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Abstract 

This paper combines data on current and future property-level physical risk from major climate-related 
perils (storms, floods, hurricanes, and wildfires) that owner-occupied single-family residences face with 
data on local economic characteris�cs to study the geographic and demographic distribu�on of such risks 
in the con�guous United States. Current expected damage from climate-related perils is approximately 
$19 billion per year. Severe convec�ve storms and inland floods account for almost half of the expected 
damage. The central and southern parts of the U.S. are most exposed to climate-related physical risk, with 
hurricane-exposed areas on the Gulf and South Atlan�c coasts being the riskiest areas. Rela�ve to 
currently low-risk areas, currently high-risk areas have lower household incomes, lower labor market 
par�cipa�on rates, and lower educa�on atainment, sugges�ng that the distribu�on of climate-related 
physical risk is correlated with economic inequality. By 2050, under business-as-usual emissions, average 
expected damage is projected to increase monotonically with current average expected damage, which 
implies that long-term policies that aim to mi�gate climate-related physical risk are likely to be progressive. 
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For the average American, housing is, by far, the largest component of their net worth.1 An open ques�on 
in the climate risk literature is who bears the current and future climate-related physical risk to residen�al 
proper�es? Since floods are among the most damaging natural disasters related to climate change, prior 
research works have mostly focused on the impact that flood risk has on real estate.2, 3 However, climate 
change is likely to affect many forms of natural disasters.4 Therefore, studies that leave out other climate-
related perils cannot yield a comprehensive picture of the magnitude and distribu�on of climate-related 
physical risk. 

We fill this gap by using novel data on current and future property-level physical risk from major climate-
related perils (severe convec�ve storms, winter storms, inland floods, wildfires, hurricane winds, and 
hurricane storm surges) that owner-occupied single-family residences (SFRs) face in the con�guous U.S. 
The physical risk data are produced by CoreLogic, which is a major commercial catastrophic risk modeler 
and property data vendor. Its proprietary models incorporate natural hazard informa�on with detailed 
structure and property characteris�cs to generate structure-level es�mates of loss for several different 
perils. The base measure of our analysis is property-level average annual loss (AAL), provided under 2021 
condi�ons and 2050 condi�ons. AAL is the expected annual loss to structure and contents generated by 
simula�ng many possible itera�ons of a given year and then calcula�ng the average loss across all 
itera�ons. The AALs provided by CoreLogic are not dollar values; they are provided as shares of total 
insurable value (TIV), which can be understood as the replacement cost of the structure. 

It is important to note that the AAL es�mates are model-generated and, hence, they inherently contain a 
degree of uncertainty around the point es�mates that we use in our analyses. The sources of uncertainty 
include CoreLogic’s modeling choices and the choice of historical data sets used to feed the models. We 
cannot assess the degree of uncertainty because CoreLogic does not provide the necessary data. With this 
limita�on in mind, we perform several valida�on exercises and find that the AAL es�mates appear to be 
in a reasonable range with respect to relevant historical data (see Appendix A for more details). The result 
gives us confidence that group averages at the tract level and above are likely to be direc�onally and 
ordinally accurate. 

Combining the property-level physical data with precise property loca�on and local economic condi�ons 
data from the American Community Survey (ACS) allows us to paint a more comprehensive picture of the 
magnitude and the (geographic and demographic) distribu�on of climate-related physical risk in the U.S. 
In addi�on, we can iden�fy the specific climate-related perils that are likely to be the costliest now and in 
the future. The knowledge of the distribu�on of climate-related physical risk along different dimensions 
informs policymakers on the segments of the U.S. popula�on that are likely to benefit from policies that 
aim to mi�gate such risks and whether such policies are likely to be regressive or progressive with respect 
to key socioeconomic characteris�cs such as income and educa�on atainment, which are proxies for 
earning poten�al.5 

Results 

Which perils are currently most damaging and which regions are most affected? 

Many of the climate-related perils examined in our analysis are geographically concentrated. As shown in 
Table 1, the most concentrated peril is hurricane storm surge, which only affects five percent of owner-



occupied SFRs, all of which are located near the Gulf and Atlan�c coastal waters. Hurricane wind is also 
concentrated in coastal states, but the extent of poten�al damage extends further inland within those 
coastal states than it does for hurricane storm surge. Thus, more than nine �mes as many SFRs are exposed 
to hurricane wind damage. Inland floods can poten�ally affect about the same propor�on of SFRs as 
hurricane wind, but it is not geographically concentrated in the same way. Inland flood risk is concentrated 
along rivers, lakes, and streams, as well as in pockets of mountainous regions that are suscep�ble to flash 
flooding. Inland floods are also relevant in coastal areas, since ground flooding from hurricane 
precipita�on and nonhurricane coastal flooding are classified as inland floods. Wildfires are mostly limited 
to the western half of the country, with the notable excep�on of Florida. 

In contrast, severe convec�ve storms and winter storms reach a substan�ally larger share of SFRs in the 
con�guous U.S. Severe convec�ve storms, which include thunderstorms, hailstorms, and tornadoes, are 
the only true na�onwide peril — nearly every SFR in the con�guous U.S. has some exposure. Winter storm 
risk is close to na�onwide, with 87 percent of SFRs having nonzero expected losses from this climate-
related peril.  

The wide geographic reach of severe convec�ve storms plays a key role in them having the highest 
expected loss averaged over all SFRs. Averaged across all SFRs in the con�guous U.S., severe convec�ve 
storms cause expected losses of 0.06 percent of TIV, compared with 0.01 percent for both hurricane storm 
surge and wildfires. However, when we look at expected losses condi�onal on having some risk of damage, 
we see that flood- and hurricane-related perils are the most damaging in the areas that they can 
poten�ally impact. Hurricane storm surge has the largest average AAL (0.16 percent) among SFRs with 
some risk of damage, followed by inland floods (0.09 percent). The magnitude of the expected damage is 
driven by the long right tail of the distribu�on. As shown in Table 1, SFRs at the 99th percen�le of nonzero 
AALs for hurricane storm surge and inland floods both face expected losses of over 2 percent of TIV. 
Hurricane winds and wildfires are the next closest at 0.59 percent and 0.43 percent, respec�vely. 

We take a more detailed look at the regional breakdown of expected losses in Table 2. Figure 1(a) presents 
a visual representa�on of the AAL geographic distribu�on. We find that severe convec�ve storms are the 
greatest contributor to overall expected losses in the U.S. and the leading component in four of the nine 
census regions. Inland floods are the second-largest contributor to overall expected losses and the leading 
component in three of the nine regions. Only in the South Atlan�c (hurricane winds) and New England 
(winter storms) do different perils play the largest role in expected losses.  

The greatest expected losses (as a share of TIV) are in the West South Central (0.31 percent), East South 
Central (0.22 percent), West North Central (0.20 percent), and South Atlan�c (0.18 percent). Collec�vely, 
these regions encompass the tornado-prone heartland, the hurricane-prone Gulf and southern Atlan�c 
coasts, and flood-prone Appalachia and the Mississippi River basin. The least risky regions, on average, are 
the Pacific (0.06 percent) and Mountain (0.10 percent) regions, where wildfires and inland floods are the 
main contributors to expected losses. On average, the riskiest region in terms of AAL as a share of insurable 
value, the West South Central, is more than five �mes riskier than the least risky region, the Pacific.   

In Table 2, we also provide es�mates of AAL in 2020 dollars. We translate AALs into dollar values by 
mul�plying property-level AALs by an es�mate of structure value generated using tract-level ACS median 
home value es�mates and tract-level land share of home value es�mates.6 We use median home values 
in this calcula�on; as a result, we are likely underes�ma�ng average structure values because of the right-
skewed distribu�on of home values.7 



Average expected losses in dollars are greatest in the West South Central ($456) region. However, expected 
losses in the East South Central ($260) and West North Central ($280) are surpassed by the South Atlan�c 
($313) when using AALs in terms of dollars because of the higher structure values in the region. Similarly, 
on the lower end, the East North Central ($149) has the smallest expected losses because of the rela�vely 
low structure values compared with the Pacific ($167) and Mountain ($219) regions. In dollar terms, the 
average expected losses in the region with the greatest average expected loss (West South Central) are 
close to three �mes as large as the average expected losses in the region with the lowest average expected 
losses (East North Central). 

