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Abstract 

The asset costs of natural disasters in the United States grew rapidly from 1980 to 2023, 

with the trend rising 4.9 percent annually in real terms to $90 billion in 2023. Much of this trend 

in costs is likely due to climate change, and as a loss of assets implies a faster depreciation of 

real assets. We argue that the expected depreciation from these events should be included in 

Consumption of Fixed Capital (CFC), leading to lower levels and slightly lower growth rates for 

Net Domestic Product (NDP) and Net Domestic Investment. We use Poisson pseudo-maximum-

likelihood regressions to estimate this expectation and generate our experimental measure of 

costs. An alternative calculation of CFC and NDP might directly include the time series of costs 

incurred rather than the far smoother expectation; this was the procedure adopted before 2009 

and resulted in abrupt changes in NDP.  

 

Keywords: Climate Change, Anthropocene, Depreciation, National Accounts, Disasters 

JEL codes: Q54, Q56, C82 

_____________________________ 
* Nakamura is an emeritus economist in the Research Department of the Federal Reserve Bank of Philadelphia. 
Email: leinakam@msn.com. Sliker was an economist at the Bureau of Economic Analysis, U.S. Department of 
Commerce. We thank Scott Wentland, Abdul Munasib, Allison Derrick, Marshall Reinsdorf, Rachel Soloveichik, 
Bryan Parthum, and Wesley Ingwersen as well as three anonymous referees for helpful comments on this paper. We 
particularly thank Adam B. Smith for his comments, and we thank him and NOAA for their generous provision of 
data. We thank participants at the ESCoE 2022 Conference on Economic Measurement, the US Interagency 
Working Group on Hazards and Natural Capital meeting, and the Federal Reserve Committee on Climate and 
Economic Activity seminar. The views expressed in this paper are solely those of the authors and do not necessarily 
reflect the views of the Federal Reserve Bank of Philadelphia, the Federal Reserve System, or the Bureau of 
Economic Analysis. Any errors or omissions are the responsibility of the authors. Philadelphia Fed working papers 
are free to download at https://philadelphiafed.org/research-and-data/publications/working-papers. 
  

mailto:leinakam@msn.com
https://philadelphiafed.org/research-and-data/publications/working-papers


 2 

 
Climate Shocks in the Anthropocene Era: 

Should Net Domestic Product Reflect Climate Disasters? 

 

I. Introduction 

We now live in an era in which human activity has a large impact on nature, so much so 

that some geologists have proposed that we are in a new geological era, the Age of the 

Anthropocene. Unfortunately, as Dasgupta (2021) has noted, nature is silent in economic 

discourse. It is therefore left to us to speak for nature; this is the rationale for efforts to create the 

National Strategy to Develop Statistics for Environmental-Economic Decisions (Office of 

Science and Technology Policy, 2023) within the framework of the UN System of 

Environmental Economic Accounting. 

Human impacts on the Earth’s weather systems through greenhouse gases are rising. 

Intergovernmental Panel on Climate Change reports (IPCC, 2021, 2023) note, with high 

confidence, that climate change has resulted in a trend in the rise of global extreme weather and 

climate events and, in turn, their costs. The US National Climate Assessment states there is a 

conspicuous and continuing rise in the costs of weather and climate disasters in the United States 

(Hsiang et al., 2023). How much of this rise is due to climate change and how much is due to 

increases in economic activity in disaster-prone regions is an important question but not one we 

pursue here. 

If capital losses from disasters are rising, where should they appear in National Income 

Accounts? Disaster asset losses can be placed either in Consumption of Fixed Capital (CFC) or 

in Other Changes in the Volume of Assets (OCVA). When they are placed in CFC, they impact 

Net Domestic Product (NDP), National Income, Net Domestic Investment (NDI), and related 
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aggregates because CFC is subtracted from Gross Domestic Investment to produce NDI, 

reducing Gross Domestic Product (GDP) to NDP. OCVA was introduced in the 2008 version of 

System of National Accounts (2008 SNA), in large part to shield NDP from the large movements 

caused by catastrophic losses. 

Our proposal in this paper splits asset disaster costs into two components: an underlying 

trend and the residual shocks around that trend. The current methodology used by the US 

National Income Accounts (NIA) places all asset disaster costs in OCVA, while the NIA 

methodology before 2009 was to include them in CFC.1 Our proposal is to place the trend in 

CFC and the residual shocks in OCVA. The pre-2009 methodology resulted in large quarterly 

swings in NDP relative to GDP. The current methodology removes those swings and smooths 

NDP but at the cost of missing the rising trend of disaster costs. The three methodologies are 

illustrated in the schematic Table 1. 

We propose to use the National Oceanic and Atmospheric Administration’s (NOAA) time 

series of billion-dollar weather and climate disasters (BWCD) as one measure of disaster costs. 

This data set is a pioneering effort to account for climate disaster costs. These costs include some 

economic costs that are not asset losses, such as crop losses to drought, and so overestimate total 

depreciation costs; in addition, they exclude asset costs from disasters such as earthquakes, 

terrorist attacks, and the like. We also use less well-documented disaster cost data collected by 

the Bureau of Economic Analysis (BEA) as part of its measurement of Other Changes in the 

Volume of Assets. These include only the very largest asset disaster costs, so they are an 

underestimate of total asset disaster costs, and because such data are sporadic, there is no 

systematic methodology for their collection. 

 
1 Both CFC and OCVA are subtracted from fixed capital assets, so there is no impact on the total capital, just on Net 
Domestic Product, National Income, and related aggregates. 
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Shifting from depreciation analysis to personal consumption expenditures of insurance 

services, property and casualty insurers raise their insurance premiums when expected losses 

rise. Expected value added for the property casualty insurers should not be affected to the extent 

that the increase in premiums reflects these costs only. If past trends can be projected to future 

expectations, the trend of disaster losses may aid in measuring these insurance services more 

accurately. 

NOAA has constructed a time series of BWCD in the United States from 1980 to the 

present. They estimate the cost of individual disaster events resulting in $1 billion in economic 

losses or more, where these are measured in real dollars of the most recent year (2023), deflated 

by the consumer price index (CPI). Under this methodology, the billion-dollar criterion evolves 

over time—as the CPI rises over time and the base year changes, more events are added in earlier 

years. Disasters are divided into seven types: flood, drought, freeze, wildfire, and three types of 

storms (winter, tropical cyclone, and severe). This time series is built upon governmental and 

private insurance data, with the insurance estimates adjusted for uninsured costs. These costs do 

not include deaths (the value of a human life) or human distress. They do include temporary 

losses such as crop losses, business interruptions, and loss of housing services, which we are able 

to remove only crudely below, in Section IV. In the decade from 2014 to 2023, the average 

annual NOAA cost was $109 billion, as deflated by the CPI-U in February 2023 dollars, or 0.45 

percent of GDP, similarly deflated. 

The analysis we perform suggests that disaster costs have a large variance and are growing 

at a real rate of roughly 4.9 percent annually, appearing to double every 14 years. Expected costs 

from these disasters have risen in nominal terms from 0.1 percent to 0.4 percent of NDP; if these 

costs are included in CFC, NDI is reduced by 7 percent in 2023. We can further argue that it 
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might be useful to include the unexpected component of disaster costs, which we argue should be 

in OCVA, with the trend in an Expanded GDP satellite account measure of CFC. 

II. Existing Literature 

This paper explores how to include the economic costs of weather and climate disasters in 

the national accounts, complementing work that includes environmental effects on Natural 

Capital. It does so by extending to physical assets the work of Reinsdorf et al. (2017), who 

incorporate expected financial losses in the national accounts. There is also a literature on trends 

in disaster costs, including work on insurance costs (Bevere and Orwig, 2015) and on US 

weather and climate disasters (Smith and Katz, 2013; Shukla, 2021). Al Kazimi and Mackenzie 

(2016) have a useful survey of work studying the economic costs of natural disasters and other 

calamities. An important question about climate and weather events is whether their costs are fat-

tailed, which we investigate in Section V. Coronese et al. (2019) discuss the sharp rise in global 

weather and climate catastrophes and use quantile regressions to show rapid increases in the tail 

of such shocks. Weitzman (2009, 2011, 2014) has emphasized the importance of very large tail 

events in climate risks and the discounted social costs of these risks. 

III. National Accounts Methodology 

The question we address here is to what extent CFC should include the expected or trend 

costs of weather and climate disasters and thus whether these expected costs should impact NDP 

and related aggregates. 

Weather and climate disasters are included in the section “The Other Changes in the 

Volume of Assets Account” in chapter 12 of 2008 SNA. Basically, Other Changes in the Volume 

of Assets are changes to capital assets that do not flow normally from economic activity: 
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12.46  The volume changes recorded as catastrophic losses in the other changes 

in the volume of assets account are the result of large scale, discrete and recognizable 

events that may destroy a significantly large number of assets within any of the asset 

categories. Such events will generally be easy to identify. They include major 

earthquakes, volcanic eruptions, tidal waves, exceptionally severe hurricanes, drought 

and other natural disasters; acts of war, riots and other political events; and technological 

accidents such as major toxic spills or release of radioactive particles into the air. 

