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Abstract

This paper considers the problem of model averaging (MA) predictions for the in-

tegrated autoregressive processes of infinite order (AR(∞)), which accommodates

many stationary and nonstationary models in practice. We adopt the MA approach

to forecast future observations and obtain the uniformly asymptotic expression for

the mean squared prediction error (MSPE) of the averaging predictor. The MSPE

can be decomposed into three components: non-stationary integration order, model

complexity, and goodness-of-fit. The decomposition justifies that the advantage of

MA comes from the diverse model intersections and provides the separation con-

ditions under which the MA can attain strictly lower MSPE over model selection

(MS). Regarding the predictive risk reduction by MA, it can be shown that the

magnitude of MA improvement has the same order as the oracle minimum risk of

MS under algebraic-decay case, while the magnitude is negligible under exponential-

decay case. To pick the best choice of weights, we propose Shibata model averaging

(SMA) criterion and show that, even without the integration order information, the

selected weights by minimizing SMA and its variants including AIC-type and Mal-

low’s MA criteria are asymptotically optimal in the sense that: (i) The probability

of a criteria minimizer with positive weights on models of dimension less than the

integration order is negligible almost surely; (ii) The averaging predictor formed by 
the selected weights will ultimately achieve the lowest possible MSPE.

Keywords: Time Series, Model Averaging, Model Selection, Nonstationary Autoregres-

sions, Asymptotic Optimality
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1 Introduction

To single out a good model for prediction is an important but challenging topic in statistics

and econometrics literature, especially when enormous candidate models are considered.

For a practitioner, model selection methods such as Akaike information criterion (Akaike,

1974), Bayesian information criterion (Schwarz, 1978), Mallows’ Cp (Mallows, 1973), cross

validation (Stone, 1974) are standard procedures to pin down the best predictive model.

However, the issue of model uncertainty is raised by other researchers such as Yang (2001,

2007), Yuan and Yang (2005), and Hjort and Claeskens (2003). For any small pertur-

bation of a data set, the model selection method may suggest diverse models and create

controversial inference. Besides, under the single-best model approach, it may neglect

the information embedded in other models and produce high prediction bias. The other

approach for avoiding such shortcomings is model averaging. As a smoothed extension of

model selection, model averaging combines information and predictive power by assigning

different weights on all the candidate models and has better prediction performance than

model selection under general circumstances.

The research core of model averaging is the weighting strategy, and the development

based on frequentist-type methods has been burgeoning in the past two decades. Those

methods are shown to be asymptotically optimal in the sense of achieving the lowest

possible prediction losses. Under linear regression models, Hansen (2007) proposed a

Mallow criterion to choose weights, and Hansen and Racine (2012) and Liu and Okui (2013)

developed Jackknife model averaging and robust Cp, respectively, for heteroscedastic cases.

Ando and Li (2014, 2017) suggested leave-one-out cross-validation and demonstrate the

asymptotic optimality in the context of high-dimensional regressions. In recent years,

model averaging methods and applications on time series models or dependent data have

attracted growing interest. Those studies include lagged dependent variables (Zhang et al.,

2013), time series errors (Cheng et al., 2015), factor-augmented regression (Cheng and

Hansen, 2015), longitudinal data (Gao et al., 2016), vector autoregression (VAR) (Liao

et al., 2019; Liao and Tsay, 2020), stationary AR(∞) process (Liao et al., 2021), time-

varying model (Sun et al., 2021), and panel data VAR (Greenaway-McGrevy, 2022).

However, existing model averaging methods on dependent data in the literature are de-

signed to stationary or local stationary time series. It precludes many economic, financial,

or climate change data with non-stationary patterns. Second, as Liao et al. (2021) and

Zhang and Liu (2022) pointed out, model averaging methods for predicting future obser-

vations are not explored well. Many asymptotic optimality results are established based

on in-sample empirical losses, which may hinder practical implications since most of the
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forecasting problems concern the out-of-sample performances. In addition, it is even com-

mon in MS studies to examine the bias-variance trade-off under time series data (Shibata, 
1980; Ing and Wei, 2003, 2005; Ing, 2007, 2020; Ing et al., 2010, 2012; Greenaway-McGrevy, 
2015, 2019), but the similar trade-off analysis for MA methods are not well explored. Bet-

ter investigation of the MA bias-variance trade-off will help to understand the mechanism, 
improve the prediction, and bring about the asymptotic optimality. The other fundamen-

tal issue of MA is only limited studies addressing the MA-MS comparisons. Theoretically, 
MA is the smoothed generalization of MS and can offer better performances than MS. 
Despite the rich literature focusing on MA prediction efficiency, what is the key aspect 
that attributes to the advantage of MA and whether the MA is favorable over MS under 
general circumstances are ambiguous. Last but not least, for frequentist-type MA meth-

ods aforementioned, there are two main approaches: Mallows MA (Hansen, 2007; Cheng 
et al., 2015; Liao and Tsay, 2020; Liao et al., 2021) and cross validation (Hansen and 
Racine, 2012; Zhang et al., 2013; Ando and Li, 2014; Gao et al., 2016; Liao et al., 2019; 
Zhang and Liu, 2022); however, few studies consider other MA criteria and analyze their 
relationships with existing methods.

To fill these gaps, we assume the data are generated from integrated AR(∞) processes 
and give an asymptotic expression for the MSPE of the model averaging predictor, under 
one-step ahead out-of-sample framework. The expression decomposes the MSPE into three 
components: non-stationary integration order, model complexity, and goodness-of-fit. It is 
not only a nontrivial extension of Ing and Wei (2003), Ing et al. (2010), but also provides the 
theoretical foundation for bias-variance trade-off analysis and MA-MS comparisons. 
According to the MSPE decomposition, the advantage of MA over MS comes from the 
cross intersection between the parsimonious model and the aggressive model. The cross 
product of diverse models only increases the model complexity term by the dimensionality 
of the parsimonious model, thus reducing the estimation variability. In contrast, the 
cross product on the goodness-of-fit term improves the fitting from the aggressive model, 
which has less-biased approximation of the AR(∞) process and further decreases the total 
MSPE. Compared with pure model selection, MA takes the advantage of intersections 
among diverse models for MSPE reduction via bias-variance trade-off.

Also, the MSPE decomposition offers another direction to gauge the MA-MS com-

parison. We identify the conditions under which the MA can reach strictly lower MSPE 
over MS. In a nutshell, if there is one candidate model whose model misspecification term 
is separable from other models, then there exists a weight vector, and the MSPE of the 
corresponding MA prediction is lower than the MSPEs of all models. From the separation 
condition, the potential MSPE reduction from the best MA approach is strictly greater
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than the best MS model. We would like to investigate whether the improvement is sub-

stantial or vanishing relative to the best MS model. Inspired by Peng and Yang (2022), we 
compare the magnitude of potential MSPE reduction from MA over MS with the oracle 
minimum predictive risk of MS. We demonstrate that, under the integrated AR(∞) model, 
if the goodness-of-fit term is algebraic decay as the dimension of fitted model increases, the 
magnitude of potential MSPE reduction has the same order as the oracle minimum predic-

tive risk by MS. While under the exponential-decay scenario, the magnitude is asymptotic 
negligible. These results are consistent with current findings such as Peng and Yang (2022) 
and Xu and Zhang (2022), in which they consider non-stochastic regression design, while 
our extensions are under general autoregressive models with broader applicability.

We also define the asymptotical optimality conditions of MA criterion under the in-

tegrated AR(∞) model and propose three MA criteria: Akaike model averaging (AMA), 
Mallow’s model averaging (MMA), and Shibata model averaging (SMA) criteria that are 
prediction efficient and asymptotic equivalent. The MA criterion is said to be asymptoti-

cally optimal under dth-order integrated (I(d)) AR(∞) process where d is unknown, if: (i) 
the unrestrictive weights selected by minimizing the criterion converges almost surely to 
the weight estimator constrained on the restrictive set, in which the first d − 1 elements of 
any weight vectors are equal to zero; (ii) the restrictive weight estimator of the criterion will 
achieve the lowest MSPE asymptotically. Since any finite AR model with less than dth-

order is severely underfitting and causes explosive bias, the first condition describes that, 
even without the integration order information, the selected weight vectors will eliminate 
any AR models with less than dth-order for prediction. This oracle property makes sure the 
MA prediction will only consider large enough models to control the forecast errors. The 
second condition is typical in MA literature: The selected weights will attain the lowest 
possible MSPE as do the infeasible optimal weights.

In summary, the major contributions of the current work can be listed as follows:

1. We adopt the MA approach to forecast integrated AR(∞) processes and obtain 
the uniformly asymptotic expression for the mean squared prediction error (MSPE) of the 
averaging predictor.

2. By virtue of the expression, the MSPE can be decomposed into three components: 
non-stationary integration order, model complexity, and goodness-of-fit. The bias-variance 
representation justifies that the diverse model intersections from the MA approach reduces 
the prediction errors and provides the separation conditions under which the MA can attain 
strictly lower MSPE over MS.

3. We demonstrate that, if the goodness-of-fit term is algebraic decay with the model
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dimension, the magnitude of potential MSPE reduction has the same order as the oracle

minimum predictive risk by MS. While under the exponential-decay scenario, the mag-

nitude is asymptotic negligible. These results are consistent with existing literature but

have broader applicability under the time series model.

4. We define the asymptotic optimality conditions under the integrated AR(∞) pro-

cess, propose three MA criteria, and show they are asymptotic equivalent and all satisfy

the asymptotic optimality conditions. It extends non-trivially the time series MA liter-

ature to nonstationarity and that of Ing and Wei (2005) and Ing et al. (2012) to MA.

The convergence rate of unrestrictive weight estimators to the restrictive set for three MA

criteria are also provided.

The rest of this paper is organized as follows. Section 2 demonstrates the integrated

AR(∞) model, MA prediction, and assumptions and notations for this paper. Section 3

presents the asymptotic expression of the MSPE for the MA predictor and the details of

MA-MS comparisons. Section 4 introduces the proposed SMA and shows the asymptoti-

cally optimal properties of the weight estimator based on SMA. Asymptotic equivalences

of SMA and its relationship with other variants are also discussed. Section 5 concludes,

and the technical proofs are relegated to the Appendix.

2 Model framework and assumptions

In this working paper, we follow the model setup as in Ing et al. (2010, 2012). Assume

the data {y1, ..., yn} generated from a dth-order integrated (I(d)) AR(∞) process are as

below: (
1 +

∞∑
j=1

ajL
j
)
(1− L)dyt = εt, (2.1)

where A(z) = 1 +
∑∞

j=1 ajz
j is the stationary component of the process satisfying

A(z) 6= 0 for all |z| ≤ 1 and
∞∑
j=1

|jaj| <∞, (2.2)

L is the backshift operator, 0 ≤ d <∞ is an unknown integer, and {εt, t = 0,±1,±2, ...}
are independent variables having zero mean and same variance σ2. Note that εt does

not necessarily come from the same distribution. Besides, by Theorem 3.8.4 of Brillinger

(2001), (2.2) yields

A−1(z) = B(z) = 1 +
∞∑
j=1

bjz
j 6= 0 for all |z| ≤ 1 and

∞∑
j=1

|jbj| <∞, (2.3)
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where b0 = 1. We also pose the initial condition yt = 0 for t ≤ 0. This dth-order integrated

AR(∞) process includes many other models like the basic ARIMA(p, d, q) process, which

is frequently used in nonstationary time series analysis.

To make a one-step-ahead prediction ŷn+1, a pool of finite-order models, AR(1), ...,

AR(Kn) is considered, where Kn can increase to infinity as sample size n does with a

slower rate. Note that since the true data generating process is AR(∞), every single

AR(k) model is misspecified and only an approximation. For each AR(k) model, the least

squares type estimator is defined as:

−â(k) = [
n−1∑
j=Kn

yj(k)y
′

j(k)]−1

n−1∑
j=Kn

yj(k)yj+1, 1 ≤ k ≤ Kn,

where −â(k) and yj(k) = (yj, ..., yj−k+1)′ are both k × 1 vectors, and
∑n−1

j=Kn
yj(k)y

′
j(k)

is a k × k matrix, N = n − Kn. We assume that for all 1 ≤ k ≤ Kn, the inverse of∑n−1
j=Kn

yj(k)y
′
j(k) exists. Thus, for each AR (k), the one-step-head prediction is ŷn+1(k) =

−y′n(k)â(k).

Let zt = (1 − L)dyt be the dth differenced term. Then, zt =
∑t−1

j=1 bjεt−j. Define

zt,∞ =
∑∞

i=0 biεt−i, zt(v) = (zt, ..., zt−v+1)′, zt,∞(v) = (zt,∞, ..., zt−v+1,∞)′, and define a(v) =

(a1(v), ..., av(v))′ = argminc∈RvE(zt,∞ + z
′
t(v)c)2. For 1 ≤ k ≤ Kn and N = n −Kn, the

yn+1 − ŷn+1(k) can be rewritten as :

yn+1 − ŷn+1(k) = yn+1 − y
′

n(k)
[ n−1∑
j=Kn

yj(k)y
′

j(k)
]−1

n−1∑
j=Kn

yj(k)yj+1

= yn+1

− y
′

n(k)Q
′
(k)
[ n−1∑
j=Kn

Q(k)yj(k)y
′

j(k)Q
′
(k)
]−1

×
n−1∑
j=Kn

Q(k)yj(k)[εj+1,k−d − y′j(k)Q
′
(k)b(k)]

= εn+1,k−d −
{
N−1s

′

n,n(k)
[
N−1

n−1∑
j=Kn

sj,n(k)s
′

j,n(k)
]−1

n−1∑
j=Kn

sj,n(k)εj+1,k−d

}

= εn+1,k−d −
{
N−1s

′

n,n(k)Ω̂−1
n (k)

n−1∑
j=Kn

sj,n(k)εj+1,k−d

}
, (2.4)

where

εn+1,k−d =

{
zj+1, k = d,

zj+1 + a
′
(k − d)zj(k − d), k > d;
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b(k) =


(
a
′
(k − d),−1′d

)′
, k > d ≥ 1,

−1k, d ≥ k ≥ 1,

a(k), d = 0,

with 1k is the k-dimensional vector of 1’s; and sj,n(k) = Gn(k)Q(k)yj(k).