In aggregate, our analysis indicates that annual expected losses for SFRs due to all climate-related perils 
are $18.9 billion, based on 2021 condi�ons. The West South Central and South Atlan�c have the largest 
aggregate expected losses because of a combina�on of high average risk and large SFR exposure. The full 
region and peril breakdown of AALs in terms of dollars is provided in Appendix Table 1. Roughly $6.1 billion 
(32 percent) is atributable to severe convec�ve storms, $4.6 billion (24 percent) to inland floods, and $3.6 
billion (19 percent) to hurricane winds.  

Who bears the current physical risk? 

Having property-level es�mates of expected losses enables us to analyze distribu�onal impacts at a 
granular level. We use census tract-level measures of economic and demographic characteris�cs to study 
how they vary with the average physical risk in the tract. Specifically, we calculate the average all-peril AAL 
as a percentage of TIV for each tract and sort tracts into deciles. Figure 1(a) shows the AAL decile for each 
tract in the con�guous U.S. 

The map highlights the varied risk across regions while also shedding light on the within-region varia�on. 
Most of the safest tracts are in the Pacific and Mountain regions. In fact, 60 percent of Pacific tracts are in 
the lowest decile of risk, and the Pacific region accounts for up to 85 percent of first-decile tracts. Most of 
the remaining safest tracts are in the Mountain region. The highest-decile tracts are mostly spread among 
the West South Central (37 percent), South Atlan�c (30 percent), and East South Central (10 percent) 
regions.  

The distribu�on of tract-level average AALs is highly right-skewed. As shown in Figure 1(b), the difference 
between the average AAL of each decile increases rapidly as we approach the top decile. Tracts in the 
highest deciles of average expected losses are more than twice as risky as tracts in the ninth decile, on 
average. Tracts in the top decile seem to face a dis�nc�vely high level of risk compared with other tracts, 
largely because of hurricane-related damage. Hurricane storm surge and hurricane winds make up nearly 
half of expected losses, on average, in the top decile tracts. These two perils comprise less than one-fi�h 
of expected losses, on average, in all other deciles. Together with inland floods, the three perils comprise 
over 80 percent of expected losses in the top decile tracts. 

Table 3 shows select tract characteris�cs by AAL decile based on the 2015–2019 ACS. Tracts in the highest-
risk decile have, on average, lower educa�on atainments, lower household incomes, lower prime age (16 
to 54) labor force par�cipa�on rates, and higher vacancy rates, a proxy of neighborhood quality.8 The 
differences between the highest-risk decile and the fi�h decile are significant: 19 percent higher educa�on 
atainment rate, 16 percent lower household income, 8 percent lower labor par�cipa�on rate, and 75 
percent greater vacancy. The differences are even greater between the highest-risk decile and the lowest-
risk decile. 



Urban status is a contributor to the patern shown in Table 3. Urban tracts face less physical risk, on 
average, than rural tracts. This statement is illustrated by the fact that the share of tracts that are urban 
core tracts decreases across tract AAL deciles, while the share of rural tracts increases. The share of tracts 
that are suburban (not shown in Table 3) also tends to be larger in higher risk tracts. However, the 
differences in tract characteris�cs remain qualita�vely and quan�ta�vely similar when we limit the 
analysis to only urban core tracts (see Appendix Table 2), so the empirical patern that we observe in Table 
3 is not purely driven by the degree of urbaniza�on. Overall, current climate-related physical risks appear 
to be dispropor�onately borne by homeowners who live in less economically viable areas.  

Migra�on and economic shocks related to COVID-19 do not materially affect our conclusions. All the 
results shown in Table 3 are quan�ta�vely and qualita�vely similar when we use the 2021 five-year ACS 
es�mates, as opposed to the 2019 five-year ACS es�mates.9  

Addi�onally, the income patern we observe appears to be driven by cross-metro, as opposed to 
intrametro, differences. The income difference between high- and low-risk tracts disappears when we sort 
tracts within metropolitan sta�s�cal area (MSA) average AAL deciles (see Appendix Table 3). This result is 
sugges�ve that a large component of the income effect may be caused by lower income households’ 
inability to afford to live in more expensive MSAs, which tend to be safer. However, the prime age labor 
force par�cipa�on rate, vacancy rate, and educa�on atainment paterns remain, although with smaller 
differences across AAL deciles. 

Similar paterns of economic inequality appear when we examine changes in tract characteris�cs from 
2010 to 2019 across 2021 average tract AAL deciles. Appendix Table 4 shows larger increases in the vacancy 
rate, larger decreases in prime age labor force par�cipa�on, and smaller increases in educa�on atainment 
in tracts in the upper AAL deciles. Appendix Table 5 shows similar paterns for prime age labor force 
par�cipa�on and educa�on atainment among the subset of urban core tracts. The findings suggest that 
currently high-risk tracts are not only just currently less economically vibrant when compared with 
currently low-risk tracts but also that the gap in economic performance between the two groups has been 
increasing over �me. The empirical paterns might suggest that climate-related physical risk itself and/or 
the realiza�on of such risk may be important determinants of economic performance and outcomes, 
although it is not the focus of the current paper to evaluate these mechanisms.10  

Finally, we do not see much varia�on in 2010–2019 total popula�on change across AAL deciles (see 
Appendix Table 5). Further, we examine net migra�on by AAL decile using the anonymized FRBNY 
Consumer Credit Panel/Equifax Data (CCP) (see the Methods and Data sec�on for a complete descrip�on 
of methodology). We do not find evidence that, in aggregate, people are migra�ng away from higher-risk 
areas. The results in Appendix Table 6 seem to suggest the opposite. In aggregate, climate-related physical 
risk does not appear to be a significant deterrent of in-migra�on to high-risk places.11 

To further inves�gate the poten�al regressive impact of physical risk, we look at tract average AALs by 
decile of median household income. Figure 2(a) shows a near-linear decrease in expected losses from the 
lowest to highest tract income deciles. The highest-income decile faces only about two-thirds of the risk 
that the lowest income decile faces, on average. Notably, the share of AAL that comes from inland floods 
increases substan�ally as we move down the income deciles. In fact, in the botom quin�le income tracts, 
inland floods are the primary contributor to expected losses, on average. Not surprisingly, average AAL is 
nega�vely correlated with educa�onal atainment and the labor force par�cipa�on rate, and it is posi�vely 
correlated with the home vacancy rate (see Appendix Figure 1). In aggregate, it appears that climate-



related physical risk is regressive with respect to current household income and related local economic 
characteris�cs. Hence, policies that mi�gate such risk are likely to be progressive. 

In contrast with the clear patern that we see across household income deciles, the average AAL across 
deciles of the Black and non-White Hispanic popula�on share show no such patern, as displayed in Figure 
2(b). The average AAL is similar in both the lowest and highest deciles of the Black and non-White Hispanic 
share. Hurricane-related damage plays a larger role for tracts with the greatest Black and non-White 
Hispanic share, while inland floods play an outsized role for tracts in the lowest decile of the Black and 
non-White Hispanic share. The geographic distribu�on of Black and non-White Hispanic popula�ons 
contributes to these paterns. Tracts in the highest decile of the Black and non-White Hispanic share are 
concentrated in urban areas, including many along the Atlan�c and Gulf coasts. Tracts in the lowest decile 
are less geographically concentrated and tend to be in more rural areas like Appalachia and the Mississippi 
River basin.  

What does future physical risk look like? 

Physical risk is expected to increase in the future because of climate change. Future climate scenarios are 
characterized by representa�ve concentra�on pathways (RCPs), which depict different trajectories of 
greenhouse gas emissions that then affect different climate-related outcomes. The middle-of-the-road 
scenario, RCP 4.5, is associated with a global mean surface temperature increase of 0.9–2.0 degrees 
Celsius by the mid-21st century (rela�ve to 1986–2005), while the more severe business-as-usual scenario, 
RCP 8.5, is associated with an increase of 1.4–2.6 degrees Celsius. In terms of global mean sea level rise, 
the increase by the mid-21st century under RCP 8.5 is expected to be about 15 percent larger than it would 
be under RCP 4.5.12 

Under RCP 4.5, we es�mate that expected losses for owner-occupied SFRs in the con�guous U.S. will 
increase by 3.6 basis points of TIV by 2050. This represents a 22 percent increase, on average. Under RCP 
8.5, we es�mate an average increase in expected losses of 5.3 basis points of TIV, a 33 percent increase 
(See Appendix Table 7). These es�mates are based on the current inventory of SFRs and therefore do not 
consider future changes in development and structure quality.  

As shown in Table 4, most of the increase in physical risk will be due to severe convec�ve storms. Severe 
convec�ve storms will be the largest contributor to the increase in expected losses in all regions except 
the Pacific and Mountain regions, where wildfires are the chief contributor, as well as in the South Atlan�c, 
where hurricane winds are the largest component. Overall, hurricane winds will make up 17 percent of 
the na�onal increase. Despite its limited geographic scope, hurricane storm surge will make also up 17 
percent of the na�onal average increase in expected losses.  

