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Abstract

When labor is indivisible, there exist e¢ cient outcomes with some
agents randomly unemployed (Rogerson 1988). We integrate this idea
into the modern theory of monetary exchange, where some trade occurs
in centralized markets and some in decentralized markets (as in Lagos
and Wright 2006 e.g.). This delivers a general equilibrium model of un-
employment and money, with explicit microeconomic foundations. We
show the implied relation between in�ation and unemployment can be
positive or negative, depending on simple preference conditions. Our
Phillips Curve provides a long-run, exploitable, trade o¤ for monetary
policy; it turns out, however, that the optimal policy is the Friedman
rule.
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1 Introduction

The following has been well known at least since the work of Rogerson

(1988): e¢ cient allocations in economies with indivisible labor generally

have some agents, chosen at random, unemployed, while others are em-

ployed, even though they are ex ante identical; and these allocations can

be supported as competitive equilibria where agents trade lotteries. As

we discuss in detail below, another interesting feature of these economies

emphasized in Rocheteau et al. (2006) is that agents act as if they have

quasi-linear utility. It turns out that one can use this result to construct a

fairly general yet very tractable model of monetary exchange, using search

theory, where some trades occur in centralized markets and some trades

occur in decentralized markets, as in Lagos and Wright (2005).

To understand this, note that what makes the Lagos-Wright model

tractable is the assumption of quasi-linear utility, since this implies that

agents exiting the centralized market all hold the same amount of money,

regardless of their histories (assuming interior solutions). Thus, if one is

willing to assume quasi-linear utility, one can avoid having to track the dis-

tribution of money in the decentralized market as a state variable.1 The ob-

servations in Rocheteau et al. (2006) allow one to dispense with quasi-linear

utility: as long as we have indivisible labor, identical results concerning the

distribution of money holdings can be derived for any monotone and con-

1For models that are much less tractable, precisely because one has to keep track of
the relevant distribution, see Green and Zhou (1998), Zhou (1999), Camera and Corbae
(1999), Zhu (2003,2005) and Molico (2006). Earlier search-based models, such as Kiyotaki
and Wright (1989,1993), Aiyagari and Wallace (1991), Shi (1995), or Trejos and Wright
(1995), were also simple, but only because they avoided the issue by assuming agents
could only hold m 2 f0; 1g units of money. An alternative approach that uses large
families instead of quasi-linear utility to achieve tractability is provided by Shi (1997).
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cave utility function (again assuming interior solutions). However, there are

some potential advantages to using indivisible labor instead of quasi-linear

utility as a building block for monetary theory, including the fact that it

generates unemployment.

In this paper we take seriously the implications of indivisible-labor mod-

els with money for the relationship between in�ation and unemployment. In

other words, we study the Phillips curve in general equilibrium. This seems

to us to be a natural exercise. In addition to Rogerson (1988), many well-

known papers adopt the indivisible labor model, including Hansen (1985),

Cooley and Hansen (1989), Christiano and Eichenbaum (1992), Kydland

(1994), Lungqvist and Sargent (2006), and Prescott, Rogerson and Wal-

lenius (2006). Since all of these papers take seriously indivisible labor in

models either without money, or with money but without microfoundations,

we think it is reasonable to study the relation between unemployment and

in�ation in versions of the model with money based on microfoundations.

The goal here is to derive results showing how the relation between in�a-

tion and unemployment depends on primitives of the model, and in particu-

lar preferences. With additive separability between goods consumed in the

centralized and decentralized markets, we show the Phillips curve is vertical

(unemployment and in�ation are independent). Then we show that with a

more general speci�cation the Phillips curve can have a positive or negative

slope, depending on the utility function in a straightforward way. The intu-

ition is simple. In�ation is a tax on economic activity in sectors that use cash

relatively intensively. To the extent that goods produced in these sectors

are substitutes for (complements with) goods produced using indivisible la-

bor, by reducing consumption of the former, in�ation will increase (reduce)
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consumption of the latter, which will reduce (increase) unemployment.

Our in�ation-unemployment trade-o¤ does not depend on any compli-

cated features of the model, like sticky wages or prices, irrational expecta-

tions, imperfect information, etc. Thus we conclude that one does not have

to work very hard to generate an interesting relation between in�ation and

unemployment. Now, in this paper, we do not take a stand on what the

actual relation is in the data �that is an entirely di¤erent project. Rather,

we focus on getting a simple and interesting relation in theory. Note also

that the trade-o¤ here is a long-run trade-o¤, and it is exploitable by policy

makers: under conditions that we make precise, it is feasible for monetary

policy to permanently reduce unemployment by increasing in�ation, as some

Keynesians (used to?) think. We prove, however, that it is optimal to reduce

in�ation to a minimum, as Friedman prescribed.

2 Basic Assumptions

Time is discrete. There is a [0; 1] continuum of agents who live forever.

Following Lagos and Wright (2005), we assume there are two type of markets

in which these agents interact. One is a frictionless centralized market, or

CM; the other is a decentralized market, or DM, with two main frictions: a

double-coincidence problem detailed below, and anonymity, which precludes

private credit arrangements. These frictions make money essential.2 The

stock of money evolves according to M̂ = (1 + )M , where ẑ indicates the

value of any variable z next period. New money is injected (or withdrawn if

2See Kocherlakota (1998) and Wallace (2001) for formal discussions of essentiality, and
especially the role of anonymity. Generally, these frictions make some medium of exchange
essential; for now we assume that central bank money is the only storable tangible asset,
and hence the only possible medium of exchange. In other words, this paper is not about
the coexistence of money and other assets.
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 < 0) via lump sum transfers in the CM; it changes nothing if alternatively

we assume new money injections pay for government consumption. We are

interested in equilibria where money is valued �i.e. the price ofM is positive

in the CM at every date �and choose dollars to be the unit of account.

There is a vector of nonstorable consumption goods x 2 RJ+ produced by

�rms in the CM using labor h. Agents also have an endowment of CM goods

e, plus 1 unit of indivisible labor, which means the commodity space restricts

h 2 f0; 1g. As is standard in indivisible labor models, agents will trade

randomized consumption bundles, or lotteries. In the DM, there is a di¤erent

nonstorable good q that is not produced, but all agents have endowment �q.

Utility in an interval consisting of one CM and one DM is �j(q;x; h), where

(x; h) come from the CM, q comes from the subsequent DM, and j indicates a

preference shock realized at the start of the DM, after x and h are chosen. A

special case is �j(q;x; h) = U(x; h) + uj(q), as used in the related monetary

literature. Although we actually start with this speci�cation, for reasons

that will become clear, we want to allow nonseparability between (x; h) and

q.