Included here are such major losses as deterioration in the quality of land caused by 

abnormal flooding or wind damage; destruction of cultivated assets by drought or 

outbreaks of disease; destruction of buildings, equipment or valuables in forest fires or 

earthquakes. (System of National Accounts, 2008, 2009, p. 208) 

These disasters are not included in Consumption of Fixed Capital unless they are included 

in accidental normal damage. As in chapter six in 2008 SNA: 

6.240 Consumption of fixed capital is the decline, during the course of the 

accounting period, in the current value of the stock of fixed assets owned and used by a 

producer as a result of physical deterioration, normal obsolescence or normal accidental 

damage. The term depreciation is often used in place of consumption of fixed capital but 

it is avoided in the SNA because in commercial accounting the term depreciation is often 

used in the context of writing off historic costs whereas in the SNA consumption of fixed 

capital is dependent on the current value of the asset. (System of National Accounts, 2008, 

2009, p. 123) 
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 Prior to 2009, the measure of Consumption of Fixed Capital in the US National Income 

and Product Accounts (NIPA) included catastrophic losses. When Hurricanes Katrina and Rita 

devastated the Southeastern states in August and September of 2005, quarterly annualized 

nominal CFC rose from $1.49 trillion (Q2 2005) to $1.90 trillion (Q3 2005) before falling back 

to $1.56 trillion (Q4 2005). As a consequence, nominal National Income fell at a 5.8 percent 

annual rate from Q2 to Q3, and then rose at an 18.9 percent rate from Q3 to Q4, while nominal 

GDP rose at a 7.3 percent rate and then a 5.2 percent rate over the same quarters.2 

In 2009, the US NIPA was revised to align with the 2008 SNA, in which disasters were 

removed from CFC and placed into OCVA. As a consequence, nominal CFC is now recorded 

rising steadily during this period, in trillions ($1.95, $1.99, $2.03). This change in the 

measurement of CFC prevents wild swings in quarterly growth rates but at the cost of removing 

the trend increase in capital losses. We therefore propose to put the trend—the expected path of 

disasters—into CFC while excluding the unexpected part of these disasters. 

We contend that, to the extent that weather and disaster-related costs are rising faster than 

NDP or CFC, the “normal rate of accidental damage” has changed and that removing all disaster 

costs from CFC means it no longer includes these trends. Instead, measures of CFC should 

change to accommodate the new normal component in accidental damage by including the trend 

in these disaster costs. 

In National Income methodology, this paper relies upon Reinsdorf et al. (2017) which 

discusses how to include expected losses in finance to improve SNA methods. For example, 

credit card interest payments to financial intermediaries overstate the net expected interest from 

credit card debt, as expected losses due to borrower defaults are high. The consumer services of 

 
2 Survey of Current Business, BEA, August 1996, https://apps.bea.gov/scb/issues/1996/scb-1996-august.pdf. 

https://apps.bea.gov/scb/issues/1996/scb-1996-august.pdf
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financial institutions include Financial Intermediation Services Indirectly Measured (FISIM), 

which under SNA is measured as the difference between interest received by financial 

intermediaries and the interest paid to consumers. If the credit card interest rate includes a large 

risk premium for losses, then FISIM overstates value added, and if expected losses are subtracted 

from the credit card interest rate, a more appropriate FISIM may be calculated. This argument 

led to a change in the BEA’s treatment of FISIM to incorporate certain expected losses by 

financial intermediaries (Hood, 2013). 

We argue that normal declines in the value of assets due to the expected component of 

weather and climate disasters ought to be included in Consumption of Fixed Capital. Below in 

Section V, we calculate the trend in disaster losses over time to estimate the size of this trend 

component. If we view the expected losses of catastrophes as part of CFC, then this will mean 

lower levels and smaller growth rates of NDP and NDI. 

A related consideration is how to account for non-life insurance activities as part of 

personal consumption expenditures for insurance. The measure of the insurers’ value added is 

premiums net of expected losses. What do we mean by expected losses of catastrophes? What is 

the normal part of such losses, which are likely to appear in non-life insurers’ calculations of 

insurance premia? If an insurer raises insurance premiums because of a rise in expected 

accidental loss from catastrophes, we contend that increase should not be part of the insurers’ 

value added, as the insurers do not expect to, on net, earn more from the insurance contract. At 

present, catastrophes are included in costs but are spread out over the 20 years following the 

event. If there is a rising trend in catastrophes, then the cost series will systematically lag 

expected costs. See page 5.68 in the Technical Note to Chapter 5 of the BEA’s National Income 
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and Product Accounts Handbook for BEA’s treatment of catastrophes for non-life insurance in 

US personal consumption expenditures. 

Unfortunately, we cannot estimate the trend in these household non-life insurance losses 

with the data currently available. It is possible that a subset of the NOAA data could be 

developed to help fill this data gap. 

IV. Data from NOAA and BEA on Disaster Costs 

 NOAA’s National Centers for Environmental Information collects data on Billion-Dollar 

Weather and Climate Disasters: 

More than one dozen public and private sector data sources help capture the total, 

direct costs (both insured and uninsured) of the weather and climate events. These costs 

include: physical damage to residential, commercial, and municipal buildings; material 

assets (content) within buildings; time element losses such as business interruption or loss 

of living quarters; damage to vehicles and boats; public assets including roads, bridges, 

levees; electrical infrastructure and offshore energy platforms; agricultural assets 

including crops, livestock, and commercial timber; and wildfire suppression costs, among 

others. However, these disaster costs do not take into account losses to: natural capital or 

environmental degradation; mental or physical healthcare related costs, the value of a 

statistical life (VSL); or supply chain, contingent business interruption costs. Therefore, 

our estimates should be considered conservative with respect to what is truly lost, but 

cannot be completely measured due to a lack of consistently available data. Sources 

include the National Weather Service, the Federal Emergency Management Agency, U.S. 

Department of Agriculture, National Interagency Fire Center, U.S. Army Corps, 

individual state emergency management agencies, state and regional climate centers and 

insurance industry estimates, among others. (NOAA National Centers for Environmental 

Information, 2024) 

 

Briefly, much of the data is drawn from FEMA disaster estimates and from private 

insurance sources. Estimates of uninsured losses are also included. The time element losses, such 
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as business interruption or loss of living quarters, should not be included as capital costs; these 

are deducted from other parts of NDP (e.g., residential services and industry output). 

The published data series is not limited to the 50 US states and the District of Columbia, 

but also includes Puerto Rico, the US Virgin Islands, and Guam. We were able to obtain the data 

series without the costs for these three places, as needed for comparability with the US national 

accounts, for which we thank Adam B. Smith of NOAA. For the most part, the inclusion of these 

three areas, only appearing in four years, does not have an impact. However, one of those years 

includes Hurricane Maria, which had devastating impacts on Puerto Rico and the US Virgin 

Islands, and in that year the new data series records a difference of $125.4 billion. This series, 

which we use throughout, is referred to as NOAA disaster costs. 

The first column in Table 2 shows the number of NOAA disaster events, where billion-

dollar events are measured in constant dollars (using the CPI) of the latest year for which data 

are available, in this case 2023.3 The number of billion-dollar events has been rising steadily: In 

the decade from 1980 to 1989, NOAA recorded a yearly average of 3.3 events that cost a billion 

dollars or more, using the prices of 2023. By comparison, from 2014 to 2023, there were 17.0 

such events a year. 

As time has passed, more past events have qualified as billion-dollar disasters because the 

CPI has risen over time and, in turn, the value of a billion dollars becomes smaller relative to the 

past. In 1980, for example, originally there was only one disaster greater than $1 billion: a $10 

billion drought and heat wave in the summer and fall. Now, measured in 2023 dollars the 

drought and heat wave event is reckoned at $39.7 billion, and there are three events that qualify. 

NOAA collected events in the data set that originally cost less than one-third of a billion dollars, 

 
3 Specifically, February 2023 is set to 1.00 for deflation adjustment. 
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but this does open up the possibility that some small events may have been missed in the 1980s 

now that the CPI deflator raises the cost of events nearly fourfold.4 It might be preferable to have 

the cutoff be a constant proportion of GDP but the NOAA methodology permits recalculation as 

needed. 

The second column in Table 2 shows the aggregate time series of NOAA costs covering 

the period from 1980 to 2023, as communicated privately by Adam Smith of NOAA. in March 

2024. Figure 1 depicts graphically that, in the period from 1980 to 2000, there are no years with 

total real disaster costs greater than $100 billion, while there are seven such years from 2001 to 

2022. Figure 1 and column 3 in Table 2 show the centered ten-year moving average of BWCD 

costs. The losses are irregular enough that the moving average does not rise monotonically and 

shows long periods of non-increase, although each decade does rise monotonically, as we see in 

Table 3. In the decade from 1980 to 1989, the average annual BWCD cost is $21.1 billion, while 

in the decade from 2014 to 2023, the average annual BWCD cost is $108.9 billion, a real 

compound annual growth rate of 4.8 percent. 

