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Abstract 

The monetary costs of weather and climate disasters in the U.S. have grown rapidly from 

1980 to 2022, rising more than 5 percent in real terms annually. Much of this real growth in costs 

is likely due to climate change. Regardless of its cause, these costs imply a faster depreciation of 

real assets. We argue that the expected depreciation from these events could be included in the 

consumption of fixed capital, leading to lower levels, and slightly lower growth rates, for net 

domestic product (NDP). We use Poisson pseudo-maximum-likelihood regressions to estimate this 

expectation and to generate our experimental measure of costs. An alternative calculation of 

depreciation and NDP might be derived from the time series of costs incurred rather than from the 

far smoother expectation. This latter series might be more appropriate for a national income 

satellite account. We also investigate the parametric distributions of the annual average-cost and 

total-cost data. 

Keywords: Climate Change, Anthropocene, Depreciation, National Accounts, Disasters,  

JEL codes: Q54, Q56, C82  

 
1 Nakamura is an emeritus economist in the Research Department of the Federal Reserve Bank of Philadelphia. Email: 
leinakam@msn.com. Sliker is an economist at the Bureau of Economic Analysis, U.S. Department of Commerce. 
Email: brian.sliker@bea.gov. We thank Scott Wentland, Abdul Munasib, Allison Derrick, Marshall Reinsdorf, Rachel 
Soloveichik, Bryan Parthum, and Wesley Ingwersen for helpful comments on this paper. 
Disclaimer: This Philadelphia Fed working paper represents preliminary research that is being circulated for 
discussion purposes. The views expressed in this paper are solely those of the authors and do not necessarily 
reflect the views of the Federal Reserve Bank of Philadelphia, the Federal Reserve System, or the Bureau of 
Economic Analysis. Any errors or omissions are the responsibility of the authors. No statements here should be 
treated as legal advice. Philadelphia Fed working papers are free to download at: philadelphiafed.org/research-
and-data/publications/working-papers. 

mailto:leinakam@msn.com
mailto:brian.sliker@bea.gov
https://philadelphiafed.org/research-and-data/publications/working-papers
https://philadelphiafed.org/research-and-data/publications/working-papers


 1 

I. Introduction 

We now live in an era in which human activity has a large impact on nature, so much so 

that some geologists have proposed that we are in a new geological era, the Anthropocene Epoch. 

Impacts on the Earth’s weather systems through greenhouse gases are an important aspect of this 

new role of human economic activity. One consequence is a conspicuous and continuing rise in 

the costs of weather and climate disasters both in the U.S. and around the world. Although how 

much of this rise is due to climate change and greenhouse gases is an important topic, it is not one 

we tackle here. Rather, we focus on the apparent increases in the costs of U.S. weather and climate 

disasters, which are not included in existing measures of asset depreciation and represent an 

appreciable and growing proportion of depreciation. 

Net domestic product (NDP) does not, as currently measured, take into account catastrophic 

losses. As a result, NDP may not correlate as well with well-being. (NDP is not a measure of well-

being; improving its relationship with well-being is useful to the extent that NDP growth is taken 

as a desideratum of economic policy.)2 An asset-destroying climate event does not appear as a 

reduction in NDP, although it does reduce well-being and capital assets. If a destroyed structure is 

replaced by new construction, the construction appears as a positive investment; the destruction 

appears in other changes in the volume of assets (OCVA), so the asset volume remains accurate. 

But NDP will fail to reflect the costs of the event. 

In this paper, we propose two alternative methods by which some climate and weather 

shocks might appear in NDP or expanded NDP (Hulten and Nakamura, 2022) using the time series 

of billion-dollar weather and climate disasters (BWCDs) from the National Oceanic and 

 
2 Hulten and Nakamura (2022) argue that under the Beyond GDP project (Landefeld et al., 2020), it is desirable to 
have an expanded version of GDP that extends its measurement to include changes in consumption technology that 
are costless. Losses such as climate disasters might be included in this expanded version, or they might be included 
directly in NDP. The latter possibility is discussed here. 
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Atmospheric Administration (NOAA). Method One is to incorporate the smoothed time series as 

an expected cost in consumption of fixed capital (CFC), that is, in depreciation, and to have the 

residuals appear in OCVA. Method Two is to incorporate the unsmoothed time series costs in 

CFC, which introduces substantial shocks to NDP and might be better put in a satellite account. 

On an industrial level, if the expected losses to insurers are understated because catastrophic 

losses are not included in them, then their contribution to output may be overstated. 

NOAA has constructed a time series of BWCDs in the U.S. from 1980 to the present. It 

estimates the cost of disaster events amounting to $1 billion in economic losses or more; these are 

measured in real dollars of the most recent year (which, for the purposes of this paper, is 2022), 

deflated by the consumer price index (CPI). Under this methodology, the billion-dollar criterion 

evolves over time — as the CPI rises over time and the base year changes, more events are added 

in earlier years. Disasters are divided into seven types: flood, drought, freeze, wildfire, and three 

types of storms (winter, tropical cyclone, and severe). This time series is built upon governmental 

estimates and private insurance costs, with the insurance estimates adjusted for uninsured costs. 

These costs do not include deaths (the value of a human life) or human distress. They do include 

temporary losses such as business interruption and housing services, which should be removed, 

although we do not do so here. In the decade from 2013 to 2022, the average annual U.S. BWCD 

cost was $111 billion, or 0.5 percent of gross domestic product (GDP).  

In this paper, we discuss the 43-year time series of climate shocks from 1980 to 2022 in 

NOAA’s BWCD data set. The simple analysis we perform suggests that weather-related costs have 

a large variance and are growing at a real rate of roughly 5.5 percent annually, appearing to double 

every 13 years. Arguably, much of this increase is attributable to climate change, although without 

detailed attribution analysis, we cannot attribute all of the increase in BWCD costs to climate 
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change. On the other hand, in the Anthropocene, it might be argued that the costs of climate 

disasters are increasingly an externality of human economic activity, just as pandemics may be. 

Externalities are indeed no longer as easy for the System of National Accounts (SNA) to ignore as 

they were in the past.  