The Gn(k), Q(k) are k × k matrix defined by

Gn(k) =


diag(1, ..., 1, N−d+1/2, ..., N−1/2), k > d ≥ 1,

diag(N−d+1/2, ..., N−d+k−1/2), d ≥ k ≥ 1,

diag(1, ..., 1), d = 0,

Qn(k)yj(k) =


(
z
′
j(k − d)1, yj(d), ..., yj(1)

)′
, k > d ≥ 1,

(yj(d), ..., yj(d− k + 1))′, d ≥ k ≥ 1,

zj(k), d = 0,

with yj(v) = (1−L)d−vyj, and diag(.) represents diagonal matrix. Let ai(v) = 0 if i > v ≥ 0

or v ≤ 0. In this working paper, a(v) is sometimes viewed as an infinite dimensional vector

with the ith element equal to ai(v), i = 1, 2, .... Define ‖d‖2
z =

∑
1≤i,j≤∞ didjχi−j, where

χi−j = E(zi,∞zj,∞), and d = (d1, d2, ...)
′ is an infinite dimensional vector that belongs to

l2(Z+), i.e.,
∑

i∈Z+ d2
i <∞. Since

zt,∞ +
∞∑
i=1

aizt−i,∞ = εt,

then for all v ≥ 0,

‖a− a(v)‖2
z = E

[ ∞∑
i=1

(ai − ai(v))zt−i,∞
]2

= E
[
zt,∞ +

v∑
i=1

ai(v)zt−i,∞
]2 − σ2. (2.5)

Let w = (w1, ..., wKn)′ be a weight vector such that

Kn∑
k=1

wk = 1, wk ≥ 0, ∀ k ∈ {1, ..., Kn},

then, the weight vector w belongs to the set Hn := {w ∈ [0, 1]Kn :
∑Kn

k=1wk = 1}. Com-

bining all possible one-step-head prediction ŷn+1(k), we construct an averaging predictor

as

yn+1(w) =
Kn∑
k=1

wkŷn+1(k),

and the MSPE of averaging predictor is E(yn+1 − yn+1(w)).
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Before the section ends, we list and discuss the assumptions for this working paper:

Assumption 1. d is a fixed nonnegative integer and bounded by some d̄ <∞.

Assumption 2. Let Ft,m,vm(.) be the distribution function of the linear combination of

innovations: {v′m(εt, ..., εt−m+1)}, where {vm = (v1, ..., vm)′ ∈ Rm,
∑m

j=1 v
2
j = 1}. For all

m ≥ 1, m ≤ t < ∞, there exists some real positive numbers α, C, and δ such that the

distribution function Ft,m,vm(.) satisfies the locally Hölder condition of order α:

|Ft,m,vm(x)− Ft,m,vm(y)| ≤ C|x− y|α, |x− y| ≤ δ.

Assumption 3. sup−∞<t<∞ E|εt|q <∞, and q ∈ N .

Assumption 4. K
max{4d−1,3}
n = o(n).

Assumption 1 implies that the yt is generated from an integrated autoregressive pro-

cess with a finite integration order d, 0 ≤ d < d̄. Assumption 2 is the non-singularity

assumption of Ing et al. (2010, 2012) used to establish the negative moment bounds of the

minimum eigenvalue of the Fisher information matrix in (2.4). Assumption 2 is fulfilled

by most continuous-type distributions, such as normal distribution, see Ing and Sin (2006)

for more details. Assumption 3 is the moment conditions of εt. Assumption 4 imposes

the limitations on the number of models relative to the sample size, and reflects the facts

that, the time series yt has higher correlations with higher integration order and yields

smaller minimum eigenvalue of the information matrix. There is also a trade-off between

the moment condition on εt in Assumption 3 and divergence rate of Kn in Assumption

4. With weaker moment condition in Assumption 3, the Kn will be more restrictive than

Assumption 4. When d = 0, the bound of Kn is slightly restrictive than the MS cases

in Ing et al. (2010, 2012), where K2+δ
n = o(n) for some δ > 0 and ours is K3

n = o(n).

This is the price paid for MA approach because MA generalizes MS from countable model

comparisons to finding an extreme weight estimator on an uncountable set. When d ≥ 1,

there is no difference with Ing et al. (2010, 2012).

In the following sections, we use C to denote some positive constant, which is indepen-

dent from sample size n. And C may represent different values in different equations.
p−→

and
a.s.−→ represent convergence in probability and almost surely respectively. ‖v‖2 is the

Euclidean norm for vector v and ‖A‖2 = λmax(A′A) is the maximum eigenvalue of matrix

A′A. an = Θ(bn) means an has the same order as bn if c1 bn ≤ an ≤ c2 bn for some positive

numbers but c1, c2 do not depends on n. The Kn × Kn matrices defined below are also
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frequently used in this article.

Πmin(Kn) =


1 1 . . . 1

1 2 . . . 2
...

...
. . .

...

1 2 . . . Kn

 ,

Πmin(Kn)ij = min(i, j), 1 ≤ i, j ≤ Kn,

and

Πmax(Kn) =


1 2 . . . Kn

2 2 . . . Kn

...
...

. . .
...

Kn Kn . . . Kn

 ,

Πmax(Kn)ij = max(i, j), 1 ≤ i, j ≤ Kn. (2.6)

3 Asymptotic expression of the MSPE

In this section, assume the integration order d is known, and we consider combining a

class of finite-order models, AR(max(1, d)), ..., AR(Kn), to make forecast and derive the

asymptotic expression of the MSPE of the averaging predictors. The most parsimonious

candidate model in the class has dimension of order d if d ≥ 1. In practice, the class of

models starts from AR(1) since d is unknown to the researcher and may equal to zero

(i.e., the data generating process is stationary). In the later section, we will show that the

weights of any models with dimensions less than d converge to zero almost surely if the

MA weights are selected based on SMA or its variants.

Given the family of AR(k) models, 1 ≤ k ≤ Kn, let w = (w1, ..., wKn) be a weight

vector such that
Kn∑
k=1

wk = 1, wk ≥ 0, wk = 0, 1 ≤ k < d.

The restrictive weight vector w belongs to the set Hd
n := {w ∈ [0, 1]Kn :

∑Kn

k=1 wk =

1, wk = 0, 1 ≤ k < d} , where Hd
n is a subset of Hn.

With fix w ∈ Hd
n, and follow the decomposition of Ing et al. (2010), we can rewrite the

8



MSPE of averaging prediction as

E(yn+1 − ŷn+1(w))2 − σ2 = E(yn+1 −
Kn∑

k=max(1,d)

wkŷn+1(k))2 − σ2

= E(
Kn∑

k=max(1,d)

wkfn(k) +
Kn∑

k=max(1,d)

wkSn(k − d))2, (3.1)

where

fn(k) =
s
′
n,n(k)
√
N

Ω̂−1
n (k)

(
1√
N

n−1∑
j=Kn

sj,n(k)εj+1,k−d

)
,

Sn(k − d) = εn+1,k−d − εn+1 =
n∑
i=1

(ai − ai(k − d))zn+1−i,

and εn+1,k−d, sj,n(k), Ω̂−1
n (k) are defined after (2.4). In the following theorem, we obtain

an uniformly asymptotic expression of the MSPE of the averaging prediction.

Theorem 1. Assume Assumption 1-4 and (2.3), then

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E(yn+1 − ŷn+1(w))2 − σ2

Ldn(w)
− 1

∣∣∣∣ = 0,

where

Ldn(w) = σ2d
2 + d

N
+ σ2w

′Πmin(Kn)w− d
N

+ ‖a− a(w, d)‖2
z

= σ2d
2

N
+ σ2

∑
max(1,d)≤i,j≤Kn

wiwj min(i, j)

N
+

∑
max(1,d)≤i,j≤Kn

wiwj‖a− a(max(i, j)− d)‖2
z.

(3.2)

From (3.2), Ldn(w) can be decomposed as three parts: First is the integradness term,

σ2 d2+d
N

, which is an estimation from a nonstationary component. The second one is the

model complexity under model averaging, σ2 w′Πmin(Kn)w−d
N

. And the third one, ‖a −
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a(w, d)‖2
z represents as model misspecification under averaging. Note that for any w ∈ Hd

n,

w′Πmin(Kn)w =
∑

max(1,d)≤i,j≤Kn

wiwj min(i, j)

‖a− a(w, d)‖2
z = E

[ Kn∑
v=1

wv (
∞∑
i=1

(ai − ai(v − d))zt−i,∞)
]2

=
∑

max(1,d)≤i,j≤Kn

wiwj‖a− a(max(i, j)− d)‖2
z,

Πmin(Kn) are defined after (2.6).

Besides, if only one model, say AR(k) is used in the prediction, the weight vector w

deduces to wk, where wk ∈ Hd
n is the weight vector where the k-th element equals 1 and

other elements are zeros. Then, (3.2) can be rewritten as

Ldn(wk) = σ2d
2 + d

N
+ σ2w

′
kΠmin(Kn)wk − d

N
+ ‖a− a(wk, d)‖2

z,

= σ2d
2 + d

N
+ σ2k − d

N
+ ‖a− a(k − d)‖2

z, (3.3)

which is the MSPE representation derived in Theorem 2 of Ing et al. (2010), and when

d = 0, the autoregressive process is stationary, (3.3) becomes exactly the AR(k) expression

in Ing and Wei (2003, 2005). Thus, (3.2) is a generalization of asymptotic expressions in Ing

et al. (2010); Ing and Wei (2003, 2005). Theorem 1 also provides the explicit bias-variance

trade-off for the MA approach. In (3.2), the cross product of diverse models increases the

model complexity term by the dimensionality of the parsimonious one, thus reducing the

estimation variability. In contrast, the cross product on the goodness-of-fit term improves

the fitting from the aggressive model, which has a less-biased approximation of the AR(∞)

process, and further decreases the total MSPE. Compared with pure model selection, MA

takes the advantage of intersections among diverse models for MSPE reduction.

As a byproduct from Theorem 1, we can identify the conditions under which there

exists at least one MA prediction that can reach strictly lower MSPE than MS. Observe

that

Hd
n = {w ∈ [0, 1]Kn :

Kn∑
k=1

wk = 1, wk = 0, 1 ≤ k < d}

= {w ∈ [0, 1]Kn−max(1,d)+1 :
Kn∑

k=max(1,d)

wk = 1, wk ≥ 0, max(1, d) ≤ k ≤ Kn},

and the model selection of AR(max(1, d)), ..., AR(Kn), is one-to-one corresponding to

vertices of Hd
n. For instance, if model AR(Kn) is used, then the corresponding w is

10



wKn := (0, 0, ..., 1) ∈ Hd
n, where the last element is 1 and others are equal to zero. Define

V(Hd
n) is the set of all the vertices in Hd

n.

Corollary 1. Assume Assumption 1-4 and (2.3) as in Theorem 1. If there is a k ∈
{max(1, d), ..., Kn} such that

‖a− a(k − d)‖2
z 6= ‖a− a(l − d)‖2

z, ∀ l ∈ {max(1, d), ..., Kn}, l 6= k, (3.4)

then there exists at least one weight vector w�n in Hd
n/V(Hd

n) such that

inf
w∈Hd

n/V(Hd
n)
Ldn(w) ≤ Ldn(w�) < min

w∈V(Hd
n)
Ldn(w),

where ‖a− a(v)‖2
z is defined in (2.5).

Corollary 1 and sufficient condition (3.4) show that, if the prediction bias of one model

is separable from others, model averaging can further reduce the forecast risk from the

model selection. And there exists at least one model averaging predictor such that the

corresponding MSPE is strictly less than the MSPEs of all the model selection predictors.

Based on the asymptotic expression, we can also compare the predictive risk of model

averaging and model selection. Let V(Hd
n) be the set of all the vertices in Hd

n defined

after Corollary 1. Denote wk∗n := arg minw∈V(Hd
n) L

d
n(w), then Ldn(wk∗n) is the minimum

predictive risk of model selection methods.

As Peng and Yang (2022), the appropriate comparison between model averaging and

model selection is to analyze the potential risk reduction of MA from MS defined as:

∆n = Ldn(wk∗n)− Ldn(w∗n), (3.5)

2
z

2
z

where Ldn(w∗n) := infw∈Hd
n 
Ldn(w). And we investigate the magnitude of ∆n relative to 

Ldn(wk∗n ) under the exponential-decay case and algebraic-decay case, which are frequently 
used in time series research.

(i) Exponential-decay case:

‖a − a(v)‖ = C exp(−α(v)),

where α is a positive constant.

(ii) Algebraic-decay case:

‖a − a(v)‖ = Cv−α,

where α is a positive constant. The exponential-decay and algebraic-decay scenarios used

are simplified but have the same orders of k∗n as the example 1 and 2 in Ing and Wei 
(2005).

11



Theorem 2. Assume Assumption 1-4 and (2.3).

(i) Let Aj = ‖a− a(j − d)‖2
z, then

Ldn(w∗n) =
σ2d2

N
+
σ2 max(1, d)

N
+ AKn +

Kn∑
j=max(1,d)+1

σ2

N
(Aj−1 − Aj)

σ2

N
+ Aj−1 − Aj

. (3.6)

(ii) under exponential-decay case:

∆n = o(Ldn(wk∗n)),

(iii) under algebraic-decay case:

∆n = Θ(Ldn(wk∗n)),

where ∆n defined after (3.5).

From Corollary 1, we know that if there exists a model whose prediction bias is sep-

arable from the other models, ∆n is greater than zero. Theorem 2 further provides a

measurement of the potential improvability by MA, relative to the minimum predictive

risk attained by MS. Under the integrated AR(∞) model, if the goodness-of-fit term is

algebraic decay as the model dimension increases, the magnitude of potential MSPE re-

duction has the same order as the oracle minimum predictive risk by MS. While under

the exponential-decay scenario, the magnitude is asymptotic negligible. These results are

consistent with current findings such as Peng and Yang (2022) and Xu and Zhang (2022),

in which they consider non-stochastic regression design while our extensions are under

general autoregressive models with broader applicability.

