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Abstract
Using data on expected flood damage and National Flood Insurance Program

policies, we estimate annual flood risk protection gaps and underinsurance among
single-family residences in the contiguous United States. Annually, 70 percent ($17.1
billion) of total flood losses would be uninsured. Underinsurance, defined as protection
gaps among properties with positive flood risk and incentives to purchase full flood
insurance coverage, totals $15.7 billion annually. Eighty percent of at-risk households are
underinsured, and average underinsurance is $7,208 per year. Underinsurance persists
both inside and outside the Federal Emergency Management Agency’s special flood
hazard areas, suggesting frictions in the provision of risk information and regulatory
compliance. Seventy percent of uninsured households would benefit from purchasing
flood insurance, even as prevailing prices rise. Household beliefs about climate risks are
strongly correlated with underinsurance.
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Physical climate risks have become more frequent and severe over time, and impact

important economic outcomes such as local economic conditions, migration, home prices, and

mortgage performance.1 Homeowners insurance mitigates the financial risks from natural

disasters collectively faced by homeowners, mortgage borrowers, lenders, and investors, but

does not cover flooding. As a result, the National Flood Insurance Program (NFIP) is the

primary financial protection against the $24.4 billion of expected annual flood-related property

losses for single-family residences (SFRs).2 Yet, if flood insurance does not adequately cover

flood losses, agents in housing and mortgage markets become more exposed to physical

climate risks than expected.

Trends in broader property insurance markets show a reduction in coverage against climate

losses. Insurers are exiting markets with high physical climate risks, such as California and

Florida, citing the rising costs of protecting against natural disasters (Boomhower et al., 2024;

Sastry et al., 2023). Particularly for flooding, the NFIP faces financial stress, as large claims

relative to premium revenue have left the program in more than $20 billion of debt to the

U.S. Treasury (Horn and Webel, 2024). Understanding the magnitude of this insurance crisis

is necessary to identify potential solutions for the mitigation of financial losses from physical

climate risks.

This paper serves as the important first step of quantifying flood underinsurance to

understand if current levels of flood insurance coverage would protect against expected flood

losses and if the resulting protection gaps are economically inefficient. Related existing

studies have considered complementary questions. Wing et al. (2022) and Wylie et al. (2024)

document the magnitude of damage from floods and other physical climate risks, and show

inequities in the distribution of damage faced by poorer communities. Weill (2023) identifies a

mismatch between flood risks and FEMA flood maps, which provide information about flood

1For works on local economic conditions and migration, see Hsiang et al. (2017); Boustan et al. (2020); Bilal
and Rossi-Hansberg (2023); Indaco and Ortega (2023). For the pricing of physical climate risks in housing,
see Atreya et al. (2013); Ortega and Tas.pinar (2018); Gibson and Mullins (2020); Gourevitch et al. (2023);
Addoum et al. (2021); Bernstein et al. (2019); Baldauf et al. (2020); Keys and Mulder (2020); Atreya and
Czajkowski (2019); Murfin and Spiegel (2020); Hino and Burke (2021). For analysis on the impact of natural
disasters on mortgage performance, see Gallagher and Hartley (2017); Kousky et al. (2020); Ratcliffe et al.
(2020); Du and Zhao (2020); Issler et al. (2023); Billings et al. (2022); Panjwani (2022); An et al. (2022,
2023); Biswas et al. (2023).

2Authors’ calculation using First Street Foundation estimates of average annual flood losses. The next section
details the steps to calculate this value.
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risk and enforce insurance purchase requirements. Recent research on mortgage borrowers’

homeowners insurance holdings, which does not cover flood damage, documents a sharp rise

in premiums and decline in the share of rebuilding costs covered (Keys and Mulder, 2024;

Sastry et al., 2024). Our paper fills the gap in the literature by measuring and describing the

amount of underinsurance related to flooding faced by owners of SFRs.

First, we measure protection gaps by aggregating individual properties’ expected flood

damage that exceeds existing flood insurance coverage. Second, we estimate flood underinsur-

ance by identifying protection gaps for properties that have suboptimal rates of full coverage

as suggested by existing economic models of insurance demand. Third, we calculate the

expected increase in underinsurance over the next thirty years for common climate scenarios.

Fourth, we provide the distribution of underinsurance across locations, income, and race to

understand which populations and areas face the largest insurance deficits. Last, we compare

our measure of underinsurance and insurance premiums under counterfactual scenarios to

calculate the expected benefit of purchasing flood insurance for uninsured homes.

Results
We measure flood protection gaps and underinsurance for SFRs in the contiguous U.S. by

combining current estimates and 30-year projections of property-level flood damage in dollars

from the First Street Foundation (FSF) with administrative data on flood insurance policies

from the NFIP. Assuming adverse selection, we assign the highest observed coverage limits

to the homes with the largest expected losses within a local area. This assumption ensures

that we measure a lower bound on protection gaps and underinsurance because the riskiest

properties in our merged data set have the most coverage.

We calculate the amount of flood losses that would not be covered by flood insurance.

A property i with a coverage limit of Ci that is affected by a flood event j, which causes

damage Dij, would face a deficit δij of

δij = max{0, Dij − Ci}.3

3This calculation abstracts away from policy deductibles. In a separate calculation, we add the deductible
amount to each home’s insurance coverage Ci, interpreting the policy deductible as the amount the homeowner
is willing to pay out-of-pocket in the event of flood damage.
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Events with damage lower than the coverage limit would result in a deficit of zero because

insurance payouts are capped by damage. Therefore, properties that have more coverage

than damage from all possible events have an expected deficit of zero. This definition allows

us to correctly aggregate deficits to total protection gaps and underinsurance, as any excess

insurance coverage cannot be transferred across properties.

We observe flood damage for a discrete number of J events covering a subset of return

periods. The return period provides an interval and the inverse of this interval defines the

exceedance probability Pj as the likelihood that damage would exceed a certain amount.

For example, a property would experience annual damage of at least as much as a 100 year

return period event (or 1 in 100 year event) with probability Pj = 1
100 . These events are

ordered from most likely and least damaging to least likely and most damaging; that is, Pj is

decreasing in j and δij is increasing in j. We characterize any event that leads to no damage

as j = 0, in which case δi0 = 0 and P0 = 1.

For each property, the expected protection gap is E(δi) across the distribution of flood

events. As we do not observe the full distribution, we estimate the protection gap as

Gi =
J∑

j=1
(Pj−1 − Pj) · δij−1.

The estimate Gi is a left Riemann sum that provides a lower bound for expected protection

gaps E(δi). Specifically, we approximate the expected damage for the interval of unobserved

events in between two observed events, j − 1 and j, using damage from event j, the most

likely and least damaging event in the interval. Figure A.3 illustrates that the discrete sum

utilized in our estimation is a lower bound for the expected protection gap.

Protection gaps provide a descriptive measure, but the economic implications are unclear.

Households may rationally purchase coverage that does not fully protect against expected

damage as motivated by the price of insurance, expectations, and preferences. For example,

households that expect low losses may have a willingness to pay that is lower than prevailing

insurance premiums. Therefore, we provide a measure of economic underinsurance.

We define economic underinsurance as the expected protection gap faced by households

for whom it is optimal to purchase full flood insurance coverage. Based on existing models of
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insurance demand, the annual premium, pi, being less than or equal to expected losses in a

year, E(Di), is a sufficient condition for full coverage to be optimal under the assumption of

risk-aversion (Mossin, 1968; Einav et al., 2010).4 Intuitively, households that face actuarially

fair or favorable pricing should fully insure their property against flood damage. Any

protection gap faced by these households would be economically inefficient.5

We estimate underinsurance as

Ui = 1(pi ≤ E(Di)) · Gi.

The estimate Ui is a lower bound for economic underinsurance for two reasons. First, similar

to protection gaps, the discrete sum used to estimate Ui is lower than the underinsurance

for households that have optimal demand for full insurance coverage for their property,

E(δi|pi ≤ E(Di)). Second, we only include households that have optimal demand for full

insurance coverage in our estimate. Our measure of underinsurance assumes that all protection

gaps for households who optimally demand partial insurance coverage are efficient. Last, we

aggregate across property-level underinsurance to total underinsurance. Appendix A provides

additional details about the data and this approximation method.

