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Abstract

This note shows that combining external forecasts such as the Survey of Professional Fore-

casters can significantly increase DSGE forecast accuracy while preserving the interpretability

in terms of structural shocks. Applied to pseudo real-time from 1997q2 onward, the canonical

Smets and Wouters (2007) model has significantly smaller forecast errors when giving a high

weight to the SPF forecasts. Incorporating the SPF forecast gives a larger role to risk premium

shocks during the global financial crisis. A model with financial frictions favors a larger weight

on the DSGE model forecast.
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1 Introduction

Averaging forecasts from different models is a well established tool for improving forecast accuracy;

see, for example, Stock and Watson (2004), Wright (2009), Clark and McCracken (2010), and

Geweke and Amisano (2012). Combining forecasts from different models ex post, however, gives

up on the benefit of providing a consistent narrative that using a single structural model affords.

Full-information estimation of Dynamic Stochastic General Equilibrium (DSGE) models, such as

first-generation models like Smets and Wouters (2007, henceforth SW) or models with financial

frictions such as Del Negro et al. (2015, henceforth DNGS) as well as structural VARs, in contrast,

allow for decomposing forecasts into structural shocks. This note proposes a method for combining

external forecasts with structural models to improve forecast accuracy while maintaining their

interpretability.

In applications with two quantitative medium-scale DSGE models for the U.S., I find that

model-based forecasts can be greatly improved: Mean absolute forecasts errors (MAEs) of output

growth can be reduced by more than 50% at horizons up to three years when incorporating pro-

fessional forecasts. MAE reductions for inflation are up to 30% at some horizons. However, DSGE

models can contain valuable information beyond what is contained in the Survey of Professional

Forecasters (SPF): The pure DNGS does no worse than the SPF-augmented model forecast for in-

flation forecasts at various horizons. This contrasts with the earlier SW model that always favors a

high weight on the SPF forecasts. This corroborates the argument in DNGS that financial frictions

help to explain inflationary dynamics in the aftermath of the Global Financial Crisis.

The approach here dates back to at least Del Negro and Schorfheide (2013). Del Negro and

Schorfheide (2013) distinguishes two approaches for incorporating forecasts into DSGE models:

(1) In the news approach, the outside forecast is an observation of the model forecast. It then

improves forecasts insofar as it reveals additional information about the economy. This approach

has originally been proposed by Monti (2010). (2) In the noise approach, the outside forecast is

modeled as a noisy realization of the truth. The latter approach can improve forecasts even when

the model forecast is perfectly pinned down by other observables – and it is the approach taken

here. Calibrating the amount of noise controls how far the structural forecasts are tilted towards

the model forecast. Both the news-based and the noise-based approaches allow for implicit forecast

averaging that allows a structural interpretation of forecasts. If the structural interpretation is not

needed, statistical approaches such as Geweke and Amisano (2012) are more natural.

In applications, the literature such as Monti (2010), Del Negro and Schorfheide (2013), and

Smets et al. (2014) has focused on nowcasts, or on the long-run (Del Negro and Schorfheide, 2013).

The emphasis on nowcasts may be because when forecasts are treated as noisy observations of

agents’ expectations in models in which the invertibility condition of Fernández-Villaverde et al.

(2007, henceforth ABCD in light of their key model and result) holds, observing forecasts only

helps to reveal the current state of the economy ahead of the release of official statistics. Here, I

show that the gains are also sizable at intermediate horizons.

One challenge of working with external forecasts can be their irregular structure, see Mertens
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et al. (2022). The forecast consists of a mix of fixed horizon forecasts and fixed event forecasts, i.e.,

calendar-year forecasts. The forecasts also differ in whether they report quarterly growth rates or

growth of annual averages, which corresponds to a weighted moving average of quarterly growth

rates. Similar to Mertens et al. (2022), the approach here takes these changes into account by

adjusting the timing of the observation equations and their calibrated coefficients by the calendar

quarter.1

The focus is on utilizing the external forecasts to improve short to medium-run forecast per-

formance. Del Negro and Schorfheide (2013) discuss incorporating SPF expectations of long-run

output growth and long-run inflation expectations. These approaches are complementary and can

be combined, as the application to the Del Negro et al. (2015) model, which incorporates long-run

inflation forecasts, shows.

The code accompanying this note can readily be adopted to other Dynare-based (Adjemian

et al., 2011) DSGE models to combine them with real-time SPF forecasts of GDP growth, inflation,

interest rates, and the unemployment rate, or a subset thereof. All it takes is to adequately (re-)label

the observation equations and to include lines of code that add the extra observation equations for

the external forecasts, and the corresponding declarations and observations.

In what follows, this note first motivates the modeling of external forecasts as noisy measures of

future realizations and derives its correlation structure across horizons in the context of a standard

class of linear DSGE model. It then provides a step-by-step guide for how to incorporate them in

DSGE models. Last, it undertakes a pseudo real-time forecasting exercise in the SW and DNGS

models, using historical vintages from 1997q2 to 2018q4. The DSGE model forecasts are combined

with forecasts from the Survey of Professional Forecasters (Federal Reserve Bank of Philadelphia,

2022). An appendix describes the data construction, DSGE model implementation, additional

empirical results, and a Monte Carlo study of the proposed approach based on the 3-equation New

Keynesian model in Gaĺı (2008).

Notation: In what follows, lower case letters such as x denote scalars. Bold lower case letters

denote vectors, e.g., x = [xi]i, and bold upper case letters denote matrices, e.g., X = [x1, . . . ,xJ ].

E[◦] denote the expectation operator, and subscripts, as in Et[◦], denote the conditional information,

equal to E[◦|Ft], where Ft is taken to be the agents’ information set. External forecasts are written

as Ex
t [◦] = E[◦|Fx

t ], where Fx
t ⊇ Ft. The econometrician’s information set is often smaller than

the agent’s information set, although it is assumed to contain the same variables. To highlight

this, it is denoted Ft− ⊆ Ft. A key calibrated parameter is the common scale parameter κ of the

measurement errors of the external forecasts in the DSGE model.

1Mertens et al. (2022) use a statistical model to interpolate SPF forecasts along with their forecast uncertainty.
The approach taken here provides an interpolation of the SPF point forecasts using a structural model, although this
is not the focus.
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2 Incorporating external forecasts in DSGE models

To motivate incorporating external forecasts as noisy future data, start from the canonical repre-

sentation of the linearized DSGE model in ABCD:

xt = Axt−1 +Bεt (2.1a)

yt = Cxt−1 +Dεt (2.1b)

xt contains endogenous and exogenous state variables. yt contains the observables of the model,

as well as internal, static or purely forward-looking variables.

2.1 Limitations of the news-approach to modeling external forecasts

The news-approach in Monti (2010) and Del Negro and Schorfheide (2013) treats forecasts as

measures of agents’ expectations, possibly contaminated by measurement error. This approach

is useful only when the underlying model departs from the ABCD benchmark that admits an

invertible VAR(∞) representation.

Remark 1. If the ABCD condition holds for observables ỹt ⊂ yt, observed expectations are redun-

dant.