For any MS and MA criterion, MSn(w) and MACn(w), respectively, define

ŵd
MSn

:= arg min
w∈V(Hd

n)
MACn(w),

ŵd
MACn

:= arg min
w∈Hd

n

MACn(w),

and define their difference as:

∆̂n := Ldn(ŵd
MSn

)− Ldn(ŵd
MACn

).

Then, we can get the following consequences:

Corollary 2. Assume Assumption 1-4 and (2.3). If

Ldn(ŵd
MSn

)

Ldn(wk∗n)

p−→ 1,
Ldn(ŵd

MACn
)

Ldn(w∗n)

p−→ 1, (3.7)
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then, under the exponential-decay case:

∆̂n = o(Ldn(ŵd
MSn

)).

Under the algebraic-decay case:

∆̂n = Θ(Ldn(ŵd
MSn

)).

And

Ldn(ŵ dMACn 
) = Θ(Ldn( ̂wd

MSn 
)),

under either conditions.

Corollary 2 conducts the MSPE comparison based on the selected model and weight 
estimator from the data. If the MS and MA are asymptotic optimal, the results of Theorem 
2 hold for the selected model and weight estimator. Under Assumption 1-4, Theorem 3.1 
of Ing et al. (2012) shows that the selected model from AIC or its equivalent MS criteria 
satisfies the asymptotic condition of MS part in (3.7). In the next section, we will show 
that the weights selected by SMA and its equivalent MA criteria satisfy the asymptotic 
condition of the MA part in (3.7).

4 The MA criteria
In practice, the integration order d is unknown and so is the restrictive set Hd

n. To form a 
MA prediction under 0 ≤ d < d̄, we consider combining all finite-order AR models, from 
AR(1) to AR(Kn) to forecast future observation. In this section, we will propose three MA 
criteria and show that the weight estimator by minimizing those criteria are asymptotically 
optimal even if d is unknown to us. The asymptotic optimality conditions under the 
integrated AR(∞) process are defined as below:

For any MA criterion, MACn(w), define

ŵMACn := arg min
w∈Hn

MACn(w),

ŵd
MACn

:= arg min
w∈Hd

n

MACn(w).

The MA criterion is said to be asymptotically optimal without the integration order in-

formation if

‖ŵMACn − ŵd
MACn

‖2
a.s.−→ 0, (4.1)

13



and

lim
n→∞

Ldn(w∗n)

Ldn(ŵd
MACn

)

p−→ 1, (4.2)

where Ldn(w∗n) := infw∈Hd
n
Ldn(w). The weight minimizer of the criterion on the unrestric-

tive Hn satisfying condition (4.1) will converge to the weight minimizer on the restrictive

Hd
n almost surely even d is unknown. By Theorem 1, Ldn(w) is the uniformly asymptotic

expression of the averaging prediction MSPE, the selected weights on the restrictive Hd
n

satisfying (4.2) can achieve the lowest possible MSPE asymptotically.

Inspired by Shibata (1980), we propose the Shibata model averaging (SMA) criterion:

Sn(w) = (N + w′[Πmin(Kn) + Πmax(Kn)]w)σ̂2
w, (4.3)

where Πmin(Kn) and Πmax(Kn) are defined after (2.6), and σ̂2
w = 1

N

∑n−1
t=Kn

(yt+1−ŷt+1(w))2.

SMA generalizes the Shibata (1980) model selection criterion to model averaging, and 
it has a close relationship with AIC-type model averaging criterion criterion and Mallow’s 
model averaging criterion. While w shrinks to wk, where wk ∈ Hn is the weight vector 
where the k-th element equals 1 and other elements are zeros. Then, Sn(w) will deduce 
to the Shibata’s model selection criterion Sn(k) , where Sn(k) := (N + 2k)σ̂2(k), with the

empirical MSPE of AR(k), σ̂2(k) = 1
N

∑n−1
t=Kn

(yt+1 − ŷt+1(k))2. Intuitively, the usage of

matrix Πmin(Kn) + Πmax(Kn) rather than 2Πmin(Kn) or 2Πmax(Kn) is to balance the bias-

variance trade-off represented in (3.2) of Theorem 1. To prove the asymptotic optimality

of SMA, we need an additional assumption:

Assumption 5. K
1/2
n /Nηdn −→ 0, where ηdn := Ldn(w∗n) = infw∈Hd

n
Ldn(w).

As pointed out in Cheng et al. (2015) or Liao et al. (2021), many MA approaches require

the strong assumption on Kn and may result in inferior prediction due to preclude the

optimal model. Assumption 5 is quite mild and consists of the best model. For example,

under either the exponential decay or algebraic decay as in Theorem 2, ‖a − a(v)‖2
z =

C exp(−α(v)) or ‖a− a(v)‖2
z = Cv−α, by (3.6), it can be shown that

Ldn(w∗n) ≥
k∗n∑

j=max(1,d)+1

σ2

N
(Aj−1 − Aj)

σ2

N
+ Aj−1 − Aj

≥ C
k∗n
N
,

where the second inequality is guaranteed by the fact σ2/N < C
(
Aj−1 − Aj

)
for some

large C and for all j = max(1, d), ..., k∗n under exponential decay or algebraic decay. In
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either case, Kn can have order up to o
(
(k∗n)2

)
. Hence, Assumption 5 does not preclude

the optimal model and can avoid the prevalent shortcoming in existing MA literature.

Theorem 3. Assume Assumption 1-5 and (2.3). If

ηdn = inf
w∈Hn

Ldn(w); lim
n→∞

Nηdn →∞,

then we have

(i)

‖ŵSn − ŵd
Sn
‖2

a.s.−→ 0,

(ii)

lim
n→∞

Ldn(w∗n)

Ldn(ŵd
Sn

)

p−→ 1.

Thus, the SMA is asymptotically optimal without the integration order information

satisfying (4.1) and (4.2), where

ŵSn := arg min
w∈Hn

Sn(w),

ŵd
Sn

:= arg min
w∈Hd

n

Sn(w).

Theorem 3 asserts that the MSPE of the model averaging predictor with the weight selected

by Shibata’s condition Sn(.) can achieve the best compromise between model complexity

σ2(w′Πmin(Kn)w/N), and goodness-of-fit, ‖a− a(w, d)‖2
z under a one-step-ahead forecast

framework.

We also explore the relationship of SMA with other MA criteria, which is limited

among the existing MA studies. Define Mallow’s model averaging (MMA) criterion as:

Cn(w) = Nσ̂2
w + (w′[Πmin(Kn) + Πmax(Kn)]w−N)σ̂2,

where σ̂2 is some consistent estimator of σ2, which does not depend on w.

Similarly, define Akaike model averaging (AMA) criterion as:

An(w) = log(σ̂2
w) +

w′[Πmin(Kn) + Πmax(Kn)]w

N
,

where σ̂2
w, Πmin(Kn), and Πmax(Kn) are defined as in the (4.3). Similar to the SMA, MMA

and AMA are the model averaging generalization of Mallows’ Cp and AIC. For example,
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while w shrinks to wk, where wk ∈ Hn is the weight vector with the k-th element equals

1 and other elements are zeros. Then, An(w) will deduce to the well-known Akaike infor-

mation criterion An(k) := log(σ̂2(k)) + 2k/N .

Remark 1. Note that

w′[Πmin(Kn) + Πmax(Kn)]w =
∑

1≤i,j≤Kn

wiwj(i+ j) = 2
Kn∑
k=1

wkk,

since
∑Kn

i=1 wi = 1. Thus, optimize

Cn(w) = Nσ̂2
w + (w′[Πmin(Kn) + Πmax(Kn)]w−N)σ̂2,

is equivalent to optimize

Cn(w) = Nσ̂2
w + (2

Kn∑
k=1

wkk)σ̂2,

which is exactly the MMA criterion proposed by Hansen (2007).

Theorem 4. Assume Assumption 1-5 and (2.3). If

ηdn = inf
w∈Hn

Ldn(w); lim
n→∞

Nηdn →∞.

For Mallow’s model averaging (MMA) criterion:

‖ŵCn − ŵd
Cn
‖2

a.s.−→ 0,

and

lim
n→∞

Ldn(w∗n)

Ldn(ŵd
Cn

)

p−→ 1.

For Akaike model averaging (AMA) criterion:

‖ŵAn − ŵd
An
‖2

a.s.−→ 0,

and

lim
n→∞

Ldn(w∗n)

Ldn(ŵd
An

)

p−→ 1.

16



The Cn(w) and An(w) are both asymptotically optimal without the integration order

information satisfying (4.1) and (4.2), where

ŵAn := arg min
w∈Hn

An(w), ŵd
An

:= arg min
w∈Hd

n

An(w).

ŵCn := arg min
w∈Hn

Cn(w), ŵd
Cn

:= arg min
w∈Hd

n

Cn(w).

Theorem 4 shows that the MSPE of the model averaging predictor with the weight se-

lected by AMA or MMA can achieve the best compromise between model complexity and

goodness-of-fit as SMA. Thus, those three criteria are asymptotically equivalent and their

differences (up to a monotone transformation) are negligible relative to the oracle min-

imum predictive risk of MA as shown in Lemma 10 and the proof of Theorem 4 in the

Appendix. Shibata (1980), Ing and Wei (2005), and Ing et al. (2012) present the similar

results under MS. Theorem 4 is the extension to MA under general AR(∞) model.

5 Conclusion

In this paper, we study model averaging prediction under an integrated AR(∞) frame-

work and obtain the uniformly asymptotic expression for the mean squared prediction error

(MSPE) of the averaging predictor. The MSPE can be decomposed into three components:

non-stationary integration order, model complexity, and goodness-of-fit via the expression.

The asymptotic expression provides theoretical justification that the diverse model inter-

sections from the MA approach can decrease the model complexity and misspecification

if the model misspecification terms from different models are separable. Regarding the

predictive risk reduction by MA, it can be shown that the magnitude of MA improvement

has the same order as the oracle minimum risk of MS under algebraic-decay case, while the

magnitude is negligible under exponential-decay case. And the risk reduction conclusion

holds for selected MS and MA if the data-driven MS and MA are asymptotic efficient. To

pick the best choice of weights, we propose Shibata model averaging (SMA) criterion and

show that, even without the integration order information, the weight estimator of SMA

and its variants including AMA and MMA criteria are asymptotically optimal. It would

be an interesting future research topic to extend the method to allow structural changes

or time trend and to develop inference methods for the weight estimator.
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Appendix A: Mathematical Proof

In the Appendix, define:

B1n(k, d) =

{
U
′
n,n(d)
√
N

Ω̂−1
n (k)

1√
N

n−
√
n−1∑

j=Kn

Uj,n(d)εj+1,k−d

}
1(d ≥ 1),

f1,n(d) =

{
U
′
n,n(d)
√
N

[
N−1

n−
√
n−1∑

j=Kn

Uj,n(d)U
′

j,n(d)

]−1
1√
N

n−
√
n−1∑

j=Kn

Uj,n(d)εj+1

}
1(d ≥ 1),

f ∗1,n(d) =

{
U∗
′
n,n(d)
√
N

[
N−1

n−
√
n−1∑

j=Kn

Uj,n(d)U
′

j,n(d)

]−1
1√
N

n−
√
n−1∑

j=Kn

Uj,n(d)εj+1

}
1(d ≥ 1),

B2n(k − d) =

{
z
′
n(k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)εj+1,k−d

}
1(k > d),

f2,n(k − d) =

{
z
′
n(k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)εj+1

}
1(k > d),

f ∗2,n(k − d) =

{
z∗
′
n (k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)εj+1

}
1(k > d),

f ∗2,n,∞(k − d) =

{
z∗
′
n (k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj,∞(k − d)εj+1

}
1(k > d),

S∗n(k − d) =

√
n/2∑
i=1

(ai − ai(k − d))z∗∗n+1−i, z∗∗n+1−i =

√
n/2∑
j=0

bjεn+1−i−j,

Uj,n(v) =

(
yj(d)/Nd−(1/2), ..., yj(d− v + 1)/Nd−v+(1/2)

)′
,

U∗n,n(d) =

(
N−d+1/2

n−1∑
j=
√
n

κj(d)εn−j, ..., N
−1/2

n−1∑
j=
√
n

κj(1)εn−j

)′
,

z∗n(k) =

(√n−Kn∑
j=0

bjεn−j, ...,

√
n−Kn∑
j=0

bjεn−k+1−j

)′
, k ≥ 1,

κj(1) =

j∑
s=0

bs, and κj(v) =

j∑
s=0

κs(v − 1), ∀v ≥ 2,

Γ(v) = E(zt,∞(v)z
′

t,∞(v)), v ≥ 1. (A.1)

21



Lemma 1. For Kn = o(n) and 0 ≤ k ≤ Kn,

E
( Kn∑
k=0

wk(εn+1,k − εn+1)
)2 −

∑
0≤i,j≤Kn

wiwj‖a− a(max{i, j})‖2
z = o(n−1).

Proof.

E
( Kn∑
k=1

wk(εn+1,k − εn+1)
)2 −

∑
0≤i,j≤Kn

wiwj‖a− a(max{i, j})‖2
z

=
Kn∑
k=0

w2
kE(εn+1,k − εn+1)2 −

Kn∑
k=0

w2
k‖a− a(max(k))‖2

z

+
∑
k 6=l

wkwl

{
E
[
(εn+1,k − εn+1)(εn+1,l − εn+1)

]
− ‖a− a(max{k, l})‖2

z

}
= (I) + (II).

Note that by Lemma B.5 of Ing et al. (2010), (I) is o(n−1). It suffices to prove (II) is

o(n−1) as well. Denote ai − ai(k) by γi(k), and since

εn+1,k − εn+1 =
n∑
i=1

γi(k)zn+1−i =
n∑
i=1

γi(k)(zn+1−i − zn+1−i,∞) +
n∑
i=1

γi(k)zn+1−i,∞.