Protection Gaps
Among the 92.3 million SFRs in the U.S., nearly 6 million face average annual losses (AALs)

greater than zero. AAL measures the amount of flood-related losses, in dollars, a specific

property expects to face in a year. Panel A of Table 1 shows that, for residences with positive

AALs, the average protection gap is $2,865 (in 2023 US dollars), with 85 percent of at-risk

SFRs having insurance coverage lower than their AALs.6 In total, $17.1 billion of expected

flood losses would be uninsured annually, representing 70 percent of the expected $24.4 billion

of total flood damage faced by these properties.7

4This condition holds under the assumption of perfect credit markets and that households are not risk-loving.
5We do not decompose the mechanisms that may lead to inefficient levels of coverage. Examples of mechanisms
include households’ imperfect information about flood risks and institutional constraints such as the NFIP
maximum allowed coverage limit of $250,000.

6We abstract away from deductibles, which are small relative to coverage limits. Over 70 percent of policies
hold a $1,250 deductible. Accounting for deductibles does not change the results (see Tables A.1 and A.2).

7Wing et al. (2022) find that the AAL for all properties is $36.8 billion ($32.1 billion in 2021 USD), which
makes our total SFR AAL appear too large because our sample does not include non-SFR properties. The
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We decompose our results by federally designated flood zone status and SFRs’ flood

insurance status to understand the source of protection gaps. FEMA classifies Special Flood

Hazard Areas (SFHAs) as floodplains that face at least a one percent annual probability of

flooding. Borrowers of mortgages originated by federally regulated lenders in SFHAs must

hold flood insurance. Therefore, SFHAs serve both as information about flood risk and as

regulation for insurance purchase.

Comparing properties that are inside and outside of SFHAs, we see that 69 percent of

the total protection gap falls outside of SFHAs, where 77 percent of SFRs do not hold flood

insurance. Still, 76 percent of SFRs inside the SFHAs face protection gaps totaling $5.3

billion. These gaps imply that 52 percent of total expected flood losses inside SFHAs remain

uninsured, suggesting that two important purposes of SFHAs, providing risk information and

mandating coverage for mortgages in higher risk areas, function imperfectly.8 The average

protection gap of $3,012 inside the SFHAs is higher than the average of $2,804 outside of the

SFHAs. This result is likely driven by higher expected flood losses inside the SFHAs than

outside the SFHAs.

Panel A of Table 2 reports the distribution of the protection gaps across four mutually

exclusive types of SFRs, defined by their insurance coverage. Uninsured SFRs, denoted by

Types 1 and 3, account for 79 percent of our measured protection gap. “Type 1” SFRs,

which are uninsured and located outside the SFHAs, face $10.8 billion, or 63 percent, of

the protection gap. “Type 3” represents the 41 percent of SFRs in SFHAs that do not hold

insurance and account for 19 percent ($3.2 billion) of the total protection gap. Last, two

types of insured SFRs account for 16 percent of the deficit: “Type 2” hold less than the

$250,000 maximum coverage, and “Type 4” hold the maximum coverage. The first group

could increase their coverage, suggesting an information constraint on flood risks, but the

main driver of the discrepancy comes from the difference in data version. Our paper uses version 3 of the
FSF data, while Wing et al. (2022) use version 1. Using version 1, we find that the AAL for all SFRs is
$17.5 billion and the AAL for all properties is $34.6 billion, which is very close to the AAL estimate from
Wing et al. (2022). The remaining discrepancy is likely driven by the difference in the data source for repair
costs. We use repair costs directly provided by the FSF data, while Wing et al. (2022) use “a variety of
sources” to compute structure valuation and repair costs.

8In a dynamic setting, Weill (2023) shows that changes to SFHAs over time have reduced insurance take-up
rates even while flood risk has increased.
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second group would require a policy change that increases the $250,000 maximum coverage

in order to alleviate the insurance deficit.

Economic Underinsurance
To understand whether the protection gap is economically inefficient, we focus on households

for whom purchasing full flood insurance coverage would be optimal. In total, 2,175,892 SFRs

have positive expected flood damage and face annual premiums that are lower than or equal

to AALs.9 We refer to the protection gaps for this set of households who face actuarially

favorable or fair prices as underinsurance.

As reported in Panel B of Table 1, underinsurance totals $15.7 billion of flood losses, and

the average underinsurance of $7,208 is more than twice as large as the average protection

gap. Moreover, 88 percent of at-risk households who face actuarially favorable or fair prices

are underinsured. Underinsurance is concentrated among a smaller set of SFRs, as 36 percent

of properties with a protection gap are underinsured but account for 91 percent of the total

protection gap.10

Panel B of Table 2 shows that the dollar distribution of underinsurance across household

types is identical to the dollar distribution of protection gaps, although the distribution

of underinsured properties differs. Type 1 SFRs, who are uninsured and reside outside of

SFHAs, represent 56 percent of underinsured SFRs. Type 4 SFRs, who face the NFIP

constraint of a $250,000 coverage limit, represent 23 percent of all underinsured SFRs. The

results suggest two types of frictions affecting a majority of households. First, Type 1 SFRs

may face information frictions as they reside outside the SFHAs and may have inaccurate

beliefs about their flood risks. Second, Type 4 SFRs may face institutional frictions as they

are constrained by the NFIP maximum coverage limit. Conversely, both of these frictions

9We estimate counterfactual premiums for currently uninsured households using the average premium paid
per dollar of coverage by insured households in the same census tract and SFHA.

10Our calculation does not account for federal disaster assistance grants and loans. Grants to restore property
damage are small, as they totaled $349 million per year from 2014 to 2023, which is less than 1.5 percent
of expected annual flood damage. While disaster loans comprise a larger share of aid, they should not
crowd out the optimal insurance demand for our underinsurance estimation sample. Purchasing insurance
coverage for property damage is cheaper than borrowing an equal amount of disaster loans – the insurance
premium is lower than expected damage, while loan repayment is greater than or equal to expected damage
and can require collateral for securitization (Collier et al., 2021). Furthermore, the regressive nature of
disaster assistance allocation would further exacerbate the disparity in coverage by income, as we observe
low income populations to be the most underinsured (Billings et al., 2022).
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are less prevalent for Type 2 and Type 3 SFRs because they either hold insurance below

the institutional limit or receive flood risk disclosures due to residing inside the SFHAs,

respectively. Therefore, underinsurance for these households may be better explained by

preference-based mechanisms.

For the remainder of the paper, we focus our analysis on the sample of households who

are underinsured.

Severe Events and Future Climate Scenarios
Panel A of Table 3 shows underinsurance for events of varying severity with return periods

from a 1 in 20 year flood (less severe) to a 1 in 500 year flood (more severe). Inside the

SFHAs, depending on the flood severity, underinsured shares range from 38 to 80 percent,

with average underinsurance of $55,593 to $150,613, while outside the SFHAs, underinsurance

rates range from 37 to 93 percent, with average deficits of $59,365 to $223,953. A substantial

share of residents who are underinsured against a 1 in 20 year event would face a certain

and large financial expenditure of uninsured flood losses during their tenure, as 19 percent of

households live in the same housing unit for longer than 20 years.11

Using 30-year projections under climate scenario Shared Socioeconomic Pathways 2-4.5

(SSP 2-4.5) and assuming insurance coverage and limits remain fixed, we show in Panel

B of Table 3 that the underinsured share would increase modestly inside the SFHAs, by

3.2 percentage points. However, average underinsurance would increase by $646 to $1,350,

depending on the location.

Geographic Distribution of Underinsurance
Figure 1 displays counties in the continental U.S. that face the highest underinsurance rates

and deficits, and Table A.3 aggregates these statistics by census regions.12 Unsurprisingly,

the largest total insurance deficits occur in the coastal Middle Atlantic and South Atlantic

regions, which are most likely to be affected by floods resulting from hurricanes and tropical

storms. However, the inland East North Central, East South Central, and West North Central

11Source: American Community Survey 1-year estimates, 2022: Demographic Characteristics of Occupied
Housing Units.