These disaster costs are, in principle, subsumable under the social cost of carbon and 

measures of natural capital. However, if these costs rise substantially faster than GDP growth, as 

they have been, then their capture is not straightforward. The social cost of carbon and measures 

of natural capital embed assumptions about the future path of these costs, which may not be 

justified ex post. There are, of course, many costs of  climate change and its amelioration that are 

not included in climate and weather disasters. 

We can further argue that the unexpected component of BWCDs, which we agree should 

be in OCVA, might also usefully be included in a natural capital satellite account measure of CFC. 

II. Existing Literature 

This paper explores how to include the economic costs of weather and climate disasters in 

the national accounts. It does so by building upon the work of Reinsdorf et al. (2017), who propose 

a method for incorporating expected financial losses in the national accounts. There is a literature 

on trends in disaster costs, including work on insurance costs (Bevere and Orwig,, 2015) and on 

U.S. weather and climate disasters (Smith and Katz, 2015; Shukla, 2021). Al Kazimi and 

Mackenzie (2016) have a useful survey of work studying the economic costs of natural disasters 

and other calamities. An important question about climate and weather events is whether their 

costs are fat-tailed, which we investigate in Section IV. Coronese et al. (2019) discuss the sharp 

rise in global weather and climate catastrophes and use quantile regressions to show rapid increases 
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in the tail of such shocks. Weitzman (2009, 2011, 2014) has emphasized the importance of very 

large tail events in climate risks and the discounted social costs of these risks.   

III. The Data from NOAA 

NOAA’s National Centers for Environmental Information collects data on BWCDs. From 

its website:3 

More than one dozen public and private sector data sources help capture the total, 

direct costs (both insured and uninsured) of the weather and climate events. These costs 

include: physical damage to residential, commercial, and municipal buildings; material 

assets (content) within buildings; time element losses such as business interruption or loss 

of living quarters; damage to vehicles and boats; public assets including roads, bridges, 

levees; electrical infrastructure and offshore energy platforms; agricultural assets including 

crops, livestock, and commercial timber; and wildfire suppression costs, among others. 

However, these disaster costs do not take into account losses to: natural capital or 

environmental degradation; mental or physical healthcare related costs, the value of a 

statistical life (VSL); or supply chain, contingent business interruption costs. Therefore, 

our estimates should be considered conservative with respect to what is truly lost, but 

cannot be completely measured due to a lack of consistently available data. Sources include 

the National Weather Service, the Federal Emergency Management Agency, U.S. 

Department of Agriculture, National Interagency Fire Center, U.S. Army Corps, individual 

state emergency management agencies, state and regional climate centers and insurance 

industry estimates, among others.  

 

Much of the data are drawn from Federal Emergency Management Agency (FEMA) disaster 

estimates and from private insurance sources. Estimates of uninsured losses are also included. The 

time element losses, such as business interruptions or loss of living quarters, should not be included 

as capital costs, as these are deducted from other parts of NDP, e.g., residential services.   

 
3 See www.ncei.noaa.gov/access/billions/. 



 5 

The second column in Table 1 shows the number of BWCD events, in which billion-dollar 

events are measured in constant dollars (using the CPI) of the latest year for which data are 

available — in this case, 2022. As time passes, more past events qualify as billion-dollar disasters 

since the CPI has risen over time and so the value of a billion dollars becomes smaller relative to 

the past. For example, there was originally only one disaster in 1980 that passed the billion-dollar 

mark: a drought and heatwave in the summer and fall that cost $10 billion. Now, measured in 2022 

dollars, there are three events that qualify, and the drought/heatwave event is reckoned at $38 

billion. In the decade from 1980 to 1989, NOAA recorded an average of 3.1 events per year that 

cost $1 billion or more, using the prices of 2022. By comparison, from 2013 to 2022, there were 

15.1 such events a year.  

The third column in Table 1 shows the aggregate time series of BWCD costs from NOAA 

covering the period from 1980 to 2022, as published in February 2023. In summary, in the decade 

from 1980 to 1989, average annual BWCD costs were $20.5 billion, while in the decade from 2013 

to 2022, average BWCD costs were $111 billion, a real compound annual growth rate of 5.3 

percent. Chart 1 depicts graphically that, in the period from 1980 to 2000, there are no years with 

shock costs greater than $100 billion, while there are five from 2001 to 2022. The fourth column 

in Table 1 gives the centered 10-year moving average of BWCD costs. The losses are irregular 

enough that the moving average does not rise monotonically and shows long periods of 

nonincrease, although each decade does rise monotonically, as we see in Table 2. Figure 1 shows 

the time series of annual costs together with the centered moving average.  

IV. Statistical Description of Annual Data 

The regression work of the paper in Section V contrasts the usual log-linear approach to 

estimation, which faces problems when the dependent variable is zero (e.g., as in 1987, when no 
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disasters cleared the billion-dollar threshold) and which can be biased downward in the levels,4 

with the consistent but heteroskedastic Poisson pseudo-maximum-likelihood estimator.5 The 

annual data may also be treated in a more thoroughgoing statistical manner, in the hope of 

approaching the distributions that best describe the real average annual billion-dollar-plus disaster-

cost6 and total billion-dollar-plus disaster-cost series. The statistical approach also explicitly 

accounts for left truncation (e.g., the absence of average-cost observations below $1 billion or of 

total-cost observations below $k billion in years with k disasters in excess of $1 billion) and can 

answer the question of how much sub-billion-dollar disasters matter. Finally, the choice of 

distribution might bear on Weitzman’s apprehensions of thick-tailed climate risks. 

We follow the well-worn path of estimating the distributions of average and total real 

disaster costs by maximum likelihood, testing a dozen more-or-less well-known, two-parameter, 

right-skewed densities on the positive domain. These, with their parameters to be fit, are: 

Beta Prime (p>0, q>0) Birnbaum-Saunders (α>0, λ>0) Fréchet (β>0, θ>0) 

Gamma (ν>0, δ>0) Inverse Gamma (ν>0, δ>0) Inverse Gaussian (µ>0, λ>0) 

LogLogistic (γ>0, σ>0) LogNormal (µ, σ>0) Nakagami (µ>0, ω>0) 

Shifted Gompertz (λ>0, ξ) 0-Shifted Gompertz (λ>0, ξ) Weibull (β>0, θ>0). 