The preference shock is modeled as follows: with probability � � 1=2 the

utility function is �H , and with probability 1�� it is �L, where to generate

gains from trade we assume @�H(q;x; h)=@q > @�L(q;x; h)=@q 8(q;x; h).3

As we said, trade in the DM is bilateral. For simplicity we use a speci�c

(but common) matching technology: every agent that draws �H is matched

3 It is straightforward to allow more general preference or endowment shocks, but this
simple speci�cation su¢ ces for our purposes. This way of modeling DM gains from trade
di¤ers from the related literature (but see Berentsen and Rocheteau 2002), although it
would matter little for the typical application. The advantage for us is that our DM is a
pure exchange market �there is no production �so employment is unambiguously given
by hours worked in the CM.
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with one that draws �L, while only a set with measure �=(1 � �) of those

that draw �L are matched. We call an agent with �H a buyer and an agent

with �L who happens to be matched a seller, since there is generally a deal

to be done where the latter transfers some q to the former in exchange for

some cash. For future reference, let u(q;x; h) � �H(�q+ q;x; h)� �H(�q;x; h)

and c(q;x; h) � �L(�q;x; h) � �L(�q � q;x; h) denote the instantaneous gain

for the buyer and instantaneous cost for the seller from such a deal.

To streamline the presentation, standard curvature conditions are im-

posed on utility to guarantee consumption of all goods is strictly positive.

With indivisible labor, one obviously cannot do something similar for h, and

interiority of (the probability of) employment is an issue to which we return

in detail. Assume agents discount between the DM and next CM at rate

� 2 (0; 1), but for simplicity, not between the CM and DM. Let W (m) de-

note the CM value function, which depends only on money balances, since

in all other respects agents are identical in this market.4 Let V (m;x; h) de-

note the DM value function, which depends on money balances, plus choices

from the previous CM, since in general these interact with current DM con-

sumption in the utility function.

3 The CM

We begin with the special case �j(q;x; h) = U(x; h) + uj(q), so that we

can show how the indivisible labor model works without the complication of

nonseparable utility. In this case, with a slight abuse of notation, we write

u(q;x; h) = uH(�q+ q)�uH(q) as u(q), c(q;x; h) = uL(�q)�uL(q� �q) as c(q),

4 It would be trivial to allow them to di¤er with respect to their endowment, taxes, or
dividend income, too, since as will be clear below, these enter symmetrically with m.
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and V (q; x; h) as V (m). Then in the CM an agent chooses a probability

of employment `, consumption of x if employed x1, consumption of x if

unemployed x0, and money to take to the DM em, to solve
W (m) = max

x1;x0;`;em f`U (x1; 1) + (1� `)U (x0; 0) + V (em)g (1)

s.t. `px1 + (1� `)px0 + em � w`+m+ pe+ M +�;

where p is a price vector, w is the wage, M is the lump sum money transfer,

and � is dividend income, all measured in dollars.

Since problem (1) may look nonstandard, we make several comments.

First, it is the natural extension of the static indivisible labor model in

Rogerson (1988) to incorporate money, taking (temporarily) V (em) as given.
Generally, it is well known that consumption xh ought to be contingent on

employment status, although in the case where U is separable between x

and h, x0 = x1. The same is true here, and it is precisely because h andem enter the objective function separatively that the latter is not contin-

gent on employment status. Also, Rocheteau et al. actually derive problem

(1) from a model with standard Arrow-Debreu markets, and no lotteries,

where agents trade state-contingent commodity bundles [x(s); h(s); em(s)]
and s represents a sunspot.5 Finally, although this problem generally does

not have a quasi-concave objective function, under very mild conditions Ro-

cheteau et al. show it has a unique solution and the second-order conditions

hold.

5These results are based on Shell and Wright (1993), where it is shown how to support
the relevant allocations in nonconvex economies as sunspot equilibria instead of lottery
equilibria. Sunspot equilibria have some advantages over lottery equilibria, in general, but
given our structure they are equivalent, and so for simplicity here we stick to the latter;
see Garratt, Keister and Shell (2004) for more discussion.
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The Lagrangian for problem (1) can be written

W (m) = `U (x1; 1) + (1� `)U (x0; 0) + V (em)
+
�

w
[w`+m+ pe+ M +�� `px1 � (1� `)px0 � em] :

Assuming ` 2 (0; 1), the �rst-order conditions are:

x1j : Uj (x1; 1) = �pj=w, j = 1; :::J (2)

x0j : Uj (x0; 0) = �pj=w, j = 1; :::J (3)

` : U (x1; 1)� U (x0; 0) =
�

w
(px1 � px0 � w) (4)

em : V 0(em) = �=w (5)

� : w`+m+ pe+ M +�� `px1 � (1� `)px0 � em = 0 (6)

Notice (2)-(4) constitute 2J +1 equations that can be solved for the 2J +1

unknowns (x1;x0; �) under weak regularity conditions.6 A key observation

is that (x1;x0; �) is independent of em and `, and may depend on prices

(p; w) but not on m. Given this, (5) can be solved for em independently of

`, and it may also depend on (p; w) but not m. Then, given (x1;x0; �; em),
(6) can be solved for `.

The important result is that the choice set for em implied by (5) is the

same for all agents, independent of their m; and as long as V 00 < 0 this

choice is unique, so they all take the same em out of the CM. This also holds

in the standard Lagos-Wright model, except there it relies on quasi-linear

utility. Another result that carries over from that model is that W (m) is

6See Rocheteau et al. for details, but basically we need to rule out the case w�px1+
px0 = 0, or equivalently U (x1; 1) = U (x0; 0), which implies a singularity in system (2)-
(4). This case occurs only for special preferences. Actually, even in this case, the results
in Lemma 1 go through, we just need a slightly di¤erent argument.
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linear. To see this, notice

@W

@m
= [U (x0; 0)� U (x1; 1) + � (w + px0 � px1)]

@`

@m
+
�

w
:

The �rst term vanishes by (4) (the envelope theorem). Therefore @W=@m =

�=w, and we have already established that � is independent of m. Summa-

rizing these results:

Lemma 1 Assuming ` 2 (0; 1) for all agents, they all have the same optimal

choice for em in the CM, and W 0(m) = �=w, independent of m.

How can people who are otherwise identical but di¤er with respect to

m choose the same (x1;x0; em;�)? Obviously the answer is that they choose
di¤erent labor supply, which in this kind of model means that they work

with di¤erent probabilities. To be precise, (6) implies

` = `(m) =
px0 + em� pe� M ���m

w + px0 � px1
: (7)

If we average (7) across households, using Em = M and em = M(1 + ),

aggregate labor supply is

�̀=
px0 � pe��
w + px0 � px1

: (8)

On the other side of the market, labor demand comes from pro�t maximiza-

tion by the representative �rm producing xj ,

pjf
0
j(
�̀
j) = w; (9)

where �̀j is total employment at this �rm, and household dividends are

� =
P
j pjfj(

�̀
j)� w �̀j .7

7 It is merely for notational convenience that we assume a representative �rm produces
each good xj and that � is the same for all households.
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We are ready for a preliminary but useful step. It is preliminary because,

for now, we take V (em) to be some exogenous function (it will be derived
endogenously soon enough). Given the above �ndings, including the result

that the only element of household choices that is contingent on money

holdings is `(m), and assuming an interior solution, we can describe an

equilibrium in the CM as follows.8

De�nition: A CM equilibrium is given by prices (p; w), a choice for each

household [x1;x0; `(m); em;�], and employment �̀j at the representative �rm
producing good xj , j = 1; :::J , such that the household choices solve (2)-(6),