Then,

|(II)| ≤ |(III)|+ |(IV )|+ |(V )|+ |(V I)|,

where

(III) :=
∑
k 6=l

wkwl
{
E
[
(
n∑
i=1

γi(k)zn+1−i,∞)(
n∑
i=1

γi(l)zn+1−i,∞)
]
− ‖a− a(max{k, l})‖2

z

}
(IV ) :=

∑
k 6=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i − zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}

(V ) :=
∑
k 6=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i − zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i,∞)
]}

(V I) :=
∑
k 6=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}
.

By Cauchy-Schwarz inequality and (B.17) of Ing et al. (2010),

|(IV )| = o(n−1),
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and since

zn+1−i,∞ − zn+1−i =
∞∑

j=n−i

bjεn+1−i−j,

then,

∑
k 6=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}

=
∑
k 6=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i − zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}
.

Hence, by (IV )

|(V )| = o(n−1), |(V I)| = o(n−1).

To show |(III)| = o(n−1), first noting that

E
[
(
∞∑
i=1

γi(k)zn+1−i,∞)(
∞∑
i=1

γi(l)zn+1−i,∞)
]

= ‖a− a(max{k, l})‖2
z,

by (3.2) of Ing and Wei (2003). Thus,

|(III)| = |
∑
k 6=l

wkwl
{
E
[
(
n∑
i=1

γi(k)zn+1−i,∞)(
n∑
i=1

γi(l)zn+1−i,∞)
]
− ‖a− a(max{k, l})‖2

z

}
|

= |
∑
k 6=l

wkwl
{
E
[
(
n∑
i=1

γi(k)zn+1−i,∞)(
n∑
i=1

γi(l)zn+1−i,∞)
]}

− E
[
(
∞∑
i=1

γi(k)zn+1−i,∞)(
∞∑
i=1

γi(l)zn+1−i,∞)
]}
|

≤ |
∑
k 6=l

wkwl
{
E
[
(
∞∑

i=n+1

γi(k)zn+1−i,∞)(
n∑
i=1

γi(l)zn+1−i,∞)
]}
|

+ |
∑
k 6=l

wkwl
{
E
[
(
n∑
i=1

γi(k)zn+1−i,∞)(
∞∑

i=n+1

γi(l)zn+1−i,∞)
]}
|

+ |
∑
k 6=l

wkwl
{
E
[
(
∞∑

i=n+1

γi(k)zn+1−i,∞)(
∞∑

i=n+1

γi(l)zn+1−i,∞)
]}
|

= (V II) + (V III) + (IX).
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By (2.2),
∑∞

j=1 |jaj| <∞,

E
[
(
∞∑

i=n+1

γi(k)zn+1−i,∞)(
∞∑

i=n+1

γi(l)zn+1−i,∞)
]

= χ0

∞∑
j=n+1

a2
j +

∞∑
n+1≤ i,j, i6=j

aiajχ|i−j|

= o(n−2),

where χi−j = E(zi,∞zj,∞). Thus, (IX) = o(n−1).

For (V III), choose 0 < ρ < 1 such that ρn > Kn. Then,

(V III) = γ1(k)
∞∑

i=n+1

γi(k)χi−1 + γ2(k)
∞∑

i=n+1

γi(k)χi−2+, ...,+γn(k)
∞∑

i=n+1

γi(k)χi−n

= γ1(k)
∞∑

i=n+1

γi(k)χi−1+, ...,+γρn(k)
∞∑

i=n+1

γi(k)χi−ρn

+ γρn+1(k)
∞∑

i=n+1

γi(k)χi−(ρn+1)+, ...,+γn(k)
∞∑

i=n+1

γi(k)χi−n.

By (2.2),

γρn+1(k)
∞∑

i=n+1

γi(k)χi−(ρn+1)+, ...,+γn(k)
∞∑

i=n+1

γi(k)χi−n

≤ C(
∞∑

i=n+1

|γi(k)|)(
∞∑

i=ρn+1

|γi(k)|)

= o(n−2), (A.2)

χn+1−(ρn) = χ(1−ρ)n+1 = E(zt,∞zt−(1−ρ)n−1,∞)

= E
[
(
∞∑
j=0

bjεt−j)(
∞∑
j=0

bjεt−ρ)n−1−j)
]

≤ C

∞∑
j=(1−ρ)n+1

|bj|

= o(n−1),
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and,

γ1(k)
∞∑

i=n+1

γi(k)χi−1+, ...,+γρn(k)
∞∑

i=n+1

γi(k)χi−ρn

≤ C(ρn)(
∞∑

i=n+1

|ai|)(
∞∑

j=(1−ρ)n+1

|bj|)

= o(n−1). (A.3)

By (A.2) and (A.3), (V III) = o(n−1). Similarly, (V II) = o(n−1) as well.

Since (I)− (IX) are o(n−1), the statement of Lemma 1 holds.

Lemma 2. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn and w ∈ Hd

n,

(i)

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wk(f2,n(k − d)− f ∗2,n(k − d))
]2

Ldn(w)

∣∣∣∣ = 0,

(ii)

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wk(f
∗
2,n(k − d)− f ∗2,n,∞(k − d))

]2
Ldn(w)

∣∣∣∣ = 0,

where f2,n(k − d), f ∗2,n(k − d), f ∗2,n,∞(k − d), are defined after (A.1).

Proof.

To show (i), it suffices to show

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣
√
N√

w′Πmin(Kn)w− d
[ Kn∑
k=max{1,d}

wk(f2,n(k − d)− f ∗2,n(k − d))
]∣∣∣∣2 = 0. (A.4)

Observe that

|
√

N

k − d
[f2,n(k − d)− f ∗2,n(k − d)]| ≤ |A1(k − d) + A2(k − d)|,

where

A1(k − d) =

{
(z′n(k − d)− z∗

′

n (k − d))Γ−1(k − d)
1√

N(k − d)

n−1∑
j=Kn

zj(k − d)εj+1

}
1(k > d),

A2(k − d) =

{
z∗
′

n (k − d)Γ−1(k − d)
1√

N(k − d)

n−1∑
j=n−

√
n

zj(k − d)εj+1

}
1(k > d).
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For any p ≥ 2, by Hölder inequality,

E(|A1(k − d)|p) ≤ E(‖a1(k − d)‖3p)1/3E(‖a2(k − d)‖3p)1/3E(‖a3(k − d)‖3p)1/3,

where

a1(k−d) =
(
zn−z∗n, ..., zn−k+d+1−z∗n−k+d+1

)′
=
( ∞∑
j=
√
n−Kn+1

bjεn−j, ...,
∞∑

j=
√
n−Kn+1

bjεn−k+d+1−j
)′
,

a2(k − d) = Γ−1(k − d), a3(k − d) = [N(k − d)]−1/2

n−1∑
j=Kn

zj(k − d)εj+1.

By Lemma B.3 of Ing et al. (2010), (2.3), and assumptions, for all d < k ≤ Kn,

E(‖a1(k − d)‖3p) ≤ C
[
(k − d)

∞∑
j=
√
n−Kn+1

b2
j

]3p/2
,

E(‖a2(k − d)‖3p) ≤ C, E(‖a3(k − d)‖3p) ≤ C.

Hence,

E(|A1(k − d)|p) ≤ C
[
(k − d)

∞∑
j=
√
n−Kn+1

b2
j

]p/2 ≤ C((Kn − d)
∞∑

j=
√
n−Kn+1

b2
j)
p/2. (A.5)

Similarly,

E(|A2(k − d)|p) ≤ E(‖b1(k − d)‖3p)1/3E(‖a2(k − d)‖3p)1/3E(‖b2(k − d)‖3p)1/3,

where

b1(k − d) = z∗
′

n (k − d), b2(k − d) = [N(k − d)]−1/2

n−1∑
j=n−

√
n

zj(k − d)εj+1.

By Lemma B.3 of Ing et al. (2010),

E(‖b1(k − d)‖3p) ≤ C(k − d)3p/2, E(‖a3(k − d)‖3p) ≤ C(
√
N)3p/2.

E(|A2(k − d)|p) ≤ C(
k − d√
N

)p/2 ≤ C(
Kn − d√

N
)p/2. (A.56)

Then by (A.5) and (A.6),

E
∣∣(√N

i
[f2,n(i)−f ∗2,n(i)]

)(√N

j
[f2,n(j)−f ∗2,n(j)]

)∣∣p ≤ C

{
[(Kn−d)

∞∑
j=
√
n−Kn+1

b2
j ]
p/2+(

Kn − d√
N

)p/2
}
,

(A.7)
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and for any w ∈ Hd
n,∑

max(1,d)≤i,j≤Kn
wi−dwj−d

√
i
√
j

w′Πmin(Kn)w− d
=

∑
max(1,d)≤i,j≤Kn

wiwj
√
i− d

√
j − d∑

max(1,d)≤i,j≤Kn
wiwj min{i, j} − d

≤
√
Kn − d.

(A.8)

Therefore, by (A.7) and (A.8),

E

∣∣∣∣
√
N√

w′Πmin(Kn)w− d
[ Kn∑
k=max{1,d}

wk(f2,n(k − d)− f ∗2,n(k − d))
]∣∣∣∣2

≤ C

∑
max(1,d)≤i,j≤Kn

wiwj
√
i− d

√
j − d

w′Πmin(Kn)w− d

{
[(Kn − d)

∞∑
j=
√
n−Kn+1

b2
j ] + (

Kn − d√
N

)

}

≤ C
√
Kn − d

{
[(Kn − d)

∞∑
j=
√
n−Kn+1

b2
j ] + (

Kn − d√
N

)

}

≤ C
∞∑

j=
√
n−Kn+1

|jbj|2 +

√
K3
n

N
. (A.9)

(A.4) holds by (A.9), (2.3) and Assumption 4.

To show (ii), it suffices to show

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣
√
N√

w′Πmin(Kn)w− d
[ Kn∑
k=max{1,d}

wk(f
∗
2,n(k−d)−f ∗2,n,∞(k−d))

]∣∣∣∣2 = 0. (A.10)

f ∗2,n(k− d)− f ∗2,n,∞(k− d) =

{
z∗
′
n (k − d)√

N
Γ−1(k− d)

1√
N

n−
√
n−1∑

j=Kn

z̃j,∞(k− d)εj+1

}
1(k > d),

where

z̃t,∞(v) =
(
z̃t,∞, ..., z̃t−v+1,∞

)′
=
(
zt,∞−zt, ..., zt−v+1,∞−zt−v+1

)′
=
( ∞∑
j=t

bjεt−j, ...,

∞∑
j=t−v+1

bjεt−v+1−j
)′
.
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Then, by Hölder inequality, Lemma B.3 of Ing et al. (2010), and Lemma 2 of Wei (1987),

E
∣∣√N Kn∑

k=max{1,d}

wk[f
∗
2,n(k − d)− f ∗2,n,∞(k − d)]

∣∣p
≤

Kn∑
k=max{1,d}

wkE
∣∣√N [f ∗2,n(k − d)− f ∗2,n,∞(k − d)]

∣∣p
≤

Kn∑
k=max{1,d}

wk(E‖z∗
′

n (k − d)‖3p)1/3(E‖Γ−1(k − d)‖3p)1/3(E‖ 1√
N

n−
√
n−1∑

j=Kn

z̃j,∞(k − d)εj+1‖3p)1/3

≤ C max
1≤k≤Kn−d

kp/2kp/2(N−1

n−
√
n−1∑

t=Kn

E(z̃t,∞)2)p/2

≤ CKp
n(N−1

n−
√
n−1∑

t=Kn

∞∑
i=t

b2
i )
p/2

≤ C(
∞∑

i=Kn

|ibi|2)p/2. (A.11)

Then, (A.10) holds by (A.11) and (2.3).

Lemma 3. For K2
n = o(n),

(i)

lim
n→∞

max
1≤k≤Kn

∣∣E(N(f ∗2,n,∞(k))2)− kσ2
∣∣ = 0

(ii)

lim
n→∞

max
1≤k,l≤Kn

∣∣E(Nf ∗2,n,∞(k)f ∗2,n,∞(l))−min(k, l)σ2
∣∣ = 0 (A.12)

where f ∗2,n,∞(k − d), are define after (A.1).

Proof. We only prove (ii), since (i) is the special case of (ii). Without loss of generality,

we assume that k < l. Define

Γk,l(0) = E(zt,∞(k)z
′

t,∞(l)) =
(
Γ(k),Γ(k, l − k)

)
Γl,k(0) = E(zt,∞(l)z

′

t,∞(k)) =

(
Γ(k)

Γ(l − k, k)

)
,

Γ∗l,k(0) = E(z∗t (l)z
∗′
t (k)) =

(
Γ∗(k)

Γ∗(l − k, k)

)
,
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where

Γ∗(k) = E(z∗t (k)z∗
′

t (k)),

is k × k matrix, Γk,l(0) is k × l matrix, and Γl,k(0), Γ∗l,k(0) are l × k matrices.

Then, observe that

E(Nf ∗2,n,∞(k)f ∗2,n,∞(l)) = tr(Γ∗l,k(0)Γ−1(k)Γk,l(0)Γ−1(l))
N −

√
n

N
σ2,

and by Woodbury matrix identity and partitioned matrix inversion formula,

tr(Γ∗l,k(0)Γ−1(k)Γk,l(0)Γ−1(l))

= tr([Γ∗l,k(0)− Γl,k(0)]Γ−1(k)Γk,l(0)Γ−1(l)) + tr(Γl,k(0)Γ−1(k)Γk,l(0)Γ−1(l))

= tr([Γ∗l,k(0)− Γl,k(0)]Γ−1(k)Γk,l(0)Γ−1(l)) + min(k, l)

≤ C‖Γ−1(k)‖tr(Γ∗(k)− Γ(k)) + min(k, l)

≤ C
∞∑

j=
√
n−Kn+1

jb2
j + min(k, l)

|E(Nf ∗2,n,∞(k)f ∗2,n,∞(l))−min(k, l)σ2| ≤ C
(∑∞j=√n−Kn+1 |jbj|2√

n−Kn

+
Kn√
n

)
. (A.13)

Then, (A.12) holds by (A.13), (2.3), and Assumption 4.