To see this, let ỹt = C̃xt−1+D̃εt. The model-implied forecasts are then Et[ỹt+h] = C̃Ah−1Et[xt]

for h ≥ 1, where Et[xt] is the best guess of the state of the economy at time t, given all observables

{ỹt−s}s. Under the ABCD condition, which requires D̃ to be invertible (and thus square) and

A−BD̃−1C̃ to be stable, xt =
∑∞

s=0(A−BD̃−1C̃)sBD̃−1yt−s. It is thus revealed by the history

of observables ỹt.

The news approach in Monti (2010) works in general because she uses external nowcasts. These

forecasts of the current period are available ahead of the actual data and thus reveal information.

However, the possible gain in information is limited to the information in the nowcast when the

ABCD condition holds and the combined forecast necessarily follows the structure of (2.1). In

contrast, modeling external forecasts as noisy measures of the actual realizations allows the com-

bined forecast more flexibility, as not only can current states adjust, but the model generally can

rationalize the external forecasts also using future shocks.

2.2 Properties of the noise-approach to modeling external forecasts

That leaves us with the second route of treating external forecasts as noisy measures of future data,

rather than model expectations. If an external forecast is efficient, then uyt+h ≡ yt+h − Ẽx
t [yt+h] is,

as of time t, unforecastable. Here, Ẽx denotes the external forecaster’s expectations, as opposed

to the model agents’ expectations E. Re-writing the definition of uyt+h leads to the observation

equation:

Ẽx
t [yt+h] = yt+h + uyt+h. (2.2)
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Even though efficient forecast errors cannot be forecast with past information, forecast errors are

generally autocorrelated across horizons h.

Remark 2. Let the data-generating process be given by the canonical state-space model in (2.1). Let

the information available to forecasters at time t be denoted Fx
t . If D

−1 exists and A−BD−1C = 0,

then the forecast errors uh
t ≡ yt+h − E[yt+h|F ] follow a VAR(1) structure across horizons h. A

sufficient condition for A−BD−1C = 0 is that yt ⊂ xt and that D−1 exists.

Appendix A.1 provides a proof and a parametric example when the additional forecaster infor-

mation consists of noisy information about current and future structural shocks.

In what follows, I use real-time data on SPF forecast errors to calibrate the autocorrelation of

forecasts errors across horizons. Given data limitations, I consider only first order autocorrelation,

which is a good approximation if the conditions of the remark hold approximately.

3 Augmenting DSGE models with SPF forecasts

As Del Negro and Schorfheide (2013) note, the likelihood function is approximately unaffected by

the final observation. I thus treat as given the Bayesian estimate of the DSGE model parameters

θ, which determine the coefficient matrices A,B,C,D in (2.1). Incorporating external forecasts in

the DSGE model then requires the following steps (in addition to the standard model estimation):

1. Introduce extra observation equations.

2. Calibrate the parameters of the extra observation equations.

3. Apply the Kalman filter to the expanded information set.

Each of these steps is now detailed, followed by a discussion of the data and sample period. Last,

I briefly discuss the two DSGE models that I consider here.

3.1 Extra observation equations

The date t external forecasts correspond to observations across different future time periods when

mapped into Dynare observation equations. To include these observed external forecasts FCs(Ex
t−[yt+h])

from time period t for period s = t+h for model variable yt+h in the data requires extra observation

equations of the following form:

FCs(Ex
t−[yt+h]) =

missing s ̸= t+ h

yt+h + uy,h,t s = t+ h.
(3.1)

The Kalman filter easily accommodates the missing data. The within-period correlation across

forecast horizons of uy,h,t in (2.2) now translates into autocorrelation across observed time periods

when mapped to the DSGE model as a noisy measure of the future realization as in (3.1).
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An additional adjustment is needed to account for the per-capita structure of the DSGE models

considered here. In contrast, the external forecasts are for real variables that are not in per-capita

terms. I thus include the identity that real GDP growth is the sum of real GDP per capita and

population growth as an additional observation equation. It is modeled as an exogenous AR(1)

process.

The extra equations are listed in Appendix B.

3.2 Calibrating the extra observation equations

I compute forecast errors using the latest data vintage to avoid using different vintages for forecasts

of different horizons. Using these forecast errors, I estimate the persistence of forecast errors across

horizons as well as possible cross-correlations of forecast errors by ordinary least squares. The

estimated root-mean squared error (RMSE) for each forecast and forecast horizon is the basis for

the calibration of the measurement equations corresponding to the external forecasts.

uy,0,t ≡ yt − Ex
t−[yt+0] = σy0ϵy,0,t (3.2a)

uy,1,t ≡yt+1 − Ex
t−[yt+1] = ρy0uy,0,t + σy1ϵy,1,t (3.2b)

uy,4,t ≡yt+4 − Ex
t−[yt+4] = ρy,4uy1,t + σy,4ϵy,4,t (3.2c)

uy,cy(t)+1,t ≡ycy(t)+1 − Ex
t−[ycy(t)+1] = ρy,cy(t)+1uy,4,t + σy,cy(t)ϵy,cy(t)+1,t, (3.2d)

uy,cy(t)+s,t ≡ycy(t)+s − Ex
t−[ycy(t)+s] = ρy,cy(t)+suy,cy(t)+s−1,t + σy,cy(t)ϵy,cy(t)+s,t, s ∈ {2, 3},

(3.2e)

where y is a stand-in for growth in the GDP deflator or in real GDP. cy(t) denotes the calendar-year

at time t, so that cy(t) + s is s calendar years in the future. The observation equations for the

TBill rate forecast are similar, but have additional covariance terms with the contemporaneous

GDP deflator or real GDP forecast error.

To parameterize the extent of the forecast tilt towards the SPF forecasts, I then scale all the

measurement error standard deviations σy,h down (or up) by a common factor κ. As κ ↗ ∞, the

observed forecasts are pure measurement error, while the model interprets them as equal to the

realizations as κ ↘ 0.

3.3 DSGE models

The first DSGE model considered is SW: A DSGE model featuring Calvo-sticky prices and nominal

wages with indexation, and real frictions estimated using Bayesian methods on seven observables,

including (GDP-deflator) inflation, real GDP growth, and the Federal Funds Rate (FFR). The

second model is DNGS. This model extends the first model by including financial frictions in the

form of a financial accelerator and by using long-run SPF inflation expectations to flexibly model

low-frequency inflation movements. In addition, it uses the BAA-10-year Treasury bond spread
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in the estimation. Appendix D lists the estimated parameters along with the distribution of the

posterior modes resulting from the recursive estimation.

3.4 Data and sample period

The baseline observables and variable definitions in the DSGE model closely follow SW, with three

small modifications. First, I treat durable consumption as part of investment, as in Drautzburg

and Uhlig (2015). Second, I substitute the Wu and Xia (2016) shadow rate for FFR, when the FFR

runs below 0.1. Third, I exponentially smooth (log) population levels to avoid artificial jumps in

population levels. The final macro dataset is based on data from U.S. Bureau of Economic Analysis

(nd); U.S. Bureau of Labor Statistics (nd); Board of Governors of the Federal Reserve System (nd);

Moody’s (nd); Federal Reserve Bank of Atlanta (nd).