�̀
j solves (9), and both goods and labor markets clear:

x1j �̀+ x0j(1� �̀) = fj(�̀j) + �xj , j = 1; :::J (10)X
j
�̀
j = �̀ (11)

To characterize CM equilibrium, �rst use (9) to eliminate w and (4) to

eliminate � from (2)-(3), and notice that prices drop out:

f 0j(�̀j)Uj (x1; 1) =
U (x0; 0)� U (x1; 1)
1�

P
i
x1i�x0i
f 0i(
�̀
i)

, j = 1; :::J (12)

f 0j(�̀j)Uj (x0; 0) =
U (x0; 0)� U (x1; 1)
1�

P
i
x1i�x0i
f 0i(
�̀
i)

, j = 1; :::J (13)

Then substitute (11) into (10) to get:

x1j
X

i
�̀
i + x0j

�
1�

X
i
�̀
i

�
= fj(�̀j) + �xj , j = 1; :::J (14)

Now (12)-(14) constitute 3J equations in the same number of unknowns,

(x1j ; x0j ; �̀j)j=1:::J . Given a solution, we can recover relative prices pj=w =

8 In the following de�nition we impose goods and labor market clearing, but there
is also a money market clearing condition em = (1 + )M = M̂ that we do not impose
explicitly, because it holds automatically when the others hold (Walras law).
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1=f 0j(
�̀
j) from (9), the multiplier � = �1Uj (x1; 1) f

0
j(
�̀
j) from (2), the ab-

solute price level w = �=V 0(M̂) from (5), total employment �̀ from (11), and

household employment contingent on m from (7). This fully describes CM

equilibrium.

Several comments are in order. First, the above analysis is predicated

on 0 < `(m) < 1 for all m in the support of the distribution F (m) of money

holdings. We give conditions below to guarantee that this is valid. Second,

it almost goes without saying that we get equilibrium unemployment when

`(m) < 1: some agents randomly get h = 0 while other fundamentally iden-

tical agents get h = 1. Third, one might recognize a version of the classical

dichotomy: for this speci�cation, (10)-(13) determine the real allocation,

while inserting em = M̂ into (5) merely determines the price level.9

To close this section we sketch the following results. First, we claim the

obvious symmetric planner problem for the CM allocation has a unique so-

lution; see the Appendix for the full statement of the planner problem and

the proof, which is not trivial because the objective function is not quasicon-

cave. Also, this allocation satis�es the same conditions as CM equilibrium

given in (12)-(14). Hence, the following is automatic:

Lemma 2 Given V 0(m), CM equilibrium exists, is unique, is e¢ cient, and

depends on M only in terms of the absolute price level:

9As Sargent (1979) puts it, �A macroeconomic model is said to dichotomize if
a subset of equations can determine the values of all real variables with the level of
the money supply playing no role in determining the equilibrium value of any real
variable. Given the equilibrium values of the real variables, the level of the money
supply helps determine the equilibrium values of all nominal variables that are
endogenous but cannot in�uence any real variable. In a system that dichotomizes
the equilibrium values of all real variables are independent of the absolute price
level.�The Lagos-Wright model dichotomizes similarly (Aruoba and Wright 2003).
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4 The DM

Consider a meeting where the buyer has mb and the seller ms dollars (even

if mb = ms = em = M̂ in equilibrium, we want to know what happens more

generally). Generally, the buyer gives d dollars to the seller for q units of

the good. There are several ways to determine these terms of trade (q; d):

the original Lagos-Wright model uses the generalized Nash bargaining solu-

tion; Rocheteau and Waller (2005) consider several alternative bargaining

solutions; Rocheteau and Wright (2005) combine search with price taking

(as in the Lucas-Prescott 1974 model of the labor market) and price post-

ing (as Moen 1996 or Shimer 1995); and Galenianos and Kircher (2006) use

auctions in a version of the model that allows for some multilateral matches.

It does not matter much for our purposes which solution concept we

use, although auctions are a little more complicated due to multilateral

matching. For the other mechanisms, in our environment, the outcome is

generally d = mb �i.e. the buyer spends all his money �and q solves g(q) =

�2�m
b=w, where g is an endogenous function that is easy to characterize,

although the exact details depend on the solution concept. While we could

proceed abstractly and say nothing about g except that it satis�es certain

properties, for concreteness we proceed using generalized Nash bargaining,

with threat points given by the continuation values of not trading, which

means consuming your endowment and going to the CM next period, with

continuation value Ŵ (m).

Hence, the surpluses of the buyer and the seller are

uH(�q + q) + �Ŵ (mb � d)�
h
uH(�q) + �Ŵ (mb)

i
uL(�q � q) + �Ŵ (ms + d)�

h
uL(�q) + �Ŵ (ms)

i
:
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By Lemma 1, Ŵ (mb � d) � Ŵ (mb) = �d�̂=ŵ and Ŵ (ms + d) � Ŵ (ms) =

d�̂=ŵ, where �̂=ŵ is taken as given from the next CM, and the same for all

agents. Then, since u(q) = uH(�q+ q)� uH(�q) and c(q) = uL(�q)� uL(�q� q),

the generalized Nash bargaining problem reduces to

max
q;d

h
u(q)� d��̂=ŵ

i� h
d��̂=ŵ � c(q)

i1��
(15)

where � is the bargaining power of the buyer, and the maximization is subject

to the constraint that the buyer cannot pay more that he has, d � mb.

Even though our speci�cation di¤ers from the standard model in several

respects �we have exchange but no production in the DM, we have prefer-

ence shocks rather than random matching, etc. �(15) is identical (except for

notation) to the bargaining problem in the standard Lagos-Wright model.