12For the maps, we restrict our sample to counties that have at least 20 properties with a positive AAL and
optimal insurance demand of full coverage.
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regions experience some of the highest underinsurance rates (95 to 98 percent) and amounts

($9,779 to $12,880). The prevalence of underinsurance in these central regions reflects damage

from some of the highest rates of severe convective storms and inland flooding in the country

(Wylie et al., 2024). This difference is visualized in Figure 1 by several inland counties in

Appalachia and the Midwest being darker than tracts on the Atlantic and Gulf coasts. This

geographic analysis further confirms that existing FEMA flood maps underestimate the need

for insurance coverage in inland areas.

Income and Minority Composition
In addition to documenting aggregate underinsurance, we consider who the lack of coverage

affects most using Census Bureau measures of tract-level income and racial composition. As

shown in Figure 2, underinsurance shares and amounts are higher in tracts with lower median

household income (Panels A and C). The lowest three income deciles face greater than 90

percent rates of underinsurance, with average underinsurance accounting for more than 20

percent of household income. The highest three income deciles face underinsurance that is

less than 5 percent of household income.13 Over the next 30 years, projected flood losses

suggest that the disparity in underinsurance rates by income will flatten but will not reverse

(Panel E). However, underinsurance amounts as a share of household income will increase

more for low-income tracts than high-income tracts (Panel G).

We consider the demographic composition of tracts by defining the minority share as the

share of Hispanic and Black individuals in the tract. Areas with the lowest minority shares

have the highest underinsured rates (Panel B). However, the gradient remains relatively flat

across the remainder of the minority share deciles. The pattern for underinsurance amounts

as a share of income, however, is monotonic, as tracts with a lower share of minorities

experience higher insurance deficits (Panel D). The latter finding is consistent with recent

studies showing that areas experiencing the largest physical climate risk losses and the highest

levels of unpriced climate risks tend to have a higher share of White residents (Gourevitch

13Underinsurance rates are not strictly decreasing in tract income. The underinsurance rates are higher for
the top income decile than the eighth income decile. But the insurance deficit as a share of income is strictly
decreasing in tract income. Figure A.1 shows that insurance rates increase by income, which suggests that
higher income households are not more likely to self-insure. Instead, the uptick in underinsurance rates at
the highest income deciles is potentially due to the $250,000 coverage limit not being sufficient for higher
value properties.
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et al., 2023; Wylie et al., 2024). Projections over the next 30 years suggest the underinsurance

rate-minority share gradient will flatten, but underinsurance amounts will continue to be

greater for the lowest minority share areas (Panels F and H).

Discussion
Our study has several notable limitations. First, the AALs from FSF are model-generated and,

thus, contain a degree of uncertainty. Important sources of uncertainty include FSF’s choice

of model assumption, modeling method, and historical data. Our analyses take the point

estimates as-is and do not reflect the aforementioned model uncertainty, which we cannot

quantify. Second, our paper focuses on SFRs and, therefore, cannot quantify uninsured flood

risk that other property types (e.g., multi-family residential properties, commercial properties,

public infrastructure, and so on) face.14 Third, analyses related to future climate scenarios,

largely, do not account for adaptive behaviors (e.g., migration patterns and disaster-mitigating

engineering changes). Last, our analysis on the value of flood insurance (discussed below)

uses estimated local insurance premiums, which may differ from the NFIP’s actual premium

schedule.

Barring the limitations, this paper measures the amount by which expected flood damage

exceeds existing NFIP flood insurance coverage. We find that $17.1 billion of expected flood

losses would be uninsured annually for SFRs, representing 70 percent of total flood losses.

Nearly the entire protection gap is economically inefficient, as we estimate $15.7 billion of

flood underinsurance. Specifically, among homes with positive expected flood losses and

an optimal demand for full flood insurance coverage, 88 percent are underinsured by an

average of $7,208 (Table 1). Homes outside of SFHAs account for the majority of total

underinsurance, suggesting that existing flood maps do not comprehensively capture flood

risk. Our distributional analysis shows that inland areas, poorer tracts, and areas with a

higher share of White residents face greater insurance deficits today and are expected to face

higher underinsurance over the next 30 years (Figures 1 and 2).

Our results imply that existing NFIP insurance coverage leaves agents in housing and

mortgage markets exposed to physical climate risks. As underinsurance is widespread both

14Particularly, our focus on SFRs measures the financial risks faced by the owners of these properties, which
would understate the climate risks faced by minority populations who have lower home ownership rates.
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inside and outside the SFHAs, the findings suggest frictions in both the risk information and

regulatory compliance purposes of flood maps. Projections of flood damage under expected

future climate scenarios show that this protection gap will increase if insurance coverage does

not expand. As a result, the impact of future flood events will likely be higher than existing

estimates of the detrimental impacts of flood damage on asset prices, mortgage performance,

and post-disaster recovery.

Implications of Rising Premiums
Expanding insurance coverage is a complex policy solution, especially as premiums rise in

response to increasing physical climate risks. If premiums increase, it is unclear whether

flood insurance would continue to be financially beneficial for at-risk properties, as suggested

by our underinsurance results assuming 2022 premiums. In order to understand whether the

decision to purchase full insurance remains beneficial under different premiums, we conduct a

simple cost-benefit analysis to derive the net gains of holding flood insurance for currently

uninsured households facing positive AAL.

For each uninsured property, the net gain from flood insurance is the amount of insurable

expected flood damage minus the cost of premiums. We calculate these net gains using two

counterfactual scenarios for insurance premiums. First, we assume uninsured households pay

relatively high prices in their local area, using the 99th percentile of premiums for insured

homes in their same tract and flood zone. Second, we assume our sample of uninsured

homeowners faced the new pricing rules under Risk Rating 2.0, which transitioned towards

more actuarially fair pricing and increased insurance premiums by 11 percent, on average, by

2023.15

In Table 4, we see that uninsured homes would have average net gains of $7,146 to $7,178,

depending on their SFHA location, if they faced the 99th percentile of local premiums for

existing policies. Even if these uninsured households faced the highest prevailing insurance

prices in their local areas, 70 to 92 percent would financially benefit from purchasing flood

insurance. Alternatively, if these uninsured households faced the average premiums in their

15Our sample for this exercise includes uninsured SFRs with an optimal demand for full coverage. To classify
these households, we use mean premiums of insured households in the local area as the counterfactual price
uninsured households would pay when determining whether pricing is actuarially fair.
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tract and flood zone under Risk Rating 2.0, their average net gains would be $6,905 outside

the SFHAs and $8,590 inside the SFHAs, with 83 to 86 percent of these households benefiting

financially. This result is consistent with existing findings that households’ willingness to pay

for flood insurance is lower than the benefits of flood insurance (Wagner, 2022). If a severe 1

in 100 year event does occur, the gains to uninsured households are very large, ranging from

$138,834 to $162,388, depending on the pricing assumption and location within the SFHAs.

Figure A.2 shows that these net gains from purchasing insurance under Risk Rating 2.0

premiums are highest for areas with lower incomes and lower minority shares, exactly the

areas facing the highest underinsurance. This finding suggests that subsidies for the purchase

of NFIP policies would be both equitable and efficient, as the subsidies would simultaneously

flow towards low income households and those who would gain the most from flood insurance.