 
4 The usual fix is to add half the regression variance to the mean that is being exponentiated, which is strictly valid 
only when the logged random variable is distributed lognormally. Duan’s nonparametric smearing transformation 
(1983) would apply beyond the lognormal case and has been used by health econometricians. 
5 See Gourieroux, Monfort, and Trognon (1984) for the original work and Santos Silva and Tenreyro (2006), who 
implement the Poisson pseudo-maximum-likelihood regression (PPML) in a trade setting after considering some 
related alternatives. 
6 Just what you’d think: real total billion-dollar-plus costs, divided by the number of billion-dollar-plus events, year 
by year. This works because NOAA doesn’t count costs from events that haven’t cleared the billion-dollar disaster 
threshold. 



 7 

For most of these distributions, the first parameter is termed a “shape” coefficient, while the 

second is some measure of distributional width called “scale” or “spread” (or even variance). The 

exceptions are the Beta Prime, where both are shape parameters; the Gamma, where we use “rate” 

parameter, δ (the reciprocal of the scale parameter, but very much the scale parameter for the 

Inverse Gamma), owing to its connection to the well-known geometric depreciation rate, δ, for an 

asset type whose individual members have Gamma-distributed service-lives; the LogNormal, 

where the random variable’s log-mean is µ and log-variance is σ2; and the Shifted and 0-Shifted 

Gompertz, where shape and scale are reversed. Three of the distributions (e.g., the Beta Prime, 

LogLogistic, and LogNormal) have thick right tails whose density functions approach zero at 

slower-than-exponential rates; eight have thin right tails (i.e., exponential decay); the Weibull’s 

right tail is thick for β<1 but thin otherwise. With only 42 observations,7 we do not have the luxury 

of three- or four-parameter forms for higher moments, leaving these to the be settled implicitly by 

the best non-nested choice among distributions, typically an Akaike-type comparison. In view of 

all the distributions having the same number of parameters, this boils down to an exponentiated 

difference among log likelihoods. All 12 of the distributions at least allow a single interior mode, 

depending on parameter values; half of them (i.e., the Birnbaum-Saunders, Fréchet, Inverse 

Gamma, Inverse Gaussian, LogNormal, and 0-Shifted Gompertz) compel it. Alone among the 12, 

the Shifted Gompertz may increase from a positive density at the origin to an interior mode; one 

may consider this a feature or a bug. To the extent it is a bug, a modification to the 0-Shifted 

Gompertz form imposes a zero density at the origin.8 There are surely other two-parameter 

distributions that we’ve neglected and could be persuaded to fit, subject to diminishing returns. 

 
7 We drop 1987’s count and cost of “0” here, viewing them as truncation victims, not genuine zeroes.  
8 That is, when the other 11 densities have a positive interior mode — i.e., supx f(x) occurs at x > 0 — they also happen 
to have limx→0 f(x) = 0, while the Shifted Gompertz density still permits limx→0 f(x) > 0. The algebraic form of the 
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Rudimentary test-regressions of average real costs against a constant and “latter-part” time-

dummy rejected the hypothesis of differences between the earlier and latter parts of the 1980–2022 

real billion-dollar-plus average-cost series no matter where the split between early and late was 

placed. So, the parameters to be estimated for average costs are simple, with the best fit 

maximizing the log-likelihood implied by a left-truncated Fréchet density: 

 

 (4.1) 

 

and the second-best, some 29 percent less likely, maximizing the log-likelihood implied by a left-

truncated Inverse Gamma density: 

 

 (4.2) 

 

Full details of the fits, for these distributions and the other 10, are given in Table 3.9 

Both the Fréchet and Inverse Gamma densities are characterized by thin right tails. A visual 

comparison of the two best estimates against a histogram of real average costs (Figure 2) shows 

excellent fits, although it is clear the log-likelihood criterion is rewarding agreement with the 

mode, not the right tail. The largest outlier, at $51.4 billion, represents a three-month drought in 

1988; the next largest, at $41.25 billion, averages across six disasters in 2005, including a six-

month drought and four hurricanes. These aren’t enough to allay Weitzman’s concerns, which use 

Bayesian updating to infer the cost responses to average temperatures beyond the historical range 

 
Shifted Gompertz density is: f(x) = λ Exp[–λ x – ξ e–λ x] (1 + ξ(1 – Exp[–λ x])). The modification to the 0-Shifted 
Gompertz density is: f(x) = {λ (1 + ξ)2/(ξ + Exp[–1–ξ])} Exp[–λ x – (1 + ξ) e–λ x] (1 – Exp[–λ x]). 
9 All the time series in Tables 3 and 8 exclude 1987, so “t = 1980 . . . 2022” really means “t = 1980 . . . 1986, 1988 . 
. . 2022.” 
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and would finish with a thick-tailed distribution even from thin-tailed priors, but finding a thick-

tailed distribution of average costs now (such as the Beta-Prime or LogLogistic, the third- and 

fourth-likeliest densities for these data) would have gone some distance to confirm them. Finally, 

neither the Inverse Gamma nor the Fréchet fits leave much mass below the $1 billion mark: just 

0.2 percent of the full Inverse Gamma density and 0.02 percent of the full Fréchet. NOAA’s 

billion-dollar cut, then, is harmless.  

      V. National Accounts Methodology 

National production accounts are calculated on both a gross and a net basis, the difference 

between the two being CFC. The question we address here is to what extent CFC should include 

the expected cost of weather and climate disasters. 