I use median SPF forecasts (Federal Reserve Bank of Philadelphia, 2022) for the TBill Rate,

output growth, and inflation. After adjusting for the mean difference between the TBill rate and

the FFR by subtracting a 4-quarter moving average of their difference, its forecast serves as a

counterpart to the FFR. I do not use TBill forecasts when the one-quarter lagged FFR is less than

0.1pp, since during that time I use the shadow rate as our measure of the short rate. For all three

variables I use the nowcast, the one-quarter ahead forecast, the forecast over the next quarter, and

the forecast for the next calendar year – in either levels (TBill rate) or growth rates (real GDP and

GDP deflator). For real GDP growth, I also use the growth of the annual averages two and three

calendar years out once they become available.

With the exception of the shadow rate data and SPF forecasts, which are downloaded from the

Atlanta Fed and Philadelphia Fed, the Stata code accompanying this note downloads all vintage

data from FRED.

The estimation sample runs from 1947q1 with the likelihood evaluation beginning in 1948q1.

The estimation sample is expanding along with the pseudo real-time forecast date, which begins

in 1997q2.2 To exclude data from the COVID-19 pandemic, the baseline exercise ends in 2018q4.

However, results are robust to extending the sample to 2022q3.

4 Results

4.1 Forecast performance

The hair plots in Figure 1 contrast the forecasts with the realized data with forecasts dating from

1997q2 through 2018q4 for quarterly real GDP growth on the left and GDP-deflator inflation on

the right. Both series are in percent [not annualized]. The figures contain four sets of lines. First,

a single green line displaying the 2018q4 data vintage. Second, a set of gray lines displaying earlier

2The real-time evaluation sample balances the real-time availability of different series. Vintage NIPA data is
available early. Hourly compensation data is available beginning in 1997q2, which also marks the beginning of the
estimation sample. Vintage Population and labor input data is available only beginning in 2011q1, but is subject to
only minor revisions.
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vintages that generally tracks the green line, but that can diverge from the latest vintage noticeably

during some periods, such as in 2007 for output growth or in the early 2000s for inflation. The third

set of lines shows the pure DSGE model forecasts as black, dotted lines. The fourth set of lines

shows the combined SPF-DSGE model forecast when the RMSE of the SPF is scaled by κ = 0.01,

giving a high weight to the SPF. These forecasts are shown as red, dashed lines. These forecasts

are point estimates at the posterior mode. The top two panels in Figure 1 are for the SW model,

the bottom panels for DNGS.

Figure 1(a) clearly shows that there can be systematic departures of the DSGE model forecast

from the realized data. For example, the black, dashed lines show that the pure SW model forecast

overstated output growth in the aftermath of the Global Financial Crisis (GFC) for several years.

In contrast, the red lines show that the combined forecast did so to a lesser degree, improving

forecast performance. A similar, but less pronounced, pattern holds for SW inflation forecasts in

Figure 1(b).

The picture for the DNGS output forecasts in Figure 1(c) is qualitatively similar. Here, the

model forecasts do relatively poorly in the first few years of the sample, understating growth,

and modestly overstate growth following the GFC. The combined forecast is closer to the truth.

Interestingly, the inflation forecasts are much better even for the pure DSGE model forecast in

Figure 1(d).

Moving beyond the extreme weights on DSGE model forecast, Figure 2 shows the mean absolute

error (MAE) from the nowcast up to 12 quarters out for both models and both variables for a range

of scales of the SPF forecast error variances, ranging from κ = 0.01 to κ = 100 and the baseline

DSGE model forecast (implicitly an infinite scale of the noise). Two different patterns emerge:

For the SW inflation forecast and the DNGS output forecast, the combined forecasts are strictly

lower at all forecast horizons, and the error increases gradually as κ increases. For example, in

Figure 2(c), the nowcast has a mean absolute error just below 0.4pp with error κ ≤ 1.0, that

rises to 0.6 with κ = 5.0 and increases to just above 0.8 for κ = 100 and the pure DSGE model

forecast. Forecast errors stay flat with SW and decline with DNGS in magnitude for longer horizon

forecasts, but the same pattern is still visible. A similar pattern also holds for SW inflation forecast

errors, which deteriorate at longer horizons. For the DNGS SPF-DSGE forecast, at intermediate

frequencies models with a larger κ perform better than those treating the SPF forecast as more

precise: At horizons up to two quarters out, giving more weight to the SPF generally lowers the

MAE. This flips at horizons of four quarters or longer, and at horizons of eight to 12 quarters,

intermediate values of κ = 2 or κ = 5 perform best. While less pronounced, the SW SPF-DSGE

MAE associated with a κ of 5 also performs better than higher weights on the SPF at horizons of

eight to 12 quarters. Figure E.1 in the Appendix shows quarter-by-quarter MAEs and Figure E.2

shows that similar results hold when including the COVID-period.

Table 1 shows that the forecast performance is also statistically better for the forecast combi-

nations, except for inflation forecasts, where the pure DNGS forecast is competitive. Specifically,

the table shows the best weight on the external forecast along with a 90% confidence interval of the
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(a) SW Quarterly output growth (b) SW Quarterly inflation

(c) DNGS Quarterly output growth (d) DNGS Quarterly inflation

Figure 1: Hair plots: 1997q2 through 2020q4
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(a) SW Average output growth (b) SW Average inflation
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(c) DNGS Average output growth (d) DNGS Average inflation
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Figure 2: Mean absolute error by variable and horizon: 1997q2 through 2020q4
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optimal set of weights based on inverting the Diebold and Mariano (1995) test statistic relative to

the best model. The table has four parts, corresponding again to the two models and two variables.

Each part shows the optimal weight, the mean absolute error associated with that weight, and the

range of weights whose absolute error is not significantly different from the optimum. Each column

corresponds to a different horizon, with the average across horizons in the last column.

(a) Output growth: Smets and Wouters (2007)
Horizon Current 1 qtr 2 qtr 3 qtr 4 qtr 8 qtr 12 qtr Avg
Best weight 0.25 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Value 0.39 0.31 0.31 0.31 0.30 0.24 0.29 0.29
CI [0.01, 0.5] [0.01, 0.25] [0.01, 0.25] [0.01, 0.25] [0.01, 0.01] [0.01, 0.01] [0.01, 0.01] [0.01, 0.01]

(b) Output growth: Del Negro et al. (2015)
Horizon Current 1 qtr 2 qtr 3 qtr 4 qtr 8 qtr 12 qtr Avg
Best weight 0.01 0.50 0.01 0.25 0.50 0.01 0.01 0.01
Value 0.39 0.31 0.30 0.31 0.30 0.16 0.14 0.24
CI [0.01, 1] [0.01, 1] [0.01, 0.5] [0.01, 1] [0.01, 1] [0.01, 0.01] [0.01, 0.01] [0.01, 1]

(c) Inflation: Smets and Wouters (2007)
Horizon Current 1 qtr 2 qtr 3 qtr 4 qtr 8 qtr 12 qtr Avg
Best weight 0.25 0.01 0.01 0.25 0.01 2.00 0.01 0.01
Value 0.15 0.14 0.14 0.14 0.14 0.13 0.24 0.16
CI [0.01, 1] [0.01, 0.5] [0.01, 1] [0.01, 1] [0.01, 1] [0.01, 2] [0.01, 5] [0.01, 0.25]