The largest increase in AAL will occur in the regions where current expected losses are the greatest. This 
finding suggests a posi�ve rela�onship between current expected losses and the 2021–2050 change in 
expected losses. To examine this rela�onship more fully, we plot the tract-average change in AAL by the 
tract-average 2021 AAL in Figure 3(a). There is a clear posi�ve rela�onship — higher-risk tracts today will, 
on average, experience greater increases in physical risk. There is also a right-skew to the distribu�on of 
changes in tract-average AALs — tracts in the highest 2021 AAL decile have an average increase in AAL that 
is about three �mes the average increase of those in the ninth decile. The changes in AAL in the highest 
decile are more driven by hurricane winds and hurricane storm surge than they are in the other deciles. 
Figure 3(b) shows that, with respect to 2019 median household income deciles, the increase in AAL from 



2021 to 2050 is regressive. Therefore, climate risk mi�ga�ng policies are likely to con�nue to be 
progressive in the future. 

Discussion 

In this analysis, we provide a comprehensive accoun�ng of the climate-related physical risk to owner-
occupied SFRs in the con�guous U.S. However, our study has several notable limita�ons. Because of data 
limita�ons, we cannot make claims about the expected damage to other property types (e.g., mul�family 
residen�al proper�es, commercial proper�es, public infrastructure, etc.). Addi�onally, we are not 
capturing nonproperty or indirect losses, such as loss of business, hardship costs, mortality costs, or the 
cost of poten�al lost future growth.13 Our dollar-value es�mate of expected losses for owner-occupied 
SFRs also serves as a lower bound because we use median home value es�mates to generate expected 
losses in dollar terms. Last, we do not differen�ate between the propor�on of the cost that will be borne 
by insurance companies and the propor�on of the cost that will be borne by homeowners.14 

Within the listed confines, we calculate a lower bound es�mate of $18.9 billion in annual expected 
property losses to owner-occupied SFRs due to six climate-related perils. This number is rela�vely small 
when compared with the size of the na�onal economy — it represents less than 0.1 percent of U.S. gross 
domes�c product (GDP). Of course, expected losses should not be confused with realized losses. Realized 
losses from natural disasters tend to be temporally lumpy (see Appendix Figure A1), and they are not 
evenly distributed across the en�re U.S. For example, in 2005, the U.S. experienced close to $150 billion 
in property losses, with most of that occurring in a few Gulf Coast states, like Louisiana. 

Our distribu�onal analysis provides some insights into where and who bear the physical risk. 
Geographically, the southern and central parts of the country face the greatest physical risk because of a 
combina�on of hurricane- and flood-related damage and severe convec�ve storms. Within those areas, it 
is the coastal, hurricane-exposed areas that face the most risk. The set of tracts with the greatest expected 
losses are dominated by tracts on the Gulf and South Atlan�c coasts, where hurricane winds and hurricane 
storm surge are the predominant risks. Severe convec�ve storms are es�mated to be the largest 
contributor to expected losses across the U.S., but the areas with the largest expected losses are largely 
hurricane-exposed areas.  

Demographically, we find that low-income, less educated, low–labor market par�cipa�on, and high–
vacancy rate areas face the greatest physical risk. The finding is sugges�ve that areas that are already 
economically struggling face the greatest risk of disrup�on from climate-related perils. Thus, policies that 
aim to decrease the underlying physical risk (e.g., slowing global temperature increases) and/or mi�gate 
the impacts of these climate-related perils will likely be progressive in nature. With insurance markets in 
place, realized damages are likely to manifest in the form of higher insurance premiums and disrup�on to 
general economic ac�vi�es in the affected areas. However, as insurance companies pull out of risky 
markets, realized damages are likely to fully fall on homeowners.15 

Moreover, the riskiest areas today will, by and large, s�ll be the riskiest areas in 2050. In fact, the changes 
over the next 30 years will be most drama�c for the areas already facing the highest risk. The largest 
contributors to the change in physical risk are severe convec�ve storms, hurricane storm surge, and 
hurricane winds. Given that the gap in economic performance between high- and low-risk tracts has been 
increasing over �me and that aggregate migra�on paterns do not appear to be sensi�ve to the geographic 
distribu�on of climate-related physical risk, it is plausible that policies that aim to mi�gate such risk will 



con�nue to be progressive with respect to local economic condi�ons and will benefit a larger propor�on 
of the U.S. popula�on.16 

In terms of targe�ng specific perils, we find that inland floods are the largest contributor to expected losses 
in the lowest-income areas. This finding is relevant to both mi�ga�on investment decisions and insurance 
take-up efforts. Flood insurance take-up through the government-operated Na�onal Flood Insurance 
Program (NFIP) is low, par�cularly in many at-risk inland areas.17 Moreover, insured households in at-risk 
areas have nearly double the household incomes of uninsured households in at-risk areas, sugges�ng the 
insurance gap is more pronounced among low-income households.18 Consequently, efforts to increase 
flood insurance take-up in areas at risk of flooding will likely be dispropor�onately beneficial to low-income 
households. 
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Methods and Data 

Estimates of Average Annual Loss (AAL) 

The AALs used in this analysis are sourced from CoreLogic, which is a major commercial catastrophic risk 
modeler and property data vendor. CoreLogic provides AAL es�mates for approximately 190 million 
structures in the con�guous United States. AALs are expected losses, meaning they represent the loss per 
year averaged over many possible itera�ons of that year. Mathema�cally, AAL is the area under the 
exceedance probability curve, which, for every possible loss amount, provides a likelihood that the loss 
amount will be met or exceeded for a given structure.  

The AALs are ground-up losses, meaning they represent gross losses to the structure and contents prior to 
applying any insurance policy terms, like the deduc�ble. The AALs are expressed as a share of total 
insurable value (TIV), and therefore range from 0 to 1 for any single peril. CoreLogic uses replacement cost 
as its measure of TIV. Importantly for our mul�peril analysis, AALs are addi�ve because they are 
expecta�ons.  

This paper uses AALs based on current condi�ons (circa 2021) and on condi�ons in 2050 under two 
different greenhouse gas emissions pathways: representa�ve concentra�on pathways (RCPs) 4.5 and 8.5, 
as specified in the Intergovernmental Panel on Climate Change’s Fi�h Assessment Report (IPCC AR5).19 
Our main results are based on RCP 4.5, which depicts a middle-of-the-road climate scenario.  

The AALs are generated by CoreLogic’s proprietary climate, hazard, and vulnerability models. Inputs to 
CoreLogic’s modeling consist of “industry-leading property data with replacement costs, valua�on 
elements, and natural hazard informa�on.”20 These models account for future changes to environmental 
condi�ons, but they do not incorporate any changes to development. All 2050 AAL estimates are based 
on the current stock of structures. CoreLogic does not provide measures of uncertainty related to its AAL 
estimates. 

Validating AAL estimates is difficult because the ground truth is unknown. CoreLogic performs validation 
exercises on its model output to test reasonableness. While specific validation analyses vary by peril, they 
typically involve comparison with data on historical events and, if available, damages from those events. 
In our own validation exercise, we find our national expected loss total to be reasonable when compared 
with long-run historical losses recorded in the Spatial Hazard Events and Losses Database for the United 
States (SHELDUS). The SHELDUS comparison and full methodology is discussed in Appendix A.  

Perils 

We focus on AALs for six climate-related perils provided by CoreLogic: inland floods, hurricane winds, 
hurricane storm surge, severe convec�ve storms, winter storms, and wildfires. We selected these perils 
because they are likely to be affected by future environmental changes brought on by climate change. By 
the same logic, we ignore data on earthquake-related perils. The perils are defined to be mutually exclusive 
and consistent with insurance industry prac�ces. For example, water damage resul�ng from hurricane 
winds tearing off part of a roof and allowing for rainfall to enter the home would be considered hurricane 
wind damage and would be covered under a standard homeowner’s insurance policy. However, water 
damage resul�ng from a stream overflowing because of hurricane precipita�on would be considered 
inland flooding damage and would not be covered under a standard homeowner’s insurance policy. 



The peril descriptions from CoreLogic are as follows: 

1. Inland Flooding – Inunda�on caused by (1) water in an exis�ng waterway (river, stream, or pond)
rising overtop the normal banks and spreading onto adjacent land, (2) ponding of rainwater in
low-lying areas, and/or (3) coastal flooding from unusually high tides, strong onshore winds, and
storm surge associated with a landfalling strong storm (other than a hurricane). Water depth, flow
velocity, building age, first floor height, construction type, occupancy type, number of stories, and
presence of a basement are considered in determining damage.