As part of the US National Income Accounts, the BEA makes rough estimates of the costs 

of disasters that are larger than 0.1 percent of GDP, as part of published Other Changes in the 

Volume of Assets (both disaster costs and OCVA are by convention positive when they subtract 

from assets). These rough estimates differ from the NOAA estimates both in using a higher 

cutoff point (0.1 percent of GDP in 2022 was $25.7 billion, substantially larger than the $1 

billion cutoff in BWCD) and in the less systematic way they are collected.5 These data are 

 
4 NOAA has a project underway to detect and include even smaller disasters now and going back to 1980. 
5 Private communication with Robert Kornfeld: “There is no standard source for these extremely rough estimates of 
catastrophic losses. We use reports from insurance companies and associations, other financial institutions, FEMA, 
other federal and state and local government agencies, even newspaper articles.”  
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shown in column 4 of Table 2. Such events remain relatively rare; 23 of the 43 years have zero 

values. 

Disasters make up 99 percent of all OCVA. We show these data in Figure 2, where we 

deflate both NOAA and BEA disasters with the CPI, in 2023 dollars. Notice that the cost of 

BEA’s disasters is less than NOAA’s, except in 1994 (Northridge earthquake) and 2001 (9/11 

terrorist attacks) when disasters were not due to weather or climate. All told, BEA’s disasters 

sum to $802 billion (in 2023 dollars, deflated by the CPI-U) or 31.8 percent the size of NOAA’s 

$2,524 billion over this period from 1980 to 2023. 

Ideally, NOAA would differentiate between asset and non-asset costs, but they do not do 

so now. To approximate what the data would look like if we had those data, we could extend 

BEA’s data to include smaller events found in NOAA, by using NOAA data on small events to 

extrapolate. Alternatively, we would like to remove the non-asset costs from NOAA data, using 

BEA data on large events to extrapolate (the two methods achieve the same result). 

Table 2 shows that there are also some BEA disasters that are below 0.1 percent of GDP; 

these originated before the 2008 change in methodology and reflect the time when disasters were 

included in CFC and disaster collection was less truncated. We can easily remove these small 

disasters and the two non-weather-and-climate disasters. Then the remaining disasters in BEA 

costs constitute truncated, noisy observations on the same events as NOAA’s, except that 

NOAA’s data include non-asset costs. These are shown in Table 4 and represent our lower 

bounds on weather-and-climate-disaster asset costs. We now have upper and lower bounds. 

To come up with a single best estimate, we could form a weighted average of the two 

upper and lower bounds, but what should the weights be? One possibility would be to give equal 

weights and average the two. We call this the midpoint hypothesis. Is it plausible? Since BEA 
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data are about 32 percent of NOAA’s, taking the midpoint would be 66 percent of the NOAA 

costs (the average of NOAA and BEA is $1,663 billion in 2023 dollars). That would imply that 

the truncation removes slightly more than half of all the disaster asset losses in the BEA data, 

relative to the NOAA data set. Alternatively, these same numbers suggest that roughly one-third 

of NOAA costs are non-asset costs. 

To investigate the plausibility of midpoint weighting, let’s call BEA’s weather and climate 

truncated observations Bi = Ai when A > .001 GDP, and NOAA’s observations Ni = Ai + Ci, 

where A are asset costs and C are non-asset costs. Let us also use the notation that GDP at the 

time of event i is GDPi where i stands in for the date at which event i is observed, and i runs from 

1 to I. We will also assume here that by definition a relevant event is at least $1 billion in real 

terms, to avoid fussy notation. Ts will indicate sums. 

To begin, let the BEA observations sum to BT*. 𝐵𝐵𝐵𝐵∗ = ∑ 𝐴𝐴𝑖𝑖|𝐴𝐴𝑖𝑖 ≥ .001 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝐼𝐼
1 . We would 

like to know 𝐵𝐵𝐵𝐵 −  𝐵𝐵𝐵𝐵∗ = ∑ 𝐴𝐴𝑖𝑖|𝐴𝐴𝑖𝑖 < .001 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝐼𝐼
1 . If we did, we would have ∑ 𝐴𝐴𝑖𝑖𝐼𝐼

1 . Similarly, 

the NOAA observations sum to 𝑁𝑁𝐵𝐵 = ∑ 𝐴𝐴𝑖𝑖 + 𝐶𝐶𝑖𝑖𝐼𝐼
1 = $2524. If we knew 𝐶𝐶𝐵𝐵 = ∑ 𝐶𝐶𝑖𝑖𝐼𝐼

1 , we could 

have another estimate of ∑ 𝐴𝐴𝑖𝑖𝐼𝐼
1 . We are going to assume that the ratio of BT* to 𝑁𝑁𝐵𝐵∗(=

∑ 𝐴𝐴𝑖𝑖|𝐴𝐴𝑖𝑖 ≥ .001 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝐼𝐼
1 ) is the same as for the ratio of BT to NT. If this proportion is 1 to 1+c, 

where c is some constant, then NT* = 1+c)BT* and NT = (1+c)BT. Then c = NT/BT-1. 

Let us consider the ratio of NTc*/BT* where 𝑁𝑁𝐵𝐵𝑐𝑐∗ = ∑ 𝐴𝐴𝑖𝑖 + 𝐶𝐶𝑖𝑖|𝐴𝐴𝑖𝑖 ≥ .001 (1 + 𝑐𝑐) 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼
1 . 

As c gets larger, this ratio shrinks. When c = -1, NTc* = NT, which is larger than BT*. And for c 

large enough, NTc* = 0, since no events qualify. So, if NTc* were continuous, there would be a 

fixed point at which c would satisfy the equation, c = NTc*/BT*-1. Although NTc* are not 

continuous, we can hope for an approximate solution. The midpoint hypothesis is that c = .5 

roughly. 𝑁𝑁𝐵𝐵.5
∗ = ∑ 𝐴𝐴𝑖𝑖 + 𝐶𝐶𝑖𝑖|𝐴𝐴𝑖𝑖 ≥ .0015 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼

1 . Does this satisfy the equation .5 = NT.5*/BT*-1? 
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The BEA events, once we have trimmed off the two non-weather events and the events 

smaller than 0.1 percent of GDP, sum to $692.1 billion (in 2023 dollars); this is BT*. The data 

can be found in Table 4, column 1. If we take all the NOAA events that are greater than .0015 

GDP, they sum to $1,023.6 billion (in 2023 dollars); see Table 4, column 2. This is our estimate 

of NT.5*. NT.5*/BT*-1 = 1024/692-1= .48 = c. This tends to confirm the validity of taking the 

midpoint; we have found an approximate fixed point. 

An alternative way to look at this is to ask whether large BEA weather and climate events 

are associated with the NOAA events greater than .015 GDP, and vice versa. In fact, some Ns 

will be between .001 GDP and .015 GDP when A is greater than .001 (type 1 errors), and some 

Cs will produce Ns that are greater than .015 GDP when A is less than .01 GDP (type 2 errors). 

Hopefully these will approximately counterbalance one another. 

Looking at Table 4 year by year, we see broadly that, where we see a BEA disaster cost, 

these are matched with larger costs in the NOAA large disaster costs. There are two type 1 

errors, one in 2004 and one in 2018, when there are BEA disaster costs with no corresponding 

NOAA costs. In 2004, there is a NOAA event that is greater than .001 GDP but less than .015 

GDP, and in 2018, there are three such events. On the other hand, there are two years, 1880 and 

1888, with type 2 errors, where we observe large NOAA disaster costs with no comparable BEA 

disaster costs. In these two cases, the events are droughts and heat waves that likely had large 

non-asset costs (primarily crop losses). Balancing out the errors gives us some confidence that 

this analysis has some merit. We therefore will use the midpoint as our preferred measure of 

capital costs of disasters. On the other hand, while the midpoint is very useful as a crude 

approximation for the trend, on a year-by-year basis the resulting series is evidently far off in 

some cases, as the two types of errors in four years discussed above make evident. 
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We have leaned very heavily on the assumption here that large asset events have a similar 

ratio to non-asset costs as do small ones; it would be much better to have measures of NOAA 

costs divided up into asset and non-asset costs. 

In creating our midpoint data, we use the published BEA disaster data, leaving in the 

smaller disasters and the non-weather-and-climate disasters. This is done because the National 

Accounts disaster data series should include all asset disasters, not just weather and climate 

disasters. The extent of depreciation is not affected by the source of the disasters. Therefore, we 

take the midpoint of the NOAA disaster costs and BEA disaster costs. We acknowledge that it 

might be more accurate to take the full value of the two BEA non-weather-and-climate disasters 

(1994 and 2001) into the midpoint series rather than take half of it, as we know they are not 

included in the NOAA data. Another alternative would be to focus on weather and climate 

disasters and omit the two non-weather-and-climate disasters. We prefer to use the simple 

midpoint as an approximation that emphasizes the crudeness of this approach. 