(d) Inflation: Del Negro et al. (2015)
Horizon Current 1 qtr 2 qtr 3 qtr 4 qtr 8 qtr 12 qtr Avg
Best weight 0.01 0.01 0.25 5.00 5.00 5.00 2.00 2.00
Value 0.15 0.14 0.14 0.14 0.13 0.06 0.07 0.10
CI [0.01, 2] [0.01, 2] [0.01, Inf] [0.01, Inf] [0.01, Inf] [1, 5] [1, 5] [0.01, Inf]

Table 1: Optimal forecast weight

For output growth in Table 1(a) and (b), a very low degree κ of measurement error always

yields the best forecast performance, and the highest κ is not significantly worse than the best scale

of κ = 1.0 for DNGS and of κ = 0.5 for SW. The same holds for SW inflation forecasts, where the

highest κ that is not statistically worse is again 1.0. However, for inflation forecasts, the DNGS

model does well. At horizons beginning at three quarters out, κ of 2.0 or 5.0 is the best, and the

infinite scale often is no worse in statistical terms. This corroborates the finding in DNGS that

financial frictions improve the forecast performance.

To interpret this finding, note that κ ≥ 2 implies a low weight on the SPF forecast. For example,

Figure E.3 in the Appendix shows the forecast revisions in SW when only an output growth nowcast

and one-quarter-ahead forecast is added to the model. For κ = 2, the forecast is revised by less

than half of the external forecast revision; for κ = 5, the revision is just one tenth.3

4.2 External forecasts and shock decompositions

While many methods exist for forecast averaging, the advantage of incorporating SPF forecasts in

structural models as proposed here is that researchers can still structurally decompose forecasts or

3Figure E.4 shows the analogous experiment for the inflation forecast, and the numbers are very similar.
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histories. Here, I show how incorporating external forecasts changes the inferred role of shocks in

explaining historical data and shaping forecasts.

Figure 3 shows the historical and forecast decomposition of output growth from 2007q1 through

2009q4 from the SW perspective using 2008q1 information. The top panel shows the pure DSGE

results, the bottom panel incorporates SPF forecasts using the measurement error scale of κ =

0.01. The history and forecast are shown as the black line, which is decomposed in colored bars

corresponding to the seven structural shocks and the exogenous population growth and initial

conditions.

The shock decomposition shows: (1) Since the ABCD condition holds, the past history of shocks

is left unrevised by the new data. Only the (unobserved) current quarter and future quarters are

affected – which is why the news approach of Monti (2010) can also work via the channel of revealing

the current state. (2) Current and future shocks can change a lot with the forecasts that I condition

on. The SPF-information leads to a more persistent drag from IST shocks, a large role for risk

premium shocks, and overall a more pessimistic forecast.

plain DSGE
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Figure 3: Historical and Forecast Shock Decomposition of Output Growth from 2007q1 through
2009q4 from the perspective of 2008q1 in the SW model.

5 Conclusion

Treating external forecasts as noisy realizations of the truth is a computationally simple and flexible

approach to improve the accuracy of forecast without giving up on their structural interpretability.

Model-based forecasts can receive a meaningful weight with quantitatively successful models. Given

that the results here are based on any model with a linear state-space representation, the results

12



could also be applied to structural VARs, including those that are factor-augmented or estimated

on mixed-frequency data.
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A Properties of external forecast errors

A.1 VAR(1)-structure of forecast errors across horizons

Lemma 1. Let the data-generating process be given by the canonical state-space model in (2.1). Let

the information available to forecasters at time t be denoted Fx
t . If D

−1 exists and A−BD−1C = 0,

then the forecast errors uh
t ≡ yt+h − E[yt+h|F ] follow a VAR(1) structure across horizons h. A

sufficient condition for A−BD−1C = 0 is that yt ⊂ xt and that D−1 exists.

Proof. As a preliminary step, substitute recursively the VAR(1) law of motion for the state xt in

(2.1):

xt+h = Ah+1xt−1 +

h∑
s=0

AsBεt+h−s

yt+h = Dεt+h +CAhxt−1 +
h−1∑
s=0

CAsBεt+h−1−s

Apply the expectation operator and then use the VAR(1) law of motion for xt again to write:

E[yt+h|Fx
t ] = DE[ϵt+h|Fx

t ] +CE[xt+h−1|Fx
t ]

= DE[εt+h +CBE[εt+h−1|Fx
t ] +CAE[xt+h−2|Fx

t ]

Using that E[yt+h−1|Fx
t ] = DE[ϵt+h−1|Fx

t ] +CE[xt+h−2|Fx
t ] from the first equality above for h− 1

and using the second equality for h , I can compute the forecast errors:

uh−1
t ≡ yt+h−1 − E[yt+h−1|Fx

t ] = D(εt+h−1 − E[εt+h−1|Fx
t ]) +C(xt+h−2 − E[xt+h−2|Fx

t ])

uh
t ≡ yt+h − E[yt+h|Fx

t ] = D(εt+h − E[εt+h|Fx
t ]) +CB(εt+h−1 − E[εt+h−1|Fx

t ]) +CA(xt+h−2 − E[xt+h−2|Fx
t ])

Since D is invertible:

εt+h−1 − E[εt+h−1|Fx
t ] = D−1(uh−1

t −C(xt+h−2 − E[xt+h−2|Fx
t ]))

Plugging in the equation for uh
t yields:

uh
t = D(εt+h − E[εt+h|Fx

t ]) +CBD−1(uh−1
t −C(xt+h−2 − E[xt+h−2|Fx

t ])) +CA(xt+h−2 − E[xt+h−2|Fx
t ])

= D(εt+h − E[εt+h|Fx
t ]) +CBD−1uh−1

t +C(A−BD−1C)(xt+h−2 − E[xt+h−2|Fx
t ])

If A − BD−1C = 0, then the result holds immediately. A sufficient condition guaranteeing this

equality is if C = SA,D = SB and D is invertible. We then have that BD−1C = BB−1S−1SA =

A so that (A − BD−1C) = 0. Consequently, the forecast errors have a VAR(1) structure in the

15



forecast horizon h.

uh
t = D(εt+h − E[εt+h|Fx

t ]) +CBD−1uh−1
t h ≥ 1,

u0
t = D(εt − E[εt|Fx

t ]).

Assume that the external forecasters have access at time t to signals about shocks to the system

(2.1) at horizon t+ h given by the vector νh
t . Let the signal structure underlying Fx

t be given by:

νh
t = Eεt+h + fht , Et−1[f

h
t ] = 0,

where E is a loading matrix (not to be confused with the expectation operator E). Since εt is iid,

external signals are uncorrelated (Cov[ν0
t ,ν

1
t ] = 0), if f0t , f

1
t are uncorrelated.