2. Hurricane Wind – Damage caused by sheer force of hurricane wind (>74 mph one-minute
sustained wind speed at landfall) and any resul�ng water damage from precipita�on entering the
structure. The peak gust, flood depth and velocity, structure type, occupancy type, and total value
of the exposure are considered in determining damage.

3. Hurricane Storm Surge – Inundation caused by hurricane-force winds (>74 mph) pushing shallow
coastal waters in such a way that the sea level rises. Powerful storms can cause up to 30 feet of
storm surge. Storm surge flood depth and velocity can depend on factors like variations in
astronomical tides, flood defense systems, and first floor elevation of building. Storm surge flood
depth and velocity, structure type, occupancy type, and total value of the exposure are considered 
in determining damage.

4. Severe Convective Storm – Damage caused by one of three different types of storms: tornadoes,
hailstorms, or straight-line winds (e.g., squall or derecho). The hazard intensity, structure type,
occupancy, building material, cladding, and height of structure are considered in determining
damage.

5. Winter Storm – Damage caused by winter storm precipita�on and prolonged cold temperatures.
Types of damage include roof damage due to snow accumula�on, frozen and ruptured pipes, and
ice dams on roofs and guters causing flooding from mel�ng snow. Snow depth, snow and ice
thickness, wind speed, as well as structure and occupancy types are considered in determining
damage.

6. Wildfire – Damage caused by fire and smoke from combus�on of vegeta�ve fuel. Fire behavior is
modeled considering available fuel load, topography of area, prevailing weather condi�ons, and
fire suppression factors, including firefigh�ng resources. Structure type, occupancy type, age of
structure, number of stories, vegeta�on clearance, roofing fire class, and the presence of fire
resis�ve windows or siding are considered in determining damage.

Some of the perils are not modeled for the en�re con�guous U.S. Hurricane winds and hurricane storm 
surge are only modeled for states on the Gulf and Atlan�c coasts. Wildfires are only modeled for the 
western U.S. and Florida. Nonmodeled areas are considered to have negligible risk, according to CoreLogic. 
Consequently, when aggrega�ng the AALs over the different perils, we consider structures in nonmodeled 
areas to have an AAL of zero for the geographically limited perils.   

Sample Construction 

The analyses in this paper are based on property-level es�mates of AAL. Thus, we do not aggregate over 
all structures in the CoreLogic data. Instead, we select one structure per property. If a primary structure is 
iden�fiable, we use that structure. If the primary structure is unknown, we take the structure with the 
largest AAL.  



We then use CoreLogic’s property tax assessment data to iden�fy proper�es that are owner-occupied 
single-family residences (SFRs). To determine SFR status, we use the CoreLogic-standardized land use code. 
To iden�fy whether the SFR is owner-occupied, we use an owner occupancy code derived by CoreLogic, 
which mostly relies on the likeness of the owner’s mailing address and the property’s physical address. In 
instances in which the owner occupancy status is unknown, we treat the property as owner-occupied. 
Similarly, for instances in which proper�es are iden�fied generically as “residen�al,” we assume them to 
be SFRs. We do this because (1) most residen�al proper�es are SFRs and most SFRs are owner-occupied, 
and (2) we do not want to systema�cally exclude proper�es in coun�es where the underlying data 
collected from the county assessor offices prevent CoreLogic from determining absentee status or specific 
land use. These choices together mean our sample of proper�es likely includes some nonowner-occupied 
SFRs. Our sample of about 81 million proper�es overstates the number of owner-occupied SFRs by about 
10 percent based on the ACS count of owner-occupied SFRs. We account for this when we later aggregate 
to higher geographic levels.  

To generate tract-level average AALs, we iden�fy each property’s census tract by performing a spa�al join 
of the chosen proper�es (using structure-specific coordinates) and 2010-vintage census tracts. We find 
that 71,065 out of the total 72,247 land area tracts in the con�guous U.S. have at least one owner-occupied 
SFR, as iden�fied by CoreLogic. Then, for each property, we sum the AALs over all perils and calculate the 
average all-peril AAL for proper�es in the tract. Among the 71,065 tracts, we exclude about 3 percent of 
the tracts that had fewer than 30 nonmissing AAL values for owner-occupied SFRs. These are either tracts 
with a very small number of owner-occupied SFRs or tracts where data limita�ons prevented CoreLogic 
from providing an AAL es�mate for most proper�es. We are le� with a final sample of 68,821 tracts.  

Census Tract Characteristics 

Census tract characteris�cs were produced using 2019 five-year American Community Survey (ACS) 
es�mates. The 2019 ACS was chosen because of the economic ac�vi�es and migra�on paterns that were 
driven by the COVID-19 pandemic.21 The ACS fields used were: 

1. Median Household Income (B19013_001)
2. Median Home Value (B25077_001)
3. Popula�on 25 Years and Over (B15003_001)
4. Population 25 Years and Over – Bachelor’s Degree (B15003_022)
5. Population 25 Years and Over – Master’s Degree (B15003_023)
6. Population 25 Years and Over – Professional Degree (B15003_024)
7. Population 25 Years and Over – Doctorate Degree (B15003_025)
8. Popula�on 16 Years and Over (B23025_001)
9. Popula�on 16 Years and Over – In Labor Force (B23025_002)
10. Male: 25 to 29 Years: In Labor Force (B23001_025)
11. Male: 30 to 34 Years: In Labor Force (B23001_032)
12. Male: 35 to 44 Years: In Labor Force (B23001_039)
13. Male: 45 to 54 Years: In Labor Force (B23001_046)
14. Female: 25 to 29 Years: In Labor Force (B23001_111)
15. Female: 30 to 34 Years: In Labor Force (B23001_118)
16. Female: 35 to 44 Years: In Labor Force (B23001_125)
17. Female: 45 to 54 Years: In Labor Force (B23001_132)



18. Housing Units (B25002_001)
19. Housing Units — Vacant (B25002_003)
20. Vacant Housing Units – For Seasonal, Recreational, or Occasional Use (B25004_006)
21. Occupied Housing Units (B25032_001)
22. Occupied Housing Units – 1, Detached (B25032_003)
23. Occupied Housing Units – 1, Attached (B25032_004)
24. Occupied Housing Units – Mobile Home (B25032_011)
25. Total Popula�on (B03002_001)
26. Total Popula�on – Not Hispanic or La�no: White Alone (B03002_003)
27. Total Popula�on – Not Hispanic or La�no: Black or African American Alone (B03002_004)
28. Total Population – Hispanic or Latino (B03002_012)
29. Total Population – Hispanic or Latino: White Alone (B03002_013)

Tracts were designated as urban core, suburban, or rural based on 2010 Census Urban Areas and Core-
Based Sta�s�cal Area (CBSA) defini�ons. A tract was classified as urban core if the tract centroid 
intersected with a Census Urbanized Area. A tract was defined as suburban if it was located within a Census 
CBSA but not within a Census Urbanized Area. All tracts outside CBSAs were considered rural.  

Generating Tract Characteristics by Average AAL Decile 

In Table 3, we examine tract characteris�cs by tract-average AAL deciles. We do this as follows. First, we 
sort our sample of 68,821 tracts into deciles based on the tract-average AAL. Second, we winsorize the 
distribu�on of the tract characteris�cs at 0.01 and 0.99 within each decile to mi�gate the influence of 
extreme values. Last, we take averages of the tract characteris�cs within each decile.  

Generating AALs in Dollars 

We convert the CoreLogic AALs, which are normalized by TIV, to dollar values so that we can es�mate 
expected losses in dollars at the tract level and above (see Table 2 and Appendix Table 1). We generate an 
es�mate of the median structure value for each census tract by adjus�ng the tract median home value by 
the land value share calculated in Davis et al. (2021).22 We then mul�ply that measure of structure value 
by tract average AAL to generate an average AAL in dollars for each tract.  

As far as we are aware, Davis et al. (2021) provide the most granular geographical es�mates of land value 
that cover nearly the en�re U.S. They generate average land share of SFR property value for over 53,000 
census tracts based on 2012–2019 data. They also provide zip code-, county-, and state-level es�mates, 
which allow us to fill in land value shares for the remaining tracts in order of decreasing geographical 
granularity. Ultimately, we were able to use a tract-level estimate for 77 percent of the tracts in our 
sample, a zip code-level estimate for 20 percent of the tracts, a county-level estimate for 1 percent of the 
tracts, and a state-level estimate for 2 percent of the tracts.   