V. Measuring Expected Costs 

 We now turn to the estimation of the expected component of NOAA costs and BEA costs 

to guide an experimental measurement of Consumption of Fixed Capital. In what follows, the 

NOAA costs will be the first object of interest, although these data overestimate asset costs 

because the data are so much more complete and richer. We do a simple analysis of the trend in 

BEA costs. An estimate of capital losses that combines the trend in BWCD costs and in BEA 

costs will then be constructed using the midpoint estimates we have just discussed as our best 

estimate of asset disaster costs. 

Measurement of trend in NOAA costs.  
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Our proposed method uses a log trend to estimate expected NOAA costs and proposes to 

add these expectations to Consumption of Fixed Capital. To estimate this expectation, we use 

two types of regressions. The first is a conventional OLS regression of log NOAA costs (N) on 

time: 

 ln(𝑁𝑁𝑡𝑡) = 𝑎𝑎 + 𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑡𝑡 .  

The second is a Poisson pseudo-maximum-likelihood regression on time: 

 𝑁𝑁𝑡𝑡 = exp(𝑎𝑎 + 𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) +  𝜀𝜀𝑡𝑡. 

 OLS regression of log annual NOAA costs on time.  

 The first regression of log losses can be used to capture the exponential trend growth, but 

there were no billion-dollar disasters in 1987 and the log of zero does not exist, so we need to 

either add a dummy variable for that date or replace the zero with 1, whose log is zero, an 

approximation often used empirically. The dummy variable will tend to bias down the growth 

rate (because it in effect replaces an unusually small early number with an average value), so that 

will be our preferred regression as it is the most conservative. The output of the OLS regression 

with a 1 inserted in 1987 costs (so that the log is zero) is shown in Table 5, column 1, which 

gives a trend growth rate of 5.8 percent annually. The output of the OLS regression with a 

dummy variable included for 1987 is shown in Table 5, column 2. This gives a trend growth rate 

of 5.2 percent annually. 

 One difficulty of using the log trendline is that the error term is then in logs. Logs take 

arithmetically large positive errors and reduce them relative to negative errors.6 This issue is 

 
6 The usual fix is to add half the regression variance to the mean that is being exponentiated, which is strictly valid 
only when the logged random variable is distributed lognormally. Duan’s (1983) nonparametric smearing 
transformation would apply beyond the lognormal case and has been used by health econometricians. 
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discussed in Santos Silva and Tenreyro (2006), who argue, in the context of the gravity equation 

for trade, that since Jensen’s inequality implies that 𝐸𝐸(ln𝑦𝑦)  ≠ ln𝐸𝐸(𝑦𝑦) the first regression in the 

presence of heteroskedasticity is not just inefficient but biased. They suggest using Poisson 

pseudo-maximum-likelihood estimation techniques to estimate the exponential regression.7    

Regression of NOAA costs on exponential of time using Poisson pseudo-maximum-

likelihood estimation technique. 

The first advantage of using the Poisson regression rather than the log OLS regression for 

this data is that there is no concern about the zero costs in 1987. Another is that the estimation 

will not be biased; we are attempting to find the trend for costs, not the log of costs. A third is 

that the Poisson pseudo-maximum-likelihood regression is tolerant of error misspecification. 

We used the Poisson command in Stata to generate our preferred measure of expected 

NOAA costs, with output shown in Table 5, column 3. The trend growth rate is 4.9 percent, a 

lower trend than the two previous regressions. 

Figure 3 depicts our two measures of expected cost in comparison to actual costs. Figure 4 

shows them with the ten-year moving averages of costs. The log trend is below the Poisson trend 

as we would expect from the Santos Silva and Tenreyro argument. In addition, the Poisson trend 

traces the moving average much more closely than the conservative log trend. The robust 

standard errors of the two regressions show that the Poisson trend is measured somewhat more 

precisely than the log regressions; we interpret this as a modest win for our preferred measure. 

Regression of BEA disaster costs on time using Poisson pseudo-maximum likelihood. 

 
7 See Gourieroux, Monfort, and Trognon (1984) for the original work, and Santos Silva and Tenreyro (2006), who 
implement the Poisson pseudo-maximum likelihood in a trade setting after considering some related alternatives. This 
point has been made in the context of these losses by Smith and Katz (2013). 
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Similarly, we can use the Poisson regression to analyze the time trend in the BEA measure 

of asset disaster costs as part of OCVA. The resulting output with robust errors is shown in Table 

5, column 4. The trend growth rate is 4.8 percent, very close to that in the Poisson regression on 

NOAA costs. We have not performed an OLS log regression using BEA disaster costs, since 

there are 20 zeroes in the 43 observations, so results would scarcely be meaningful. 

We can interpret the NOAA data as creating an upper bound on asset disaster costs since 

they include costs that are short run and not capital costs. We interpret the BEA data as creating 

a lower bound on asset disaster costs. We have shown that it is plausible to treat the midpoint of 

the data (that is, the average of the two) as a best approximation to asset costs. The result of 

taking a Poisson trend on the midpoint is shown in Table 5, column 5. This is equivalent to 

taking the average of the two separate trends. The coefficient on time shows a trend of 4.9 

percent.8 

The numerical costs and trends are shown in Table 6. The first two columns are NOAA 

disaster costs and trends and the next two are BEA asset disaster costs and trends. Our preferred 

measures of asset disaster costs, trends, and residuals are shown in the final three columns. Our 

view is that the trend of disaster asset costs should be included in Consumption of Fixed Capital, 

and the residual actual costs less the trend should be included in Other Changes in the Volume of 

Assets. In particular, we have argued that the midpoint trend and the midpoint costs are the best 

estimate of these asset costs and should be so included. These real data here are deflated by the 

CPI-U, but for the National Income Accounts the relevant prices should be the replacement costs 

of the assets as is true for other components of CFC and OCVA. 

 
8 As discussed at the end of Section IV, it might be more accurate to use the full unit weight of the non-weather-and-
climate disasters of the BEA disaster data that we are aware of. Doing so gives a Poisson regression with a constant 
of 2.42 and a slightly lower time coefficient of .0472. 
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Our argument is that the needs of the national accounts with rising climate disaster costs 

will be best served by adding something like the midpoint cost trend to Consumption of Fixed 

Capital and placing the residuals from the disasters in Other Changes in the Volume of Assets, as 

shown in the final two columns of Table 5. Note that the residuals can be of either sign and by 

construction sum to zero; this contrasts with the current treatment in which OCVA is invariably 

positive. Remember as well that these annual movements in OCVA contain substantial errors, as 

noted earlier. 

Further exploration of the methodology is warranted and is pursued in the Appendix for 

robustness, using the slightly less accurate Billion-Dollar Weather and Climate Disasters costs in 

official NOAA data published in 2023. The alternative approach used there is to first investigate 

the distribution of the average annual costs, that is, per event, which are shown to be trendless. 

The most probable distributions are seen to not be fat-tailed. Here we deal with the zero in 1987 

by assuming that the data are truncated; over time we would expect a positive value to appear in 

1987 as the base year of the CPI moves along. The trend in the total annual costs is similar to 

that found using the Poisson methodology on the same data set. This trend in the annual costs 

leads to a distribution that allows for larger tail values over time. 

To compare the impact of the trend on CFC and NDP, Table 7 provides measures in 

nominal terms. We use nominals because of the inaccuracy that would be introduced by, for 

example, using the CFC overall deflator to deflate our measures of asset disaster costs and 

trends. Nominal disaster costs and the trend measure are constructed by reflating the real data 

using the CPI-U after setting the CPI-U to a February 2023 base of 100. 

If we view the trendline as the expected loss, then these expected losses have risen from 

0.12 percent of NDP to 0.40 percent. If we were to subtract these from NDP, the effect for the 44 
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years would be to decrease the annual growth rate of NDP by 0.007 percentage points, in 

nominal terms from 5.205 to 5.198 percent. 

The impact on the overall rate of depreciation is more noticeable. Without including the 

midpoint trend, Consumption of Fixed Capital as a proportion of NDP goes from 17.6 percent in 

1980 to 20.2 percent in 2022. Including the trend in the asset disaster trend, CFC as a proportion 

of NDP is 17.9 percent in 1980 and 20.5 precent in 2023. The asset disaster trend, as a proportion 

of CFC, rises from 0.7 to 2.0 percent. 

Pre-2009 method, including climate catastrophes in NDP without smoothing. 

 GDP and NDP are ex post measures. Using expectations and smoothing trendlines is not 

necessarily the best way of capturing outcomes. In this spirit, as discussed earlier, the 

unsmoothed large disaster losses used to be added to CFC and thus subtracted from NDP. This 

perhaps better captured the welfare impact of disasters but at the cost of introducing a substantial 

amount of noise into measures of NDP that are unrelated directly to production and would thus 

weaken its relationship to other economic variables, such as employment. This is not in the 

general spirit of production accounting, and it thus might be preferable to include these shocks 

into an account such as Expanded GDP (Hulten and Nakamura, 2022) designed to better capture 

welfare. 