Determinants of Underinsurance
Our results leave a puzzle – if holding flood insurance is financially beneficial, why are so

many households underinsured? One potential explanation is that households’ beliefs may

underestimate future flood risks. Beliefs are likely most salient for households that do not

face binding institutional constraints on their demand for flood insurance, such as FEMA’s

flood insurance limit of $250,000. To assess the validity of this mechanism, we estimate the

regression in Equation 1, which relates the average underinsurance amount, Uc, in census

tract c to various measures of climate beliefs Ic. We restrict this regression to households

that hold less than $250,000 of flood insurance to avoid conflating information constraints

(e.g., beliefs about climate risk) with institutional constraints (e.g., FEMA coverage limit) as

determinants of underinsurance.

log(1 + Uc) = α + βIc + γXc + λs + ϵc (1)

We use three different measures of Ic to proxy climate beliefs: county share of respondents

in the Yale Climate Opinion Survey that believe global warming will harm them personally,

tract share of voters registered as Republican, and tract share of residents with a bachelor’s

degree or higher. Each measure provides information on different dimensions of household

climate beliefs, which may define the distribution of risks each household perceives in their
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decision to purchase insurance. The survey response regarding personal harm indicates to

what extent households believe a climate event might lead to physical or financial damage.

Political affiliation, measured by Republican voter share, measures divergence in beliefs

about climate risks as well as beliefs about government support after disasters that might

mitigate the need to purchase insurance. In addition, college education can indicate consumer

sophistication and better knowledge of financial products such as property insurance. The

coefficient of interest, β, measures the correlation between these measures of climate beliefs

and underinsurance. We estimate Equation 1 using ordinary least squares (OLS) and state

fixed effects, λs, while controlling for financial, demographic, and housing characteristics,

Xc.16

In Table 5, columns (1) through (3) use the three different measures of climate beliefs

individually, while column (4) includes all three measures simultaneously. Conditional on

our extensive controls and state fixed effects, all three indicators of climate beliefs are

strongly correlated with tract-level underinsurance. A 10 percent higher share of survey

respondents perceiving personal harm from global warming is associated with 26.7 percent

lower underinsurance.17 A 10 percent higher share of Republican voters is associated with

14 percent higher underinsurance. Last, a 10 percent higher share of residents with college

degrees is associated with 11.1 percent lower underinsurance. When including all three

measures of climate beliefs in column (4), the associations between these belief measures and

underinsurance remain economically and statistically significant. The association between

perception of personal harm from global warming and underinsurance remains the strongest –

a 10 percent higher share of respondents perceiving personal harm is associated with 14.2

percent lower underinsurance. Results suggest that factors that determine beliefs about

future climate damage may be the most salient for households’ insurance decisions, compared

to factors such as financial sophistication and expectations of government responses.

16The results are qualitatively and quantitatively similar when we instead use log(Uc) as the outcome variable,
which eliminates the very few observations where Uc = 0. As such, the qualitative results discussed in the
main text do not suffer from the problem described in Chen and Roth (2024).

17The estimate β̂ = −3.108 implies that a 10 percent change (or a 0.1 change in the share) is associated with
a 0.3108 log point decrease in underinsurance, which is equivalent to a 26.7 percent decrease.

12



Together, our results imply that policies targeting uninsured homes, such as the expansion

of flood maps and improving compliance with the mandatory purchase requirement, would

yield large gains compared to policies that focus on expanding coverage for existing insured

households, such as increasing coverage limits.18 These policies would simultaneously benefit

lower-income areas and direct insurance coverage most towards areas and populations with

the highest financial benefits of holding insurance. Furthermore, policies that change the

price of flood insurance may not substantially reduce underinsurance, as high rates of flood

underinsurance persist even when policy premiums yield large financial benefits of purchasing

insurance. Instead, our results suggest that household beliefs regarding future climate risks

may be a larger determinant of underinsurance.

18This statement does not account for the possibility that flood risks are not properly priced into home values
(Gourevitch et al., 2023), and the statement is based on the assumption that flood map expansions, which
may trigger proper flood risk pricing through the information channel, do not trigger substantial repricing
of homes that would offset the net gains presented here.
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A Methods

A.1 Data Sources
We combine several data sources to measure flood underinsurance for single-family residences

(SFRs) in the contiguous U.S.

First Street Foundation (FSF) Data from FSF provide both current estimates and

30-year projections of property-level flood damage in dollars, which have been regarded as

some of the best publicly available estimates of flood risk in the United States (Bates et al.,

2010; Neal et al., 2012; de Almeida and Bates, 2013; Sampson et al., 2013, 2015; Weill, 2023).

FSF’s methodology can be summarized in three broad steps.

First, FSF simulates the physical flow of water through geography based on the open

source hydrodynamic model, LISFLOOD-FP. This model accounts for features such as

elevation, proximity to water, and adaptation measures, such as levees. Importantly, the

model incorporates four types of flooding: fluvial (riverine flooding), pluvial (resulting

from heavy rainfall), tidal, and storm surge. Model outputs perform well when validated

against historic flood reports, government flood claims, and precise local flood hazard studies

conducted by the United States Geological Survey (Wing et al., 2017; Armal et al., 2020;

Bates et al., 2021).

Second, FSF combines their hydrodynamic model with climate projections to simulate

the breadth and depth of flooding across different climate scenarios. These scenarios,

from Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations, project future

environmental changes, such as carbon emissions, sea level rise, and precipitation patterns.

The CMIP6 models are utilized by the United Nations’ Intergovernmental Panel on Climate

Change (IPCC) in their latest Assessment Report about the state of scientific, technical and

socioeconomic knowledge on climate change. We use FSF’s projections under CMIP6 Shared

Socioeconomic Pathways 2-4.5 (SSP 2-4.5), which is considered to be most realistic future

climate scenario.

Third, FSF uses a private engineering firm, Arup Corporation, to map flood depth to

property damage. This step adds the inventory of buildings to the modeled flooding under

different climate scenarios from the first two steps. Arup provides damage functions, which
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are derived from engineering principles, evidence of damage from past floods, and current

building standards, to estimate the reconstruction costs after damage from flooding. These

functions also account for the type and material of each building, including features such as

a basement and first floor elevation.

The FSF methodology provides distinct advantages over existing measures of flood risk,

such as FEMA’s flood maps that are used to define federal policies on National Flood

Insurance Program (NFIP) pricing and mandatory purchase requirements. The FSF model

better captures floods from rainfall and ungauged streams and therefore improves coverage

of inland flood risks. In addition to average annual losses (AALs) in dollars, the FSF data

also include details about the loss distribution by providing expected damage for events of

varying likelihoods.

National Flood Insurance Program (NFIP) We merge the flood damage data to

administrative data on flood insurance policies from the NFIP. Under the assumption of

complete adverse selection, we assign the highest observed coverage limits to the homes with

the largest expected losses. This assumption ensures that we measure a lower bound on

underinsurance because the riskiest properties in our merged data set have the most coverage.

Additional Data Sources We incorporate Census Bureau data on tract-level income

and demographic characteristics to conduct our distributional analysis. For additional analysis

in the paper, we gather publicly available data from (1) policy premiums under FEMA’s Risk

Rating 2.0 pricing proposal; (2) the Yale Climate Opinion Map, 2023, provided by the Yale

Program on Climate Change Communication (YPCCC); and (3) L2 voter data.

A.2 Sample Construction
We merge FSF parcel-level data with its nearest neighbor, by Euclidean distance, in CoreLogic

property data. We use CoreLogic to identify which properties are single-family residences

(SFRs). We then map all these properties to census tracts, using 2010 map delineations.

This results in a cross-section of virtually all SFR properties in the United States (FSF and

CoreLogic coverage permitting) linked to FSF flood risk measures and damage estimates.

Second, we merge the above set of properties with the NFIP redacted policy data under

an adverse selection assumption, described in more detail below. As our FSF data utilizes

estimates for the year 2022, we want to identify all policies in effect at the start of 2022. To
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capture a snapshot of active policies in 2022, we keep policies with start dates from 2021Q2

through 2022Q1, which ensures that there is no more than one policy per home, as NFIP

policies must be renewed every year. As with our set of FSF-CoreLogic matched properties,

we only utilize NFIP policies taken out on SFRs.