Unlike coun�es and states, zip codes are not coterminous with tract boundaries. Therefore, to apply zip 
code es�mates to tracts, we needed a geographical crosswalk between tracts and zip codes. There is no 
well-established crosswalk for tracts to zip codes, so we generated a custom crosswalk using CoreLogic’s 
property data. We map all proper�es with structures on them into 2010 tracts and 2010 Zip Code 
Tabula�on Areas, which are polygon representa�ons of zip codes, using Census shapefiles. From the 
property-level data, we can generate the count of proper�es in each zip code–tract pair. We merge that 



crosswalk with the Davis et al. zip code land value share es�mates, and then we aggregate to the tract 
level using the zip code–tract property count as the weight in the weighted average.  

Aggregating to Census Region Division and Contiguous U.S. 

As men�oned in the prior sec�on, for the en�re con�guous U.S., our sample of proper�es in the CoreLogic 
data overstates the number of owner-occupied SFRs by about 10 percent compared with the ACS 
es�mates. Consequently, when aggrega�ng AALs to the Census Region Division– or na�onal levels, like in 
Table 2, we use tract average AAL and then perform a weighted average using the ACS-provided count of 
owner-occupied SFRs in each tract as the weight instead of the count from CoreLogic.  

Net Migration by Tract AAL Decile 

We examine net migra�on between 2010 and 2019 for areas of different climate risk using the FRBNY 
Consumer Credit Panel/Equifax Data (see Appendix Table 6). The CCP is a 5 percent random sample that 
is representa�ve of all U.S. individuals who have a credit history. It is widely used in consumer finance 
research, but it has also been used in several studies of mobility and migra�on.23 We use the CCP because 
its size (about 10 million borrowers per year) enables us to generate more granular migra�on es�mates 
than some other sources of migra�on data allow. For example, ACS data only provide county-level flows 
based on five years of pooled data. We provide a county-level comparison of those sources below to help 
validate our CCP-derived migra�on es�mates in Appendix B. 

Using the CCP, we generate census tract-level net migra�on es�mates and then group tracts by the AAL 
deciles that are used in the main text. The migra�on es�ma�on proceeds as follows. 

1. Iden�fy individuals in the CCP who have a different reported (scrambled) street address and zip
code in year t compared with year t-1 for t = 2010 to t = 2019, and generate counts by 2000 census
block. The CCP provides a scrambled address where the trailing characters are affected by small
varia�ons like whether “Unit” or “Apt” is used. To deal with this issue, we only use the first five
characters of the scrambled address in conjunc�on with the zip code to avoid falsely iden�fying
movers that result from small varia�ons in address syntax.

2. Merge counts with the Na�onal Historical Geographic Informa�on System (NHGIS) 2000–2010
block crosswalk to convert to 2010 census geography defini�ons.24 Using the weights provided in
the crosswalk, we allocate each 2000 block migra�on count to a 2000 block to a 2010 block pair.
Then we aggregate to the 2010 block level.

3. Aggregate counts to the 2010 tract level.
4. Mul�ply counts by 22 because the CCP is a 5 percent na�onally representa�ve sample among

those with credit histories. We mul�ply by 22 instead of 20 to account for individuals without
credit histories. All results are qualita�vely and quan�ta�vely similar if we mul�ply by 20.

5. Scale migra�on counts by 2010 tract popula�on.
6. Group by AAL decile and winsorize the distribu�on at 1 percent and 99 percent within each decile.
7. Calculate average net migra�on as share of 2010 popula�on within AAL tract deciles.

We also consider migra�on within MSAs to see if people are moving to or away from riskier areas within 
their original MSA. In this case, we generate AAL deciles within the MSAs instead of across all tracts. We 
also calculate the average net migra�on among movers who moved within the same MSA, excluding the 
rela�vely small percentage of movers who move across different MSAs.
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Tables 

Table 1. Average Annual Loss (AAL) for Owner-Occupied Single-Family Residences (SFRs) in 2021, by Peril 

AAL Among SFRs with >0 AAL 

Peril 
Average AAL 

Among All SFRs 
Percent of SFRs 

with >0 AAL 
Average AAL Among 

SFRs with >0 AAL p10 p25 Median p75 p90 p99 

Severe Convective Storm 0.06% 99.8% 0.06% * 0.01% 0.04% 0.08% 0.12% 0.26%

Inland Flood 0.04% 47.3% 0.09% * * 0.01% 0.03% 0.12% 2.20%

Hurricane Wind 0.03% 47.2% 0.06% * * 0.02% 0.07% 0.18% 0.59%

Winter Storm 0.02% 86.6% 0.02% * 0.01% 0.02% 0.03% 0.04% 0.09%

Hurricane Storm Surge 0.01% 4.8% 0.16% * * 0.01% 0.09% 0.44% 2.03%

Wildfire 0.01% 26.5% 0.02% * * * 0.01% 0.05% 0.43% 
Note: The table shows summary statistics of AAL by peril. AAL is presented as percentage of total insurable value. * indicates a value greater than 0% but less 
than 0.005%. Data Sources: CoreLogic. 



Table 2. AAL for Owner-Occupied SFRs in 2021, by Census Region Division and Peril 

Percent of Census Region's Average AAL as % of TIV 
East 

North 
Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central U.S. 
Severe Convective Storm 55% 39% 21% 25% 15% 2% 23% 61% 40% 34% 
Inland Flood  23% 37% 31% 38% 18% 53% 19% 28% 24% 27% 
Hurricane Wind 0% 15% 11% 0% 17% 0% 41% 0% 25% 19% 
Winter Storm 21% 6% 30% 7% 48% 6% 7% 11% 3% 12% 
Hurricane Storm Surge  0% 2% 7% 0% 2% 0% 10% 0% 7% 5% 
Wildfire  0% 0% 0% 29% 0% 40% 1% 0% 2% 4% 
Avg AAL (% of Total Insurable Value) 0.11% 0.22% 0.13% 0.10% 0.14% 0.06% 0.18% 0.20% 0.31% 0.16% 

Property Exposure 
Count Owner-Occupied SFRs 
(millions) 11.8 4.8 8.3 5.5 3.3 9.4 14.9 5.6 8.7 72.3 
Avg Structure Value ($) 136,992 130,280 195,247 209,208 192,821 269,922 171,869 144,944 146,171 177,402 

Expected Loss in Dollars 
Avg AAL ($) 149 260 246 219 278 167 313 280 456 262 
Total AAL ($ Billions) 1.8 1.3 2.0 1.2 0.9 1.6 4.7 1.6 4.0 18.9 

Note: By-peril contribution to average regional expected damage. Structure value does not include land value. Dollar values are shown in 2020 dollars. Data 
Sources: CoreLogic and the American Community Survey. 



Table 3. 2019 Census Tract Characteris�cs by Tract Average AAL Decile 

Mean (Standard Error) 
Decile of Tract Average AAL 

Description 1 2 3 4 5 6 7 8 9 10 
Percent White 45.6 57.4 63.8 63.4 65.7 68.1 68.0 66.9 63.6 61.8 

(0.3) (0.4) (0.4) (0.4) (0.3) (0.3) (0.3) (0.3) (0.3) (0.4) 
Percent with Bachelor's 
Degree or Higher 

34.4 33.6 31.1 31.9 32.0 31.1 29.8 27.7 26.3 26.0 
(0.3) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) 

Median Household Income 80,521 75,261 68,874 70,001 69,384 67,565 65,781 63,682 60,576 58,142 
(448) (458) (401) (401) (382) (364) (361) (350) (324) (317)

Median Home Value 527,997 316,086 243,713 263,834 242,962 224,907 223,545 211,817 183,619 211,078 
(4,431) (2,989) (2,023) (2,301) (2,131) (1,878) (1,987) (1,944) (1,593) (2,022) 

Percent Prime Age Labor 
Force Participation 

82.7 82.5 82.5 82.7 83.1 82.9 82.4 81.5 80.5 78.9 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Vacant (Excluding 
Seasonal) 

5.0 7.7 8.3 8.0 8.3 8.2 8.7 9.2 10.0 11.3 
(0.04) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.08) 

Percent of Tracts Rural 0.6 2.3 3.8 4.5 4.5 6.6 8.9 11.4 12.6 12.4 

Percent of Tracts Urban Core 89.6 76.0 70.2 68.7 65.6 60.0 55.1 50.4 50.4 51.6 
Note: Census tract average characteristics by tract-level average AAL decile. Dollar values are in 2020 dollars. Data Sources: CoreLogic and the American 
Community Survey. 