Weather and climate disasters, according to SNA 2008, are included in “other changes in 

the volume of assets,” chapter 12. Basically, other changes in volume of assets are changes to 

capital assets that do not flow normally from economic activity. From page 244:  

12.46  The volume changes recorded as catastrophic losses in the other changes 

in the volume of assets account are the result of large scale, discrete and recognizable 

events that may destroy a significantly large number of assets within any of the asset 

categories. Such events will generally be easy to identify. They include major earthquakes, 

volcanic eruptions, tidal waves, exceptionally severe hurricanes, drought and other natural 

disasters; acts of war, riots and other political events; and technological accidents such as 

major toxic spills or release of radioactive particles into the air. Included here are such 

major losses as deterioration in the quality of land caused by abnormal flooding or wind 

damage; destruction of cultivated assets by drought or outbreaks of disease; destruction of 

buildings, equipment or valuables in forest fires or earthquakes. 
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These disasters are not included in CFC unless they are included in accidental normal 

damage. From page 123, chapter six (the production account): 

6.240. Consumption of fixed capital is the decline, during the course of the 

accounting period, in the current value of the stock of fixed assets owned and used by a 

producer as a result of physical deterioration, normal obsolescence or normal accidental 

damage. The term depreciation is often used in place of consumption of fixed capital but it 

is avoided in the SNA because in commercial accounting the term depreciation is often 

used in the context of writing off historic costs whereas in the SNA consumption of fixed 

capital is dependent on the current value of the asset. 

NDP is a measure of output, and catastrophic losses are not, per se, direct sources of changes 

in output (although they may have large impacts on output by, for example, temporarily disrupting 

workplaces). But it appears that weather and climate disasters are systematically increasing in 

number and cost because of climate change. If so, perhaps the expected component of these costs 

should be included in CFC. 

Methodologically, this paper relies upon Reinsdorf et al. (2017), which discusses how to 

include expected losses in finance to improve System of National Accounting methods. For 

example, credit card interest payments to financial intermediaries overstate the expected interest 

from credit card debt, as expected losses due to defaulting borrowers are high. The consumer 

services of financial institutions include financial institution services indirectly measured (FISIM), 

which is, under SNA, measured as the difference between interest received by financial 

intermediaries and the interest paid to consumers. If the credit card interest rate includes a large 

risk premium for losses, then FISIM is overstated. But if expected losses are subtracted from the 

credit card interest rate, a more appropriate FISIM may be calculated. This argument led to a 
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change in the way the Bureau of Economic Analysis (BEA) treats FISIM to incorporate certain 

expected losses by financial intermediaries. 

We argue that normal declines in the value of assets due to the expected component of 

weather and climate disasters ought to be included in CFC. Below, we calculate the trend in BWCD 

losses over time to estimate the size of this trend component. If we view the expected losses of 

catastrophes as part of CFC, then this will mean a smaller growth rate of NDP, although the impact 

is a small one, as we shall see. 

A related consideration here is how we account for non–life insurance activities as part of 

personal consumption expenditures for insurance. The preferred measure of their value is 

premiums net of expected losses. What do we mean by expected losses of catastrophes? What is 

the normal part of such losses that are likely to appear in non–life insurers’ calculations of 

insurance premia? We make the argument in this paper that, with climate change, the expected 

losses of catastrophes are rising. This in turn affects the net value-added component of premiums 

and, in turn, is likely to affect the expected rents to structures and their operators (whether firms 

or owner-operators). At present, catastrophes are included in costs as spread out over the following 

20 years, which will not account for expected rises in catastrophes. See the Appendix in Chapter 

5 of the BEA Handbook of Methods for BEA’s treatment of catastrophes for non–life insurance in 

U.S. personal consumption expenditures. 

VI. Measuring Expected Costs 

We now turn to the estimation of the expected component of BWCD costs to guide an 

experimental measurement of CFC. 

Experimental measurement of CFC:  

Measurement One: Expected catastrophic losses due to climate and weather. 
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Measurement one uses a log trend to estimate expected BWCD costs and proposes to add 

these expectations to CFC. To estimate this expectation, we use two types of regressions. The first 

is a conventional ordinary least squares (OLS) regression of log BWCD costs on time:  

 ln(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡) = 𝑎𝑎 + 𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑡𝑡 (6.1) 

The second is a Poisson pseudo-maximum-likelihood regression on time: 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 = exp(𝑎𝑎 + 𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝜀𝜀𝑡𝑡 (6.2) 

Regression of log annual BWCDs on time. The first regression of log losses can be used to 

capture the exponential trend growth, but then there were no billion-dollar disasters in 1987 and 

the log of zero does not exist, so we need to either add a dummy variable for that date or replace 

the zero with one, whose log is zero, an approximation often used empirically. The dummy variable 

will tend to underestimate the growth rate (because it, in effect, replaces an unusually small number 

with an average value), so that will be our preferred regression as it is most conservative. The 

output of the regression with a 1 inserted in 1987 costs (so that the log is zero) is Table 4, column 

1, which gives a trend growth rate of 5.2 percent annually. The output of the regression with a 

dummy variable included for 1987 is shown in Table 4, column 2. This gives a trend growth rate 

of 5.9 percent annually.  

One difficulty of using the log trendline as expected loss is that NDP is an additive measure. 

Under these circumstances, in which the loss is rising, the log trendline will tend to undermeasure 

the average loss. Taking logs takes arithmetically large positive errors and reduces them relative 

to negative errors. This issue is discussed in Santos Silva and Tenreyro (2006), who argue, in the 

context of the gravity equation for trade, that Jensen’s inequality implies that 𝐸𝐸(ln𝑦𝑦)  ≠ ln𝐸𝐸(𝑦𝑦) 

and therefore that the first regression in the presence of heteroscedasticity is not just inefficient but 
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also biased. They suggest using Poisson pseudo-maximum-likelihood estimation techniques to 

estimate the second regression.  

In Table 1, the fifth column shows the expected costs from the dummy regression. The 

values are persistently below the 10-year moving averages in the fourth column, which we would 

expect given the Santos Silva and Tenreyro argument.  

 Regression of BWCDs on exponential of time using Poisson pseudo-maximum-likelihood 

estimation technique. The first advantage of using Regression 2 rather than Regression 1 for 

these data is that there is no concern about the zero costs in 1987. Another is that the estimation 

will not be biased; we are attempting to find the trend for costs, not the log of costs. A third is 

that the Poisson pseudo-maximum-likelihood regression is tolerant of error misspecification.  