As NFIP policy data does not contain addresses or detailed geocoding, we use an adverse

selection assumption to match the policies to the properties in our FSF-CoreLogic data. We

first classify all policies by census tract, flood zone designation (e.g., “A”, “V”, “X”), and

the year the home was built. Within these cells defined by property characteristics, we rank

policies by insurance coverage amount, from highest (a maximum of $250,000) to lowest. We

also incorporate deductibles as a tie-breaker for a given amount of flood insurance. If two

homes have the $250,000 maximum in flood insurance coverage, the home with the higher

deductible receives the highest rank.

We perform an analogous ranking exercise with the FSF-CoreLogic data, assigning homes

within each cell the highest ranking if they have the highest average annual loss (AAL), as

estimated by FSF. For each property, FSF provides the 10th, 50th, and 90th percentile of

AAL. We use the 50th percentile of AAL. We then merge NFIP policies to FSF-CoreLogic

properties by census tract, flood zone, year built, and the above-described ranking. As not

all policies merge in the first step, we iterate on this process, systematically relaxing the

granularity of these policy and home characteristic cells, re-ranking the remaining policies

and homes within each cell, and merging again, until virtually every NFIP policy is matched

to a home. We perform this ranking and merge in the following six sequential steps:

1. Census tract-by-flood zone designation-by year built;

2. Census tract-by-SFHA-by year built;

3. Census tract-by-SFHA-by decade built;

4. Census tract-by-SFHA;

5. County-by-SFHA; and

6. County.

Flood zone designation refers to the alphabetic assignments A, B, C, D, X, and V. Therefore,

in step (1), a property is matched to an NFIP policy if the alphabetic assignment matches

exactly. In steps (2) through (5), SFHA signifies whether the property is located in an SFHA,
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defined as having a flood zone designation of A or V. Seventy-one percent of our matched

policies merge in step (1), while 97 percent merge on or before step (4). In total, we match

3,418,656 NFIP policies to SFRs, excluding only 8,596 NFIP policies (0.25%) from our sample

that we are unable to match through the above process.

The final property-level sample contains 92.3 million SFRs. The combination of adverse

selection assumption and the imperfect coverage of FSF and CoreLogic implies that the

underinsurance quantities presented in this paper can likely be interpreted as lower bounds.

For the tract-level analyses, we build the tract-level sample from the property-level sample

using the 2010 census tract delineation. Tract characteristics such as median household

income and minority share were collected from the 2015-2019 5-year American Community

Survey (ACS). Minority share is defined as the share of Hispanic and Black individuals in

the census tract. We use each year’s January Consumer Price Index (CPI) from the U.S.

Bureau of Labor Statistics to adjust for inflation on the median household income quantities.

Additionally, we restrict our tract-level analyses to a total of 15,498 tracts that have at least

20 homes with positive AAL. This restriction reduces the geographic footprint from the

44,320 tracts used in our SFR-level analysis, but it does not substantially limit the set of

properties used in the tract-level analysis, as 8.2 percent of SFRs are dropped.

A.3 Measures of Underinsurance
Our goal is to estimate expected protection gaps and underinsurance for flooding, conditional

on expected flood losses and existing insurance coverage. Because protection gaps and

underinsurance are non-linear functions of both AAL and coverage limits, the expectation

of the deficit, δij = max{0, Dij − Ci}, does not equal the deficit between the expectation of

losses, as measured by AAL, and insurance coverage:

E (δij) ̸= max{0, E (Dij − Ci)}.

Instead, we rely on FSF’s flood scenario loss estimates for the following return periods: 5

years, 20 years, 100 years, 200 years, and 500 years. For each property-scenario pair, FSF

provides the 10th, 50th, and 90th percentile of repair cost. We use the 50th percentile number

for all of our underinsurance calculations. For a specific return period rj, the inverse of each
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return period defines the exceedance probability, Pj, which measures the likelihood with

which annual damage will exceed or equal the loss estimate for the return period, Dj:

Pj ≡ P (Di ≥ Dij) = 1
rj

for rj ≥ 1.

For example, annual flood damage for a property would exceed the 5-year return period loss

estimate with a likelihood of 1
5 .

Since the exceedance probability is 1 − FD, where FD is the cumulative loss distribution,

the expected losses can be calculated as the area under the exceedance probability curve. We

approximate the expected protection gaps, Gi, and underinsurance, Ui, using the discrete set

of return periods available from FSF as following.

Gi =
J∑

j=1
(Pj−1 − Pj) · δij−1

Ui = 1(pi ≤ E(Di)) · Gi

Specifically, for each scenario and home, we subtract the home’s insurance coverage from

the estimated scenario loss amount to compute a dollar amount of deficit. We then perform

step-wise integration over these five probabilistic underinsurance estimates for each home,

such that the loss estimate remains flat across the density between flood return periods.

For instance, we assign the 5-year flood underinsurance estimate for the density between a

5-year flood and a 20-year flood (the next likeliest return period in the data), and the 20-year

estimate for the density between a 20-year flood and a 100-year flood. Similarly, since we

have no estimate for return periods shorter than 5 years, underinsurance is equal to 0 for all

shorter return periods.

As illustrated in Figure A.3, this method produces a lower-bound estimate of expected

protection gaps and underinsurance for each home because we use the least severe loss estimate

within the interval between two consecutive return periods. Visually, our approximation

of the expected underinsurance aggregates the area of the white rectangles to the right

of the coverage limit line Ci and under the exceedance probability curve. As a result, we

underestimate the true expected underinsurance by the area of the gray regions.
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A.4 Incorporating Policy Deductibles
To estimate the distribution of flood underinsurance with deductibles, we follow the same

method as our main underinsurance calculation but simply adjust each home’s insurance cov-

erage by adding the deductible amount. We consider the insurance deductible as the amount

the homeowner is willing to pay out-of-pocket in the event of flood damage. Accordingly, we

match deductibles to homes in a similar fashion as we do for flood insurance coverage; that

is, at a given amount of insurance coverage, the homes with the highest expected flood losses

are assigned the highest deductibles. Therefore, we interpret underinsurance after accounting

for deductibles as the amount a household needs to pay beyond their expected out-of-pocket

expenses.

A.5 Valuation of Insurance
First, we compute the gain an uninsured home would receive from insurance as the expected

flood damage in each flooding scenario capped at the NFIP coverage maximum of $250,000.

Second, we estimate two counterfactual policy premiums for each policy. Third, we compute

the net gain for each flooding scenario by subtracting the counterfactual premium from the

expected insurance gain amount, including the scenario where no flooding occurs. As our

sample focuses on households with optimal demand for full insurance, we assume that every

exposed homeowner buys a policy with maximum coverage

The first counterfactual considers a costly policy, where we assign the local census

tract-by-SFHA 99th percentile premium for $250,000 worth of coverage. Premiums can be

assigned in this manner for 3,967,580 homes, the vast majority of our sample of homes with

positive AALs. There is no active NFIP policy in some census tracts from which to estimate

local means; therefore, another 711,988 homes are assigned 99th percentile premiums at the

county-by-SFHA level. For 89,838 homes, premiums are assigned at the state-by-SFHA level.

We are unable to assign premiums for 3 homes.

The second counterfactual considers FEMA’s Risk Rating 2.0 pricing approach, which

prices flood insurance policies in a more actuarially fair manner. Specifically, we gather

publicly available data on policy premiums under FEMA’s proposed pricing.19 The data

19The data are available at https://www.fema.gov/flood-insurance/work-with-nfip/risk-rating/single-family-
home.
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provide zip code level average premium increases under Risk Rating 2.0 relative to premiums

from September 2022. We scale existing policy premiums in our data by these zip code level

premium increases to estimate the counterfactual for each policy under Risk Rating 2.0.

A.6 Climate Beliefs and Underinsurance
We estimate Equation 1 by aggregating the sample of homeowners who have an optimal

demand for full insurance coverage (i.e., their annual premium is less than or equal to expected

annual losses) to a census tract-level average underinsurance amount. We further focus on

the sample of homeowners who hold less than the FEMA coverage limit of $250,000 of flood

insurance. This restriction allows us to better identify the role of information constraints

(e.g., beliefs about climate risk) in underinsurance, as these households should not be affected

by other institutional constraints. We keep tracts with at least 20 homes in the sample.