Hence we can appeal to known results. First, in equilibrium, mb = ms = em
and the constraint binds, so d = em, which implies q < q� where q� is the

�rst-best outcome de�ned by u0(q�) = c0(q�).10 To say more, insert d = em
into (15), take the �rst-order condition with respect to q, and rearrange to

get the following:

Lemma 3 Given mb = em, the DM bargaining solution is d = em and q =

q(em), where the function q(�) is de�ned as the solution to em��̂=ŵ = g(q)

with

g(q) � �c(q)u0(q) + (1� �)u(q)c0(q)
�u0(q) + (1� �)c0(q) :

10See Lagos and Wright (2005) for details, but the idea is as follows. It is easy to show

that em � m� =) d = m� and q = q�, while em < m� =) d = em and q = g�1
�em��̂=ŵ�,

where m� � g(q�)ŵ=�̂� and g(�) is de�ned in Lemma 3 below. One can also show em < m�

in any equilibrium (assuming either the nominal interest rate is positive or � < 1). Since
g0 > 0 over the relevant range, this implies q < q�. For now, we take em < m� for granted,
but it is easily veri�ed in the full equilibrium. For example, in steady state, em < m� and
q < q� follow immediately from (19) in the next section.
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For an agent in the current DM with some (arbitrary) em when other

agents have M̂ , the payo¤ is11

V (em) = �
n
uH [�q + q (em)] + �Ŵ (0)

o
+�

n
uL
h
�q � q

�
M̂
�i
+ �Ŵ (em+ M̂)

o
+(1� 2�)

h
uL(�q) + �Ŵ (em)i

Using our de�nitions of u(�) and c(�), this can be rewritten

V (em) = �
n
u [q (em)] + �Ŵ (0)

o
+�

n
�c
h
q
�
M̂
�i
+ �Ŵ (em+ M̂)o (16)

+(1� 2�)�Ŵ (em) +K;
where K � �uH(�q) + (1� �)uL(�q). Di¤erentiation implies

V 0(em) = �
�̂

ŵ

�
1� � + �u

0(q)

g0(q)

�
: (17)

where it is understood that q = q(em), and we used @q=@ em = ��̂=ŵg0(q)

from Lemma 3, plus Ŵ 0(m) = �̂=ŵ 8m from Lemma 1.12

De�nition: Taking as given �̂=ŵ and the money holdings of the represen-

tative agent em = M̂ , a DM equilibrium (with bargaining) is de�ned by the

terms of trade as described above, d = em and q = q(em), plus the marginal
value of money V̂ 0(em) determined by (17).

11 In words, with probability � your utility is uH and in this event you are matched
with a seller for sure, while with probability 1� � your utility is uL and in this event you
are matched with probability �=(1��) and unmatched with probability (1� 2�)=(1��).

12 Intuitively, with probability � you �nd yourself a buyer, in which case the marginal
value of money is u0(q)q0(em) = u0(q)��̂=ŵg0(q), and with probability 1� � you do not, in
which case you simply take your money to the next CM, so its marginal value is ��̂=ŵ.
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5 Equilibrium in the Benchmark Model

To review the analysis to this point, we �rst described the CM by solving for

the real allocation, relative prices, and multiplier �, and then determining

the absolute price level by solving for the nominal wage w in terms of V 0.

This gives us a simple model of unemployment, taking exogenously the mar-

ginal value of money. We then described the DM by solving for the terms

of trade (q; d) and V 0 in terms of �̂=ŵ . We now combine the DM and CM.

De�nition: General equilibrium is de�ned in terms of paths for (p; w),

[x1;x0; `(m); em;�], �̀j , (q; d) and V 0(em) such that at every date: (i) (p; w),
[x1;x0; `(m); em;�], and �̀j yield a CM equilibrium taking V 0(em) as given;
and (ii) (q; d) and V 0(em) yield a DM equilibrium taking �̂=ŵ as given.

To characterize general equilibrium, combine (17) from the DM with (5)

from the CM, to get

�

w
= �

�̂

ŵ

�
1� � + �u

0(q)

g0(q)

�
:

Using �̂=ŵ = g(q)=em�, from Lemma 3, we arrive at

g(q�1)em�1
= �

g(q)em
�
1� � + �u

0(q)

g0(q)

�
(18)

where the subscript �1 indicates the previous period. Given any path for

em = (1+)M , which is determined by policy, to get general equilibrium we

�rst �nd a (positive, bounded) path for q solving (18).13 Given the path for

q, we know the path for w=� = em�=g(q), which we then feed into the CM
to determine the rest of the equilibrium.

13This kind of di¤erence equation is common in monetary economics, whether based
on search, overlapping generations, cash in advance, or whatever, and typically there are
many solution paths unless one restricts attention to stationary equilibria. See e.g. Lagos
and Wright (2003).
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For most of what follows, we assume that the growth rate of the money

supply  is constant, and focus on stationary equilibria (steady states) where

all real variables, including q, are constant. This implies the in�ation rate is

. Also, the real interest rate is given by 1+ r = 1=�, and the nominal rate

by the Fisher equation i = (1+ r)(1 + )� 1.14 Using these expressions, we

can simplify (18) in steady state to

1 +
i

�
=
u0(q)

g0(q)
: (19)

Standard conditions imply (19) has a solution q > 0, and also q < q� 8i > 0

and @q=@i < 0 (the argument is the same as in the standard Lagos-Wright

model).

This almost completes our description of the baseline model. However,

we need to discuss the maintained assumption ` 2 (0; 1), on which most of

the analysis is based.15 Note that in equilibrium all agents enter the CM

with m = 0 if they were a buyer in the previous DM, m = 2M if they were

a seller in the previous DM, and m =M if they were neither a buyer nor a

seller. Therefore, from (7), `(m) takes on one of three values:

`(m) =

8>><>>:
p(x0�e)��+M
w+p(x0�x1) if m = 0
p(x0�e)��
w+p(x0�x1) if m =M
p(x0�e)���M
w+p(x0�x1) if m = 2M

(20)

Then it is not hard to put restrictions on primitives to guarantee `(m) 2

(0; 1) for m 2 f0;M; 2Mg.
14These can be interpreted as equilibrium rates of return, between two meetings of the

CM, on real and nominal bonds that do not circulate in the DM, for whatever reason �
say, because they are not tangible assets, but simply CM ledger entries. In equilibrium
these assets are not actually traded in the CM, because W is linear in wealth, but we can
still price them.

15 It is not that there is anything wrong in principle with equilibria with `(m) = 0 or 1
for some values of m, just that the algebra becomes less tractable (see Chiu and Molico
2006).
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Rocheteau at al. discuss this somewhat more generally, so we content

ourselves with an example. Suppose J = 1, e = 0, f(`) = `, and U(x; h) =

v(x) �  (h) is separable, so that x0 = x1 = x. Given the technology,

w=p = 1 and � = 0. The binding constraints are `(0) < 1 and `(2M) > 0,

which reduce to 1 > x+M=w and x > M=w. Inserting M=w = g(q)=�� =

g(q)=�v0(x), this is equivalent to

g(q) < (1� x)�v0(x) and g(q) < �xv0(x): (21)

From the CM, x� is pinned down by v0(x�) =  (1)� (0), and so as long as

 (1) �  (0) > v0(1) we know x� < 1, and then we can satisfy (21) as long

as g(q) is not too big. Because g(q) � g(q�) = �u(q�) + (1 � �)c(q�), we

and assumptions on primitives that guarantee q� is not too big then implies

`(m) 2 (0; 1) for all m in the relevant set.16

Given this, we take for granted that whatever assumptions are needed

to guarantee `(m) 2 (0; 1) hold in what follows. Then the existence of a

steady state equilibrium follows from the above analysis: we get q from (19),

w=� = em�=g(q) from Lemma 3 where em = (1 + )M , V 0(em) = �=w from

(5), and the rest of the equilibrium from Lemma 2. A su¢ cient condition for

uniqueness of the solution to (19) is the monotonicity of u0(q)=g0(q), which

holds under some simple conditions, if not in general (see Lagos-Wright).