To see the value added of these signals, compare the forecasts knowing the initial state xt−1

only and a signal about the current shocks ν0
t :

E[yt|xt−1] = Cxt−1 (A.1)

E[yt|xt−1,ν
0
t ] = Cxt−1 +Dω0ν

0
t (A.2)

Cov[εt+h,ν
h
t ] = Var[εt+h]E

′ = ωh(EVar[εt+h]E
′ +Var[fht ]) (A.3)

⇒ ωh = Var[εt+h]E
′(EVar[εt+h]E

′ +Var[fht ])
−1 (A.4)

As the measurement error variance Var[fht ] disappears and if E is invertible, ω0 → I: The shocks

are exactly revealed by the signals.4

Under this information structure, the forecast errors satisfy:

u0
t = D(I− ω0)εt −Dω0f

0
t (A.5)

u1
t = D(I− ω1)εt+1 −Dω1f

1
t +CB(I− ω0)εt −CBω0f

0
t

= D(I− ω1)εt+1 −Dω1f
1
t +CBD−1u0

t if D−1 exists (A.6)

u2
t = D(I− ω2)εt+2 −Dω2f

2
t +CB(I− ω1)εt+1 −CBω1f

1
t +CAB(I− ω0)εt −CABω0f

0
t

= D(I− ω2)εt+2 −Dω2f
2
t +CBD−1(u1

t −CBD−1u0
t ) +CABD−1u0

t

= D(I− ω2)εt+2 −Dω2f
2
t +CBD−1u1

t +C(A−BD−1C)BD−1u0
t (A.7)

A.2 Kalman gain for noisy forecasts

Let yi,t = c′ixt+d′
iεt be a model observable. Assume Vart[xt] = 0 – which is implied by the ABCD

condition.

4In that case, the forecast error below converges to fht , which, in turn, collapses to 0.
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What do we learn from yi,t?

Et[xt|yt−1, yi,t] = β(yi,t − cixt−1), β = Covt−1[xt, yi,t] Vart−1[yi,t]
−1 = Dci(cic

′
i)
−1

Updates to future xt+h, h ≥ 1 then follow by tracing out the dynamics given by (2.1).

Now, the SPF forecast of variable yi,t is the truth plus white noise ui,t. Multiplying and

dividing by Vart−1[yi,t] allows us to write the Kalman gain as a product of the Kalman gain

without measurement error and a scaled-down variable:

Et[εt|yt−1, yi,t + ui,t] = βγ(yi,t − cixt−1 + ui,t), β = Dci(cic
′
i)
−1, γ =

Vart−1[yi,t]

Vart−1[yi,t] + Vart−1[ui,t]
.

Thus, in this simple case, the Kalman gain of the SPF forecast is a scaled-down version of the

Kalman gain of observing the true model.

Note that in practice, when multiple forecasts for different horizons are provided, the gain is

more complicated, because the forecast at longer horizons also leads to updates at shorter horizons

as xt is not perfectly revealed by noisy observations.
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B Extra observation equations

To allow for noisy external forecasts across multiple horizons with correlated forecast errors requires

two sets of equations: (1) the definition of the observed forecasts as noisy measures of the model

observables, and (2) the definition of the noise as the sum of a correlated component and iid noise.

A third set of two equations allows moving from real, per-capita forecasts to simply real forecasts.

(1) Definition of observed forecasts

Nowcast

FCt(Ex
t−[vt]) = vobst + uv,0t (B.1a)

1-qtr ahead

FCt(Ex
t−1−[vt]) = vobst + uv,1t (B.1b)

4-qtr ahead (Q4/Q4)

FCt(Ex
t−4−[vt]) =

3∑
s=0

vobst−s + uv,4t (B.1c)

Xor (B.1d)

4-qtr ahead (Q4 lvl)

FCt(Ex
t−4−[vt]) = vobst + uv,4t (B.1e)

Xor (B.1f)

4-qtr ahead (annual avg)

FCt(Ex
t−4−[vt]) =

1

4

3∑
s=0

vobst−s + uv,4t (B.1g)

1-y ahead (gr of annual avg)

FCt(Ex
t−h−[vt]) =

1

16
(vt−6 + 2vt−5 + 3vt−4 + 4vt−3 + 3vt−2 + 2vt−1 + vt) + uv,1yt h ≥ 4

(B.1h)

2-y ahead (gr of annual avg)

FCt(Ex
t−h−[vt]) =

1

16
(vt−10 + 2vt−9 + 3vt−8 + 4vt−7 + 3vt−6 + 2vt−5 + vt−4) + uv,1yt h ≥ 8

(B.1i)

3-y ahead (gr of annual avg)

FCt(Ex
t−h−[vt]) =

1

16
(vt−14 + 2vt−12 + 3vt−12 + 4vt−11 + 3vt−10 + 2vt−9 + vt−8) + uv,1yt h ≥ 12

(B.1j)

Here, v corresponds to the change in log real GDP levels times 100, the change in the log GDP

deflator times 100, or the Federal Funds Rate (at a quarterly rate).
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For the calendar-based forecasts, the code generating the observations takes care of the variation

of h with the calendar year – so that the variable is always populated such that the non-missing

value corresponds to a fourth quarter.

(2) Definition of forecast errors Transcribing time t forecasts into noisy realizations means

translating correlation across forecast horizons to correlations over time. Below, q(t) denotes the

calendar quarter associated with date t. Thus, t + q(t) − 4 accounts for the fact that in the first

quarter of a given year, the 1-year ahead forecast and the 4-quarter ahead forecast have a maximum

difference in forecast horizons of three quarters, whereas the maximum forecast horizons coincide

in the fourth quarter.

Nowcast error

uv,0t = σv0ϵ
v,0
t v ∈ {dy, π} (B.2a)

ur,0t =
∑

v∈{dy,π}

covr,v,0u
v,1
t + σr0ϵ

r,0
t (B.2b)

1-qtr ahead

uv,1t = arv,01u
v,0
t−1 + σv1ϵ

v,1
t v ∈ {dy, π} (B.2c)

ur,1t = arr,01u
r,0
t−1 +

∑
v∈{dy,π}

covr,v,1u
v,1
t + σr1ϵ

r,1
t (B.2d)

4-qtr ahead

uv,4t = arv,14u
v,1
t−3 + σv4ϵ

v,4
t v ∈ {dy, π} (B.2e)

ur,4t = arr,14u
r,1
t−3 +

∑
v∈{dy,π}

covr,v,4u
v,4
t + σr4ϵ

r,4
t 1-cy ahead

uv,1yt = arv,41yu
v,4
t+q(t)−4 + σv1yϵ

v,1y
t v ∈ {dy, π} (B.2f)

ur,1yt = arr,41yu
r,4
t+q(t)−4 +

∑
v∈{dy,π}

covr,v,1yu
v,1y
t + σr1yϵ

r,1y
t (B.2g)

2-cy ahead

udy,2yt = ardy,1y2yu
dy,1cy
t−4 + σdy2yϵ

dy,2y
t (B.2h)

3-cy ahead

udy,3yt = ardy,2y3yu
dy,2cy
t−4 + σdy3yϵ

dy,3y
t (B.2i)

(3) Population growth

∆ ln popt = µpop + ρpop∆ ln popt−1 + σpopϵ
pop
t . (B.3a)

∆ ln yt = ∆ ln ypct +∆ lnPopt (B.3b)
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In practice, this is implemented by inserting code modules in each block of original Dynare code

for (1) endogenous variables, (2) endogenous variables, (3) the calibration, (4) the model equations,

(5) the steady state, and (6) the shock processes. These take the following form:

@#include "SPF_shocks.mod"
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C Data appendix

C.1 Download links for composite citations

1. Table C.1 provides the download links for Board of Governors of the Federal Reserve System

(nd).