Column 6 in Table 7 shows disaster costs as a percentage of annual NDP. It can be seen 

that these have a visible impact on NDP. In 2017, disaster costs were 1.0 percent of NDP, 

following on 0.2 percent of NDP the previous year. The difference of 0.8 percentage points 

would likely have reduced real NDP 2017 growth from 2.3 to 1.5 percent. This slow growth rate 

may have better reflected the change in well-being in that year of dreadful storms and fires than 
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the current or our proposed methodology. The counterpart would have been a much higher 

growth rate from 2017 to 2018. 

The largest impact of the increase in CFC would be on NDI, the result of subtracting CFC 

from Gross Domestic Investment, which represents the extent to which the domestic capital 

stock is augmented annually. Table 8 shows decade averages of NDI as currently published, the 

disaster trend, and the percent impact of the disaster trend on NDI in nominal terms under our 

proposed treatment. From 1980 to 1989, the correction lowers NDI by 1.4 percent; from 2014 to 

2023, NDI is lower by 6.2 percent. In 2023, the correction is 7 percent. 

Further exploration of asset disaster data might include disaggregating to the seven 

disaster-type categories that comprise them, experimenting with different but more apt deflators 

than the CPI for depreciation purposes, and perhaps replacing time as the trend-driver with some 

measure of climate change. 

VI. Summary 

 In brief, in this paper we outline a new proposed method for adjusting Consumption of 

Fixed Capital for catastrophic climate losses to make more visible the rising impact of these 

losses in NDP. The proposed measure has a small impact on the growth rate of NDP but reduces 

NDP’s level by 0.4 percent. The method used prior to 2009 can have substantial impacts on the 

year-to-year growth of NDP. Our empirical implementation reflects two sources of weather-

related costs, from NOAA and BEA, and these form an upper and lower bound on the measure 

we seek. We propose taking the midpoint of trends as our best estimate. The underlying data 

from NOAA could use further work to remove some climate and disaster costs that are not asset 

costs to facilitate their use in the US National Income and Product Accounts. In the meantime, 

these estimates are necessarily crude. 
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In addition, it would eventually be desirable to disaggregate the data broadly, by type of 

asset and by region. Disaggregation by type of asset is important for accurate deflation of costs 

of BWCD and its trend. Regional depreciation is generally not performed despite its potential 

usefulness in regional measures. 

We have taken three statistical approaches to the trend in NOAA data: a log-linear time 

trend with a dummy, a Poisson pseudo-maximum-likelihood approach, and a parametric 

approach that accounts for truncation. With the sparser data from BEA we only used the Poisson 

regression. We find a real trend of 4.9 percent annually for our preferred regression, which uses 

the midpoint of BEA and NOAA data. 
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Table 1. Schematic Design of Past and Proposed National Accounts Treatment of Disasters 
Period Consumption of Fixed 

Capital includes: 
Other Changes in the Volume 
of Assets includes: 

Pre-2009 treatment Disaster Trend and Disaster 
Residuals 

Not Applicable 

Current treatment No part of Disasters Disaster Trend and Disaster 
Residuals 

Proposed treatment Disaster Trend Disaster Residuals 
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Table 2. Annual US Disasters as Measured by NOAA and BEA (billions of 2023 US dollars, 
deflated by CPI-U) 
 
Year 

(1) 
Number of 
NOAA 
Disasters 

(2) 
NOAA 
Disasters Cost 

(3) 
10-Yr Moving 
Average of 
NOAA 
Disasters Cost 

(4) 
BEA 
Disasters Cost 

(5) 
10-Yr Moving 
Average of 
BEA Disasters 
Cost 

1980 3 44.6  1.8  
1981 2 3.4  0.0  
1982 3 5.3  2.8  
1983 6 35.5  3.3  
1984 2 3.1  0.0  
1985 7 22.0 21.1 4.8 3.5 
1986 3 7.7 18.0 0.0 3.3 
1987 0 0.0 19.6 0.0 3.6 
1988 1 53.4 26.9 0.0 7.2 
1989 6 35.6 29.8 21.9 7.7 
1990 4 14.2 31.1 0.0 11.8 
1991 4 19.2 31.9 3.3 11.8 
1992 7 78.2 33.4 38.5 11.8 
1993 5 64.2 34.9 8.6 11.8 
1994 6 16.3 32.7 41.5 11.8 
1995 6 30.4 31.5 4.7 10.3 
1996 5 22.7 31.6 0.0 10.3 
1997 3 14.9 31.8 0.0 13.2 
1998 11 31.4 26.7 0.0 9.4 
1999 5 23.9 24.0 6.3 8.5 
2000 5 15.1 31.3 0.0 9.1 
2001 3 21.3 54.5 32.7 26.4 
2002 6 26.6 54.7 0.0 26.4 
2003 7 37.6 55.0 0.0 26.4 
2004 6 89.3 61.1 46.9 29.0 
2005 6 262.2 60.6 177.7 28.4 
2006 8 24.7 61.1 0.0 28.4 
2007 5 18.4 68.6 0.0 25.1 
2008 12 91.9 81.4 26.8 31.1 
2009 9 19.3 80.8 0.0 31.1 
2010 7 19.7 74.4 0.0 26.4 
2011 18 95.9 51.2 0.0 8.7 
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2012 11 155.3 54.8 60.0 8.7 
2013 10 31.6 79.1 0.0 21.5 
2014 10 25.0 81.2 0.0 25.0 
2015 11 30.3 84.7 0.0 25.0 
2016 15 60.1 94.6 0.0 25.0 
2017 18 261.4 101.1 128.0 31.9 
2018 16 113.5 103.2 61.5 32.0 
2019 14 54.3 108.9 0.0 32.0 
2020 22 118.2  0.0  
2021 20 160.8  69.0  
2022 17 176.5  61.8  
2023 27 88.8  0.0  
Total 372 2523.8  802.0  

 
Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Table 3. Decade Averages of NOAA Disaster Events and Costs, and BEA Disaster Costs 
(billions of 2023 US dollars, deflated by CPI-U) 
 (1) (2) (3) (4) 
Decade Number of NOAA 

Disasters 
NOAA Disasters 
Cost 

Cost per NOAA 
Disaster 

BEA 
Disaster 
Costs 

1980–89 3.3 21.1 6.4 3.5 
1990–99 5.6 31.5 5.6 10.3 
2000–09 6.7 60.6 9.1 28.4 
2010–19 3.0 84.7 6.5 25.0 
2014–23 17.0 108.9 6.4 32.0 

  
Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Table 4. Large BEA and NOAA Events: BEA Events Exceeding .001 Times GDP and NOAA 
Events Exceeding .0015 Times GDP (billions of 2023 US dollars, deflated by CPI-U) 
Year BEA Disaster Costs NOAA Disaster Costs 
1980  39.7 
1988  53.4 
1989 21.9 22.2 
1992 38.5 59.1 
2004 46.9 33.2 
2005 177.7 196.3 
2008 26.8 42.3 
2012 60.0 127.3 
2017 128.0 205.9 
2018 61.5  
2021 69.0 83.1 
2022 61.8 116.3 
Total 692.1 1024.1 

 
Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Table 5. Coefficients of Time in Trend Regressions on Disaster Costs 
 (1) (2) (3) (4) (5) 
Disaster Costs 
Source 

NOAA NOAA NOAA BEA Midpoint 
BEA and 
NOAA 

Regression 
Type 

OLS  OLS Poisson Poisson Poisson 

Constant 
St. err 
(prob) 

2.199 
.343 
(.000) 

2.392 
.304 
(.000) 

2.747 
.284 
(.000) 

1.64 
.555 
(.003) 

2.33 
.322 
(.000) 

Time 
St. err. 
(prob) 

.0576 

.0116 
(.000) 

.0518 

.0107 
(.000) 

.0494 

.0085 
(.000) 

.0481 

.0165 
(.004) 

.0491 

.0097 
(.000) 

Dummy for 
1987 

No Yes No No No 

1987 cost =1 Yes  Yes No No No 
Columns 1 and 2 are OLS regressions of log BWCD costs on time with a constant. Column 1 
substitutes log BWCD(1987) = 0. Column 2 adds a dummy for the year 1987. Column 3 is the 
Poisson pseudo-maximum-likelihood regression of BWCD costs on time. Column 4 is the 
Poisson pseudo-maximum-likelihood regression of BEA costs on time. Standard errors are 
robust. Results for non-robust standard errors are tighter and for bootstraps somewhat looser 
but all are better than .013 percent and available upon request. 