We used the Poisson command in Stata to generate our preferred measure of expected cost 

of BWCDs; the output is shown in Table 4, column 3. The trend growth rate is 5.5 percent, between 

the two previous regressions. 

Figure 3 depicts our preferred measure of expected cost in comparison to actual costs. Figure 

4 shows our preferred measure, together with the conservative measure from the log regression 

specification and the 10-year moving average of costs. Note that, generally speaking, our preferred 

measure traces the moving average much more closely than the conservative log trend. The 

standard errors of the two regressions are close to one another; we interpret this as a modest win 

for our preferred measure, since the conservative measure has a dummy that reduces the residual 

in 1987 to zero.  

Further exploration of the methodology is warranted. In addition, it would eventually be 

desirable to disaggregate the data broadly, by type of asset and by region. Disaggregation by type 
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of asset is important for accurate deflation of costs of BWCDs and their trend. Regional 

depreciation is generally not performed, despite its potential usefulness in regional measures. 

To compare the impact of the trend on CFC and NDP, Table 5 provides useful information 

in nominal terms. We use nominals because of the inaccuracy that would be introduced by, for 

example, using the CFC deflator to deflate BWCD costs. Nominal BWCD costs and the trend 

measure are constructed by reflating the real data using the CPI-U after setting the CPI-U to a 2022 

base of 100.  

If we view the trendline as the expected loss, then these expected losses have risen from 

0.17 percent of NDP to 0.70 percent of NDP. If we were to subtract these from NDP, the effect for 

the 42 years would be to decrease the annual growth rate of NDP by 0.013 percentage point — in 

nominal terms, from 5.156 percent to 5.143 percent (note that with the magic of rounding, this is 

a change from 5.2 percent to 5.1 percent). 

The impact on the overall rate of depreciation is more noticeable. Without including 

BWCDs, CFC as a proportion of NDP goes from 17.6 percent in 1980 to 20.2 percent in 2022. 

Including the trend in BWCDs, CFC as a proportion of NDP is 17.8 percent in 1980 and 20.9 

percent in 2022. 

We can further pursue trend growth in total annual costs using the techniques of Section IV, 

if we swap out the simple parameters of the average-cost models for compound parameters 

permitting constant growth rates — e.g., β → βo Exp[β1(t – 2001)]. This forces any sign restrictions 

onto the “βo”-coefficients while allowing the time coefficients to go either way. It also compels 42 

observations to bear the statistical weight of four unknowns, which not all dozen forms can 

accommodate. In Table 6, at least one time coefficient is not statistically different from zero for 

11of the 12 distributions (indicated by gray numbers). Two thin-tailed distributions, the Birnbaum-



 15 

Saunders and Inverse Gaussian, are about equally likely and at least 63 percent more likely than 

the thick-tailed LogNormal, which finishes third. Of these, we choose the Inverse Normal for 

closer examination, as all four of its coefficients are significant and its (untruncated) mean is easy 

to read: µo Exp[µ1(t–2001)]. The µ1 term is a complementary estimate of the disaster-induced 

depreciation rate, whose value, .055 ± .026, is essentially the same as the PPML regression result 

but accounts for disasters below the $1 billion cutoff. Over the whole 1980 to 2022 period, the 

estimated left-truncated conditional mean… 

 

 

 … (6.3) 

…averages $138 million less than the (left-truncated) observations — essentially unbiased, within 

the spread of the data. 10 The root mean squared error of $60.4 billion is in line with other 

distributions. 

Figure 5 plots the trending untruncated mean and its 90 percent confidence interval, as well 

as the left-truncated conditional mean, against the data used to fit them, making plain the problem: 

Real GDP growth over the same period averaged 2.6 log-points a year, not quite half the 5.5 log-

point growth rate of the disaster density’s simple mean. And we are only counting monetized 

disasters, not costs that have been kept off the books. Monetized growth at historical rates will not 

solve this. The data’s two apparent outliers — $253.5 billion in 2005 and $373.2 billion in 2017 

 
10 The left-truncated mean at (6.3) is conditional on kt, the count of disasters in year t. We have not estimated the best 
discrete trending distribution of the counts, which would enable forming an expected left-truncated mean as the 
product of (6.3) and the disaster counts’ probability mass function, summed together from zero disasters up. 
  As it stands, (6.3) already has a lot to unpack. µo Exp[µ1(t–2001)], outside the big parentheses, is the untruncated 
mean. The expression inside limits to 1 as kt drops from 1 to 0 but has been driven near 1 even in years with several 
disasters, owing to strong trends in the best-fit Inverse Gaussian model. (The parenthetical term in (6.3) averaged 1.11 
through 2001 but just 1.01 since then.) The expression includes λo Exp[λ1(t–2001)], the time-trending scale term for 
the Inverse Gaussian distribution. “Erfc” is the complementary error function. 
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— aren’t so extreme. The 2005 disaster cost-sum cleared 98.6 percent of its distribution; the 2017 

sum of 18 disasters, including Hurricanes Harvey and Maria that together cost $260.15 billion, 

exceeded 97.8 percent of its distribution.. Figure 6 reflects changes in the Inverse Gaussian density 

across the start, middle, and end years of the data,  and suggests thick-tailed damage distributions 

are less to worry about than the rapid rightward movement of the best-fit thin-tailed ones. 

Further exploration of NOAA’s billion-dollar-plus disaster data might include 

disaggregating the average-cost and total-cost work to the seven disaster-type categories that 

comprise them, experimenting with different deflators than the CPI, in view of the likely greater 

monetary losses incurred to structures than their weight in the CPI, and replacing time as the trend-

driver with some measure(s) of the temperature anomaly, which in principle ought to be more 

governable than time.11 

Method Two includes climate catastrophes in NDP without smoothing. GDP and NDP 

are ex-post measures. Using expectations and smoothing trendlines is not necessarily the best 

way of capturing outcomes. In this spirit, one could add the unsmoothed losses from BWCDs 

and subtract them from NDP. This better captures the welfare impact of weather and climate 

disasters but at the cost of introducing a substantial amount of noise into measures of NDP that 

are unrelated directly to production and would thus weaken with its relationship to other 

economic variables, such as employment. It might thus be preferable to include these shocks into 

an account such as expanded GDP (Hulten and Nakamura, 2022) designed to better capture 

welfare. 

