recently

turned to big data approaches, as for example in Forni, Hallin, Lippi and Reichlin (2000) and

Stock and Watson (2002), recent theoretical work by Boivin and Ng (2006) shows that bigger

is not necessarily better. The matter is ultimately empirical, requiring detailed comparative

assessment. It would be of great interest, for example, to compare results from our approach

to those from the Altissimo et al.(2002) EuroCOIN approach, for the same economy and

time period. Such comparisons are very difficult, of course, because the ”true” state of the

economy is never known, even ex post.
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Appendix

A Mapping for the Constant and the Coefficients of

Trend

Here we establish the mapping between two sets of parameters. On the one hand, we have

D−1∑
j=0

[
c + δ1

(
t− j

1000

)
+ δ2

(
t− j

1000

)2

+ δ3

(
t− j

1000

)3
]

(33)

and on the other hand we have

c∗ + δ∗1

(
t

1000

)
+ δ∗2

(
t

1000

)2

+ δ∗3

(
t

1000

)3

(34)

We want to establish the mapping between (c, δ1, δ2, δ3) and (c∗, δ∗1, δ
∗
2, δ

∗
3) .

D−1∑
j=0

[
c + δ1

(
t− j

1000

)
+ δ2

(
t− j

1000

)2

+ δ3

(
t− j

1000

)3
]

(35)

=
D−1∑
j=0

c + δ1

D−1∑
j=0

(
t

1000
− j

1000

)
+ δ2

D−1∑
j=0

(
t

1000
− j

1000

)2

+ δ3

D−1∑
j=0

(
t

1000
− j

1000

)3

(36)

= Dc + δ1

D−1∑
j=0

(
t

1000

)
− δ1

D−1∑
j=0

(
j

1000

)
(37)

+δ2

D−1∑
j=0

(
t

1000

)2

+ δ2

D−1∑
j=0

(
j

1000

)2

− 2δ2

D−1∑
j=0

tj

10002
(38)

+δ3

D−1∑
j=0

(
t

1000

)3

− δ3

D−1∑
j=0

(
j

1000

)3

− 3δ3

D−1∑
j=0

(
t

1000

)2(
j

1000

)
+ 3δ3

D−1∑
j=0

(
t

1000

)(
j

1000

)2

(39)
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= Dc− δ1

D−1∑
j=0

(
j

1000

)
+ δ2

D−1∑
j=0

(
j

1000

)2

− δ3

D−1∑
j=0

(
j

1000

)3

(40)

+
t

1000

[
Dδ1 − 2δ2

D−1∑
j=0

j

1000
+ 3δ3

D−1∑
j=0

(
j

1000

)2
]

(41)

+

(
t

1000

)2
[
Dδ2 − 3δ3

D−1∑
j=0

(
j

1000

)]
(42)

+

(
t

1000

)3

(Dδ3) (43)

Now, note the formulas

D−1∑
j=0

j =
D (D − 1)

2
(44)

D−1∑
j=0

j2 =
D (D − 1) [2 (D − 1) + 1]

6
=

D (D − 1) (2D − 1)

6
(45)

D−1∑
j=0

j3 =

[
D (D − 1)

2

]2

(46)

So we get

c∗ = Dc− δ1D (D − 1)

2000
+

δ2D (D − 1) (2D − 1)

6× 106
− δ3 [D (D − 1)]2

4× 109
(47)

δ∗1 = Dδ1 −
δ2D (D − 1)

1000
+

δ3D (D − 1) (2D − 1)

2× 106
(48)

δ∗2 = Dδ2 −
3δ∗3D (D − 1)

2000
(49)

δ∗3 = Dδ3 (50)
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Table 1 - Parameter Values for the Example with Artificial Data

True In-Sample Estimate

Parameter Values Values Stage 1 Auxilary Stage 2

c1 0.9 0.9012 1.0262
(0.057)

− 1.0474
(xxxx)

c2 0.4 0.4002 0.3963
(0.002)

− 0.3956
(xxxx)

c3 −0.003 −0.0029 − −0.0071
(0.000)

−0.0078
(xxxx)

β1 −0.03 −0.0300 −0.0297
(0.000)

− −0.0297
(xxxx)

β2 0.001 0.0010 0.0010
(0.000)

− 0.0009
(xxxx)

β3 0.001 0.0010 − 0.0009
(0.000)

0.0010
(xxxx)

δ1 −0.2 −0.2000 −0.2102
(0.005)

− −0.2120
(xxxx)

δ2 0.03 0.0300 0.0304
(0.000)

− 0.0291
(xxxx)

δ3 0.02 0.0200 − 0.0203
(0.000)

0.0204
(xxxx)

ρ 0.99 0.9902 0.9895
(0.041)

− 0.9893
(xxxx)

σ2
1 0.005 0.0051 0.0051

(0.000)
− 0.0051

(xxxx)

σ2
2 0.0001 0.0001 0.0001

(0.000)
− 0.0001

(xxxx)

σ2
3 0.00001 0.00001 - 0.00002

(0.000)
0.00002

(xxxx)

logL 12122.56 11841.78 284.93 12119.59
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Table 2 - Correlations of Various Estimates of the Factor

with the True Factor for the Example with Artificial Data

No Estimation (in-sample) Stage 1 Stage 2

0.9860 0.9645 0.9634
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Figure 1 – Signals from the Artificial Data Example 
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Figure 2 - Smoothed Factor from the Full Model 
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Figure 3 –Smoothed Factors 
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Figure 4 – Estimated Coefficients of the Polynomial 
Distributed Lag for Term Premium 
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