Summarizing:

Proposition 1 There exists a steady state equilibrium with valued money.

It is unique if u0(q)=g0(q) is monotone.

16 Intuitively, if q is too big then money is too valuable, and we either force some people
to ` = 1 (those with m = 0 trying to aquire the right em), or forces some people to ` = 0
(those with m = 2M trying to spend down to em).
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Let us turn to e¢ ciency by characterizing the �rst best �i.e. the optimal

allocation when we are not constrained by anonymity in the DM, so that

we do not have to use money. Then a planner maximizes the utility of the

representative agent starting in the CM by solving

W = max
x1;x0;`;q

f`U(x1; 1) + (1� `)U(x0; 0) + � [u(q)� c(q)] +K + �Wg

subject to the obvious feasibility constraints, summarized by (10)-(11).17

This can be solved as a sequence of static problems. Letting � 2 RJ be

a vector of Lagrange multipliers, the �rst-order conditions for an interior

solution are:

x1j : Uj(x1; 1) = �j , j = 1; :::J (22)

x0j : Uj(x0; 0) = �j , j = 1; :::J (23)

` : U(x1; 1)� U(x0; 0) = � (x1 � x0)�
X

j
�jf

0
j(
�̀
j) (24)

q : u0(q) = c0(q) (25)

It can be checked that (22)-(24) coincide with the CM equilibrium condi-

tions (2)-(4) when we set �j = �pj=w and � =
P
j �jf

0
j(
�̀
j). Comparing (25)

and the DM equilibrium condition (19), q = q� and equilibrium is e¢ cient

i¤ i = 0 and g(q) = c(q), where the latter is true i¤ � = 1 (see Lemma 3).

In general, q < q� in equilibrium, and the optimal monetary policy makes q

as big as possible, which means the Friedman rule i = 0; when � < 1 we do

not get the �rst best at i = 0, however.

Proposition 2 The Friedman rule i = 0 is optimal and achieves the �rst-

best i¤ � = 1.
17This problem is easily derived from primitive preferences uH and uL, with K the

constant de�ned earlier. In principle, the planner could set q in a match as a function of
(x; h) for both the buyer and the seller, but with the utility function used here it is easy
to verify the solution entails the same q in all matches.
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6 The Phillips Curve

The baseline model with �j(q;x; h) = U(x; h) + uj(q) has some nice prop-

erties, including analytic tractability. However, the dichotomy to which we

alluded has one very special implication: monetary policy a¤ects q in the

DM, but has no impact on the CM allocation and in particular no impact

on unemployment 1 � `. So the Phillips curve is vertical. Of course, if one

believes that this is in the data, there is no problem. We prefer to be agnos-

tic and have a theory capable of delivering more general predictions, and to

this end we consider more general preferences. Then, in principle, careful

data analysis (beyond the scope of this project) can pin down the parame-

terization �e.g. whether the actual relation between i and 1� ` is positive,

negative or zero will reveal something about the underlying preferences that

allow us to match the facts and model.18

It is intuitively clear that if q interacts with (x; h) in preferences then

anything that changes q, including monetary policy, a¤ects the CM alloca-

tion and hence 1 � `. Unfortunately, nonseparable utility is somewhat less

tractable � e.g. we cannot write the CM problem quite as neatly as (1)

since agents do not know how much utility they get from their CM choice

(x; h) until they get to the DM. Therefore we make a few special assump-

tions designed to facilitate the presentation, including J = 1, e = 0, and

f(`) = `. Moreover, as long as �H(q; x; h) is nonseparable, we can maintain

�L(q; x; h) = uL(q) + U(x; h) and get all the main results with less clutter.

Although this is not the most general case, it should be clear that the idea

of a Phillips curve emerging naturally in general equilibrium is robust.

18There are other ways to break the dichotomy (e.g. Aruoba, Waller and Wright 2005
use generalized technologies in models with capital), but here we focus on preferences.
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With f(`) = `, the real wage is 1, so we can replace w with p everywhere.

Thus, Lemma 1 implies W 0(m) = �=p, and the Nash bargaining solution

with the preferences in this section is

max
q;d

h
u(q; xb; hb)� d��̂=p̂

i� h
d��̂=p̂� c(q)

i1��
subject to d � mb.19 The analog of Lemma 3 says that d = mb and q =

q(mb; xb; hb), where q (�) is de�ned as the solution to mb��̂=p̂ = g(q; xb; hb)

with

g(q; x; h) � �uq(q; x; h)c(q) + (1� �)u(q; x; h)c0(q)
�uq(q; x; h) + (1� �)c0(q)

:

Generally, all agents have either (em1; x1; 1) or (em0; x0; 0) coming out of the

CM, depending on whether they were employed and unemployed; hence

there are two values of q observed in the DM, q1 = q(em1; x1; 1) and q0 =

q(em0; x0; 0).

The analog of (16) is

V (m;x; h) = �
n
u [q (m;x; h) ; x; h] + �Ŵ (0)

o
+�E

n
�c[q(mb; xb; hb)] + �Ŵ (m+mb)

o
(26)

+(1� 2�)�Ŵ (m) +K(x; h);

where K(x; h) � ��H (�q; x; h) + (1� �)
�
uL(�q) + U(x; h)

�
, and the expecta-

tion in (26) is over the buyer�s state when you are a seller in the DM, which

19To derive this, in a match where a buyer has some arbitrary state (mb; xb; hb) and a
seller has (ms; xs; hs), the surpluses associated with trade (q; d) are:

�H(�q + q; xb; hb) + �Ŵ (mb � d)�
h
�H(�q; xb; hb) + �Ŵ (mb)

i
uL(�q � q) + U(xs; hs) + �Ŵ (ms + d)�

h
uL(�q) + U(xs; hs) + �Ŵ (ms)

i
Using the de�nitions of u and c in Section 2, after some simple algebra, we get the
expression in the text.
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depends on his employment status in the previous CM. Thus,

Vm = �
�̂

p̂

�
1� � + �uq(q; x; h)

gq(q; x; h)

�
(27)

Vx = �

�
ux(q; x; h)�

gx(q; x; h)uq(q; x; h)

gq(q; x; h)

�
+Kx(x; h) (28)

where Kx(x; h) � ��Hx (�q; x; h) + (1� �)Ux(x; h). These simplify a lot when

� = 1, as we will eventually assume, although for now we stick to the general

case.20

It is straightforward to write the Lagrangian for the CM problem and

take the �rst-order conditions:

xh : Vx(emh; xh; h) = �, h = 0; 1 (29)

emh : Vm(emh; xh; h) = �=p, h = 0; 1 (30)

` : V (em1; x1; 1)� V (em0; x0; 0) = �

�
x1 � x0 � 1 +

em1 � em0

p

�
(31)

� : p`+m+ M � `px1 � (1� `)px0 � `em1 � (1� `)em0 = 0 (32)

A key point to notice is that, exactly as in the separable model, m does not

matter for any CM choice except ` (as always, assuming interior solutions).