Lemma 4. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn and w ∈ Hd

n,

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[
(
∑Kn

k=max{1,d}wkf2,n(k − d))(
∑Kn

k=max{1,d}wkSn(k − d))
]

Ldn(w)

∣∣∣∣ = 0, (A.14)

where f2,n(k − d) and Sn(k − d) are defined after (A.1) and (3.1), respectively.

Proof. Define

f ?2,n(k − d) =

{
z?
′
n (k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)εj+1

}
1(k > d),

S∗n(k − d) =

√
n/2∑
i=1

(ai − ai(k − d))z∗∗n+1−i,

z?n(k) =

(√n/2−Kn∑
j=0

bjεn−j, ...,

√
n/2−Kn∑
j=0

bjεn−k+1−j

)′
, k ≥ 1,

z∗∗n+1−i =

√
n/2∑
j=0

bjεn+1−i−j.
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Since for all 1 ≤ u, v ≤ Kn−d, ,z?n(u) is independent of (Sn(v)−S∗n(v),
∑n−

√
n−1

j=Kn
zj(v)εj+1)

and
∑n−

√
n−1

j=Kn
zj(u)εj+1 is independent from (S∗n(v), z?n(v)),

E
[
(

Kn∑
k=max{1,d}

wkf
?
2,n(k − d))(

Kn∑
k=max{1,d}

wk[Sn(k − d)− S∗n(k − d)])
]

= 0,

E
[
(

Kn∑
k=max{1,d}

wkf
?
2,n(k − d))(

Kn∑
k=max{1,d}

wkS
∗
n(k − d))

]
= 0.

Then,

E
[
(

Kn∑
k=max{1,d}

wkf2,n(k − d))(
Kn∑

k=max{1,d}

wkSn(k − d))
]

= E
[
(

Kn∑
k=max{1,d}

wk[f2,n(k − d)− f ?2,n(k − d)])(
Kn∑

k=max{1,d}

wkSn(k − d))
]

+ E
[
(

Kn∑
k=max{1,d}

wkf
?
2,n(k − d))(

Kn∑
k=max{1,d}

wk[Sn(k − d)− S∗n(k − d)])
]

+ E
[
(

Kn∑
k=max{1,d}

wkf
?
2,n(k − d))(

Kn∑
k=max{1,d}

wkS
∗
n(k − d))

]
= E

[
(

Kn∑
k=max{1,d}

wk[f2,n(k − d)− f ?2,n(k − d)])(
Kn∑

k=max{1,d}

wkSn(k − d))
]
,

therefore,

sup
w∈Hd

n

∣∣∣∣E
[
(
∑Kn

k=max{1,d}wkf2,n(k − d))(
∑Kn

k=max{1,d}wkSn(k − d))
]

Ldn(w)

∣∣∣∣
≤ sup

w∈Hd
n

∣∣∣∣E
[
(
∑Kn

k=max{1,d}wk[f2,n(k − d)− f ?2,n(k − d)])(
∑Kn

k=max{1,d}wkSn(k − d))
]

Ldn(w)

∣∣∣∣
≤ sup

w∈Hd
n

E1/2
[∑Kn

k=max{1,d}wk(f2,n(k − d)− f ?2,n(k − d))
]2

Ldn(w)

× sup
w∈Hd

n

E1/2
[∑Kn

k=max{1,d}wkSn(k − d)
]2

Ldn(w)

≤ C
{ ∞∑
j=
√
n/2−Kn+1

|jbj|2 +

√
K3
n

N

}1/2
,

(A.15)
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where the last inequality is insured by Lemma 1 and with the same argument as Lemma

2 (i). Then, (A.14) holds by (A.15), (2.3), and Assumption 4.

Lemma 5. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn and w ∈ Hd

n,

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wkf1,n(d) +
∑Kn

k=max{1,d}wkf2,n(k − d) +
∑Kn

k=max{1,d}wkSn(k − d)
]2

Ldn(w)
−1

∣∣∣∣ = 0,

(A.16)

where f1,n(d), f2,n(k − d), and Sn(k − d) are defined after (A.1) and (3.1).

Proof. Let

(I) = sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wkf1,n(d) +
∑Kn

k=max{1,d}wkf2,n(k − d) +
∑Kn

k=max{1,d}wkSn(k − d)
]2

Ldn(w)
−1

∣∣∣∣.
Then,

(I) ≤ (II) + (III) + (IV ) + (V ) + (V I) + (V II), (A.17)

where

(II) = sup
w∈Hd

n

∣∣∣∣E(f1,n(d))2 − d(d+1)σ2

N

Ldn(w)

∣∣∣∣,
(III) = sup

w∈Hd
n

∣∣∣∣E(
∑Kn

k=max{1,d}wkf2,n(k − d))2 − σ2
∑

max{1,d}≤i,j≤Kn
wiwj(min{i, j} − d)

Ldn(w)

∣∣∣∣,
(IV ) = sup

w∈Hd
n

∣∣∣∣E(
∑Kn

k=max{1,d}wkSn(k − d))2 −
∑

max{1,d}≤i,j≤Kn
wiwj‖a− a(max{i, j} − d)‖2

z

Ldn(w)

∣∣∣∣,
(V ) = sup

w∈Hd
n

∣∣∣∣2E
[
f1,n(d)

∑Kn

k=max{1,d}wkf2,n(k − d)
]

Ldn(w)

∣∣∣∣,
(V I) = sup

w∈Hd
n

∣∣∣∣2E
[
f1,n(d)

∑Kn

k=max{1,d}wkSn(k − d)
]

Ldn(w)

∣∣∣∣,
(V II) = sup

w∈Hd
n

∣∣∣∣2E
[∑Kn

k=max{1,d}wkf2,n(k − d)
∑Kn

k=max{1,d}wkSn(k − d)
]

Ldn(w)

∣∣∣∣.

By Lemma 2 of Ing et al. (2010),

lim
n→∞

(II) = 0. (A.18)

By Lemma 2 and 3,

lim
n→∞

(III) = 0. (A.19)
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By Lemma 1,

lim
n→∞

(IV ) = 0. (A.20)

By Lemma 4,

lim
n→∞

(V II) = 0. (A.21)

By (B.37)- (B.39), Lemma 1, Lemma B.1, B.3 of Ing et al. (2010) and Hölder’s inequality,

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣f1,n(d)
∑Kn

k=max{1,d}wkf2,n(k − d)− f ∗1,n(d)
∑Kn

k=max{1,d}wkf
∗
2,n(k − d)

Ldn(w)

∣∣∣∣ = 0

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣f1,n(d)
∑Kn

k=max{1,d}wkSn(k − d)− f ∗1,n(d)
∑Kn

k=max{1,d}wkS
∗
n(k − d)

Ldn(w)

∣∣∣∣ = 0,

and the facts that for all d ≤ k ≤ Kn

E(f ∗1,n(d)f ∗2,n(k − d)) = E(f ∗1,n(d)S∗n(k − d)) = 0.

We obtain

lim
n→∞

(V ) = 0, (A.22)

and

lim
n→∞

(V I) = 0. (A.23)

By (A.17) - (A.23), (A.16) holds.

Lemma 6. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn and w ∈ Hd

n,

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− E(Fn(k, d), Sn(k − d),w)

Ldn(w)

∣∣∣∣ = 0, (A.24)

where

E(fn(k, d), Sn(k − d),w) = E
[ Kn∑
k=max{1,d}

wkfn(k) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2

E(Fn(k, d), Sn(k − d),w) = E
[ Kn∑
k=max{1,d}

wkFn(k, d) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2
,

Fn(k, d) = f1,n(d) + f2,n(k− d). And f1,n(d), f2,n(k− d), fn(k), and Sn(k− d) are defined

after (A.1) and (3.1).
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Proof. For any w ∈ Hd
n, Bn(k − d) := B1n(k, d) + B2n(k − d), B1n(k, d), B2n(k − d)

defined after (A.1).

E
[ Kn∑
k=max{1,d}

wkfn(k) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2

= E
[ Kn∑
k=max{1,d}

wkfn(k)−
Kn∑

k=max{1,d}

wkBn(k − d)
]2

+ E
[ Kn∑
k=max{1,d}

wkBn(k − d) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2

+ E
[ Kn∑
k=max{1,d}

wkfn(k)−
Kn∑

k=max{1,d}

wkBn(k − d)
][ Kn∑

k=max{1,d}

wkBn(k − d) +
Kn∑

k=max{1,d}

wkSn(k − d)
]

= (I) + (II) + (III).

(A.25)

By Lemma B1, B3, B4, B6, Hölder’s inequality, Theorem 1 (ii), (A.26), (A.28) of Ing et al.

(2010),

(I)

Ldn(w)
≤
∑Kn

k=max{1,d}wkE
[
fn(k)− wkBn(k − d)

]2
Ldn(w)

≤
C
∑Kn

k=max{1,d}wk
k
N
k2

N

Ldn(w)
≤ C

NLdn(w)

K3
n

N
, (A.26)

(II) = E
[ Kn∑
k=max{1,d}

wkBn(k − d) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2

= E
[ Kn∑
k=max{1,d}

wkBn(k − d)−
Kn∑

k=max{1,d}

wkFn(k − d)
]2

+ E
[ Kn∑
k=max{1,d}

wkBn(k)−
Kn∑

k=max{1,d}

wkFn(k − d)
][ Kn∑

k=max{1,d}

wkFn(k − d) +
Kn∑

k=max{1,d}

wkSn(k − d)
]

+ E
[ Kn∑
k=max{1,d}

wkFn(k, d) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2

= (IV ) + (V ) + (V I). (A.27)
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Since

(IV ) ≤
Kn∑

k=max{1,d}

wkE
[
f1,n(d)−B1n(k, d)

]2
+

Kn∑
k=max{1,d}

wkE
[
f2,n(k − d)−B2n(k, d)

]2
,

by (B.43) - (B.45) of Ing et al. (2010),

(IV )

Ldn(w)
≤ C

NLdn(w)
, (A.28)

and by Cauchy-Schwarz inequality, sufficiently large N , and Lemma 5,

(V )

Ldn(w)
≤ C

(NLdn(w))1/2
. (A.29)

By Cauchy-Schwarz inequality again and above decomposition of (II),

(III)

Ldn(w)
≤ C

NLdn(w)

(
K3
n

N

)1/2

. (A.30)

Then,

sup
w∈Hd

n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− E(Fn(k, d), Sn(k − d),w)

Ldn(w)

∣∣∣∣
= sup

w∈Hd
n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− (V I)

Ldn(w)

∣∣∣∣
≤ sup

w∈Hd
n

∣∣∣∣(I) + (II) + (III) + (IV ) + (V )

Ldn(w)

∣∣∣∣ . (A.31)

Then, by (A.25) - (A.31), (A.24) holds.

Proof of Theorem 1. Observe that for any w ∈ Hd
n,

E(yn+1 − ŷn+1(w))2 − σ2 = E
[ Kn∑
k=max{1,d}

wkfn(k) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2
,

and

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wkfn(k) +
∑Kn

k=max{1,d}wkSn(k − d)
]2

Ldn(w)
− 1

∣∣∣∣
≤ sup

w∈Hd
n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− E(Fn(k, d), Sn(k − d),w)

Ldn(w)

∣∣∣∣
+ sup

w∈Hd
n

∣∣∣∣E
[∑Kn

k=max{1,d}wkf1,n(d) +
∑Kn

k=max{1,d}wkf2,n(k − d) +
∑Kn

k=max{1,d}wkSn(k − d)
]2

Ldn(w)
− 1

∣∣∣∣.
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Then, Theorem 1 holds by Lemma 5 and 6.

Proof of Corollary 1. Without loss of generality, randomly choose two AR models,

AR(k1) and AR(k2), where max(1, d) ≤ k1 < k2 ≤ Kn, and consider conducting model

averaging on these two models only. The associated w equals to (0, ..., wk1 , ..., wk2 , ..., 0) ∈
Hd
n, and wk1 + wk2 = 1. Then, by Theorem 1, the model averaging predictor of AR(k1)

and AR(k2) is strictly less than the model selection predictors if

w2
k1

k1

N
+ (1− wk1)2k2

N
+ 2wk1(1− wk1)

k1

N

+

w2
k1
‖a− a(k1 − d)‖2

z + (1− wk1)2‖a− a(k2 − d)‖2
z + 2wk1(1− wk1)‖a− a(k2 − d)‖2

z

<
k1

N
+ ‖a− a(k1 − d)‖2

z, (A.32)

and

w2
k1

k1

N
+ (1− wk1)2k2

N
+ 2wk1(1− wk1)

k1

N

+

w2
k1
‖a− a(k1 − d)‖2

z + (1− wk1)2‖a− a(k2 − d)‖2
z + 2wk1(1− wk1)‖a− a(k2 − d)‖2

z

<
k2

N
+ ‖a− a(k2 − d)‖2

z. (A.33)

By some algebraic manipulations, (A.32) and (A.33) can be reduced to

(1− wk1)2 k2 − k1

N
< (1− w2

k1
)
[
‖a− a(k1 − d)‖2

z − ‖a− a(k2 − d)‖2
z

]
, (A.34)

and

w2
k1

[
‖a− a(k1 − d)‖2

z − ‖a− a(k2 − d)‖2
z

]
< 2wk1(1− wk1)

k2 − k1

N
. (A.35)

By the quadratic formula, (A.34) implies wk1 must be within the following interval:

wk1 ∈
(
C(k1, k2, n)−B(k1, k2)

C(k1, k2, n) +B(k1, k2)
, 1

)
,

and (A.35) implies wk1 must be within the interval below:

wk1 ∈
(

0 ,
2C(k1, k2, n)

C(k1, k2, n) +B(k1, k2)

)
,
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where

C(k1, k2, n) :=
k2 − k1

N
, B(k1, k2) := ‖a− a(k1 − d)‖2

z − ‖a− a(k2 − d)‖2
z.