We obtain three measures of climate beliefs, Ic, as follows. First, we calculate the share

of residents in the county who believe “global warming will harm [them] personally” at least

a moderate amount, as reported in the Yale Climate Opinion Maps from 2023.20 Second, we

obtain the share of voters in the census tract who are registered Republican from the 2021

census block aggregated L2 voter file (and aggregate to the census tract-level). Third, we

measure the share of residents in the census tract who have obtained at least a bachelor’s

degree from the American Community Survey (2015-2019).

In addition to state fixed effects, Equation 1 includes the following census tract-level

measures as control variables, Xc: the log of mean AAL and the share of homes in the SFHAs

from FSF, the log of the number of housing units, the share of residents who identify as

Black or Hispanic, the share of homeowners with a mortgage, the log of median income, and

the log of median home value from the ACS adjusted to 2022 dollars by the FHFA house

price index.21

20Data are provided by the Yale Program on Climate Change Communication (YPCCC); see Howe et al.
(2015) and Marlon et al. (2022). The YPCCC bears no responsibility for the analyses or interpretations of
the data presented here.

21The FHFA House Price Index is available at https://www.fhfa.gov/data/hpi.
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B Tables

Table 1: Flood Protection Gaps and Underinsurance

Panel A: Protection Gaps, All Single Family Residences
All SFRs AAL > 0 SFHA Non-SFHA

N 92,251,863 5,984,218 1,746,807 4,237,411
Share Insured 0.037 0.329 0.595 0.22
Share with Protection Gap 0.055 0.845 0.761 0.88
Mean Protection Gap ($) 186 2,865 3,012 2,804
SD Protection Gap ($) 3,411 13,103 17,280 10,925
Median Protection Gap ($) 0 350 313 362
Total Protection Gap ($) 17,143,444,903 17,143,444,841 5,260,774,784 11,882,670,057
% of Total Protection Gap 100 100 30.7 69.3
Total Estimated AAL ($) 24,392,317,257 24,392,317,257 10,193,731,941 14,198,585,315

Panel B: Underinsurance, Single Family Residences for which Full Coverage is Optimal
AAL > 0 SFHA Non-SFHA

N 2,175,892 742,043 1,433,849
Share Insured 0.4 0.687 0.252
Share Underinsured 0.884 0.798 0.928
Mean Underinsurance ($) 7,208 6,359 7,647
SD Underinsurance ($) 20,980 26,052 17,780
Median Underinsurance ($) 1,660 966 1,887
Total Underinsurance ($) 15,682,901,765 4,718,848,864 10,964,052,901
% of Total Underinsurance 100 30.1 69.9
Total Estimated AAL ($) 22,110,731,441 9,108,756,807 13,001,974,634

Notes: This table presents statistics on flood protection gaps and underinsurance. Panel A statistics are
derived from the full sample of single-family residences (SFRs) in column one and separate subsamples in the
last three columns: SFRs with positive flood risk, SFRs inside special flood hazard areas (SFHAs), and SFRs
outside SFHAs. Dollar values are presented in 2023 USD. Panel B statistics are derived from the sample of
positive flood risk SFRs for which purchasing full coverage of flood insurance is optimal. We assume full
coverage is optimal for an SFR if the annual premium is less than or equal to average annual losses (AALs).
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Table 2: Distribution of Protection Gaps and Underinsurance Across Household Type

Panel A: Single Family Residences with Protection Gap
Type 1 Type 2 Type 3 Type 4

N 3,306,781 400,700 707,383 643,578
% of N 65.4 7.9 14 12.7
Mean Protection Gap ($) 3,283 3,658 4,546 2,495
Total Protection Gap ($) 10,856,510,405 1,465,931,517 3,215,506,576 1,605,493,943
% of Total Protection Gap 63.3 8.6 18.8 9.4
Total Estimated AAL ($) 10,856,510,405 2,950,137,517 3,215,506,576 5,844,149,530

Panel B: Underinsured Single Family Residences
Type 1 Type 2 Type 3 Type 4

N 1,072,725 166,587 232,357 450,754
% of N 55.8 8.7 12.1 23.4
Mean Underinsurance ($) 9,332 7,844 12,360 3,313
Total Underinsurance ($) 10,011,161,960 1,306,627,122 2,871,850,493 1,493,259,790
% of Total Underinsurance 63.8 8.3 18.3 9.5
Total Estimated AAL ($) 10,011,161,960 2,578,114,418 2,871,850,493 5,411,407,790

Notes: This table presents the distribution of protection gaps (Panel A) and underinsurance (Panel B) across
different types of single family residences (SFRs). Dollar values are presented in 2023 USD. SFHA stands for
special flood hazard area. AAL stands for average annual loss. Type 1 covers SFRs located outside an SFHA
that do not hold insurance. Type 2 covers SFRs that hold insurance policies with less than the $250,000
maximum coverage. Type 3 covers SFRs located inside an SFHA that do not hold insurance. Type 4 covers
SFRs that hold insurance policies that have the maximum coverage. Panel B statistics are derived from
the sample of positive flood risk SFRs for which purchasing full coverage of flood insurance is optimal. We
assume full coverage is optimal for an SFR if the annual premium is less than or equal to average annual
losses (AALs).
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Table 3: Flood Underinsurance for Different Return Periods and Climate Scenarios

Panel A: Current Climate Scenario
Inside SFHAs 1/20 1/100 1/200 1/500
Share Underinsured 0.38 0.62 0.72 0.8
Mean Underinsurance ($) 55,593 103,485 124,939 150,613
Median Underinsurance 0 53,523 84,677 111,885
SD Underinsurance 237,109 268,986 285,745 324,173
Mean Flood Damage ($) 117,524 216,503 261,511 293,385
Median Flood Damage ($) 79,180 194,348 231,691 258,196
Outside SFHAs 1/20 1/100 1/200 1/500
Share Underinsured 0.37 0.72 0.88 0.93
Mean Underinsurance ($) 59,365 136,202 185,898 223,953
Median Underinsurance ($) 0 106,768 165,829 199,713
SD Underinsurance ($) 148,463 190,226 200,812 218,084
Mean Flood Damage ($) 70,545 166,067 237,186 278,167
Median Flood Damage ($) 0 138,654 208,168 245,700

Panel B: Future Climate Scenario SSP 2-4.5, 30-year Projections
Inside SFHAs Baseline 1/20 1/100 1/200 1/500
Change in Share At Risk 0.032 0.053 0.061 0.046 0.032
Mean Change in Underinsurance ($) 1,350 16,177 16,165 16,623 20,789
Median Change in Underinsurance ($) 192 0 2,933 5,067 5,897
SD of Change in Underinsurance ($) 11,166 43,054 41,469 51,438 48,239
Change in Share Underinsured 0.038 0.11 0.09 0.056 0.038
Outside SFHAs Baseline 1/20 1/100 1/200 1/500
Change in Share At Risk 0.0052 0.0011 0.0044 0.0047 0.0052
Mean Change in Underinsurance ($) 646 6,103 17,856 10,381 4,969
Median Change in Underinsurance ($) 45 0 144 1,293 660
SD of Change in Underinsurance ($) 4,007 34,990 57,924 33,674 20,704
Change in Share Underinsured 0.0047 0.039 0.077 0.03 0.0047

Notes: This table presents underinsurance statistics for different flood return periods under the current climate
scenario (Panel A) and under 30-year projections using climate scenario Shared Socioeconomic Pathways
2-4.5 (SSP 2-4.5) and assuming insurance coverage and limits remain fixed (Panel B). For example, 1/20
refers to a 1 in 20 year flood event. SFHA refers to special flood hazard area. Statistics are derived from
the sample of positive flood risk SFRs for which purchasing full coverage of flood insurance is optimal. We
assume full coverage is optimal for an SFR if the annual premium is less than or equal to average annual
losses (AALs).
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Table 4: Net Gains from Purchasing Flood Insurance

Expected Flood Risk
99th Percentile Premiums Insurance Gain Local Premiums Net Gain Share Net Gain
Non-SFHA+Uninsured (Mean) 8,004 858 7,146 0.92
Non-SFHA+Uninsured (Sum) 8,586,124,501 920,611,734 7,665,512,767 .
SFHA+Uninsured (Mean) 11,039 3,860 7,178 0.70
SFHA+Uninsured (Sum) 2,564,880,207 896,906,307 1,667,973,900 .
Risk Rating 2.0 Mean Premiums Insurance Gain Local Premiums Net Gain Share Net Gain
Non-SFHA+Uninsured (Mean) 8,004 1,099 6,905 0.86
Non-SFHA+Uninsured (Sum) 8,586,124,501 1,178,472,196 7,407,652,305 .
SFHA+Uninsured (Mean) 11,039 2,449 8,590 0.83
SFHA+Uninsured (Sum) 2,564,880,207 568,947,232 1,995,932,976 .