In particular, fmh is independent of m, although it now may depend on h.

Hence, the distribution of money holdings in the CM is degenerate only after

conditioning on CM employment status, but that is su¢ cient to keep the

model tractable.

20The term �gx=gq = @q=@x in (28) re�ects how x generally a¤ects the bargaining
solution, just like the term ��̂=p̂gq = @q=@m in (27) re�ects how em generally a¤ects it.
These classic holdup problems go away when � = 1, which is one reason the analysis
simpli�es a lot in this case. To motivate it further, note that when search is directed,
under certain assumptions about timing and commitment, the outcome is that buyers get
all the surplus, and so in a sense � = 1 emerges endogenously (Corbae et al. 2003, Sec. 5).
Alternatively, � = 1 implies very similar results to versions of the model with price taking
(competitive equilibrium) or price posting (competitive search equilibrium), both of which
also eliminate holdup problems.
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Eliminating V and its derivatives Vx and Vm from (29)-(31) using (26)-

(28) and imposing steady state, after some relatively routine algebra, we

arrive at:

� = �

�
ux(qh; xh; h)�

gx(qh; xh; h)uq(qh; xh; h)

gq(qh; xh; h)

�
+Kx(x; h), h = 0; 1(33)

0 = 1 +
i

�
� uq(qh; xh; h)

gq(qh; xh; h)
, h = 0; 1 (34)

0 = � [u (q1; x1; 1)� u (q0; x0; 0)] +K(x1; 1)�K(x0; 0) (35)

+ [g(q1; x1; 1)� g(q0; x0; 0)] (� + i)� � (x1 � x0 � 1)

Given i, (33)-(35) constitute 5 equations determining (x1; x0; q1; q0; �). Then

�̀x1 + (1� �̀)x0 = f(�̀) = �̀ (32) yields aggregate employment

�̀=
x0

1 + x0 � x1
: (36)

Finally, inserting ��emh=p = g(qh; xh; h) into �̀em1 + (1� �̀)em0 = (1 + )M ,

we get the nominal price level,

p =
��(1 + )M

�̀g(q1; x1; 1) + (1� �̀)g(q0; x0; 0)
: (37)

This fully determines steady state equilibrium. It is clear that the

dichotomy breaks down: there is no way to solve for the CM allocation

(x1; x0; �̀; �) independently of the DM allocation (q1; q0), and so if i a¤ects

the latter it a¤ects the former. The system is somewhat complicated, how-

ever, for exactly this reason. Hence we analyze two subcases separately: one

where there is interaction between (q; x) but these are separable from h; and

one where (q; h) interact but these are separable from x.

Case 1: h is separable from (q; x). In this case �H(q; x; h) = uH(q; x)�

v(h) and U(x; h) = U(x)�v(h), and we know that x1 = x0 = x, em1 = em0 =em, and q1 = q0 = q. Also, with a slight abuse of notation, we can write
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u(q; x; h) = u(q; x) and g(q; x; h) = g(q; x). Then (35) yields � = v(1)�v(0),

and equilibrium is given by a pair (q; x) that solves the following versions of

(33)-(34):

� = �

�
ux(q; x)�

gx(q; x)uq(q; x)

gq(q; x)

�
+ �uHx (�q; x) + (1� �)Ux(x)

0 = 1 +
i

�
� uq(q; x)

gq(q; x)

Although one could proceed more generally, to make the essential point, at

this stage we set � = 1 to reduce these to

� = �uHx (q; x) + (1� �)Ux(x)

0 = 1 +
i

�
�
uHq (q; x)

c0(q)
;

where we use ux(q; x)� uHx (�q; x) = uHx (q; x) and uq(q; x) = uHq (q; x).

Di¤erentiating, we get

@q

@i
=

�
�
�uHxx(q; x) + (1� �)Uxx(x)

�
c0(q)

�D
< 0

@x

@i
=

uHqx(q; x)c
0(q)

D
w �uHqx

where a w b means a and b are equal in sign and

D = �
�
uHxq(q; x)

2 � uHxx(q; x)uHqq(q; x)
�
+ �uHxx(q; x)

�
1 +

i

�

�
c00(q)

+(1� �)Uxx(x)
��
1 +

i

�

�
c00(q)� uHqq(q; x)

�
< 0:

Hence, q unambiguously falls with i, while e¤ect on x depends on comple-

mentarities between x and q. Also, since in the case under consideration

�̀= x,
@(1� �̀)
@i

w �@x
@i
w uHxq:

This is the desired result: the relation between in�ation and unemployment.
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Proposition 3 When �H(q; x; h) = uH(q; x) � v(h), given � = 1, we have

@(1� �̀)=@i < 0 i¤ uHxq < 0.

This result is very intuitive. In�ation is a direct tax on DM activity,

and hence reduces q. If uxq > 0 (q and x are complements) then in�ation

also reduces x and hence �̀. But if uHxq < 0 (q and x are substitutes) then

in�ation increases x and �̀. In the latter case, in�ation causes people to sub-

stitute out of DM goods and into CM goods, increasing CM production and

employment. We get a downward-sloping Phillips curve under simple and

natural conditions; and an upward-sloping Phillips curve under alternative

conditions.21

Case 2: x is separable from (q; h). The analysis here is di¤erent from

the previous case, but similar enough that here we simply state the result

and relegate details to the Appendix:

Proposition 4 When �H(q; x; h) = U(x) + uH(q; h), given � = 1, we have

@(1� �̀)=@i < 0 i¤ uHqh < 0.

This also very intuitive. In�ation reduces q. If uqh = uHqh > 0 (q and h are

complements, or q and leisure substitutes) this increases leisure and hence

reduces �̀. But if uqh = uHqh < 0 (q and leisure are complements) then

in�ation reduces leisure and hence increases �̀. Again, we get an upward- or

downward-sloping Phillips curve under natural conditions.

These two propositions are robust, in the following sense. We set things

up to get unambiguous results by assuming labor is not used to produce q

21 It is perhaps surprising is that the results come out as clean as they do �e.g. why are
there no generally ambiguous wealth and substitution e¤ects? The reason is the same as
the reason the model is so tractabe in general: with indivisible labor and lotteries, agents
act as if they have quasi-linear utility.
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(it comes from endowment �q). More generally, as long as x production is

relatively labor intensive compared to q, it is possible to get �̀ to increase if

x goes up when q goes down in response to in�ation. The exact conditions

for an upward- or downward-sloping Phillips curve will change, of course,

but the economic idea is robust on this dimension. Another virtue is that

the results do not require anything tricky, like sticky wages or prices, or

signal extraction problems, to generate a relation between in�ation and em-

ployment (more generally, between in�ation and economic activity). It is all

based on rudimentary public �nance considerations.