Table 4. Change in AAL 2021–2050 Under RCP 4.5, by Census Region Division 

Percent of Change in AAL (% of TIV) by Census Region Division 
East 

North 
Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central U.S. 
Severe Convective Storm 84% 71% 45% 39% 42% 2% 33% 92% 55% 53% 
Inland Flood  14% 7% 8% 4% 7% 32% 3% 7% -2% 6% 
Hurricane Wind 0% 15% 12% 0% 24% 0% 37% 0% 20% 17% 
Winter Storm 2% -1% 6% -1% 16% -2% -1% 1% -1% 1% 
Hurricane Storm Surge  0% 8% 29% 0% 12% 0% 27% 0% 26% 17% 
Wildfire  0% 0% 0% 58% 0% 67% 1% 0% 2% 6% 
Avg Change in AAL (bps of 
Total Insurable Value) 2.7 4.2 2.5 2.1 2.2 1.2 4.8 4.8 7.1 3.6 

Note: By-peril contribution to change in average AAL, measured as share of total insurable value (TIV), from 2021 and 2050 shown by Census Region Division. 
Negative value indicates a decrease in average AAL. Data Sources: CoreLogic. 



Figures 

Figure 1(a)(b). Deciles of Tract Average AAL for Owner-Occupied SFRs in 2021 and By-Peril Contribu�on to Average AAL 

(a) Tract-level average composite AAL. Tracts without sufficient data to calculate an average AAL are shown in dark gray. (b) By-peril contribution of average
AAL in each decile of tract average AAL. Ninety-five percent confidence intervals for decile average AALs appear in gray. The intervals characterize the cross-
sectional variation in tract-level average AALs and do not account for model uncertainty because CoreLogic does not provide sufficient information for us to
account for such uncertainty; TIV = total insurable value. Data Sources: CoreLogic and the American Community Survey.



Figure 2(a)(b). Tract Average AAL by Decile of Median Household Income and Percent Black and Non-White Hispanic, 2019 

(a) By-Peril average contribution to tract-level average AAL sorted by average 2019 median household income decile. (b) By-peril average contribution to tract-
level average AAL sorted by average 2019 Black and non-White Hispanic share decile. Ninety-five percent confidence intervals for decile average AALs appear in
gray. The intervals characterize the cross-sectional variation in tract-level average AALs and do not account for model uncertainty because CoreLogic does not
provide sufficient information for us to account for such uncertainty. Data Sources: CoreLogic and the American Community Survey.



Figure 3(a)(b). Average Change in AAL 2021–2050, by 2021 Tract Average AAL Decile and 2019 Household Income Decile 

(a) Average change in AAL between 2021 and 2050 sorted by 2021 average tract AAL decile. (b) Average change in AAL between 2021 and 2050 sorted by
average 2019 median household income decile.  Ninety-five percent confidence intervals for decile average AALs appear in gray. The intervals characterize the
cross-sectional variation in tract-level average AALs and do not account for model uncertainty because CoreLogic does not provide sufficient information for us
to account for such uncertainty. Data Sources: CoreLogic and the American Community Survey.



Appendix Tables 

Appendix Table 1. AAL in Dollars for Owner-Occupied SFRs in 2021, by Peril 

Percent of Census Region’s Expected Losses (in 2020 USD) 
East 

North 
Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central U.S. 
Severe Convective Storm 57% 44% 20% 29% 15% 1% 23% 62% 42% 32% 
Inland Flood  22% 31% 26% 34% 17% 51% 14% 27% 22% 24% 
Hurricane Wind 0% 15% 15% 0% 17% 0% 43% 0% 25% 19% 
Winter Storm 22% 6% 30% 8% 49% 5% 7% 11% 3% 12% 
Wildfire  0% 0% 0% 30% 0% 43% 1% 0% 1% 6% 
Hurricane Storm Surge  0% 3% 9% 0% 2% 0% 12% 0% 7% 6% 
Avg AAL ($) 149 260 246 219 278 167 313 280 456 262 
Total AAL ($ Billions) 1.8 1.3 2.0 1.2 0.9 1.6 4.7 1.6 4.0 18.9 

Note: By-peril contribution to average dollar-value AAL. Dollar values are shown in 2020 dollars. Data Sources: CoreLogic and the American Community Survey. 



Appendix Table 2. Urban Core 2019 Census Tract Characteris�cs by Tract Average AAL Decile 

Mean (Standard Error) 
Decile of Tract Average AAL 

Description 1 2 3 4 5 6 7 8 9 10 
Density (per sq. mi.) 8,517 6,082 6,976 8,846 6,571 4,532 4,841 4,571 4,053 4,668 

(84) (74) (118) (174) (137) (72) (81) (73) (47) (64)

Percent White 43.9 51.7 55.2 54.8 57.0 59.1 58.0 56.6 52.0 49.8 
(0.3) (0.4) (0.5) (0.4) (0.4) (0.4) (0.5) (0.5) (0.5) (0.5) 

Percent with Bachelor's Degree 
or Higher 

35.0 35.0 32.9 34.7 35.7 35.8 35.4 32.9 31.0 30.9 
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) 

Median Household Income 81,272 75,641 69,295 72,365 72,432 71,012 70,385 68,472 64,012 61,253 
(477) (549) (510) (523) (517) (515) (550) (565) (531) (498)

Median Home Value 546,013 328,317 255,139 293,491 272,078 255,991 266,858 250,349 209,192 249,753 
(4,739) (3,638) (2,575) (3,021) (2,917) (2,655) (2,995) (3,050) (2,500) (3,046) 

Percent Prime Age Labor Force 
Participation  

83.0 82.9 83.0 83.3 83.9 83.8 83.8 83.1 82.1 81.5 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Vacant (Excluding 
Seasonal Units) 

4.9 7.9 8.6 7.9 8.1 7.7 7.9 8.0 8.9 9.9 
(0.04) (0.11) (0.10) (0.09) (0.10) (0.10) (0.10) (0.10) (0.10) (0.11) 

Number of Urban Core Tracts 6,167 5,230 4,832 4,729 4,515 4,132 3,793 3,470 3,468 3,549 
Note: Urban core census tract average characteristics by tract-level average AAL decile. Dollar values are in 2020 dollars. Data Sources: CoreLogic and the 
American Community Survey. 



Appendix Table 3. 2019 Census Tract Characteris�cs by Tract Average AAL Decile Sorted Within MSA 

Mean (Standard Error) 
Decile of Tract Average AAL Within MSA 

Description 1 2 3 4 5 6 7 8 9 10 
Percent White 59.0 56.2 56.3 56.4 56.6 58.2 59.1 61.1 62.9 64.4 

(0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) 
Percent with Bachelor's Degree or 
Higher 

33.8 32.8 33.0 32.9 32.6 32.8 32.4 32.5 31.8 30.9 
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) 

Median Household Income 71,661 70,472 70,450 70,810 70,668 72,324 72,424 73,298 72,698 70,766 
(439) (434) (447) (446) (442) (460) (457) (453) (460) (457)

Median Home Value 291,121 287,204 290,281 286,951 284,223 288,055 291,496 293,234 290,272 294,662 
(2,946) (2,859) (2,995) (2,957) (2,920) (2,979) (3,106) (3,055) (3,078) (3,259) 

Percent Prime Age Labor Force 
Participation  

83.3 82.9 82.8 82.9 83.0 82.9 82.8 82.7 82.5 81.5 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Vacant (Excluding Seasonal 
Units) 

7.5 7.8 7.9 7.9 7.8 7.6 7.7 7.6 7.9 8.6 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Note: Census tract average characteristics by within-MSA tract-level average AAL decile. Dollar values are in 2020 dollars. Data Sources: CoreLogic and the 
American Community Survey. 



Appendix Table 4. Change in Census Tract Characteris�cs (2010–2019) by Tract Average AAL Decile 

Mean (Standard Error) 
Decile of Tract Average AAL 

Description 1 2 3 4 5 6 7 8 9 10 
Change in Percent with Bachelor's 
Degree or Higher 

4.2 3.8 3.8 3.9 3.9 3.7 3.5 3.3 2.9 3.2 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Change Median Household 
Income 

8.6 3.9 3.2 3.5 3.1 3.5 4.2 4.4 3.7 3.3 
(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) 

Change in Percent Prime Age Labor 
Force Participation  

0.7 0.1 0.3 0.1 0.1 -0.2 -0.3 -0.4 -0.7 -0.6
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

Change in Percent Vacant (Excluding 
Seasonal Units) 

-0.9 -0.6 -0.4 -0.1 -0.1 -0.2 0.0 0.2 0.4 0.2 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Change in Total Population 8.4 6.8 4.2 4.3 5.1 6.4 6.8 6.5 6.7 5.8 
(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.3) 

Note: Average change in select census tract characteristics by 2021 tract average AAL decile. Data Sources: CoreLogic and the American Community Survey. 