2. Table C.2 provides the download links for U.S. Bureau of Labor Statistics (nd).

3. Table C.3 provides the download links for U.S. Bureau of Economic Analysis (nd).

4. Table C.4 provides the download links for Federal Reserve Bank of Philadelphia (2022).

Source Series name Link
Board of Governors of the Federal Reserve
System (US) (n.d.)

Market Yield on U.S. Treasury Secu-
rities at 10-Year Constant Maturity,
Quoted on an Investment Basis [GS10]

https://fred.stlouisfed.org/series/

GS10

Board of Governors of the Federal Reserve
System (US) (n.d.)

Industrial Production: Total Index [IN-
DPRO]

https://fred.stlouisfed.org/series/

INDPRO

Board of Governors of the Federal Reserve
System (US) (n.d.)

Federal Funds Effective Rate [FED-
FUNDS]

https://fred.stlouisfed.org/series/

FEDFUNDS

Table C.1: Board of Governors Industrial and Financial Market data (Board of Governors of the
Federal Reserve System, nd) retrieved from FRED, Federal Reserve Bank of St. Louis: data links

Source Series name Link
U.S. Bureau of Labor Statistics (n.d.) Nonfarm Business Sector: Average

Weekly Hours Worked for All Employed
Persons [PRS85006023]

https://fred.stlouisfed.org/series/

PRS85006023

U.S. Bureau of Labor Statistics (n.d.) Nonfarm Business Sector: Hourly Com-
pensation for All Employed Persons
[COMPNFB]

https://fred.stlouisfed.org/series/

COMPNFB

U.S. Bureau of Labor Statistics (n.d.) Average Weekly Hours of Production
and Nonsupervisory Employees, Total
Private [AWHNONAG]

https://fred.stlouisfed.org/series/

AWHNONAG

U.S. Bureau of Labor Statistics (n.d.) Unemployment Rate [UNRATE] https://fred.stlouisfed.org/series/

UNRATE

U.S. Bureau of Labor Statistics (n.d.) Employment Level [CE16OV] https://fred.stlouisfed.org/series/

CE16OV

U.S. Bureau of Labor Statistics (n.d.) Population Level [CNP16OV] https://fred.stlouisfed.org/series/

CNP16OV

Table C.2: BLS Labor Market data (U.S. Bureau of Labor Statistics, nd) retrieved from FRED,
Federal Reserve Bank of St. Louis: data links
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Source Series name Link
U.S. Bureau of Economic Analysis (n.d.) Personal Consumption Expenditures:

Services [PCESV]
https://fred.stlouisfed.org/series/

PCESV

U.S. Bureau of Economic Analysis (n.d.) Personal Consumption Expenditures:
Nondurable Goods [PCND]

https://fred.stlouisfed.org/series/

PCND

U.S. Bureau of Economic Analysis (n.d.) Personal Consumption Expenditures:
Durable Goods [PCDG]

https://fred.stlouisfed.org/series/

PCDG

U.S. Bureau of Economic Analysis (n.d.) Real Gross Domestic Product [GDPC1] https://fred.stlouisfed.org/series/

GDPC1

U.S. Bureau of Economic Analysis (n.d.) Gross Domestic Product: Implicit Price
Deflator [GDPDEF]

https://fred.stlouisfed.org/series/

GDPDEF

U.S. Bureau of Economic Analysis (n.d.) Gross Domestic Investment [GPDI] https://fred.stlouisfed.org/series/

GPDI

Table C.3: BEA NIPA data (U.S. Bureau of Economic Analysis, nd) retrieved from FRED, Federal
Reserve Bank of St. Louis: data links

Source Series name Link
Federal Reserve Bank of Philadelphia (2022) Media Forecast Data for Levels https://www.philadelphiafed.org/-

/media/frbp/assets/surveys-and-data/

survey-of-professional-forecasters/

historical-data/medianlevel.xlsx

Federal Reserve Bank of Philadelphia (2022) Media Forecast Data for Growth https://www.philadelphiafed.org/-

/media/frbp/assets/surveys-and-data/

survey-of-professional-forecasters/

historical-data/mediangrowth.xlsx

Federal Reserve Bank of Philadelphia (2022) Additional 10-Year-Ahead Inflation
Forecasts from Other Sources

https://www.philadelphiafed.org/-

/media/frbp/assets/surveys-and-data/

survey-of-professional-forecasters/

historical-data/additional-cpie10.

xlsx

Table C.4: Survey of Professional Forecasters data (Federal Reserve Bank of Philadelphia, 2022):
data links.
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https://www.philadelphiafed.org/-/media/frbp/assets/surveys-and-data/survey-of-professional-forecasters/historical-data/additional-cpie10.xlsx
https://www.philadelphiafed.org/-/media/frbp/assets/surveys-and-data/survey-of-professional-forecasters/historical-data/additional-cpie10.xlsx
https://www.philadelphiafed.org/-/media/frbp/assets/surveys-and-data/survey-of-professional-forecasters/historical-data/additional-cpie10.xlsx


C.2 Variable definitions and transformations

Using the series mnemonics from FRED from Tables C.1 through C.3 as well as the mnemonics for

Moody’s (nd) and defining the shadow rate Federal Reserve Bank of Atlanta (nd) as WuXia rate,

the data series used in the estimation are defined as follows:

� Population popt is exponentially smoothed prior to computations.

ln popt = (1− 1/50) ln popt−1 +
1

50
ln CNP16OVt, ln pop0 = ln CNP16OV0.

� Consumption level:

ln
PCESVt + PCNDt

GDPDEFt

� Investment level:

ln
PCDGt + GPDIt

GDPDEFt

� Hours per capita:

ln(CE16OVt × AWHNONAGt)− ln CNP16OVt

� Real wage:

ln(COMPNFBt)− ln(GDPDEFt)

� Effective short rate:

rt =

WuXia rate/4 FEDFUNDS < 0.4/4

FEDFUNDS/4. FEDFUNDS ≥ 0.4/4

� Spread:

BAAt − GS10t.
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� Inflation:

100× ln(GDPDEFt/GDPDEFt−1)
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D DSGE model estimation

Parameter estimation is based on the pure DSGE model independent of whether the forecasts

include SPF forecasts as added information. This is because, as Del Negro and Schorfheide (2013)

observe, the few extra observations at the end of the estimation sample leave the likelihood function

approximately unaffected.

The estimation of SW closely follows the original paper, except that the parameters of the

population growth process (an AR(1) process with intercept) are also estimated. Table D.5 shows

the distribution of the posterior mode estimates from 1997q2 through 2018q4.