 
Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Table 6. BEA and NOAA Disaster Costs with Trends Based on Poisson Trend Regressions 
(billions of 2023 US Dollars, deflated by CPI-U) 

Year 

Total 
NOAA 
Costs 

NOAA 
Trend 

Total 
BEA 
Costs 

BEA 
Trend 

Disaster 
(Midpoint) 
Costs 

Disaster 
Trend: 
To CFC 

Disaster 
Residual: 
To OCVA 

1980 44.6 16.4 1.8 5.4 23.2 10.9 12.32 
1981 3.4 17.2 0.0 5.7 1.7 11.4 -9.75 
1982 5.3 18.1 2.8 6.0 4.1 12.0 -7.97 
1983 35.5 19.0 3.3 6.3 19.4 12.6 6.79 
1984 3.1 20.0 0.0 6.6 1.6 13.3 -11.71 
1985 22.0 21.0 4.8 6.9 13.4 13.9 -0.55 
1986 7.7 22.0 0.0 7.2 3.9 14.6 -10.78 
1987 0.0 23.2 0.0 7.6 0.0 15.4 -15.37 
1988 53.4 24.3 0.0 8.0 26.7 16.1 10.56 
1989 35.6 25.6 21.9 8.3 28.7 17.0 11.79 
1990 14.2 26.9 0.0 8.8 7.1 17.8 -10.71 
1991 19.2 28.2 3.3 9.2 11.3 18.7 -7.45 
1992 78.2 29.7 38.5 9.6 58.3 19.6 38.68 
1993 64.2 31.2 8.6 10.1 36.4 20.6 15.74 
1994 16.3 32.7 41.5 10.6 28.9 21.7 7.22 
1995 30.4 34.4 4.7 11.1 17.6 22.8 -5.18 
1996 22.7 36.1 0.0 11.7 11.4 23.9 -12.56 
1997 14.9 38.0 0.0 12.3 7.5 25.1 -17.67 
1998 31.4 39.9 0.0 12.9 15.7 26.4 -10.69 
1999 23.9 41.9 6.3 13.5 15.1 27.7 -12.59 
2000 15.1 44.0 0.0 14.2 7.6 29.1 -21.56 
2001 21.3 46.3 32.7 14.9 27.0 30.6 -3.57 
2002 26.6 48.6 0.0 15.6 13.3 32.1 -18.81 
2003 37.6 51.1 0.0 16.4 18.8 33.7 -14.93 
2004 89.3 53.7 46.9 17.2 68.1 35.4 32.67 
2005 262.2 56.4 177.7 18.0 220.0 37.2 182.75 
2006 24.7 59.3 0.0 18.9 12.4 39.1 -26.73 
2007 18.4 62.3 0.0 19.8 9.2 41.0 -31.85 
2008 91.9 65.4 26.8 20.8 59.3 43.1 16.21 
2009 19.3 68.7 0.0 21.8 9.7 45.3 -35.64 
2010 19.7 72.2 0.0 22.9 9.9 47.6 -37.72 
2011 95.9 75.9 0.0 24.0 48.0 50.0 -2.01 
2012 155.3 79.7 60.0 25.2 107.7 52.5 55.18 
2013 31.6 83.8 0.0 26.5 15.8 55.1 -39.32 
2014 25.0 88.0 0.0 27.8 12.5 57.9 -45.40 
2015 30.3 92.5 0.0 29.1 15.2 60.8 -45.66 
2016 60.1 97.2 0.0 30.6 30.1 63.9 -33.82 
2017 261.4 102.1 128.0 32.1 194.7 67.1 127.65 
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2018 113.5 107.3 61.5 33.7 87.5 70.5 17.02 
2019 54.3 112.7 0.0 35.3 27.1 74.0 -46.88 
2020 118.2 118.4 0.0 37.1 59.1 77.7 -18.64 
2021 160.8 124.4 69.0 38.9 114.9 81.7 33.24 
2022 176.5 130.7 61.8 40.8 119.1 85.8 33.38 
2023 88.8 137.4 0.0 42.8 44.4 90.1 -45.69 

 
Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
  



 33 

 
Table 7. Impact of Costs and Trend of Including Billion-Dollar Weather and Climate Disasters in 
Consumption of Fixed Capital, in Nominal Terms 
 Billions of Dollars Percent of Net Domestic Product 
 
Year 

(1) 
NDP 

(2) 
CFC 

(3) 
Disaster 
Costs 

(4) 
Disaster 
Trend 

(5) 
Disaster 
Costs 

(6) 
Disaster 
Trend 

(7) 
CFC 

(8) 
CFC + 
Costs 

(9) 
CFC + 
Trend 

1980 2428.9 428.4 6.3 3.0 0.26% 0.12% 17.6% 17.9% 17.8% 
1981 2719.8 487.2 0.5 3.5 0.02% 0.13% 17.9% 17.9% 18.0% 
1982 2806.8 537.0 1.3 3.8 0.05% 0.14% 19.1% 19.2% 19.3% 
1983 3071.4 562.6 6.4 4.2 0.21% 0.14% 18.3% 18.5% 18.5% 
1984 3439.2 598.4 0.5 4.6 0.02% 0.13% 17.4% 17.4% 17.5% 
1985 3698.8 640.1 4.8 5.0 0.13% 0.13% 17.3% 17.4% 17.4% 
1986 3894.3 685.3 1.4 5.3 0.04% 0.14% 17.6% 17.6% 17.7% 
1987 4124.8 730.4 0.0 5.8 0.00% 0.14% 17.7% 17.7% 17.8% 
1988 4451.9 784.5 10.5 6.3 0.24% 0.14% 17.6% 17.9% 17.8% 
1989 4803.3 838.3 11.8 7.0 0.25% 0.15% 17.5% 17.7% 17.6% 
1990 5074.6 888.5 3.1 7.7 0.06% 0.15% 17.5% 17.6% 17.7% 
1991 5225.7 932.4 5.1 8.4 0.10% 0.16% 17.8% 17.9% 18.0% 
1992 5560.1 960.2 27.1 9.1 0.49% 0.16% 17.3% 17.8% 17.4% 
1993 5855.1 1003.5 17.4 9.9 0.30% 0.17% 17.1% 17.4% 17.3% 
1994 6231.6 1055.6 14.2 10.7 0.23% 0.17% 16.9% 17.2% 17.1% 
1995 6517.4 1122.4 8.9 11.5 0.14% 0.18% 17.2% 17.4% 17.4% 
1996 6897.8 1175.3 5.9 12.4 0.09% 0.18% 17.0% 17.1% 17.2% 
1997 7338.2 1239.3 4.0 13.4 0.05% 0.18% 16.9% 16.9% 17.1% 
1998 7753.1 1309.7 8.5 14.3 0.11% 0.18% 16.9% 17.0% 17.1% 
1999 8232.2 1398.9 8.4 15.3 0.10% 0.19% 17.0% 17.1% 17.2% 
2000 8739.7 1511.2 4.3 16.6 0.05% 0.19% 17.3% 17.3% 17.5% 
2001 8982.4 1599.5 15.9 18.0 0.18% 0.20% 17.8% 18.0% 18.0% 
2002 9271.1 1658.0 7.9 19.2 0.09% 0.21% 17.9% 18.0% 18.1% 
2003 9737.4 1719.1 11.5 20.6 0.12% 0.21% 17.7% 17.8% 17.9% 
2004 10395.4 1821.8 42.7 22.2 0.41% 0.21% 17.5% 17.9% 17.7% 
2005 11068.1 1971.1 142.5 24.1 1.29% 0.22% 17.8% 19.1% 18.0% 
2006 11691.4 2124.2 8.3 26.1 0.07% 0.22% 18.2% 18.2% 18.4% 
2007 12221.5 2252.8 6.3 28.2 0.05% 0.23% 18.4% 18.5% 18.7% 
2008 12410.9 2359.0 42.4 30.8 0.34% 0.25% 19.0% 19.3% 19.3% 
2009 12106.8 2371.3 6.9 32.2 0.06% 0.27% 19.6% 19.6% 19.9% 
2010 12658.6 2390.4 7.1 34.4 0.06% 0.27% 18.9% 18.9% 19.2% 
2011 13125.4 2474.4 35.8 37.3 0.27% 0.28% 18.9% 19.1% 19.1% 
2012 13678.4 2575.5 82.0 40.0 0.60% 0.29% 18.8% 19.4% 19.1% 
2013 14199.1 2681.6 12.2 42.6 0.09% 0.30% 18.9% 19.0% 19.2% 
2014 14788.5 2819.7 9.8 45.5 0.07% 0.31% 19.1% 19.1% 19.4% 



 34 

2015 15372.1 2922.9 11.9 47.8 0.08% 0.31% 19.0% 19.1% 19.3% 
2016 15796.8 3008.1 23.9 50.8 0.15% 0.32% 19.0% 19.2% 19.4% 
2017 16463.1 3149.0 158.3 54.5 0.96% 0.33% 19.1% 20.1% 19.5% 
2018 17343.9 3312.6 72.9 58.7 0.42% 0.34% 19.1% 19.5% 19.4% 
2019 18041.6 3479.8 23.0 62.8 0.13% 0.35% 19.3% 19.4% 19.6% 
2020 17697.4 3625.5 50.7 66.7 0.29% 0.38% 20.5% 20.8% 20.9% 
2021 19720.7 3873.3 103.3 73.4 0.52% 0.37% 19.6% 20.2% 20.0% 
2022 21444.2 4299.9 115.6 83.2 0.54% 0.39% 20.1% 20.6% 20.4% 
2023 22772.5 4585.4 44.9 91.0 0.20% 0.40% 20.1% 20.3% 20.5% 
Growth 
rate 5.2% 5.5% 4.5% 8.0%      