Since C(k1, k2, n) is always greater than zero, if B(k1, k2) > 0, then(
C(k1, k2, n)−B(k1, k2)

C(k1, k2, n) +B(k1, k2)
, 1

)
∩
(

0 ,
2C(k1, k2, n)

C(k1, k2, n) +B(k1, k2)

)
∩ [0, 1] 6= ∅,

there exists a weighting vector w◦k1,k2 := (0, ..., w◦k1 , ..., w
◦
k2
, ..., 0) ∈ Hd

n with w◦k1 + w◦k2 = 1

such that

Ldn(w◦k1,k2) < min
(
Ldn(wk1), L

d
n(wk2)

)
,

where wk1 and wk2 are vertices ofHd
n corresponding to model selection predictors of AR(k1)

and AR(k2), respectively. Note that we do not restrict the relation between C(k1, k2, n)

and B(k1, k2). Either C(k1, k2, n) ≥ B(k1, k2) or C(k1, k2, n) ≤ B(k1, k2) are allowed,

where C(k1, k2, n) ≥ B(k1, k2) implies

k2

N
+ ‖a− a(k2 − d)‖2

z ≥
k1

N
+ ‖a− a(k1 − d)‖2

z,

AR(k1) generates smaller predictive risk than AR(k2) and vice versa.

By condition (3.4), since there is a k ∈ {max(1, d), ..., Kn} such that |B(k, l)| > 0,

∀ l 6= k. We can repeat the above argument for all the pairs of AR(k) and AR(l) with fixed

k, max(1, d) ≤ l ≤ Kn, l 6= k. Then, for Hd
n, there are Kn−max(1, d) number of pairs and

weight vectors either w◦k,l := (0, ..., w◦k, ..., w
◦
l , ..., 0) if k < l or w◦k,l := (0, ..., w◦l , ..., w

◦
k, ..., 0)

if l < k. Denote Pn(w◦k,l) be the collection of weight vectors w◦k,l, and

w�n := arg min
Pn(w◦k,l)

Ldn(w).

Clearly, w�n in Hd
n/V (Hd

n), and

Ldn(w�n) < min(Ldn(wk), L
d
n(wl)),

for all the pairs of AR(k) and AR(l), max(1, d) ≤ l ≤ Kn, l 6= k. Hence,

Ldn(w�n) < min
w∈V(Hd

n)
Ldn(w).

36



Proof of Theorem 2.

(i) For any w = (w1, w2, ..., wKn) ∈ Hd
n, define ϕ1 = 1 and ϕj =

∑Kn

j=2 wj, with some

algebraic manipulations, (3.2) can be rewritten as

Ldn(w) =
σ2d2

N
+
σ2 max(1, d)

N
+AKn +

Kn∑
j=max(1,d)+1

ϕ2
j

σ2

N
+

Kn∑
j=max(1,d)+1

(1−ϕj)2[Aj−1−Aj].

(A.36)

Then, for w∗n ∈ Hd
n such that Ldn(w∗n) = infw∈Hd

n
Ldn(w), Ldn(w∗n) can be obtained by

plugging

ϕj =
Kn∑

j=max(1,d)+1

(
Aj−1 − Aj

σ2

N
+ Aj−1 − Aj

)
,

into (A.36).

(ii) Since

Ldn(wk∗n) =
σ2d2

N
+ σ2k

∗
n

N
+ Ak∗n ,

and by the exponential-decay condition the argument as (A.1)- (A.5) in Ing and Wei

(2005), we can get

k∗n = O(
1

α
log(N)), Ldn(wk∗n) = O(

1
α

log(N)

N
). (A.37)

Then,

∆n = Ldn(wk∗n)− Ldn(w∗n) =

k∗n∑
j=max(1,d)+1

[
σ2

N

(
1− Aj−1 − Aj

σ2

N
+ Aj−1 − Aj

)]

+
Kn∑

j=k∗n+1

[
(Aj−1 − Aj)

(
1−

σ2

N
σ2

N
+ Aj−1 − Aj

)]
= (I) + (II). (A.38)

To show ∆n = o(Ldn(wk∗n)), it is sufficient to show that

(I) = o(
log(N)

N
), and (II) = o(

log(N)

N
).

Since d is finite by Assumption 1,

Aj = C exp(−α(j − d)) = C exp(−α(j)), Aj−1 − Aj = C
exp(α(j))

1− exp(−α)
.
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(I) =
σ2

N

k∗n∑
j=max(1,d)+1

( σ2

N
σ2

N
+ Aj−1 − Aj

)
≤ C

( σ2

N

)2
k∗n∑

j=max(1,d)+1

(
1

Aj−1 − Aj

)

≤ C
( σ2

N

)2( 1

1− exp(−α)

)exp(αk∗n)− exp(αmax(1, d))

e− 1

= O(
1

N
), (A.39)

(II) =
Kn∑

j=k∗n+1

[
(Aj−1 − Aj)

(
1−

σ2

N
σ2

N
+ Aj−1 − Aj

)]
= C

Kn∑
j=k∗n+1

[(
(Aj−1 − Aj)2

σ2

N
+ Aj−1 − Aj

)]

≤ C
Kn∑

j=k∗n+1

(
Aj−1 − Aj

)
≤ C

1

1− exp(−α)
×
(

exp(−αk∗n) + ...+ exp(−α(Kn − 1))

)
≤ C exp(−αk∗n)

[
1− exp(−α(Kn − k∗n + 1))

]
= O(

1

N
), (A.40)

then, by (A.37)-(A.40), ∆n = o(Ldn(wk∗n)).

(iii) By the algebraic-decay condition and the argument as (A.9) in Ing and Wei (2005),

we can get

k∗n = O(N1/(α+1)), Ldn(wk∗n) = O(N−α/(α+1)). (A.41)

Since ∆n ≤ Ldn(wk∗n), to show ∆n = Θ(Ldn(wk∗n)), it is sufficient to show that

(I) ≥ c Ldn(wk∗n),
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where c is a positive constant greater than zero. Since Aj = C(j − d)−α,

(I) =
σ2

N

k∗n∑
j=max(1,d)+1

( σ2

N
σ2

N
+ Aj−1 − Aj

)
=
σ2

N

k∗n∑
j=max(1,d)+1

( σ2

N
σ2

N
+ C(j − 1− d)−α − C(j − d)−α

)

≥ C
σ2

N

k∗n∑
j=max(1,d)+1

(
σ2(j − 1− d)α

σ2(j − 1− d)α +N
[
1−

(
1− 1

j−d

)α])

≥ C
σ2

N

k∗n∑
j=max(1,d)+1

(
σ2(j − 1− d)α(j − d)

σ2(j − 1− d)α(j − d) +N

)

≥ C
σ2

N

k∗n∑
j=max(1,d)+1

(
σ2(j − 1− d)α+1

σ2(k∗n)α+1 +N

)

≥ C
σ2

N

1

σ2(k∗n)α+1 +N

k∗n∑
j=max(1,d)+1

(j − 1− d)α+1

≥ C
σ2

N

1

σ2(k∗n)α+1 +N

[
(k∗n − 1− d)α+2

]
≥ C

k∗n
N

= CN−α/(α+1), (A.42)

where the second inequality is insured by

1− (1− x)p ≤ Cx, p > 0, 0 < x < 1,

and the last inequality is by k∗n = O(N1/(α+1)). By (A.41), (A.42), ∆n ≤ Ldn(wk∗n),

∆n = Θ(Ldn(wk∗n)) under algebraic-decay scenario.
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To prove the Lemmas 7-9, we define

A :=
∑

1≤i,j≤d−1

wiwj min(i, j),

Ad :=
∑

1≤i,j≤d−1

wiwjd,

B :=
∑

d≤i,j≤Kn

wiwj min(i, j),

C :=
∑

1≤i,j≤d−1

wiwj max(i, j),

D :=
∑

d≤i,j≤Kn

wiwj max(i, j),

E :=
∑

1≤i,j≤d−1

wiwjσ̂
2(max(i, j)),

Ed :=
∑

1≤i,j≤d−1

wiwjσ̂
2(d),

F :=
∑

d≤i,j≤Kn

wiwjσ̂
2(max(i, j)),

where σ̂2(k) = 1
N

∑n−1
t=Kn

(yt+1 − ŷt+1(k))2 = 1
N

∑n−1
t=Kn

(yt+1 + y′tân(k))2.

Lemma 7. For any 1 ≤ k < d and 2 < q1 < q,

Pr(ŵSn,k
> 0) = O(n−q1/2), (A.43)

where ŵSn,k
is the kth element of ŵSn , the selected weight by Shibata model averaging

criteria.

Proof. While ŵSn,k
> 0, it means that there exists some w = (w1, ..., wk, ..., wKn) ∈ Hn,

such that

ŵSn = w, wk > 0, for any 1 ≤ k < d,
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Pr(ŵSn,k
> 0, 1 ≤ k < d) = Pr(wk > 0, 1 ≤ k < d)

= Pr
(

[N + A+B + C +D]× [E + F ]

≤ [N + Ad +B + Ad +D]× [Ed + F ]
)

= Pr
(
N [E − Ed] ≤
[(Ad − A) + (Ad − C)][Ed + F ] + [A+B + C +D][Ed − E]

)
≤ Pr

(
N [E − Ed] ≤ [(Ad − A) + (Ad − C)][Ed + F ]

)
≤ Pr

(
N [E − Ed] ≤ 2Adσ̂

2(d)
)

≤ Pr
(
N [

∑
1≤i,j≤d−1

wiwj(σ̂
2(d− 1)− σ̂2(d))] ≤ 2

∑
1≤i,j≤d−1

wiwj d σ̂
2(d)

)
≤ Pr

(
N [σ̂2(d− 1)− σ̂2(d)] ≤ 2d σ̂2(d)

)
, (A.44)

where the first to third inequalities are due to the fact that σ̂2(k) ≤ σ̂2(l) for all l < k

and
∑Kn

k=1 wk = 1. So Ed + F ≤ σ̂2(d), Ed − E ≤ 0 , and
∑

1≤i,j≤d−1wiwj(σ̂
2(d− 1) ≤ E.

Then, the (A.43) holds by (4.30) and Theorem 4.5 of Ing et al. (2012), and (A.44).

Lemma 8. For any 1 ≤ k < d and 2 < q1 < q,

Pr(ŵAn,k
> 0) = O(n−q1/2), (A.45)

where ŵAn,k
is the kth element of ŵAn , the selected weight by AIC-like model averaging

criteria.

Proof. While ŵAn,k
> 0, it means that there exists some w = (w1, ..., wk, ..., wKn) ∈ Hn,

such that

ŵAn = w, wk > 0, for any 1 ≤ k < d,
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Pr(ŵAn,k
> 0, 1 ≤ k < d) = Pr(wk > 0, 1 ≤ k < d)

= Pr
(

log(E + F ) +
(A+B + C +D)

N

≤ log(Ed + F ) +
(Ad +B + Ad +D)

N

)
= Pr

(
log(E + F )− log(Ed + F ) ≤ [(Ad − A) + (Ad − C)]

N

)
≤ Pr

(
log(

E + F

Ed + F
) ≤ 2d

N

)
= Pr

( E + F

Ed + F
≤ exp(

2d

N
)
)

= Pr
( E − Ed
Ed + F

≤ exp(
2d

N
)− 1

)
≤ Pr

( E − Ed
Ed + F

≤ 2d

N − 2d

)
= Pr

(
(N − 2d)(E − Ed) ≤ 2d(Ed + F )

)
≤ Pr

(
(N − 2d)[

∑
1≤i,j≤d−1

wiwj(σ̂
2(d− 1)− σ̂2(d))] ≤ 2d σ̂2(d)

)
≤ Pr

(
(N − 2d)[σ̂2(d− 1)− σ̂2(d)] ≤ C σ̂2(d)

)
, (A.46)

where the second inequality is insured by exp(x)− 1 ≤ x
1−x if 0 < x < 1, and the last two

inequalities hold since σ̂2(k) ≤ σ̂2(l) for all l < k,
∑Kn

k=1wk = 1, and
∑

1≤i,j≤d−1wiwj > 0

by assumption. So Ed + F ≤ σ̂2(d),
∑

1≤i,j≤d−1wiwj(σ̂
2(d − 1) ≤ E, and there exists

a constant C bounds the left term inside the last probability Then, the (A.45) holds by

(4.30) and Theorem 4.5 of Ing et al. (2012), and (A.46).

Lemma 9. For any 1 ≤ k < d and 2 < q1 < q,

Pr(ŵCn,k
> 0) = O(n−q1/2), (A.47)

where ŵCn,k
is the kth element of ŵCn , the selected weight by Mallow’s model averaging

criteria.

Proof. By Lemma 4.1 and (4.6) of Ing et al. (2012), for any k →∞, σ̂2(k) is a consistent

estimator of σ2. Without loss of generality, let σ̌2 = σ̂2(Kn). While ŵCn,k
> 0, it means

that there exists some w = (w1, ..., wk, ..., wKn) ∈ Hn, such that

ŵCn = w, wk > 0, for any 1 ≤ k < d,
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= Pr
(

[N + A+B + C +D]× [E + F ]

= Pr
(
N(E + F ) + (A+B + C +D)σ̌2

≤ N(Ed + F ) + (Ad +B + Ad +D)σ̌2
)

= Pr
(
N [E − Ed] ≤ [(Ad − A) + (Ad − C)]σ̌2

)
≤ Pr

(
N [E − Ed] ≤ 2Adσ̌

2
)

≤ Pr
(
N [

∑
1≤i,j≤d−1

wiwj(σ̂
2(d− 1)− σ̂2(d))] ≤ 2

∑
1≤i,j≤d−1

wiwj d σ̌
2
)

≤ Pr
(
N [σ̂2(d− 1)− σ̂2(d)] ≤ 2d σ̌2

)
≤ Pr

(
N [σ̂2(d− 1)− σ̂2(d)] ≤ 2d (σ2(Kn) + ε)

)
+ Pr

(
|σ̌2 − σ2(Kn)| > ε

)
, (A.48)

where the second and third inequalities are due to the fact that σ̂2(k) ≤ σ̂2(l) for all l < k

and
∑Kn

k=1 wk = 1. So Ed−E ≤ 0 , and
∑

1≤i,j≤d−1wiwj(σ̂
2(d− 1) ≤ E. Then, the (A.47)

holds by (4.30) and Theorem 4.5 of Ing et al. (2012), and (A.48).