In the estimation of DNGS, intercepts of observation equations as well as the persistence and

volatility of the population growth process are set to the sample moments prior to estimation. The

intertemporal elasticity of substitution is fixed at unity prior to estimation. Table D.6 shows the

mean and standard deviation of posterior mode estimates from 1997q2 through 2018q4 as well as

prior means and standard deviations.
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Estimated Prior Posterior modes
Parameter Mean (s.d.) Mean over time (s.d.)

ea 0.100 (2.000) 0.707 (0.013)
eb 0.100 (2.000) 0.182 (0.045)
eg 0.100 (2.000) 0.402 (0.018)
eqs 0.100 (2.000) 1.291 (0.227)
em 0.100 (2.000) 0.296 (0.015)
epinf 0.100 (2.000) 0.236 (0.022)
ew 0.100 (2.000) 0.256 (0.057)
epop 0.005 (0.200) 0.003 (0.000)
crhoa 0.500 (0.200) 0.988 (0.002)
crhob 0.500 (0.200) 0.302 (0.220)
crhog 0.500 (0.200) 0.982 (0.006)
crhoqs 0.500 (0.200) 0.503 (0.135)
crhoms 0.500 (0.200) 0.042 (0.005)
crhopinf 0.500 (0.200) 0.992 (0.002)
crhow 0.500 (0.200) 0.978 (0.003)
cmap 0.500 (0.200) 0.921 (0.008)
cmaw 0.500 (0.200) 0.917 (0.031)
csadjcost 4.000 (1.500) 5.099 (0.548)
csigma 1.500 (0.375) 1.369 (0.097)
chabb 0.700 (0.100) 0.797 (0.067)
cprobw 0.500 (0.100) 0.758 (0.018)
csigl 2.000 (0.750) 2.238 (0.185)
cprobp 0.500 (0.100) 0.654 (0.026)
cindw 0.500 (0.150) 0.512 (0.056)
cindp 0.500 (0.150) 0.285 (0.038)
czcap 0.500 (0.150) 0.369 (0.083)
cfc 1.250 (0.125) 1.513 (0.047)
crpi 1.500 (0.250) 1.914 (0.062)
crr 0.750 (0.100) 0.815 (0.007)
cry 0.125 (0.050) 0.126 (0.007)
crdy 0.125 (0.050) 0.201 (0.008)
constepinf 0.625 (0.100) 0.675 (0.027)
constebeta 0.250 (0.100) 0.134 (0.017)
constelab 0.000 (2.000) 2.511 (0.402)
ctrend 0.400 (0.100) 0.496 (0.046)
cgy 0.500 (0.250) 0.215 (0.009)
calfa 0.300 (0.050) 0.192 (0.003)
constepop 0.000 (0.200) 0.005 (0.001)
crhopop 0.500 (0.200) 0.987 (0.002)

SPF f’cast parameter Mean over time (s.d.)

se dy now 0.005 (0.000)
se dy plus1q 0.005 (0.000)
se dy plus4q 0.003 (0.000)
se dy plus1cy 0.001 (0.000)
se r now 0.009 (0.001)
se r plus1q 0.001 (0.000)
se r plus4q 0.004 (0.001)
se r plus1cy 0.001 (0.000)
se pinf now 0.002 (0.000)
se pinf plus1q 0.002 (0.000)
se pinf plus4q 0.001 (0.000)
se pinf plus1cy 0.001 (0.000)
ar dy now1q 0.299 (0.158)
ar dy 1q4q 0.481 (0.068)
ar dy 4q1cy 0.725 (0.122)
ar pinf now1q 0.410 (0.098)
ar pinf 1q4q 0.568 (0.107)
ar pinf 4q1cy 0.725 (0.122)
ar dy 1cy2cy 0.000 (0.000)
ar dy 2cy3cy 0.000 (0.000)
se dy plus2cy 6.431 (4.811)
se dy plus3cy 6.891 (4.647)
cov r pinf now 0.000 (0.000)
cov r dy now 0.000 (0.000)
ar r now1q 0.965 (0.015)
cov r pinf plus1q 0.000 (0.000)
cov r dy plus1q 0.000 (0.000)
ar r 1q4q 0.787 (0.135)
cov r pinf plus4q 0.000 (0.000)
cov r dy plus4q 0.000 (0.000)
ar r 4q1cy 0.732 (0.130)
cov r pinf plus1cy 0.000 (0.000)
cov r dy plus1cy 0.000 (0.000)

Calibrated parameter Mean over time (s.d.)

cg 0.180 (0.000)
clandaw 1.500 (0.000)
crhoas 1.000 (0.000)
crhols 0.993 (0.000)
ctou 0.025 (0.000)
curvp 10.000 (0.000)
curvw 10.000 (0.000)

Table D.5: SW parameter estimates: Distribution of posterior modes from 1997q2 through 2018q4
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Estimated Prior Posterior modes
Parameter Mean (s.d.) Mean over time (s.d.)

psi z 0.100 (2.000) 0.009 (0.000)
psi b 0.100 (2.000) 0.006 (0.000)
psi g 0.100 (2.000) 0.022 (0.001)
psi mu 0.100 (2.000) 0.032 (0.008)
psi rm 0.100 (2.000) 0.009 (0.000)
psi laf 0.100 (2.000) 0.007 (0.000)
psi law 0.100 (2.000) 0.011 (0.001)
psi pist 0.100 (2.000) 0.008 (0.000)
psi sigw 0.050 (4.000) 0.005 (0.000)
epop 0.005 (0.200) 0.003 (0.000)
rho sigw 0.750 (0.150) 0.691 (0.080)
rho z 0.500 (0.200) 0.956 (0.017)
rho b 0.500 (0.200) 0.693 (0.076)
rho g 0.500 (0.200) 0.958 (0.011)
rho mu 0.500 (0.200) 0.940 (0.062)
rho rm 0.500 (0.200) 0.403 (0.054)
rho laf 0.500 (0.200) 0.761 (0.020)
rho law 0.500 (0.200) 0.086 (0.248)
s2 4.000 (1.500) 1.100 (0.331)
h 0.700 (0.100) 0.151 (0.012)
zeta w 0.500 (0.100) 0.855 (0.167)
iota w 0.500 (0.150) 0.406 (0.135)
zeta p 0.500 (0.100) 0.954 (0.004)
iota p 0.500 (0.150) 0.050 (0.006)
alp 0.300 (0.050) 0.216 (0.007)
ppsi 0.500 (0.150) 0.703 (0.084)
psi1 1.500 (0.061) 1.217 (0.055)
psi2 0.125 (0.050) 0.547 (0.057)
psi3 0.125 (0.050) 0.379 (0.042)
zeta spb 0.050 (0.005) 0.028 (0.005)

Calibrated parameter Mean over time (s.d.)