 
Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations.  
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Table 8. Impact on Net Domestic Investment of Including Disaster Trend, 1980 to 2023 Decade 
Averages and 2023 Annual (billions of dollars, nominal) 

 
Net Domestic 
Investment Disaster Trend 

Corrected Net 
Domestic Investment 
Reduction 

1980–89 341.3 4.8 1.4% 
1990–99 521.8 11.3 2.2% 
2000–09 802.6 23.8 3.0% 
2010–19 797.2 47.4 5.9% 
2014–23 1016.5 63.4 6.2% 
2023 1250.6 91.0 7.3% 

 
Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations.  
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Sources: NOAA National Centers for Environmental Information (2024); private 
communication, Haver; authors’ calculations. 
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Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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Sources: NOAA National Centers for Environmental Information (2024); private communication 
with Adam Smith of NOAA; Haver; authors’ calculations. 
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ONLINE APPENDIX 

Alternative statistical approach to distributions and trend as a robustness check 

Note: The following exercise was conducted with published NOAA Billion-Dollar Weather 

and Climate Disasters data collected in February 2023 that include NOAA climate costs from 

Puerto Rico, the US Virgin Islands, and Guam. 

 

We can take a parametric approach to the problem of the zero for 1987 from the statistical 

perspective of truncation; that is, assume that there is some positive value of cost in 1987 but it 

has been truncated to zero9 and that there is some parametric distribution from which the annual 

draws are being made. We begin by approaching the distributions that best describe the real 

average annual $billion+ disaster-cost10 and then move on to total $billion+ disaster-cost series. 

The statistical approach explicitly accounts for left truncation (e.g., the absence of average-cost 

observations below $1 billion or of total-cost observations below $k billion in years with k 

disasters in excess of $1 billion). Finally, the choice of distribution might bear on Weitzman’s 

(2009, 2011, 2014) apprehensions of thick-tailed climate risks. 

We follow the well-worn path of estimating the distributions of average and total real 

disaster costs by maximum likelihood, testing a dozen more-or-less well-known two-parameter, 

right-skewed densities on the positive domain. These, with their parameters to be fit, are: 

Beta Prime (p>0, q>0) Birnbaum-Saunders (α>0, λ>0) Fréchet (β>0, θ>0) 

 Gamma (ν>0, δ>0) Inverse Gamma (ν>0, δ>0) Inverse Gaussian (µ>0, λ>0) 

 
9 As years go by, it is likely that the 1987 datum will be filled in and the zero will disappear as the 1987 CPI 
becomes smaller relative to the current year with the passage of time; in this sense the data set is truncated. Note that 
average costs do not exist for 1987 but would come into being when the datum gets filled in. 
10 Just what you would think: real total $billion+ costs, divided by the number of $billion+ events, year by year. This 
works because NOAA does not count costs from events that have not cleared the billion-dollar disaster threshold. 
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LogLogistic (γ>0, σ>0) LogNormal (µ, σ>0) Nakagami (µ>0, ω>0) 

Shifted Gompertz (λ>0, ξ) 0-Shifted Gompertz (λ>0, ξ) Weibull (β>0, θ>0). 

For most of these distributions, the first parameter is termed a “shape” coefficient, while 

the second is some measure of distributional width called “scale” or “spread” (or even variance). 

The exceptions are the Beta Prime, where both are shape parameters; the Gamma, where we use 

“rate” parameter δ (the reciprocal of the scale parameter, but very much the scale parameter for 

the Inverse Gamma), owing to its connection to the well-known geometric depreciation rate δ for 

an asset type whose individual members have Gamma-distributed service-lives; the LogNormal, 

where the random variable’s log-mean is µ and log-variance is σ2; and the Shifted and 0-Shifted 

Gompertz, where shape and scale are reversed. Three of the distributions (Beta Prime, 

LogLogistic, and LogNormal) have thick right tails, whose density functions approach zero at 

slower-than-exponential rates; eight have thin right tails (i.e., exponential decay); and the 

Weibull’s right tail is thick for β<1 but thin otherwise. With only 42 observations,11 we do not 

have the luxury of three- or four-parameter forms for higher moments, leaving these to be settled 

implicitly by the best nonnested choice among distributions, typically an Akaike-type 

comparison. In view of all the distributions having the same number of parameters, this boils 

down to an exponentiated difference among log likelihoods. All 12 of the distributions at least 

allow a single interior mode, depending on parameter values; half of them (Birnbaum-Saunders, 

Fréchet, Inverse Gamma, Inverse Gaussian, LogNormal, and 0-Shifted Gompertz) compel it. 

Alone among the 12, the Shifted Gompertz may increase from a positive density at the origin to 

an interior mode; one may consider this a feature or a bug. To the extent it is a bug, a 

 
11 We drop 1987’s count and cost of zero here, viewing them as truncation victims, not genuine zeroes.  
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modification to the 0-Shifted Gompertz form imposes a zero density at the origin.12 There are 

surely other two-parameter distributions that we’ve neglected and could be persuaded to fit, 

subject to diminishing returns. 

These regressions allow for truncation of the billion-dollar minimum in the following 

way: Any mass below $1 billion is truncated, because unless disasters rise above the billion-

dollar threshold their mass cannot appear. So, the regressions select the maximum likelihood 

distribution for the given density assuming a truncation below $1 billion with 42 positive 

observations and one truncated. 

Rudimentary test-regressions of average real costs against a constant and “latter-part” 

time-dummy rejected the hypothesis of differences between the earlier and latter parts of the 

1980 to 2022 real $billion+ average-cost series no matter where the split between early and late 

was placed. So, the parameters to be estimated for average costs are simple, with the best fit 

maximizing the log-likelihood implied by a left-truncated Fréchet density: 

 

 (4.1) 

 

and the second-best, some 29 percent less likely, maximizing the log-likelihood implied by a 

left-truncated Inverse Gamma density: 

 

 (4.2) 

 

 
12 That is, when the other 11 densities have a positive interior mode (i.e., supx f(x) occurs at x > 0), they also happen 
to have limx→0 f(x) = 0, while the Shifted Gompertz density still permits limx→0 f(x) > 0. The algebraic form of the 
Shifted Gompertz density is: f(x) = λ Exp[–λ x – ξ e–λ x] (1 + ξ(1 – Exp[–λ x])). The modification to the 0-Shifted 
Gompertz density is: f(x) = {λ (1 + ξ)2/(ξ + Exp[–1–ξ])} Exp[–λ x – (1 + ξ) e–λ x] (1 – Exp[–λ x]). 
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Full details of the fits, for these distributions and the other ten, are given in Appendix Table 1.13 

Both the Fréchet and Inverse Gamma densities are characterized by thin right tails. 

Appendix Figure 1 provides a visual comparison of the two best estimates against a histogram of 

real average costs, which shows excellent fits, although it is clear the log-likelihood criterion is 

rewarding agreement with the mode, not the right tail. The largest outlier, at $51.4 billion, 

represents a three-month drought in 1988; the next largest, at $41.25 billion, averages across six 

disasters in 2005, including a six-month drought and four hurricanes. These aren’t enough to 

allay Weitzman’s concerns, which use Bayesian updating to infer the cost responses to average 

temperatures beyond the historical range and could finish with a thick-tailed distribution even 

from thin-tailed priors; but finding a thick-tailed distribution of average costs now (such as the 

Beta Prime or LogLogistic, the third and fourth likeliest densities for these data) would have 

gone some distance to confirm them. Finally, neither the Inverse Gamma nor the Fréchet fits 

leaves much mass below the $1 billion mark: just two-tenths of a percent of the full Inverse 

Gamma density, and two hundredths of a percent of the full Fréchet. NOAA’s billion-dollar cut, 

then, is harmless from this perspective. 

This statistical background to the data then provides us with a new approach to trend 

growth in total annual costs, if we swap out the simple parameters of the average-cost models for 

compound parameters permitting constant growth-rates (e.g., β → βo Exp[β1(t – 2001)]). This 

forces any sign restrictions onto the “βo”-coefficients, while allowing the time coefficients to go 

either way. It also compels 42 observations to bear the statistical weight of four unknowns, 

which not all dozen forms can accommodate. In Appendix Table 2, at least one time coefficient 

 
13 All the time series in Tables 3 and 8 exclude 1987, so “t = 1980 . . . 2022” really means t = 1980 . . . 1986, 1988 . . 
. 2022. 
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is not statistically different from zero for 11 of the 12 distributions (indicated by grayed 

numbers). Two thin-tailed distributions, the Birnbaum-Saunders and Inverse Gaussian, are about 

equally likely and at least 63 percent more likely than the thick-tailed LogNormal, which finishes 

third. Of these, we choose the Inverse Normal for closer examination, as all four of its 

coefficients are significant and its (untruncated) mean is easy to read: µo Exp[µ1(t–2001)]. The µ1 

term is a complementary estimate of the disaster-induced depreciation rate, whose value, .055 ± 

.026, is essentially the same as the Poisson pseudo-maximum-likelihood regression result but 

accounts for disasters below the $1 billion cutoff. Over the whole 1980 to 2022 period, the 

estimated left-truncated conditional mean:  

 

 

  

…14 (6.3) 

 

averages $138 million less than the (left-truncated) observations—essentially unbiased, within 

the spread of the data. Root mean squared error of $60.4 billion is in line with other distributions. 