The other point to emphasize is that these considerations lead to a re-

lation between in�ation and employment that is stable, and exploitable, in

the long run.22 Given uHxq < 0 or uHqh < 0, Propositions 3 and 4 indicate

that policymakers can achieve a permanently lower rate of unemployment

by printing money at a faster rate. However, we now argue that this is not

a good idea. To this end, consider the planner�s problem:

W = max
x1;x0;`;q1;q0

f�
�
`�H(�q + q1; x1; 1) + (1� `)�H(�q + q0; x0; 0)

�
+�

�
`�L(�q � q1; x1; 1) + (1� `)�L(�q � q0; x0; 0)

�
+(1� 2�)

�
`�L(�q; x1; 1) + (1� `)�L(�q; x0; 0)

�
+ �Wg

s.t. `x1 + (1� `)x0 � �̀

Note that qh generally depends on the state (xh; h) of the buyer in a match.23

Also note that we can solve this as a sequence of static problems.
22Like any other model, some components we take to be structural are not necessarily

so in the face of su¢ ciently big policy changes. If in�ation gets high enough, e.g., agents
might �nd some other way to trade in the DM �say, using foreign currency. But our trade
o¤ is stable in the sense that it does not depend on lagged responses by expectations or
nominal prices or wages.

23Since the utility of the seller is additively separable in (x; h) and q, it is easy to check
that q should not depend on the his state.
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First-order conditions are

xh : (1� �)Ux(xh; h) + ��Hj (�q + qh; xh; h) = �, h = 0; 1

qh : �Hq (�q + qh; xh; h) = uLq (�q � qh), h = 0; 1

` : � (x1 � x0 � 1) = �
�
�H(�q + q1; x1; 1)� �H(�q + q0; x0; 0)

�
+�

�
uL(�q � q1)� uL(�q � q0)

�
+ (1� �) [U(x1; 1)� U(x0; 0)]

where � is a multiplier. In the case � = 1, where Propositions 3 and 4 apply,

it is easy to check that these conditions for e¢ ciency coincide with the

equilibrium conditions i¤ i = 0. Hence, we conclude that the e¢ cient policy

is the Friedman rule, regardless of whether the Phillips curve is upward-

sloping, downward-sloping, or vertical.24

Proposition 5 Given � = 1, the Friedman rule i = 0 achieves the solution

to the planner�s problem.

7 Conclusion

In nonconvex economies, randomized allocations are desirable and can be

supported as equilibria with lotteries. This not only generates unemploy-

ment, it is very convenient for monetary theory, because it provides an

analytically tractable alternative to Lagos-Wright without quasi-linear util-

ity. We used these ideas to construct a general equilibrium model of the

Phillips curve. With separability between CM and DM goods, our Phillips

24The algebra is messy when � < 1, and it is harder to get clean results about even
@q=@i, but there is no presumption that i > 0 could be e¢ cient in this case: our conjecture
is q < q� at i = 0 when � < 1, as in simpler versions of the model (Lagos-Wright), and
hence i = 0 is still optimal even though it cannot achieve q�. Again, � = 1 is the leading
case not only because it is tractable, but because it makes the bargaining model similar
to one with endogenous matching, to one with price taking and competetive equilibrium,
or to one with price posting and competetive search equilibrium.
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curve is vertical, but natural extensions to more general preferences allow

it to slope either up or down. The idea is simple and plausible: in�ation

is a tax on any economic activity that is relatively cash intensive, and so

if either labor intensive goods are substitutes for this activity, or leisure is

a complement with this activity, in�ation can reduce unemployment. This

does not mean we should use in�ation to unemployment. Our calculations

indicate the optimal policy is the Friedman rule.
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8 Appendix

8.1 CM Planner Problem

The �rst thing we do is discuss the CM planner problem used in Section 3

as the basis for Lemma 2. For ease of presentation, assume J = 1, but the

argument in Rocheteau et al. (2006) can be used to extend the results to

any number of goods. The problem is then

max
x1;x0;`

f`U (x1; 1) + (1� `)U (x0; 0) + � [f(`) + e� `x1 � (1� `)x0]g ;

where � is a multiplier. Consider the case where the solution entails ` 2

(0; 1), which we can guarantee by simple assumptions such as f(0) = 1

and f(1) = 0. First-order conditions are given by (22)-(24) and the discus-

sion leading to Proposition 2 tells us that these are the same as the CM

equilibrium conditions.

We now check the second-order conditions for a strict local maximum.

We rule out the case f 0(`)� c1 + c0 6= 0 that is known to occur i¤ we have

the very special utility function U(x; h) = �[x+ v(h)] (see e.g. Cooper 1987

or Rogerson and Wright 1988). The bordered Hessian evaluated where the

�rst-order conditions are satis�ed is

B =

2664
0 �` �(1� `) f 0(`)� c1 + c0
�` `Uxx (x1; 1) 0 0

�(1� `) 0 (1� `)Uxx (x0; 0) 0
f 0(`)� c1 + c0 0 0 0

3775
Computing the last two leading principal minors, we have

jB4j = �
�
f 0(`)� c1 + c0

�2
`(1� `)Uxx (x1; 1)Uxx (x0; 0) < 0

jB3j = �`2(1� `)Uxx (x0; 0)� (1� `)2`Uxx (x1; 1) > 0;

which ensures that any solution to the �rst-order conditions is a strict local

maximum.
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We now claim that there is a unique solution to the �rst-order conditions

and it constitutes the global maximum. We begin by breaking the problem

in two. First de�ne

W(`) = max
x1;x0

[`U (x1; 1) + (1� `)U (x0; 0)]

s.t. `x1 + (1� `)x0 � f(`)� e � 0:

Since U is strictly concave, there is a unique solution [x0(`); x1(`)]. By

the Theorem of the Maximum, W(`) is continuous and hence achieves a

maximum over ` 2 [0; 1]. Suppose by way of contradiction that there are

two local maxima. Then, by continuity, W(`) has a local minimum at some

`� 2 (0; 1). This means [x0 (`�) ; x1 (`�) ; `�] is a saddle point of the original

problem, which contradicts the result that any solution to the �rst-order

conditions is a local maximum. Hence there is a unique maximizer of W(`)

say `�, and [x0(`�); x1(`�); `�] is the unique solution to the planner problem,

as we claimed. �

8.2 Proof of Proposition 4

We provide the analysis for Case 2 in Section 6. In this case, �H(q; x; h) =

U(x) + uH(q; h) and U(x; h) = U(x) � v(h). Then we have x1 = x0 = x,

although generally not m1 = m0 or q1 = q0. With slight abuse of notation,

we write u(q; x; h) = u(q; h) and g(q; x; h) = g(q; h). Then (33)-(35) can be

written

� = U 0(x)

0 = 1 +
i

�
� uq(qh; h)

gq(qh; h)
, h = 0; 1

0 = (1� �) [v(1)� v(0)]� � [u (q1; 1)� u (q0; 0)]

+ (� + i) [g(q1; 1)� g(q0; 0)]� �

29



Di¤erentiating, we get

@qh
@i

=
gq(qh; h)

�uqq(qh; h)� (i+ �) gqq(qh; h)
(38)

@x

@i
=

g(q1; 1)� g(q0; 0)
U 00(x)

: (39)

Again �̀= x, and therefore

@(1� �̀)
@i

w g(q1; 1)� g(q0; 0):

Hence unemployment decreases with in�ation i¤ g(q1; 1) < g(q0; 0).