Appendix Table 5. Change in Urban Core Census Tract Characteris�cs (2010–2019) by Tract Average AAL Decile 

Mean (Standard Error) 
Decile of Tract Average AAL 

Description 1 2 3 4 5 6 7 8 9 10 
Change in Percent with Bachelor's 
Degree or Higher 

4.4 3.9 3.9 4.1 4.1 4.1 3.8 3.5 3.1 3.7 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Percent Change Median Household 
Income 

9.1 3.9 3.0 3.6 3.2 3.8 4.3 4.2 3.6 3.5 
(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.4) 

Change in Percent Prime Age Labor 
Force Participation  

0.9 0.2 0.7 0.5 0.5 0.2 0.2 0.1 -0.1 0.0 
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) 

Change in Percent Vacant (Excluding 
Seasonal Units) 

-1.0 -0.8 -0.8 -0.4 -0.5 -0.6 -0.6 -0.6 -0.5 -1.1
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

Percent Change in Total Population 7.8 6.0 4.0 4.2 5.2 7.3 8.2 8.2 9.1 8.7 
(0.2) (0.3) (0.2) (0.2) (0.2) (0.3) (0.3) (0.3) (0.3) (0.4) 

Number of Urban Core Tracts 6,167 5,230 4,832 4,729 4,515 4,132 3,793 3,470 3,468 3,549 
Note: Average change in select census tract characteristics by 2021 tract average AAL decile. Urban core tracts only. Data Sources: CoreLogic and the American 
Community Survey. 



Appendix Table 6. Net Migra�on (2010–2019) by Tract Average AAL Decile and Tract Average AAL Decile Sorted Within MSA 

Mean Net Migration as % of 2010 Population (Standard Error) 
Decile of Tract Average AAL 

1 2 3 4 5 6 7 8 9 10 
All Migration -1.6 -1.0 -1.5 -2.0 -1.2 0.0 0.2 0.9 0.8 0.7 

(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) 

Decile of Tract Average AAL Within MSA 
1 2 3 4 5 6 7 8 9 10 

Migration Within MSA -0.7 -1.3 -0.6 -0.5 -0.5 -0.3 -0.2 0.4 0.3 -0.2
(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Note: Average tract net in-migration during 2010–2019 by tract average AAL and average tract net in-migration during 2010–2019 among the set of movers 
who moved within the same MSA by decile of tract average AAL sorted within MSA. Data Sources: CoreLogic and the CCP. 

Appendix Table 7. Change in AAL for Owner-Occupied SFRs (2021–2050) Under RCP 8.5, by Peril 

Percent of Change in AAL (% of TIV) by Census Region Division 
East 

North 
Central 

East 
South 

Central 
Middle 
Atlantic Mountain 

New 
England Pacific 

South 
Atlantic 

West 
North 

Central 

West 
South 

Central 
All 
US 

Severe Convective Storm 79% 69% 37% 42% 32% 3% 26% 89% 49% 47% 
Inland Flood  17% 1% 9% 0% 5% 18% 1% 9% -2% 4% 
Hurricane Wind 0% 21% 15% 0% 29% 0% 46% 0% 26% 23% 
Winter Storm 4% 0% 9% 0% 23% -1% 0% 2% 0% 2% 
Hurricane Storm Surge  0% 9% 29% 0% 12% 0% 26% 0% 26% 17% 
Wildfire  0% 0% 0% 58% 0% 81% 1% 0% 2% 6% 
Avg Change in AAL (bps of Total Insurable Value) 3.8 5.7 3.7 2.9 3.4 1.3 7.7 6.6 10.5 5.3 

Note: By-peril contribution to change in average AAL, measured as share of total insurable value (TIV), from 2021 and 2050, under RCP 8.5, shown by Census 
Region Division. Negative value indicates a decrease in average AAL. Data Sources: CoreLogic.



Appendix Figure 1(a)(b)(c). By-Peril Average AAL by Deciles of College Degree Popula�on Share, 
Vacancy Rate, and Prime Age Labor Force Par�cipa�on Rate  

(a) By-peril average contribution to tract-level average AAL sorted by average 2019 share of adults with college
degree or higher decile. (b) By-peril average contribution to tract-level average AAL sorted by average 2019 percent
vacant home decile. (c) By-peril average contribution to tract-level average AAL sorted by average 2019 prime age
labor force participation decile. Ninety-five percent confidence intervals for decile average AALs appear in gray. The
intervals characterize the cross-sectional variation in tract-level average AALs and do not account for model
uncertainty because CoreLogic does not provide sufficient information for us to account for such uncertainty. Data
Sources: CoreLogic and the American Community Survey.



Appendix A: Comparing Expected Losses with Realized Historical Losses in SHELDUS 

One way to assess the reasonableness of our es�mate of expected losses is to compare with historical 
losses. SHELDUS is a public database of historical direct losses caused by natural disasters in the U.S. The 
database contains county-level informa�on on property and crop losses as well as injuries and fatali�es 
from 1960 to the present for a wide selec�on of hazards. The data are primarily sourced from the Na�onal 
Centers for Environmental Informa�on (NCEI) Storm Data publica�on, which catalogs informa�on on 
“storm paths, deaths, injuries, and property damage.”25 SHELDUS is updated regularly with data addi�ons 
and correc�ons. The subsequent analysis is based on SHELDUS 21. 

There are several considera�ons when trying to compare our expected losses for 2021 with historical 
losses in SHELDUS. The main ones are hazard types, property types, and �me frame. Regarding hazard 
types, SHELDUS classifica�ons allow us to construct a collec�on of hazards that are comparable in the 
aggregate with the set of hazards included in our expected loss es�mates. We exclude losses from the 
following SHELDUS hazard types: heat, tsunamis/seiches, earthquakes, volcanoes, avalanches, fog, 
droughts, and landslides. 

Regarding property types, our es�mate of expected losses is for owner-occupied SFRs. SHELDUS property 
losses include damages to all property types as well as damage to vehicles and infrastructure like roads 
and power lines.26 Unfortunately, we cannot isolate types of property losses in SHELDUS, so, all else equal, 
we expect SHELDUS annual average loss to exceed our es�mate of expected losses. 

The trickiest consideration is time frame. CoreLogic AALs, which are the basis for our estimated loss 
estimate, are based on many simulations of a given year and therefore represent a large-sample average 
for a given point in time. The same quantitative exercise cannot be applied to the SHELDUS data. If 
conditions were held constant, we could “observe” annual expected loss by averaging across a very long 
period of historical losses. However, conditions are not held constant, which leaves a fundamental 
tradeoff between getting a historical average that is “longer-run” and one that better reflects current 
conditions. Thus, on one hand, we would like to go as far back in time as possible to avoid being misled 
by a “lucky” or “unlucky” period. On the other hand, environmental conditions and property exposure are 
not held constant over time, so the underlying risk may be less reflective of current conditions as one 
looks further into the past. 

The best we can do to address this issue is to examine multiple time frames and explicitly adjust for 
changes in exposure. The exposure adjustment is to account for the fact that the amount of property that 
is exposed to losses from hazards has increased over time. If we are trying to make a comparison between 
SHELDUS losses and expected losses in 2021, we want SHELDUS losses to be scaled to 2021 exposure. 
Consequently, we perform an exposure adjustment similar to the one performed in Wiese (2020).27 In 
short, we construct county-year-level real aggregate housing values using county-level data on total 
housing units for census years 1970, 1980, 1990, 2000, 2010, and 2020; county-level real housing values 
derived from county-level ACS median home values for 2020; the state-level Federal Housing Finance 
Agency (FHFA) All-Transactions House Price Index for the period from 1970 to 2022; and the GDP Price 
Deflator for the period from 1960 to 2022.28, 29 We then use the ratio of those housing exposure values 
with the 2020 value to inflate the SHELDUS county-year damages. 



Appendix Figure A1. SHELDUS Property Losses (1960–2021) 

Note: SHELDUS property losses (1960–2021): exposure-adjusted and not exposure-adjusted. Data Sources: SHELDUS. 