 Appendix Figure 2 plots the trending untruncated mean and its 90 percent confidence 

interval, as well as the left-truncated conditional mean, against the data used to fit them, making 

plain the problem: real GDP growth over the same period averaged 2.6 log-points a year, not 

 
14 The left-truncated mean at (6.3) is conditional on kt, the count of disasters in year t. We have not estimated the best 
discrete trending distribution of the counts, which would enable forming an expected left-truncated mean as the 
product of (6.3) and the disaster counts’ probability mass function, summed together from zero disasters up. 
  As it stands, (6.3) already has a lot to unpack. µo Exp[µ1(t–2001)], outside the big parentheses, is the untruncated 
mean. The expression inside limits to 1 as kt drops from 1 to 0 but has been driven near 1 even in years with several 
disasters, owing to strong trends in the best-fit Inverse Gaussian model. (The parenthetical term in (6.3) averaged 1.11 
through 2001 but just 1.01 since then.) The expression includes λo Exp[λ1(t–2001)], the time-trending scale term for 
the Inverse Gaussian distribution. “Erfc” is the complementary error function. 
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quite half the 5.5 log-point growth rate of the disaster density’s simple mean. And we are only 

counting monetized disasters, not costs that have been kept off the books. Monetized growth at 

historical rates will not solve this. The data’s two apparent outliers—$253.5 billion in 2005, and 

$373.2 billion in 2017—aren’t so extreme. The 2005 disaster cost-sum cleared 98.6 percent of its 

distribution; the 2017 sum of 18 disasters, including Hurricanes Harvey and Maria that together 

cost $260.15 billion, exceeded 97.8 percent of its distribution. Appendix Figure 3, showing this 

time of changes in the Inverse Gaussian density across the start, middle, and end years of the 

data, suggests thick-tailed damage distributions are less to worry about than the rapid rightward 

movement of the best-fit thin-tailed ones. The fact that the distribution of the average does not 

evolve over time does not contradict the possibility that climate events are worsening over time. 

Since the number of events is rising, with this distribution we see that larger damage events 

become more likely. 
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Appendix Table 1: Distributional Fits of Real $Billion+ Disaster Average Costs: All Categories 
 
Right-Skewed Log- Relative E  s  t  i  m  a  t  e  d      P  a  r  a  m  e  t  e  r  s 
Distributions Likelihood Likelihood plus common names, “symbolic names,” and (standard errors) 

Beta Prime –116.336 .426 shape1: 10.8918 shape2: 2.479 
   “p” (2.71925) “q” (.542588) 
 
Birnbaum-Saunders –119.57 .017 shape: .906201 scale: .182144 
   “α” (.118233) “λ” (.025891) 
 
Fréchet –115.482 1.000 shape: 1.6282 scale: 3.68885 
   “β” (.198986) “θ” (.368901) 
 
Gamma –121.937 .002 shape: .679122 rate: .113359 
   “ν” (.364234) “δ” (.0430756) 
 
Inverse Gamma –115.828 .708 shape: 2.17369 scale: 8.90382 
   “ν” (.455594) “δ” (2.14577) 
 
Inverse Gaussian –118.128 .071 mean: 7.68018 scale: 8.03213 
   “µ” (1.16037) “λ” (2.11652) 
 
LogLogistic –117.047 .209 shape: 2.15336 scale: 4.68154 
   “γ” (.332659) “σ” (.601382) 
 
LogNormal –118.153 .069 log mean: 1.60533 log st.dev.: .839389 
   “µ” (.14495) “σ” (.114362) 
 
Nakagami –124.612 .000 shape: .0176309 spread: 16.1309 
   “µ” (.103573) “ω” (89.1938) 
 
Shifted Gompertz –120.288 .008 scale: .08393 shape: –.820207 
   “λ” (.0226204) “ξ” (.186773) 
 
0-Shifted Gompertz –118.386 .055 scale: .0691993 shape: –6.97187 
   “λ” (.0272583) “ξ” (2.07595) 
 
Weibull –121.325 .003 shape: .79129 scale: 5.22268 
   “β” (.15161
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Appendix Table 2. Distributional Fits of Real $Billion+ Disaster Total Costs: All Categories 
Right-Skewed Log- Relative Bias RMSE E  s  t  i  m  a  t  e  d      C  o  m  p  o  u  n  d      P  a  r  a  m  e  t  e  r  s 
Distributions Likelihood Likelihood ($b) ($b) plus common names, “symbolic names,” and (standard errors) 

Beta Prime –197.673 .485 8.901 61.241 shape1: 40.5052 Exp[.0811699 (t–2001)] shape2: 1.75943 Exp[.0168785 (t–2001)] 
     “p” (11.7806) (.0235713) “q” (.376558) (.0167904)  
       
Birnbaum-Saunders –196.950 1.000 0.085 60.309 shape: .980061 Exp[–.0136655 (t–2001)] scale: .0335939 Exp[–.0645278 (t–2001)] 
     “α” (.149781) (.0122796) “λ” (.00685833) (.0161629) 
       
Fréchet –197.849 .407 26.656 66.549  shape: 1.37813 Exp[.0110488 (t–2001)] scale: 20.7513 Exp[.0634793 (t–2001)] 
     “β” (.182445) (.0101076) “θ” (3.00922) (.0119986) 
 
Gamma –198.203 .286 –.089 59.986  shape: .784585 Exp[.0349533 (t–2001)] rate: .0213649 Exp[–.0289422 (t–2001)] 
     “ν” (.433373) (.0456968) “δ” (.00776772) (.0301939) 
 
Inverse Gamma –197.704 .470 11.190 61.827  shape: 1.70236 Exp[.0186451 (t–2001)] scale: 38.1375 Exp[.084663 (t–2001)] 
     “ν” (.360215) (.0165422) “δ” (11.002) (.023096) 
 
Inverse Gaussian –196.987 .964 –.138 60.388  mean: 45.1276 Exp[.0549304 (t–2001)] scale: 40.8526 Exp[.0815162 (t–2001)] 
     “µ” (7.62016) (.0130145) “λ” (12.682) (.0254605) 
       
LogLogistic –198.356 .245 7.940 60.902  shape: 1.75545 Exp[.0152873 (t–2001)] scale: 27.0669 Exp[.065988 (t–2001)] 
     “γ” (.27844) (.0127781) “σ” (5.64875) (.0167152) 
 
LogNormal –197.476 .591 –.002 60.228 log mean: 3.27848 Exp[.0184774 (t–2001)] log st.dev.: .923171Exp[–.0133995 (t–2001)] 
     “µ” (.218002) (.00472766) “σ” (.133325) (.0112629)  
 
Nakagami –198.969 .133 2.045 59.717  shape: .133338 Exp[.0416551 (t–2001)] spread: 2066.40 Exp[.130442 (t–2001)] 
     “µ” (.168947) (.105312) “ω” (2088.39) (.0784113)  
 
Shifted Gompertz –198.435 .227 .233 59.860 scale: .0201948 Exp[–.0517307 (t–2001)] shape: –.369074 Exp[–.00177979 (t–2001)] 
     “λ” (.0093601) (.0226891) “ξ” (.652717) (.0759158) 
 
0-Shifted Gompertz –198.333 .251 –.925 60.141  scale: .0171497 Exp[–.0634646 (t–2001)] shape: –4.71906 Exp[.00892219 (t–2001)] 
     “λ” (.0112181) (.0422827) “ξ” (2.77569) (.0355841) 
       
Weibull –198.329 .252 –.206 59.927 shape: .892922 Exp[.0109593 (t–2001)] scale: 36.0153 Exp[.0631081 (t–2001)] 

     “β” (.181389) (.0169996) “θ” (10.7001) (.02398) 



 50 

Appendix Figure 1. 

 

 

Notes: 

 Shaded Bars = histogram of $1b+ disasters 

 Blue Line = Fréchet probability density function (100% of disasters ≥ $0) 

 Red Line = Inverse Gamma probability density function (100% of disasters ≥ $0) 

Costs are deflated by the 2022 CPI. 
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Appendix Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 

 Rough Red Line = fitted left-truncated means (used in calculations of bias and RMSE) 

 Smooth Blue Line = estimated complete means (used for the time-based damage function) 

 Shaded Region = 90% confidence interval about complete means 

 Costs are deflated by the 2022 CPI. 
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Appendix Figure 3. 
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