Consider once again � = 1. Then g(q; h) = c(q), and it is easy to show

that g(q1; 1) < g(q0; 0) i¤ q1 < q0 i¤ uqh < 0. Then @(1 � �̀)=@i w uqh.

Moreover, when � = 1,

@qh
@i

=
c0(qh)

�uqq(qh; h)� (� + i)c0(qh)
< 0:

This completes the argument. �

30



References

[1] Aiyagari, S. Rao and Neil Wallace (1991) �Existence of Steady States

with Positive Consumption in the Kiyotaki-Wright Model,�Review of

Economic Studies 58, 901-916.

[2] Aruoba, S. Boragan and Randall Wright (2003) �Search, Money, and

Capital: A Neoclassical Dichotomy,�J. Money, Credit and Banking 35,

1085-1105.

[3] Aruoba, S. Boragan, Chris Waller and Randall Wright (2005) �Money

and Capital,�mimeo, University of Pennsylvania.

[4] Camera, Gabriele and Dean Corbae (1999) �Money and price disper-

sion,�International Economic Review 40, 985-1008.

[5] Christiano, Lawrence and Martin Eichenbaum (1992) �Current Real

Business Cycle Theory and Aggregate Labor Market Fluctuations,�

American Economic Review 82, 430-450.

[6] Cooley, Thomas and Gary D. Hansen (1989) �The In�ation Tax in a

Real Business Cycle Model,�American Economic Review 79, 733-748.

[7] Cooper, Russel (1987) Wage and employment patterns in labor con-

tracts: Microfoundations and macroeconomic applications, Harwood

Academic Publishers.

[8] Corbae, Dean, Ted Temzilides and Randall Wright (2003) �Directed

Matching and Monetary Exchange,�Econometrica 71, 731-56.

[9] Galenianos, Manolis and Philipp Kircher (2006) �Multilateral Matching

and Monetary Exchange,�mimeo, University of Pennsylvania.

[10] Garratt, Rod, Todd Keister and Karl Shell (2004) �Comparing Sunspot

Equilibrium and Lottery Equilibrium Allocations: The Finite Case,�

International Economic Review 45, 351-386.

[11] Green, Edward J. and Ruilin Zhou (1998) �A rudimentary random-

matching model with divisible money and prices,�Journal of Economic

Theory 81, 252-271.

31



[12] Hansen, Gary D. (1985) �Indivisible Labor and the Business Cycle,�

Journal of Monetary Economics 16, 309-327.

[13] Kiyotaki, Nobuhiro and Randall Wright (1989) �On money as a medium

of exchange,�Journal of Political Economy 97, 927-954.

[14] Kiyotaki, Nobuhiro and Randall Wright (1993) �A Search-Theoretic

Approach to Monetary Economics,� American Economic Review, 83

63-77.

[15] Kocherlakota, Narayana (1998) �Money is Memory,� Journal of Eco-

nomic Theory 81, 232-251.

[16] Kydland, Finn E. (1994) �Business Cycles and Aggregate Labor Market

Fluctuations,�in Frontiers of Business Cycle Research, ed. by Thomas

F. Cooley, Princeton University Press.

[17] Lagos, Ricardo and Randall Wright (2003) �Dynamics, Cycles and

Sunspot Equilibria in Genuinely Dynamic, Fundamentally Disaggrega-

tive Models of Money,�Journal of Economic Theory 109, 156-71.

[18] Lagos, Ricardo and Randall Wright (2005) �A uni�ed framework for

monetary theory and policy analysis,� Journal of Political Economy

113, 463-84.

[19] Lucas, Robert and Prescott, Edward (1974). �Equilibrium search and

unemployment,�Journal of Economic Theory 7, 188-209.

[20] Moen, Espen R. (1997) �Competitive search equilibrium.� Journal of

Political Economy 105, 385-411.

[21] Molico, Miguel (2006) �The distribution of money and prices in search

equilibrium,�International Economic Review 46, 701-722.

[22] Molico, Miguel and Johnathoin Chiu (2006) �Liquidity and Welfare

Costs of In�ation�mimeo, Bank of Canada.

[23] Prescott, Edward C., Richard Rogerson and Johanna Wallenius (2006)

�Aggregate Labor Supply: A Statement about Preferences, Technology,

and their Interaction,�mimeo, Arizona State University.

32



[24] Rocheteau, Guillaume and Randall Wright (2005) �Money in Search

Equilibrium, in Competitive Equilibrium, and in Competitive Search

Equilibrium,�Econometrica 73, 175-202.

[25] Rocheteau, Guillaume, Peter Ruper, Karl Shell and Randall Wright

(2006) �General Equilibrium with Nonconvexities and Money,�Journal

of Economic Theory, in press.

[26] Rogerson, Richard (1988) �Indivisible labor, lotteries and equilibrium,�

Journal of Monetary Economics 21, 3-16.

[27] Rogerson, Richard and Randall Wright (1988) �Involuntary unemploy-

ment in economies with e¢ cient risk sharing,� Journal of Monetary

Economics 22, 501-515.

[28] Sargent, Thomas J. (1979) Macroeconomic Theory, New York: Acad-

emic Press.

[29] Sargent, Thomas J. and Lars Lungqvist (2006) �Indivisible Labor, Hu-

man Capital, Lotteries, and Personal Savings: Do Taxes Explain Euro-

pean Employment?�mimeo.

[30] Shell, Karl and Randall Wright (1993) �Indivisibilities, lotteries, and

sunspot equilibria,�Economic Theory 3, 1-17.

[31] Shi, Shouyong (1995) �Money and prices: A model of search and bar-

gaining,�Journal of Economic Theory 67, 467-496.

[32] Shi, Shouyong (1997) �A divisible search model of �at money,�Econo-

metrica 65, 75-102.

[33] Shimer, Robert (1996) �Contracts in frictional labor market,�mimeo,

Princeton University.

[34] Trejos, Alberto and Randall Wright (1995) �Search, bargaining, money,

and prices,�Journal of Political Economy 103, 118-141.

[35] Wallace, Neil (2001) �Whither Monetary Economics?� International

Economic Review 42, 847-869.

33



[36] Zhou, Ruilin (1999) �Individual and aggregate real balances in a

random-matching model,� International Economic Review 40, 1009-

1038.

[37] Zhu, Tao (2003) �Existence of a Monetary Steady State in a Matching

Model: Indivisible Money,�Journal of Economic Theory 112, 307-324.

[38] Zhu, Tao (2005) �Existence of a Monetary Steady State in a Matching

Model: Divisible Money,�Journal of Economic Theory, 123, 130-160.

34