The exposure-adjusted damages for the en�re history of SHELDUS (1960–2021) and for the post-2000 
period are shown in Appendix Table A1. As we expect, we find that AALs in SHELDUS are larger than our 
es�mate of expected losses for owner-occupied SFRs in 2021. The AALs in SHELDUS for 1960–2021 and 
for 2000–2021 are $21.4 billion and $31.0 billion, respec�vely, when adjusted for exposure. The closeness 
of the 1960–2021 value to our expected loss es�mate for 2021 in spite of the difference in property type 
coverage likely reflects, in part, the worsening environmental condi�ons over the period. In other words, 
the true expected losses in 2021 are likely higher than the true expected losses at the beginning of the 
1960–2021 period. Overall, our aggregate expected damage number of $18.9 billion appears to be roughly 
consistent with the adjusted expected damage numbers from SHELDUS. 

Appendix Table A1. Exposure-Adjusted SHELDUS Damages (1960–2021 and 2000–2021) 

SHELDUS Hazard 

Exposure-Adjusted 
Damage 1960–2021 
(Billions of 2020$) 

% of Damage 
1960–2021 

Exposure-Adjusted 
Damage 2000–

2021 (Billions of 
2020$) 

% of Damage 
2000–2021 

Hurricane/Tropical Storm 472.8 35.6% 245.6 36.0% 
Flooding 388.1 29.2% 249.9 36.7% 
Tornado 103.4 7.8% 43.9 6.4% 
Severe Storm/Thunderstorm 81.3 6.1% 7.1 1.0% 
Hail 75.8 5.7% 44.5 6.5% 
Wind 75.2 5.7% 30.8 4.5% 
Wildfire 70.1 5.3% 42.8 6.3% 
Winter Weather 50.7 3.8% 15.3 2.2% 
Lightning 6.4 0.5% 1.3 0.2% 
Coastal 3.9 0.3% 0.5 0.1% 
Total 1,328 100% 682 100% 
Annual Average 21.4 N/A 31.0 N/A 



Note: By-hazard exposure-adjusted SHELDUS property losses for 1960-2021 and 2000-2021. “Hurricane/Tropical 
Storm” category includes some flooding from hurricanes and tropical storms. Data Sources: SHELDUS. 

In addition to the aggregate damage, we can also compare the breakdown of historical losses among 
hazards with the breakdown of our estimated expected losses by hazard. In this case, the best comparison 
is with the hazard shares provided in Appendix Table 1 because those shares were determined using 
dollar-value AALs instead of AALs as a share of TIV. The crosswalk between SHELDUS hazards and 
CoreLogic perils is provided in Appendix Table A2. In the case of hurricane/tropical storm and coastal, 
there are not clear 1:1 matches to CoreLogic perils. For example, some nonsurge hurricane-related ground 
flooding is counted as hurricane/tropical storm, while some is counted as flooding.27 Nonsurge hurricane-
related ground flooding is classified as inland flooding in the CoreLogic data. Thus, the hurricane/tropical 
storm category is somewhat inflated relative to what it would be under CoreLogic classifications. For the 
same reason, flooding is smaller than what it would be under CoreLogic classifications.  

Appendix Table A2. Crosswalk of SHELDUS Hazards and CoreLogic Perils 

SHELDUS Hazard CoreLogic Peril 
Hurricane/tropical storm Hurricane wind/inland flooding/hurricane storm surge 
Flooding Inland flooding 
Tornado Severe convective storm 
Severe storm/Thunderstorm Severe convective storm 
Hail Severe convective storm 
Wind Severe convective storm 
Wildfire Wildfire 
Winter weather Winter storm 
Lightning Severe convective storm 
Coastal Hurricane storm surge/Inland flooding 

Note: Crosswalk between SHELDUS hazard name and CoreLogic perils. Data Sources: CoreLogic and SHELDUS. 

One way to deal with this problem is to combine hurricane and flooding categories. For SHELDUS, this 
would be hurricane/tropical storm, flooding, and coastal, and for CoreLogic, it would be hurricane wind, 
hurricane storm surge, and inland flooding. Over the entire SHELDUS history, hurricane and flooding 
damages have been 65 percent of damages, while they are 50 percent of our estimate of 2021 expected 
losses (see Appendix Table A3). This suggests that we may be understating the influence of hurricanes and 
flooding. Conversely, the SHELDUS data suggest that we overstate the role of severe convective storms as 
well as winter storm. The damage share for wildfires lines up well. Overall, the by-peril share of expected 
damage from CoreLogic appears to be qualitatively similar to the realized damage share from SHELDUS. 



Appendix Table A3. Hazard Shares of SHELDUS Damages and Our Estimate of Expected Losses 

Hazard Category SHELDUS Damage Share (1960–
2021) 

Estimated 2021 Expected Loss Share 
Based on CoreLogic AALs 

Hurricane and flooding 65% 50% 
Severe convective storm 25% 32% 
Winter storm 4% 12% 
Wildfire 5% 6% 

Note: Comparison of peril share of property losses recorded in SHELDUS (1960–2021) and peril share of estimated 
2021 expected losses based on CoreLogic AALs. Data Sources: CoreLogic and SHELDUS. 

We posit that there are several factors contributing to the differences. First, to the extent that 
environmental conditions have changed from 1960 to 2021, they may differentially impact the 
contribution of individual hazards. (Of course, if one thinks that hurricanes and flooding have been most 
acutely affected by environmental changes over the 1960–2021 period, then this explanation only 
exacerbates the difference). Similarly, it’s possible that hazards have differential impacts on property 
types that may drive the differences because of the difference in property types included in our expected 
loss estimate compared with SHELDUS losses. For example, if hurricanes and flooding have a 
disproportionate impact on public infrastructure, then that would drive up the SHELDUS share compared 
with the share we estimate based on owner-occupied SFRs. Third, there is very likely overreporting of 
flood events in SHELDUS data relative to other hazards due to the collection procedure requirement that 
a monetary loss amount be provided for all flood events, even if it is a “guesstimate.” For other events, 
the reporting entity is allowed to provide an unknown amount if they cannot provide a monetary loss 
estimate based on authoritative data.30 Fourth, as discussed in this paper, we likely understate expected 
losses because we use median home values. The impact of this choice may vary with geography and, 
thereby, hazard. For example, high-value beachfront properties in coastal areas where hurricanes are the 
primary source of damage may not be reflected in median home values for the area, which could lead to 
hurricane-related damage being understated in our estimate of expected costs. Fifth, hurricane wind is 
only modeled by CoreLogic for states on the Gulf and Atlantic coasts. Elsewhere, we assume hurricane 
damage is zero. In reality, hurricane winds have the potential to reach further inland. To the extent that 
this is true, the assumption would cause us to underestimate the expected losses from hurricane wind. 



Appendix B: Validating the CCP Migration Measure Against ACS County-to-County Flows Data 

We examine net migra�on between 2010 and 2019 for areas of different climate risk using the FRBNY 
Consumer Credit Panel/Equifax Data (see Appendix Table 6). One concern with using the CCP data set is 
its selection criteria of individuals with credit histories makes it skewed toward older and more financially 
sophisticated individuals. Thus, CCP-based migration estimates would be biased to the extent that 
migration patterns systematically differ between those with and without credit histories.  

We test the reasonableness of the CCP-based migration measure by comparing its county-level migration 
estimates with the ACS county-to-county migration flows for 2010–2019. For this comparison, we perform 
steps (1)-(4) from above using the CCP, except that we aggregate to the county level, which precludes the 
need to convert to 2010 census tract defini�ons. For the ACS-based measure, we use the 2010–2014 and 
2015–2019 county-to-county flows data and sum the values to generate a total 2010–2019 net migra�on 
es�mate for each county. 

The ACS and the CCP net migra�on counts correlate rela�vely strongly (r = 0.84), which lends support to 
use of the CCP-based net migra�on es�mates at the tract level. This result is consistent with more 
comprehensive assessments of migra�on es�mates using different sources of data, including ACS data, 
versus CCP-based migra�on es�mates.31 

The deciles of ACS and CCP county net migra�on counts are shown in Appendix Figure B1. The highest 
decile represents the coun�es with the most net in-migra�on. The CCP-based deciles suggest more severe 
out-migra�on in the Northeast than the ACS-based deciles, but overall, the deciles are consistent with one 
another. 

Appendix Figure B1. Comparison of ACS and CCP County-Level Net Migra�on Es�mates, 2010–2019 

Note: Deciles of county-level net in-migration during 2010–2019 using ACS (left) and CCP (right) data. Data Sources: 
CCP and the American Community Survey. 

ACS County Net Migra�on Deciles CCP County Net Migra�on Deciles
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