Proof of Theorem 3.

(i) since

ŵSn = ŵSn1(ŵSn ∈ Hn\Hd
n) + ŵSn1(ŵSn ∈ Hd

n)

= ŵSn1(ŵSn ∈ Hn\Hd
n) + ŵd

Sn
,

Pr
(
‖ŵSn − ŵd

Sn
‖2

)
= Pr

(
‖ŵSn‖21(ŵSn ∈ Hn\Hd

n)
)

= Pr
(

(
Kn∑
k=1

ŵ2
Sn,k

)1/2 1(ŵSn ∈ Hn\Hd
n)
)

≤ Pr
(
ŵSn ∈ Hn/Hd

n

)
= Pr(ŵSn,k

> 0, 1 ≤ k < d).

By Lemma 7, we obtain

Pr
(
‖ŵSn − ŵd

Sn
‖2

)
= O(n−q1/2), 2 < q1 < q,

is summable and the claim holds by Borel-Cantelli Lemma.
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(ii)

ŵd
Sn

= arg minw∈Hd
n
Sn(w), and Ldn(w∗n) = infw∈Hd

n
Ldn(w),

0 ≥ Sn(ŵd
Sn

)− Sn(w∗n) = NLdn(ŵd
Sn

)−NLdn(w∗n)− Vn(ŵd
Sn
,w∗n),

Vn(ŵd
Sn
,w∗n) ≥ NLdn(ŵd

Sn
)−NLdn(w∗n) ≥ 0,

sup
w∈Hd

n

∣∣∣Vn(w,w∗n)

NLdn(w)

∣∣∣ ≥ Vn(ŵn,w
∗
n)

NLdn(ŵn)
≥ 1− Ldn(w∗n)

Ldn(ŵd
Sn

)
≥ 0.

Therefore, if

lim
n→∞

sup
w∈Hd

n

∣∣∣Vn(w,w∗n)

NLdn(w)

∣∣∣ p−→ 0, (A.49)

then,

lim
n→∞

Ldn(w∗n)

Ldn(ŵd
Sn

)

p−→ 1.

Inspired by (4.1) of Ing et al. (2012) and Theorem 1, for all w ∈ Hd
n, we decompose Sn(w)

as below:

Sn(w) =NLdn(w) + w′Πmin(Kn)w(σ̂2
w − σ2) + w′Πmax(Kn)w(σ̂2

w − σ2) + (N + d− d2)σ2

+

( ∑
max(1,d)≤i, j≤Kn

wiwj
[
(max(i, j)− d)σ2

− ‖N−1/2

n−1∑
j=Kn

sj,n(max(i, j))εj+1,max(i,j)−d‖2
Ω̂−1

n (max(i,j))

])
+
(
N

∑
1≤i, j≤Kn

wiwj[Σ̂
2
n(max(i, j)− d)− σ2(max(i, j)− d)]

)
, (A.50)

where Σ̂2
n(l) = N−1

∑n−1
j=Kn

ε2j+1,l, σ
2(l) = σ2 + ‖a − a(l)‖2

z, and for vector v and positive

definite matrix Q, ‖v‖2
Q = v′Qv. ‖a− a(k)‖2

z, εj+1,k and Ω̂−1
n (k) are defined after (2.4).

In view of (A.50), we can rewrite Sn(w)−Sn(w∗n)
NLd

n(w)
as

Sn(w)− Sn(w∗n)

NLdn(w)
= 1− NLdn(w∗n)

NLdn(w)
− Vn(w,w∗n)

NLdn(w)
,
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and Vn(w,w∗n)
NLd

n(w)
can be decomposed into seven parts:

V1n(w) = −w′Πmin(Kn)w(σ̂2
w − σ2)

NLdn(w)
,

V2n(w,w∗n) = −
w∗
′
n Πmin(Kn)w∗n(σ̂2

w∗n
− σ2)

NLdn(w)
,

V3n(w) = −w′Πmax(Kn)w(σ̂2
w − σ2)

NLdn(w)
,

V4n(w,w∗n) = −
w∗
′
n Πmax(Kn)w∗n(σ̂2

w∗n
− σ2)

NLdn(w)
,

V5n(w) = − 1

NLdn(w)

( ∑
max(1,d)≤i, j≤Kn

wiwj
[

(max(i, j)− d)σ2

− ‖N−1/2

n−1∑
j=Kn

sj,n(max(i, j))εj+1,max(i,j)−d‖2
Ω̂−1

n (max(i,j))

])
,

V6n(w,w∗n) = − 1

NLdn(w)

( ∑
max(1,d)≤i, j≤Kn

w∗n,iw
∗
n,j

[
(max(i, j)− d)σ2

− ‖N−1/2

n−1∑
j=Kn

sj,n(max(i, j))εj+1,max(i,j)−d‖2
Ω̂−1

n (max(i,j))

])
,

V7n(w,w∗n) = −
∑

max(1,d)≤i, j≤Kn
(wiwj − w∗n,iw∗n,j)[Σ̂2(max(i, j)− d)− σ2(max(i, j)− d)]

Ldn(w)
,

where

σ̂2
w∗ =

1

N

n−1∑
t=Kn

(yt+1 − ŷt+1(w∗n))2,

w∗n,k is the kth element of w∗n.

Since

sup
w∈Hn

∣∣∣Vn(w,w∗n)

NLdn(w)

∣∣∣ ≤ ∑
i=1,3,5

sup
w∈Hn

|Vin(w)|+
∑

j=2,4,6,7

sup
w∈Hn

|Vjn(w,w∗n)|,

if supw∈Hd
n
|Vin(w)| = op(1) for i = 1, 3, 5 and supw∈Hd

n
|Vjn(w,w∗n)| = op(1) for j =

2, 4, 6, 7, then (A.49) automatically satisfies.

Observe that

σ̂2
w =

1

N

n−1∑
t=Kn

(yt+1 +
Kn∑
k=1

wky
′
tân(k))2 =

1

N

n−1∑
t=Kn

(
Kn∑
k=1

wk[yt+1 + y′tân(k)])2,

=
∑

1≤i, j≤Kn

wiwjσ̂
2(max(i, j)),
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where σ̂2(k) = 1
N

∑n−1
t=Kn

(yt+1 − ŷt+1(k))2 = 1
N

∑n−1
t=Kn

(yt+1 + y′tân(k))2.

And by (4.6) of Ing et al. (2012), for any k ≥ max(1, d),

σ̂2(k)− σ2 = [Σ̂2
n(k− d)− σ2(k− d)]−‖N−1

n−1∑
j=Kn

sj,n(k)εj+1,k−d‖2
Ω̂−1

n (k))
+ ‖a− a(k− d)‖2

z,

then,

|V1n(w)| =
∣∣∣ (w′Πmin(Kn)w)

∑
max(1,d)≤i, j≤Kn

wiwj[σ̂
2(max(i, j))− σ2]

NLdn(w)

∣∣∣
= (w′Πmin(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj[Σ̂

2
n(max(i, j)− d)− σ2(max(i, j)− d)]

NLdn(w)

∣∣∣
+ (w′Πmin(Kn)w)

×
∣∣∣∑max(1,d)≤i, j≤Kn

wiwj‖N−1
∑n−1

j=Kn
sj,n(max(i, j))εj+1,max(i,j)−d‖2

Ω̂−1
n (max(i,j)))

NLdn(w)

∣∣∣
+ (w′Πmin(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj‖a− a(max(i, j)− d)‖2

z

NLdn(w)

∣∣∣
= (I) + (II) + (III),

by Lemma 4.1 and (4.8) of Ing et al. (2012),
∑

max(1,d)≤i, j≤Kn
wiwj = 1,

(I) = Op(
w′Πmin(Kn)w

NLdn(w)

1√
N

) = Op(
1√
N

),

(II) = Op(
w′Πmin(Kn)w

NLdn(w)

Kn

N
) = Op(

Kn

N
),

and

(III) ≤ C
w′Πmin(Kn)w

N
≤ C

Kn

N
.

Then,

sup
w∈Hd

n

|V1n(w)| = Op(
1√
N

+
Kn

N
+
Kn

N
). (A.51)

Similarly,

sup
w∈Hd

n

|V2n(w,w∗n)| ≤ |V2n(w∗n,w
∗
n)| ≤ sup

w∈Hd
n

|V1n(w)|.

Thus, by (A.51),

sup
w∈Hd

n

|V2n(w,w∗n)| = Op(
1√
N

+
Kn

N
+
Kn

N
). (A.52)
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Similar to V1n(w), we can rewrite

|V3n(w)| =
∣∣∣ (w′Πmax(Kn)w)

∑
max(1,d)≤i, j≤Kn

wiwj[σ̂
2
max(i,j) − σ2]

NLdn(w)

∣∣∣
= (w′Πmax(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj[Σ̂

2
n(max(i, j)− d)− σ2(max(i, j)− d)]

NLdn(w)

∣∣∣
+ (w′Πmax(Kn)w)

×
∣∣∣∑max(1,d)≤i, j≤Kn

wiwj‖N−1
∑n−1

j=Kn
sj,n(max(i, j))εj+1,max(i,j)−d‖2

Ω̂−1
n (max(i,j)))

NLdn(w)

∣∣∣
+ (w′Πmax(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj‖a− a(max(i, j)− d)‖2

z

NLdn(w)

∣∣∣
= (I∗) + (II∗) + (III∗),

by Lemma 4.1 and (4.8) of Ing et al. (2012),
∑

max(1,d)≤i, j≤Kn
wiwj = 1 ,

(I∗) = Op(
w′Πmax(Kn)w

NLdn(w)

1√
N

) = Op(
1

NLdn(w)

Kn√
N

),

(II∗) = Op(
w′Πmax(Kn)w

NLdn(w)

Kn

N
) = Op(

1

NLdn(w)

K2
n

N
),

and

(III∗) ≤ C
w′Πmax(Kn)w

N
≤ C

Kn

N
.

Then,

sup
w∈Hd

n

|V3n(w)| = Op(
1

NLdn(w∗n)

Kn√
N

+
1

NLdn(w∗n)

K2
n

N
+
Kn

N
). (A.53)

Similar to the argument on V2n(w,w∗n),

sup
w∈Hd

n

|V4n(w,w∗n)| = Op(
1

NLdn(w∗n)

Kn√
N

+
1

NLdn(w∗n)

K2
n

N
+
Kn

N
). (A.54)

To deal with V5n(w), define

Ω̂d,n(k) =


Ω̂n(k), 1 ≤ k ≤ d,(

Γ(k − d) 0(k−d)×d

0d×(k−d) Ω̂n(d)

)
, d < k ≤ Kn.
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Then, for any d ≤ k ≤ Kn,

∣∣∣(k − d)σ2 − ‖N−1/2

n−1∑
j=Kn

sj,n(k)εj+1,k−d‖2
Ω̂−1

n (k)

∣∣∣
≤
∣∣∣(k − d)σ2 − ‖N−1/2

n−1∑
j=Kn

zj(k − d)εj+1,k−d‖2
Γ−1(k−d)

∣∣∣1(k > d)

+ ‖N−1/2

n−1∑
j=Kn

Uj,n(d)εj+1,k−d‖2‖Ω̂−1
n (d)‖

+ ‖N−1/2

n−1∑
j=Kn

sj,n(k)εj+1,k−d‖2‖Ω̂−1
n (k)− Ω̂d,n(k)‖,

|V5n(w)| ≤ 1

NLdn(w)

∣∣∣ ∑
max(1,d)≤i, j≤Kn

wiwj
[

(max(i, j)− d)σ2

− ‖N−1/2

n−1∑
j=Kn

zj(max(i, j)− d)εj+1,max(i,j)−d‖2
Γ−1(max(i,j)−d)

]
1(max(i, j) > d)

∣∣∣
+

1

NLdn(w)

( ∑
max(1,d)≤i, j≤Kn

wiwj‖N−1/2

n−1∑
j=Kn

Uj,n(d)εj+1,max(i,j)−d‖2‖Ω̂−1
n (d)‖

)

+
1

NLdn(w)

( ∑
max(1,d)≤i, j≤Kn

wiwj‖N−1/2

n−1∑
j=Kn

sj,n(max(i, j))εj+1,max(i,j)−d‖2

−1
)

× ‖Ω̂n (max(i, j)) − Ω̂d,n(max(i, j))‖

= (I◦) + (II◦) + (III◦).

By (2.3), Lemma 4.2 of Ing et al. (2012), Lemmas B.1, B.3, B.4, B.6, and Theorem 1 of

Ing et al. (2010), and some algebraic manipulation,

(I◦) = Op(
K

1/2
n

NLdn(w)
),

(II◦) = Op(
1

NLdn(w)
),

(III◦) = Op(
1

NLdn(w)

K2
n

N1/2
),

sup
w∈Hd

n

|V5n(w)| = Op(
K

1/2
n

NLdn(w)
+

1

NLdn(w∗n)
+

1

NLdn(w∗n)

K2
n

N1/2
). (A.55)
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Similarly,

sup
w∈Hd

n

|V6n(w,w∗n)| = Op(
K

1/2
n

NLdn(w)
+

1

NLdn(w∗n)
+

1

NLdn(w∗n)

K2
n

N1/2
). (A.56)

Since
∑Kn

k=max(1,d) wk = 1 and
∑Kn

k=max(1,d) w
∗
k = 1, we can decompose

|V7n(w,w∗n)| ≤
∣∣∣∑max(1,d)≤i j≤Kn

wiwj[Σ̂
2(max(i, j))− σ2(max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]

Ldn(w)

∣∣∣
+
∣∣∣∑max(1,d)≤i j≤Kn

w∗n,iw
∗
n,j[Σ̂

2(max(i, j))− σ2(max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]
Ldn(w)

∣∣∣
≤
∣∣∣∑max(1,d)≤i j≤Kn

wiwj[Σ̂
2(max(i, j))− σ2(max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]

Ldn(w)

∣∣∣
+
∣∣∣∑max(1,d)≤i j≤Kn

w∗n,iw
∗
n,j[Σ̂

2(max(i, j))− σ2(max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]
Ldn(w∗n)

∣∣∣).