Table 5, column 6 shows BWCDs as a percentage of annual NDP. It can be seen that these 

have a visible impact on NDP. In 2017, the combined impacts of Hurricanes Harvey, Irma, and 

 
11 All quantitative work behind Tables 3 and 8 and Figures 2, 5, and 6 was performed with Mathematica 12. 
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Maria — three of the five most expensive hurricanes in the time series, the others being Hurricane 

Katrina (2005) and Superstorm Sandy (2012) — caused $265 billion of the year’s total BWCD 

costs of $313 billion. BWCDs in 2017 were 1.9 percent of NDP, following 0.3 percent of NDP in 

the previous year. The difference of 1.6 percentage points would likely have reduced real NDP 

2017 growth from 2.15 percent to 0.5 percent. This very slow growth rate may have better reflected 

the change in well-being in that year from devastating storms and fires than the current published 

series or than Method One. The counterpart would have been a much higher growth rate from 2017 

to 2018. 

VII. Summary 

In brief, this paper outlines two experimental methods for adjusting CFC for catastrophic 

climate losses to make more visible the rising impact of these losses in NDP. Method One has a 

very small impact on the growth rate of NDP but reduces NDP’s level by 0.4 percent, while 

Method Two can have substantial impacts on the year-to-year growth of NDP. This reflects only 

one source of weather-related effects, and not all of these can be attributed to climate change. The 

underlying data need further work to remove some of the climate and disaster costs that are not 

destruction in assets.  
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Table 1. Annual United States Billion-Dollar Disasters  
(CPI-Adjusted to Billions of 2022 Dollars) 

(1) 
Year 

(2) 
Number of 
Disasters 

(3) 
All Disasters 

Cost 

(4) 
10-Yr Moving 

Average of 
Disaster Cost 

(5) 
Trendline from 
Regression 1 
(Delogged) 

(6) 
Trendline from 
Regression 2  

1980 3 43.1 
 

11.0 14.7 
1981 2 3.3 

 
11.6 15.5 

1982 3 5.1 
 

12.2 16.4 
1983 5 33.3 

 
12.9 17.3 

1984 2 3 20.5 13.6 18.3 
1985 7 21.4 17.6 14.3 19.3 
1986 2 6.3 19.1 15.1 20.4 
1987 0 0 26.1 15.9 21.6 
1988 1 51.4 29.0 16.8 22.8 
1989 6 38 30.3 17.7 24.1 
1990 4 13.8 31.5 18.7 25.5 
1991 4 18.5 32.9 19.7 26.9 
1992 7 75.4 34.4 20.8 28.4 
1993 5 62 32.9 21.9 30.0 
1994 6 15.7 31.4 23.1 31.7 
1995 7 33.7 31.4 24.4 33.5 
1996 4 20.7 31.6 25.7 35.4 
1997 3 14.3 26.7 27.1 37.4 
1998 10 36.4 24.1 28.6 39.5 
1999 5 23.1 31.3 30.2 41.7 
2000 5 14.6 53.2 31.8 44.1 
2001 3 20.5 53.5 33.5 46.6 
2002 6 25.7 53.9 35.4 49.2 
2003 7 36.3 59.1 37.3 52.0 
2004 6 87.2 58.7 39.4 54.9 
2005 6 253.5 59.1 41.5 58.0 
2006 8 23.8 66.3 43.8 61.3 
2007 5 17.8 78.8 46.2 64.8 
2008 12 88.8 78.2 48.7 68.4 
2009 9 18.6 71.8 51.4 72.3 
2010 7 18.9 49.4 54.2 76.4 
2011 18 92.4 52.7 57.1 80.7 
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2012 11 150.3 88.3 60.3 85.3 
2013 10 30.4 90.3 63.6 90.1 
2014 9 23.1 93.6 67.1 95.2 
2015 11 29.4 103.2 70.7 100.6 
2016 15 57.7 109.5 74.6 106.2 
2017 18 373.2 110.9 78.7 112.2 
2018 15 108.5 

 
83.0 118.6 

2019 14 52.4 
 

87.5 125.3 
2020 22 114.3 

 
92.3 132.4 

2021 20 155.3 
 

97.4 139.8 
2022 18 165  102.7 147.7 

 
Source: NOAA, NCEI, 2023, Billion-Dollar Climate and Weather Disasters. 
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Table 2. Decade Annual Averages of U.S BCWD Events and Costs, Billions of 2022 Dollars 
(Based on CPI) 
Decade Number of Billion-

Dollar Disasters  
Cost of Billion-Dollar 
Disasters 

Cost per Disaster 

1980–89 3.1 20.5 6.6 
1990–99 5.5 31.4 5.7 
2000–09 6.7 58.7 8.8 
2010–19 12.8 93.6 7.3 
2013–22 15.2 110.9 7.3 

  
Source: NOAA, NCEI, 2023, Billion-Dollar Climate and Weather Disasters. 
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Table 3: Distributional Fits of Real $Billion+ Disaster Average Costs: All Categories 
 
Right-Skewed Log- Relative E  s  t  i  m  a  t  e  d      P  a  r  a  m  e  t  e  r  s 
Distributions Likelihood Likelihood plus common names, “symbolic names,” and (standard errors) 

Beta Prime –116.336 .426 shape1: 10.8918 shape2: 2.479 
   “p” (2.71925) “q” (.542588) 
 
Birnbaum-Saunders –119.57 .017 shape: .906201 scale: .182144 
   “α” (.118233) “λ” (.025891) 
 
Fréchet –115.482 1.000 shape: 1.6282 scale: 3.68885 
   “β” (.198986) “θ” (.368901) 
 
Gamma –121.937 .002 shape: .679122 rate: .113359 
   “ν” (.364234) “δ” (.0430756) 
 