100-Year Flood
99th Percentile Premiums Insurance Gain Local Premiums Net Gain Share Net Gain
Non-SFHA+Uninsured (Mean) 139,932 858 139,074 0.87
Non-SFHA+Uninsured (Sum) 150,108,875,157 920,611,734 149,188,263,421 .
SFHA+Uninsured (Mean) 164,837 3,860 160,977 0.98
SFHA+Uninsured (Sum) 38,301,037,874 896,906,307 37,404,131,565 .
Risk Rating 2.0 Mean Premiums Insurance Gain Local Premiums Net Gain Share Net Gain
Non-SFHA+Uninsured (Mean) 139,932 1,099 138,834 0.87
Non-SFHA+Uninsured (Sum) 150,108,875,157 1,178,472,196 148,930,402,840 .
SFHA+Uninsured (Mean) 164,837 2,449 162,388 0.98
SFHA+Uninsured (Sum) 38,301,037,874 568,947,232 37,732,090,610 .

Notes: This table presents statistics on insurance gains for uninsured homes that have non-zero exposure to
flood risk. SFHA stands for special flood hazard area. The two panels separately present statistics for the
expected flood risk and 1 in 100 year floods. Statistics are derived from the sample of positive flood risk
SFRs for which purchasing full coverage of flood insurance is optimal. We assume full coverage is optimal for
an SFR if the annual premium is less than or equal to average annual losses (AALs).
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Table 5: Correlations of Climate Belief Indicators and Underinsurance

(1) (2) (3) (4)
Share Personal Harm -3.108∗∗∗ -1.533∗∗∗

(0.409) (0.488)

Share Republican 1.310∗∗∗ 0.870∗∗∗

(0.163) (0.176)

Share with College Degree -1.176∗∗∗ -0.628∗∗∗

(0.180) (0.184)

Log(Mean AAL) 0.451∗∗∗ 0.458∗∗∗ 0.457∗∗∗ 0.452∗∗∗

(0.013) (0.013) (0.013) (0.013)

Share in SFHAs -2.318∗∗∗ -2.300∗∗∗ -2.331∗∗∗ -2.303∗∗∗

(0.177) (0.179) (0.180) (0.179)

Log(No. Housing Units) 0.282∗∗∗ 0.284∗∗∗ 0.311∗∗∗ 0.280∗∗∗

(0.027) (0.026) (0.027) (0.027)

Minority Share -0.425∗∗∗ -0.292∗∗∗ -0.932∗∗∗ -0.292∗∗∗

(0.094) (0.101) (0.089) (0.101)

Share Homes with Mortgage -0.631∗∗∗ -0.507∗∗∗ -0.619∗∗∗ -0.494∗∗∗

(0.120) (0.122) (0.119) (0.124)

Log(Median Income) -0.083 -0.968∗ -0.597 -1.409∗∗

(0.504) (0.545) (0.556) (0.606)

Log(Median Home Value) -0.582 -1.326∗∗∗ -1.048∗∗ -1.654∗∗∗

(0.433) (0.460) (0.466) (0.503)

Log(Home Value) × Log(Income) 0.044 0.105∗∗ 0.092∗∗ 0.148∗∗∗

(0.040) (0.042) (0.044) (0.048)
State Fixed Effects X X X X

N 12,057 12,066 12,237 11,887
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table presents coefficient estimates from four different specifications of Equation 1. The dependent
variable is the log of average tract underinsurance. The indicators of climate beliefs for columns (1) through
(3) are county-level share of Yale Climate Opinion survey respondents reporting that global warming will
harm them personally, tract-level share of voters registered as Republican, and tract-level share of residents
with a bachelor’s degree or higher, respectively. Column (4) reports estimates from a multivariate regression
with all three indicators included. The observations differ based on the data availability of each climate belief
indicator. Underinsurance is derived from the sample of positive flood risk SFRs who hold below the FEMA
limit of $250,000 in flood insurance and for whom purchasing full coverage of flood insurance is optimal. We
assume full coverage is optimal for an SFR if the annual premium is less than or equal to average annual
losses (AALs). The sample includes tracts that have at least 20 properties facing positive current AAL and
optimal demand for full coverage.
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C Figures

Figure 1: Geographic Distribution of Flood Underinsurance

Notes: County-level average of expected underinsurance (top) and percentage of at-risk properties facing
underinsurance (bottom). Negative values of underinsurance are set to zero. Statistics are derived from the
sample of positive flood risk SFRs for which purchasing full coverage of flood insurance is optimal. We assume
full coverage is optimal for an SFR if the annual premium is less than or equal to average annual losses
(AALs). The map sample includes 2,222 counties that have at least 20 properties facing positive current AAL
and optimal demand for full coverage. Counties with insufficient data are colored in gray.
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Figure 2: Underinsurance by Tract Income and Minority Composition

(a) Underinsured Share, By Income (b) Underinsured Share, By Minority Share

(c) Underinsurance, By Income (d) Underinsurance, By Minority Share

(e) ∆Underinsured Share, By Income (f) ∆Underinsured Share, By Minority Share

(g) ∆Underinsurance, By Income (h) ∆Underinsurance, By Minority Share

Notes: (a-d) Tract-level average underinsured share (percentage of properties with expected flood damage that
exceeds insurance coverage) or tract-level average underinsurance as share of each tract’s median household
income, sorted by tract-level median household income or minority share decile. Minority share is defined as
the share of Hispanic and Black individuals in the census tract. (e-h) The average change in underinsured share
or underinsurance between the current climate condition and 30-year projections under Shared Socioeconomic
Pathways 2-4.5 (SSP 2-4.5), sorted by tract-level median household income or minority share decile. Orange
bars show the 95% confidence intervals. Statistics are derived from the sample of positive flood risk SFRs for
which purchasing full coverage of flood insurance is optimal. We assume full coverage is optimal for an SFR
if the annual premium is less than or equal to average annual losses (AALs). The sample includes 15,498
tracts that have at least 20 properties facing positive current AAL or positive 30-year projections of AAL
and optimal demand for full coverage.
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D Additional Figures and Tables

Table A.1: Flood Protection Gaps and Underinsurance with Deductibles

Panel A: Protection Gaps, All Single Family Residences
All SFRs AAL > 0 SFHA Non-SFHA

N 92,251,863 5,984,218 1,746,807 4,237,411
Share Insured 0.037 0.329 0.595 0.22
Share with Protection Gap 0.055 0.843 0.756 0.879
Mean Protection Gap ($) 185 2,856 2,986 2,802
SD Protection Gap ($) 3,407 13,090 17,254 10,921
Median Protection Gap ($) 0 346 304 361
Total Protection Gap ($) 17,089,199,593 17,089,199,530 5,215,261,078 11,873,938,452
% of Total Protection Gap 100 100 30.5 69.5
Total Estimated AAL ($) 24,392,317,257 24,392,317,257 10,193,731,941 14,198,585,315

Panel B: Underinsurance, Single Family Residences for which Full Coverage is Optimal
AAL > 0 SFHA Non-SFHA