By (4.4) of Ing et al. (2012),

|V7n(w,w∗n)| = Op(

∑
max(1,d)≤i j≤Kn

wiwj‖a(max(i, j))− a(Kn)‖z
N1/2Ldn(w)

)

≤ Op(

∑
max(1,d)≤i j≤Kn

wiwj‖a− a(max(i, j))‖z
(Ldn(w))1/2

1

(NLdn(w))1/2
)

≤ Op(
1

(NLdn(w))1/2
),

then,

sup
w∈Hd

n

|V7n(w,w∗n)| = Op(
1

(NLdn(w∗n))1/2
). (A.57)

Using (A.51)-(A.57), limn→∞Nη
d
n →∞, and Assumptions 4 and 5, we have

sup
w∈Hn

∣∣∣Vn(w,w∗n)

NLdn(w)

∣∣∣ ≤ ∑
i=1,3,5

sup
w∈Hn

|Vin(w)|+
∑

j=2,4,6,7

sup
w∈Hn

|Vjn(w,w∗n)| = op(1).

Thus, (A.49) is satisfied and (ii) of Theorem 2 holds.

Lemma 10.

Suppose there is another model averaging weights criterion S̃n(w), which is a function of
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model averaging weights.

Define

Gn(w) = Sn(w)− g(S̃n(w)),

where g(.) is a increasing function, and Sn(w) is the Shibata model averaging criterion.

Assume Assumption 1-4 hold. If

ηdn = inf
w∈Hd

n

Ldn(w) = Ldn(w∗n); lim
n→∞

Nηn →∞,

and

lim
n→∞

sup
w∈Hd

n

∣∣∣Gn(w)−Gn(w∗n)

NLdn(w)

∣∣∣ p−→ 0, (A.58)

then,

lim
n→∞

Ldn(w∗n)

Ldn(ŵd
S̃n

)

p−→ 1,

where

ŵd
S̃n

= arg min
w∈Hd

n

S̃n(w), Ldn(w∗n) = inf
w∈Hd

n

Ldn(w).

Lemma 10 is quite similar to Theorem 4.2 in Shibata (1980) but under more general frame-

work (model average setting).

Proof.

Since ŵd
S̃n

= arg minw∈Hd
n
S̃n(w), Ldn(w∗n) = infw∈Hd

n
Ldn(w), and g(.) is increasing function.

Then,

0 ≥ g(S̃n(ŵd
S̃n

))− g(S̃n(w∗n)) = Sn(ŵd
S̃n

)−Gn(ŵd
S̃n

)− (Sn(w∗n)−Gn(w∗n))

= NLdn(ŵd
S̃n

)−NLdn(w∗n)− Vn(ŵd
S̃n
,w∗n)− (Gn(ŵd

S̃n
)−Gn(w∗n))),

(Gn(ŵd
S̃n

)−Gn(w∗n)) + Vn(ŵd
S̃n
,w∗n) ≥ NLdn(ŵd

S̃n
)−NLn(w∗n) ≥ 0,

sup
w∈Hd

n

∣∣∣Gn(w)−Gn(w∗n))

NLdn(w)

∣∣∣+ sup
w∈Hd

n

∣∣∣Vn(w,w∗n)

NLdn(w)

∣∣∣ ≥ Vn(ŵd
S̃n
,w∗n)

NLdn(ŵd
S̃n

)
≥ 1− Ldn(w∗n)

Ldn(ŵd
S̃n

)
≥ 0.

Then, by (A.49) and (A.58), we can get

lim
n→∞

Ldn(w∗n)

Ldn(ŵd
S̃n

)

p−→ 1.
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Proof of Theorem 4.

For Mallow’s model averaging (MMA) criterion:

Without loss of generality, let σ̌2 = σ̂2(Kn). The selected weights of Mallow’s model

averaging ŵCn , ŵCn := arg minw∈Hn Cn(w) satisfies (4.1) by the arguments as the proofs

of (i) of Theorem 2 and Lemma 9.

To show ŵd
Cn

:= arg minw∈Hd
n
Cn(w) satisfying (4.2), we check the condition (A.46) in

Lemma 10 holds. The difference between Shibata model averaging (SMA) criterion and

Mallow’s model averaging (MMA) Cn is

Gn(w) = Sn(w)− Cp(w) = (w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w) +Nσ̌2.

Then,

sup
w∈Hd

n

|Gn(w)−Gn(w∗n)| ≤ sup
w∈Hd

n

|(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)|

+ sup
w∈Hd

n

|(w∗′n [Πmin(Kn) + Πmax(Kn)]w∗n)(σ̌2 − σ̂2
w∗)|. (A.59)

First, we will show

sup
w∈Hd

n

∣∣∣(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)

NLdn(w)

∣∣∣ = op(1). (A.60)

Since

sup
w∈Hd

n

∣∣∣(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)

NLdn(w)

∣∣∣
≤ sup

w∈Hd
n

∣∣∣(w′Πmin(Kn)w)(
∑

max(1,d)≤i, j≤Kn
wiwjσ̂

2(max(i, j))− σ2)

NLdn(w)

∣∣∣
+ sup

w∈Hd
n

∣∣∣(w′Πmin(Kn)w)(
∑

max(1,d)≤i, j≤Kn
[σ̌2 − σ2])

NLdn(w)

∣∣∣
+ sup

w∈Hd
n

∣∣∣(w′Πmax(Kn)w)(
∑

max(1,d)≤i, j≤Kn
wiwjσ̂

2(max(i, j))− σ2)

NLdn(w)

∣∣∣
+ sup

w∈Hd
n

∣∣∣(w′Πmax(Kn)w)(
∑

max(1,d)≤i, j≤Kn
[σ̌2 − σ2])

NLdn(w)

∣∣∣
≤ C( sup

w∈Hd
n

|V1n(w)|+ |σ̌2 − σ2|+ sup
w∈Hd

n

|V3n(w)|+ w′Πmax(Kn)w

NLdn(w)
|σ̌2 − σ2|)

≤ C
(

sup
w∈Hd

n

|V1n(w)|+ |σ̌2 − σ2|+ sup
w∈Hd

n

|V3n(w)|+Op(
1

NLdn(w∗n)

Kn√
N

+
1

NLdn(w∗n)

K2
n

N
+
Kn

N
)
)
,
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where the last inequality is insured by Lemma 4.1 and (4.8) of Ing et al. (2012), and

similar arguments for (A.53). Then, by (A.51), (A.53), and σ̌2 = σ̂2(Kn) is consistent of

σ2, (A.60) holds.

And since

sup
w∈Hd

n

∣∣∣(w∗′n [Πmin(Kn) + Πmax(Kn)]w∗n)(σ̌2 − σ̂2
w∗)

NLdn(w)

∣∣∣
≤ sup

w∈Hd
n

∣∣∣(w∗′n [Πmin(Kn) + Πmax(Kn)]w∗n)(σ̌2 − σ̂2
w∗)

NLdn(w∗)

∣∣∣
≤ sup

w∈Hd
n

∣∣∣(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)

NLdn(w)

∣∣∣.
Then, by (A.60)

sup
w∈Hd

n

∣∣∣(w∗′n [Πmin(Kn) + Πmax(Kn)]w∗n)(σ̌2 − σ̂2
w∗)

NLdn(w)

∣∣∣ = op(1). (A.61)

So, by (A.59)-(A.61), the difference of Shibata model averaging (SMA) criterion and

Mallow’s model averaging (MMA) satisfies the condition (A.58) of Lemma 10, implies

ŵd
Cn

:= arg minw∈Hd
n
Cn(w) satisfies (4.2). Thus, the model averaging weights selected by

Mallow’s model averaging (MMA) shares the property of asymptotically optimal without

the integration order information in (4.1) and (4.2).

For Akaike model averaging (AMA) criterion:

Now we prove the model average weight selected by Akaike model averaging (AMA) crite-

rion also shares the property of asymptotic efficiency in (4.1) and (4.2). First, the selected

weights of Akaike model averaging ŵAn , ŵCn := arg minw∈Hn Cn(w) satisfies (4.1) by the

arguments as the proofs of (i) of Theorem 2 and Lemma 8.

To prove (4.2), we will check the condition (A.58) in Lemma 10 holds.

Set g(x) = N exp(x), then, the difference between Shibata’s condition and transformation

of AMA can be shown:

Gn(w) = Sn(w)− g(An(w))

= Nσ̂2
w

(
1 +

w′[Πmin(Kn) + Πmax(Kn)]w

N
− exp(

w′[Πmin(Kn) + Πmax(Kn)]w

N
)

)
.
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Then, for sufficiently large n,

|Gn(w)−Gn(w∗n)| ≤
∣∣∣∣Nσ̂2

w(1 +
w′[Πmin(Kn) + Πmax(Kn)]w

N
− exp(

w′[Πmin(Kn) + Πmax(Kn)]w

N
))

∣∣∣∣
+

∣∣∣∣Nσ̂2
w∗(1 +

w∗
′
n [Πmin(Kn) + Πmax(Kn)]w∗

′
n

N
− exp(

w∗
′
n [Πmin(Kn) + Πmax(Kn)]w∗n

N
))

∣∣∣∣
≤
∣∣∣∣Nσ̂2

w(
w′[Πmin(Kn) + Πmax(Kn)]w

N
)2

∣∣∣∣+

∣∣∣∣Nσ̂2
w∗(

w∗n[Πmin(Kn) + Πmax(Kn)]w∗n
N

)2

∣∣∣∣
≤
∣∣∣∣N(σ̂2

w − σ2)(
w′[Πmin(Kn) + Πmax(Kn)]w

N
)2

∣∣∣∣
+

∣∣∣∣Nσ2(
w′[Πmin(Kn) + Πmax(Kn)]w

N
)2

∣∣∣∣
+

∣∣∣∣N(σ̂2
w∗ − σ2)(

w∗
′
n [Πmin(Kn) + Πmax(Kn)]w∗n

N
)2

∣∣∣∣
+

∣∣∣∣Nσ2(
w∗
′
n [Πmin(Kn) + Πmax(Kn)]w∗n

N
)2

∣∣∣∣, (A.62)

where the second inequality holds by |1 + x− exp(x)| ≤ |x|2 if |x| ≤ 1. Then, by (A.62),

sup
w∈Hd

n

∣∣∣Gn(w)−Gn(w∗n))

NLdn(w)

∣∣∣ ≤C( sup
w∈Hd

n

|V1n(w)|+ sup
w∈Hd

n

|V2n(w,w∗n)|

+ sup
w∈Hd

n

|V3n(w)|+ sup
w∈Hd

n

|V4n(w,w∗n)|+ K2
n

N

1

NLdn(w∗n)
).

(A.63)

By (A.51)-(A.54), (A.63) and Assumption 4,

sup
w∈Hd

n

∣∣∣Gn(w)−Gn(w∗n))

NLdn(w)

∣∣∣ = op(1),

the difference of SMA and transformation of AMA satisfies the condition (A.58) in Lemma

10. Hence, ŵd
An

:= arg minw∈Hd
n
An(w) satisfies (4.2). Thus, the model averaging weights

selected by Akaike model averaging (AMA) criterion can achieve asymptotic efficiency in

(4.1) and (4.2).
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Proof of Corollary 2. Since

∆̂n

Ldn(ŵd
MSn

)
= 1−

Ldn(ŵd
MACn

)

Ldn(w∗n)

Ldn(w∗n)

Ldn(wk∗n)

Ldn(wk∗n)

Ldn(ŵd
MSn

)

=
∆n

Ldn(wk∗n)
+
Ldn(w∗n)

Ldn(wk∗n)

(
1−

Ldn(ŵd
MACn

)

Ldn(w∗n)

Ldn(wk∗n)

Ldn(ŵd
MSn

)

)
=

∆n

Ldn(wk∗n)
+ o(1),

where the last equality is insured by the asymptotic assumptions and Ldn(w∗n) = Θ(Ldn(wk∗n)).

Thus, by Theorem 2,

∆̂n = o(Ldn(ŵd
MSn

)), ∆̂n = Θ(Ldn(ŵd
MSn

))

under exponential and algebraic decay, respectively.

To prove

Ldn(ŵd
MACn

) = Θ(Ldn(ŵd
MSn

)),

observe that,
Ldn(ŵd

MACn
)

Ldn(ŵd
MSn

)
=
Ldn(ŵd

MACn
)

Ldn(w∗n)

Ldn(w∗n)

Ldn(wk∗n)

Ldn(wk∗n)

Ldn(ŵd
MSn

)
.

By the asymptotic assumptions, it is sufficient to show

Ldn(w∗n) = Θ(Ldn(wk∗n)).

By (3.6),

Ldn(w∗n) >
Kn∑

j=max(1,d)+1

σ2

N
(Aj−1 − Aj)

σ2

N
+ Aj−1 − Aj

>

k∗n∑
j=max(1,d)+1

σ2

N
(Aj−1 − Aj)

σ2

N
+ Aj−1 − Aj

> Cσ2k
∗
n

N
≥ cLdn(wk∗n),

for some c > 0, where the third inequality holds by σ2/N < C(Aj−1−Aj), j = max(1, d)+

1, ..., k∗n for some large enough C under exponential and algebraic decay. Hence,

Ldn(w∗n) = Θ(Ldn(wk∗n)).

54


	wp23-08_cover-v1.0.pdf
	WP 23-08.pdf
	Introduction
	Model framework and assumptions
	Asymptotic expression of the MSPE 
	The MA criteria
	Conclusion