Inverse Gamma –115.828 .708 shape: 2.17369 scale: 8.90382 
   “ν” (.455594) “δ” (2.14577) 
 
Inverse Gaussian –118.128 .071 mean: 7.68018 scale: 8.03213 
   “µ” (1.16037) “λ” (2.11652) 
 
LogLogistic –117.047 .209 shape: 2.15336 scale: 4.68154 
   “γ” (.332659) “σ” (.601382) 
 
LogNormal –118.153 .069 log mean: 1.60533 log st.dev.: .839389 
   “µ” (.14495) “σ” (.114362) 
 
Nakagami –124.612 .000 shape: .0176309 spread: 16.1309 
   “µ” (.103573) “ω” (89.1938) 
 
Shifted Gompertz –120.288 .008 scale: .08393 shape: –.820207 
   “λ” (.0226204) “ξ” (.186773) 
 
0-Shifted Gompertz –118.386 .055 scale: .0691993 shape: –6.97187 
   “λ” (.0272583) “ξ” (2.07595) 
 
Weibull –121.325 .003 shape: .79129 scale: 5.22268 
   “β” (.151618) “θ” (1.62971) 
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Table 4. Coefficients on Time in Trend Regressions  
 (1) (2) (3) 
Time 
st. err. 
(prob) 

.0591 

.0168 
(.000) 

.0533 

.0161 
(.000) 

.0546 

.0107 
(.000) 

Dummy for 
1987 

No Yes No 

1987 cost =1 Yes  Yes No 
Columns 1 and 2 are OLS regressions of log BWCD costs on time with a 
constant. Column 1 substitutes log BWCD(1987) = 0; Column 2 adds a 
dummy for the year 1987. Column 3 is the Poisson pseudo-maximum-
likelihood regression. Standard errors are robust. Results for nonrobust and 
for bootstrap standard errors are similar and available upon request. 
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Table 5. Impact of Costs and Trend of Including BWCDs in CFC, in Nominal Terms 

 Billions of Dollars Percent of NDP 
(1) 

Year 
(2) 

NDP 
(3) 

CFC 
(4) 

BWCD 
Costs 

(5) 
Trend 

(6) 
BWCD 
Costs 

(7) 
Trend 

(8) 
CFC 

(9) 
CFC+ 
Costs 

(10) 
CFC + 
Trend 

1980 2428.9 428.4 12.1 4.1 0.50% 0.17% 17.6% 18.1% 17.8% 
1981 2719.8 487.2 1.0 4.8 0.04% 0.18% 17.9% 18.0% 18.1% 
1982 2806.8 537.0 1.7 5.4 0.06% 0.19% 19.1% 19.2% 19.3% 
1983 3071.4 562.6 11.3 5.9 0.37% 0.19% 18.3% 18.7% 18.5% 
1984 3439.2 598.4 1.1 6.5 0.03% 0.19% 17.4% 17.4% 17.6% 
1985 3698.9 640.1 7.9 7.1 0.21% 0.19% 17.3% 17.5% 17.5% 
1986 3894.3 685.3 2.4 7.7 0.06% 0.20% 17.6% 17.7% 17.8% 
1987 4124.8 730.4 0.0 8.4 0.00% 0.20% 17.7% 17.7% 17.9% 
1988 4451.9 784.5 20.8 9.2 0.47% 0.21% 17.6% 18.1% 17.8% 
1989 4803.3 838.3 16.1 10.2 0.34% 0.21% 17.5% 17.8% 17.7% 
1990 5074.6 888.5 6.2 11.4 0.12% 0.22% 17.5% 17.6% 17.7% 
1991 5225.7 932.4 8.6 12.5 0.16% 0.24% 17.8% 18.0% 18.1% 
1992 5560.1 960.2 36.2 13.6 0.65% 0.25% 17.3% 17.9% 17.5% 
1993 5855.1 1003.5 30.6 14.8 0.52% 0.25% 17.1% 17.7% 17.4% 
1994 6231.6 1055.6 8.0 16.1 0.13% 0.26% 16.9% 17.1% 17.2% 
1995 6517.3 1122.4 17.5 17.4 0.27% 0.27% 17.2% 17.5% 17.5% 
1996 6897.8 1175.3 11.1 19.0 0.16% 0.28% 17.0% 17.2% 17.3% 
1997 7338.3 1239.3 7.8 20.5 0.11% 0.28% 16.9% 17.0% 17.2% 
1998 7753.1 1309.7 20.3 22.0 0.26% 0.28% 16.9% 17.2% 17.2% 
1999 8232.3 1398.9 13.2 23.8 0.16% 0.29% 17.0% 17.2% 17.3% 
2000 8739.8 1511.2 8.6 25.9 0.10% 0.30% 17.3% 17.4% 17.6% 
2001 8982.4 1599.5 12.4 28.2 0.14% 0.31% 17.8% 17.9% 18.1% 
2002 9271.1 1658.0 15.8 30.3 0.17% 0.33% 17.9% 18.1% 18.2% 
2003 9737.4 1719.1 22.8 32.7 0.23% 0.34% 17.7% 17.9% 18.0% 
2004 10395.4 1821.8 56.3 35.5 0.54% 0.34% 17.5% 18.1% 17.9% 
2005 11068.2 1971.0 169.2 38.7 1.53% 0.35% 17.8% 19.3% 18.2% 
2006 11691.5 2124.1 16.4 42.2 0.14% 0.36% 18.2% 18.3% 18.5% 
2007 12221.4 2252.8 12.6 45.9 0.10% 0.38% 18.4% 18.5% 18.8% 
2008 12411.1 2358.8 65.3 50.4 0.53% 0.41% 19.0% 19.5% 19.4% 
2009 12106.6 2371.5 13.6 53.0 0.11% 0.44% 19.6% 19.7% 20.0% 
2010 12658.1 2390.9 14.1 56.9 0.11% 0.45% 18.9% 19.0% 19.3% 
2011 13125.2 2474.5 71.0 62.0 0.54% 0.47% 18.9% 19.4% 19.3% 
2012 13678 2576.0 117.9 66.9 0.86% 0.49% 18.8% 19.7% 19.3% 
2013 14162 2681.2 24.2 71.7 0.17% 0.51% 18.9% 19.1% 19.4% 
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2014 14735.7 2815.0 18.7 77.0 0.13% 0.52% 19.1% 19.2% 19.6% 
2015 15294.6 2911.4 23.8 81.5 0.16% 0.53% 19.0% 19.2% 19.6% 
2016 15708 2987.1 47.3 87.1 0.30% 0.55% 19.0% 19.3% 19.6% 
2017 16358.6 3118.7 312.6 94.0 1.91% 0.57% 19.1% 21.0% 19.6% 
2018 17257.5 3275.6 93.1 101.8 0.54% 0.59% 19.0% 19.5% 19.6% 
2019 17944.4 3436.6 45.8 109.5 0.26% 0.61% 19.2% 19.4% 19.8% 
2020 17482.7 3577.8 101.1 117.1 0.58% 0.67% 20.5% 21.0% 21.1% 
2021 19483.5 3831.6 143.8 129.5 0.74% 0.66% 19.7% 20.4% 20.3% 
2022 21177 4284.3 165.0 147.7 0.78% 0.70% 20.2% 21.0% 20.9% 
Growt
h rate 
1980 