N 2,175,892 742,043 1,433,849
Share Insured 0.4 0.687 0.252
Share Underinsured 0.88 0.792 0.926
Mean Underinsurance ($) 7,186 6,306 7,641
SD Underinsurance ($) 20,962 26,017 17,774
Median Underinsurance ($) 1,651 933 1,886
Total Underinsurance ($) 15,635,325,980 4,679,058,697 10,956,267,283
% of Total Underinsurance 100 29.9 70.1
Total Estimated AAL ($) 22,110,731,441 9,108,756,807 13,001,974,634

Notes: This table presents statistics on flood protection gaps and underinsurance after accounting for
deductibles. Panel A statistics are derived from the full sample of single-family residences (SFRs) in column
one and separate subsamples in the last three columns: SFRs with positive flood risk, SFRs inside special
flood hazard areas (SFHAs), and SFRs outside SFHAs. Dollar values are presented in 2023 USD. Panel B
statistics are derived from the sample of positive flood risk SFRs for which purchasing full coverage of flood
insurance is optimal. We assume full coverage is optimal for an SFR if the annual premium is less than or
equal to average annual losses (AALs).
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Table A.2: Distribution of Protection Gaps and Underinsurance Across Household Type with
Deductibles

Panel A: Single Family Residences with Protection Gap
Type 1 Type 2 Type 3 Type 4

N 3,306,781 395,267 707,383 635,670
% of N 65.5 7.8 14 12.6
Mean Protection Gap ($) 3,283 3,637 4,546 2,485
Total Protection Gap ($) 10,856,510,222 1,437,407,962 3,215,504,259 1,579,774,699
% of Total Protection Gap 63.5 8.4 18.8 9.4
Total Estimated AAL ($) 10,856,510,405 2,934,191,052 3,215,506,576 5,804,925,366

Panel B: Underinsured Single Family Residences
Type 1 Type 2 Type 3 Type 4

N 1,072,725 164,811 232,357 445,854
% of N 56 8.6 12.1 23.3
Mean Underinsurance ($) 9,332 7,781 12,360 3,297
Total Underinsurance ($) 10,011,161,960 1,282,342,827 2,871,850,493 1,469,968,313
% of Total Underinsurance 64 8.2 18.4 9.4
Total Estimated AAL ($) 10,011,161,960 2,565,272,623 2,871,850,493 5,376,395,644

Notes: This table presents the distribution of protection gaps (Panel A) and underinsurance (Panel B) across
different types of single family residences (SFRs) after accounting for deductibles. Dollar values are presented
in 2023 USD. SFHA stands for special flood hazard area. AAL stands for average annual loss. Type 1 covers
SFRs located outside an SFHA that do not hold insurance. Type 2 covers SFRs that hold insurance policies
with less than the $250,000 maximum coverage. Type 3 covers SFRs located inside an SFHA that do not
hold insurance. Type 4 covers SFRs that hold insurance policies that have the maximum coverage. Panel B
statistics are derived from the sample of positive flood risk SFRs for which purchasing full coverage of flood
insurance is optimal. We assume full coverage is optimal for an SFR if the annual premium is less than or
equal to average annual losses (AALs).
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Table A.3: Flood Underinsurance Rate and Deficit, By Census Region

East NC East SC Mid Atlantic Mountain West New England
N 14,243,400 6,708,765 9,376,788 7,329,108 3,303,304
Sample N 122,533 155,112 280,398 69,686 48,049
% Insured 11.9 17.7 26.2 13.1 26.5
% Underinsured 98.2 94.8 90.8 96 91.2
Mean Underinsurance ($) 10,824 12,880 10,012 9,820 10,158
Total Underinsurance ($) 1,326,247,782 1,997,847,556 2,807,271,229 684,348,251 488,073,451
Total AAL ($) 1,522,929,308 2,277,973,221 3,552,346,836 796,619,455 688,666,922
% from Type 1 64.8 75.5 64.8 80.5 74.1
% from Type 2, Non-SFHA 3.3 2.45 3.59 1.59 2.15
% from Type 2, SFHA 7.66 4.66 9.56 1.85 5.85
% from Type 3 21.1 14 16.7 10.2 8.27
% from Type 4, Non-SFHA 2.21 1.78 2.97 3.58 3.73
% from Type 4, SFHA .923 1.61 2.4 2.25 5.92

Pacific West South Atlantic West NC West SC
N 11,745,670 20,774,426 7,060,263 11,710,056
Sample N 300,313 737,541 49,982 412,278
% Insured 23 53.8 12.1 63.5
% Underinsured 93.2 83.6 97.3 83.6
Mean Underinsurance ($) 7,239 6,234 9,779 2,714
Total Underinsurance ($) 2,173,865,443 4,597,488,019 488,781,906 1,118,978,126
Total AAL ($) 2,922,707,565 7,600,959,233 559,460,160 2,189,068,742
% from Type 1 70.3 54 71.4 49.3
% from Type 2, Non-SFHA 1.11 1.51 2.63 3.08
% from Type 2, SFHA 2.03 6.58 5.27 6.65
% from Type 3 15.6 23.4 16.9 21.1
% from Type 4, Non-SFHA 6.21 3.11 2.09 10.6
% from Type 4, SFHA 4.72 11.4 1.68 9.27

Notes: This table presents statistics on flood underinsurance rate and deficit by Census region. N represents
all single family residences (SFRs) in each region, while “Sample N” represents the set of SFRs that have
positive average annual losses (AALs) and for which purchasing full coverage is optimal. We assume full
coverage is optimal for an SFR if the annual premium is less than or equal to average annual losses (AALs).
Dollar values are presented in 2023 USD. SFHA stands for special flood hazard area. Type 1 covers SFRs
located outside an SFHA that do not hold insurance. Type 2 covers SFRs that hold insurance policies with
less than the $250,000 maximum coverage. Type 3 covers SFRs located inside an SFHA that do not hold
insurance. Type 4 covers SFRs that hold insurance policies that have the maximum coverage.
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Figure A.1: Insured Share by Tract Income and Minority Composition

(a) Insured Share, By Income

(b) Insured Share, By Minority Share

Notes: Tract-level average insured share sorted by (a) tract-level median household income decile or (b)
tract-level minority share decile. Minority share is defined as the share of Hispanic and Black individuals in
the census tract. Orange bars represent 95% confidence intervals. Statistics are derived from the sample of
positive flood risk SFRs for which purchasing full coverage of flood insurance is optimal. We assume full
coverage is optimal for an SFR if the annual premium is less than or equal to average annual losses (AALs).
The sample includes 15,498 tracts that have at least 20 properties facing positive current AAL and optimal
demand for full coverage.
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Figure A.2: Net Gains from Purchasing Flood Insurance by Tract Income and Minority
Composition

(a) Net Insurance Gain, By Income

(b) Net Insurance Gain, By Minority Share

Notes: Tract-level average net insurance gain as share of tract’s median household income sorted by (a)
tract-level median household income decile or (b) tract-level minority share decile. Minority share is defined as
the share of Hispanic and Black individuals in the census tract. Net insurance gain is defined as the difference
between insurance coverage of expected flood damage (capped at $250,000) and estimated premiums under
Risk Rating 2.0. Net insurance gain is zero if estimated premium exceeds expected flood damage because
the homeowner would not buy insurance in this scenario. Orange bars represent 95% confidence intervals.
Statistics are derived from the sample of positive flood risk SFRs for which purchasing full coverage of flood
insurance is optimal. We assume full coverage is optimal for an SFR if the annual premium is less than or
equal to average annual losses (AALs). The sample includes 15,498 tracts that have at least 20 properties
facing positive current AAL and optimal demand for full coverage.
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Figure A.3: Example of Calculating Expected Insurance Deficit
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Notes: Illustrative example of the exceedance probability curve. The area under the curve measures average
annual losses (AALs). For damage below the policy coverage limit of Ci, the deficit is zero. For damage
greater than Ci, we use the areas of the white rectangles as an approximation for the expected insurance
deficit. Therefore, our method yields a lower bound, as we underestimate the expected insurance deficit by
an amount equivalent to the area of the gray regions between the exceedance probability curve and the white
rectangles.
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