to 
2022 

5.2% 5.5% 6.2% 8.5% 
     

 

Source: NOAA, NCEI, 2023, Billion-Dollar Climate and Weather Disasters, and Bureau of 
Economic Analysis, retrieved from Haver Analytics. 
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Table 6. Distributional Fits of Real $Billion+ Disaster Total Costs: All Categories 
Right-Skewed Log- Relative Bias RMSE E  s  t  i  m  a  t  e  d      C  o  m  p  o  u  n  d      P  a  r  a  m  e  t  e  r  s 
Distributions Likelihood Likelihood ($b) ($b) plus common names, “symbolic names,” and (standard errors) 

Beta Prime –197.673 .485 8.901 61.241 shape1: 40.5052 Exp[.0811699 (t–2001)] shape2: 1.75943 Exp[.0168785 (t–2001)] 
     “p” (11.7806) (.0235713) “q” (.376558) (.0167904)  
       
Birnbaum-Saunders –196.950 1.000 0.085 60.309 shape: .980061 Exp[–.0136655 (t–2001)] scale: .0335939 Exp[–.0645278 (t–2001)] 
     “α” (.149781) (.0122796) “λ” (.00685833) (.0161629) 
       
Fréchet –197.849 .407 26.656 66.549  shape: 1.37813 Exp[.0110488 (t–2001)] scale: 20.7513 Exp[.0634793 (t–2001)] 
     “β” (.182445) (.0101076) “θ” (3.00922) (.0119986) 
 
Gamma –198.203 .286 –.089 59.986  shape: .784585 Exp[.0349533 (t–2001)] rate: .0213649 Exp[–.0289422 (t–2001)] 
     “ν” (.433373) (.0456968) “δ” (.00776772) (.0301939) 
 
Inverse Gamma –197.704 .470 11.190 61.827  shape: 1.70236 Exp[.0186451 (t–2001)] scale: 38.1375 Exp[.084663 (t–2001)] 
     “ν” (.360215) (.0165422) “δ” (11.002) (.023096) 
 
Inverse Gaussian –196.987 .964 –.138 60.388  mean: 45.1276 Exp[.0549304 (t–2001)] scale: 40.8526 Exp[.0815162 (t–2001)] 
     “µ” (7.62016) (.0130145) “λ” (12.682) (.0254605) 
       
LogLogistic –198.356 .245 7.940 60.902  shape: 1.75545 Exp[.0152873 (t–2001)] scale: 27.0669 Exp[.065988 (t–2001)] 
     “γ” (.27844) (.0127781) “σ” (5.64875) (.0167152) 
 
LogNormal –197.476 .591 –.002 60.228 log mean: 3.27848 Exp[.0184774 (t–2001)] log st.dev.: .923171Exp[–.0133995 (t–2001)] 
     “µ” (.218002) (.00472766) “σ” (.133325) (.0112629)  
 
Nakagami –198.969 .133 2.045 59.717  shape: .133338 Exp[.0416551 (t–2001)] spread: 2066.40 Exp[.130442 (t–2001)] 
     “µ” (.168947) (.105312) “ω” (2088.39) (.0784113)  
 
Shifted Gompertz –198.435 .227 .233 59.860 scale: .0201948 Exp[–.0517307 (t–2001)] shape: –.369074 Exp[–.00177979 (t–2001)] 
     “λ” (.0093601) (.0226891) “ξ” (.652717) (.0759158) 
 
0-Shifted Gompertz –198.333 .251 –.925 60.141  scale: .0171497 Exp[–.0634646 (t–2001)] shape: –4.71906 Exp[.00892219 (t–2001)] 
     “λ” (.0112181) (.0422827) “ξ” (2.77569) (.0355841) 
       
Weibull –198.329 .252 –.206 59.927 shape: .892922 Exp[.0109593 (t–2001)] scale: 36.0153 Exp[.0631081 (t–2001)] 

     “β” (.181389) (.0169996) “θ” (10.7001) (.02398) 
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Figure 1. Real BWCD Costs and 10-Year Centered Moving 
Average (Billions of 2022 Dollars, Deflated by CPI-U

All Disasters Cost Centered Moving Average
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Figure 2 

 

Notes: 

 Shaded Bars = histogram of $1b+ disasters 

 Blue Line = Fréchet probability density function (100% of disasters ≥ $0) 

 Red Line = Inverse Gamma probability density function (100% of disasters ≥ $0) 

 Costs are deflated by the 2022 CPI. 
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Figure 4. BWCDs:
Two Trends and Centered 10-Year Moving Averages

(Billions of 2022 Dollars)
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Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 

 Rough Red Line = fitted left-truncated means (used in calculations of bias and RMSE) 

 Smooth Blue Line = estimated complete means (used for the time-based damage function) 

 Shaded Region = 90% confidence interval about complete means 

 Costs are deflated by the 2022 CPI. 
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Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