Bigphi 1.250 (0.000)
Fom 0.030 (0.000)
clandaw 1.500 (0.000)
constelab -1.800 (0.000)
constepinf 0.965 (0.080)
constepop 0.005 (0.001)
conster 1.559 (0.168)
constespread 2.000 (0.000)
crhopop 0.985 (0.003)
ctrend 0.438 (0.039)
del 0.025 (0.000)
epsp 10.000 (0.000)
epsw 10.000 (0.000)
eta gz 0.874 (0.000)
eta laf 0.714 (0.000)
eta law 0.572 (0.000)
gammstar 0.990 (0.000)
gstar 0.180 (0.000)
nu l 2.673 (0.000)
rho 0.675 (0.000)
rho pist 0.990 (0.000)
sigmac 1.010 (0.000)

SPF f’cast parameter Mean over time (s.d.)

se dy now 0.005 (0.000)
se dy plus1q 0.005 (0.000)
se dy plus4q 0.003 (0.000)
se dy plus1cy 0.001 (0.000)
se r now 0.009 (0.001)
se r plus1q 0.001 (0.000)
se r plus4q 0.004 (0.001)
se r plus1cy 0.001 (0.000)
se pinf now 0.002 (0.000)
se pinf plus1q 0.002 (0.000)
se pinf plus4q 0.001 (0.000)
se pinf plus1cy 0.001 (0.000)
ar dy now1q 0.299 (0.158)
ar dy 1q4q 0.481 (0.068)
ar dy 4q1cy 0.725 (0.122)
ar pinf now1q 0.410 (0.098)
ar pinf 1q4q 0.568 (0.107)
ar pinf 4q1cy 0.725 (0.122)
ar dy 1cy2cy 0.000 (0.000)
ar dy 2cy3cy 0.000 (0.000)
se dy plus2cy 6.431 (4.811)
se dy plus3cy 6.891 (4.647)
cov r pinf now 0.000 (0.000)
cov r dy now 0.000 (0.000)
ar r now1q 0.965 (0.015)
cov r pinf plus1q 0.000 (0.000)
cov r dy plus1q 0.000 (0.000)
ar r 1q4q 0.787 (0.135)
cov r pinf plus4q 0.000 (0.000)
cov r dy plus4q 0.000 (0.000)
ar r 4q1cy 0.732 (0.130)
cov r pinf plus1cy 0.000 (0.000)
cov r dy plus1cy 0.000 (0.000)

Table D.6: DNGS parameter estimates: Distribution of posterior modes from 1997q2 through
2018q4
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E Additional results

(a) COVID Quarterly output growth (b) Quarterly inflation

0 2 4 6 8 10 12

forecast horizon

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
u
tp

u
t 
g
ro

w
th

 R
M

S
E

 (
%

)

0 2 4 6 8 10 12

forecast horizon

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
fl
a
ti
o
n
 R

M
S

E
 (

%
)

(c) Quarterly output growth (d) Quarterly inflation
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Figure E.1: Non-cumulative mean absolute forecast errors by variable and horizon. Forecasts from
1997q2 through 2018q4.

28



(a) COVID Quarterly output growth (b) Quarterly inflation
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(c) Quarterly output growth (d) Quarterly inflation
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Figure E.2: MAE by variable and horizon: COVID
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(a) Output growth (b) Inflation (c) FFR
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Note: If the forecasts were mapped into the DSGE model as the sum of the truth and pure white noise and the

ABCD condition holds, then the external forecasts would result in updated paths that are just scaled down versions

of the updates following the same measurement-error free observations. See Appendix A.2. Because forecast errors

here exhibit cross-correlations, this does not hold exactly.

Figure E.3: Effects of a unit forecast revision in the 2018q4 output growth nowcast and 1-quarter-
ahead forecast on quarterly output, inflation, FFR forecasts as well as shocks in SW
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(a) Output growth (b) Inflation (c) FFR
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Note: If the forecasts were mapped into the DSGE model as the sum of the truth and pure white noise and the

ABCD condition holds, then the external forecasts would result in updated paths that are just scaled down versions

of the updates following the same measurement-error free observations. See Appendix A.2. Because forecast errors

here exhibit cross-correlations, this does not hold exactly.

Figure E.4: Effects of a unit forecast revision in the 2018q4 inflation nowcast and 1-quarter-ahead
forecast on quarterly output, inflation, FFR forecasts as well as shocks in SW
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F NK3 Monte Carlo study

The environment builds on the standard, three equation New Keynesian model as in Gaĺı (2008):

A New Keynesian Phillips Curve (NKPC) links inflation today to the expected future inflation and

the output gap. A New Keynesian Intertemporal Substitution (NKIS) equation links the output

gap today to the expected future output gap and the real interest rate gap, that is, the nominal

short rate minus expected inflation and minus the natural rate of interest. The nominal short rate

follows a Taylor rule, which, unlike in Gaĺı (2008), exhibits persistence.

The solution to the linearized version of the model has the canonical state space representation

(2.1). If shocks are persistent, the external states are part of x. Otherwise, only the lagged interest

rate is part of x. yt contains the observables of the model, as well as internal, static or purely

forward-looking variables.

The model has three structural shocks:

1. A shock to the natural rate of interest.

2. A monetary policy shock.

3. A cost push shock, ie, an ad hoc shock to the NKPC.

In addition, I will be adding measurement error to observables, or a large shock that is a stylized

representation of the shocks buffeting the economy during the COVID pandemic.

Below, I simulate data for T = 1, 108 periods from the NK3 model. I then create 1,000 data

sets of size tn ∈ {100, 101, . . . , 1000} with an extra 8 observations of “external forecasts”. I do so

by adding an AR(1) process of noise to the actual future realizations, with quarterly persistence of

0.5 and N (0, κ2Vart−1[yt]) innovations – measurement error is proportional to the one-step-ahead

forecast error variance. I consider a precise version with κ2 = 4−2 and a noisy version with κ2 = 1.

The external expectations are observed at horizons h ∈ {1, 4, 8}. I also consider a version where

Dynare assumes that the measurement error is small (κ2 = 40−2).

Table F.7 shows the forecast performance of the plain DSGE model and the model augmented

with external “forecasts” for varying scaled κ of measurement error. The simulation also speaks to

the case of misspecification – when the underlying external forecasts are created to have a higher

measurement error variance than the calibration allows for. This misspecification reduces the gains

from incorporating the external forecasts, but only slightly.
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(a) Plain NK3 forecast RMSE
Horizon

Variable 1 2 3 4 5 6 7 8

y 239.6 275.7 292.4 300.6 304.1 306.3 307.5 308.1
infl 73.5 87.5 95.2 100.2 103.1 105.7 107.9 109.5
i 88.7 103.4 112.6 117.6 121.8 125.2 128.2 131.4

(b) NK3 forecast with external forecasts treated as noisy data RMSE – κ = 1
4 calibration

Horizon (* indicates added observation)
Variable 1* 2 3 4* 5 6 7 8*

y 120.3 241.9 276.4 118.9 241.8 277.1 293.6 120.2
infl 35.0 74.9 88.3 34.5 74.5 88.4 96.0 34.4
i 47.6 91.2 105.8 47.5 91.7 105.6 114.2 47.8

(c) Improvement of (b) over (a) [in %] – κ = 1
4 calibration

Horizon (* indicates added observation)
Variable 1* 2 3 4* 5 6 7 8*

y -49.8 -12.3 -5.5 -60.4 -20.5 -9.5 -4.5 -61.0
infl -52.4 -14.4 -7.3 -65.5 -27.8 -16.4 -11.0 -68.5
i -46.4 -11.8 -6.1 -59.6 -24.7 -15.7 -10.9 -63.6
(d) Improvement over (a) [in %] – κ = 1

4 calibration, treated as more precise (κ = 1/40)
Horizon (* indicates added observation)

Variable 1* 2 3 4* 5 6 7 8*

y -47.2 -11.7 -5.5 -60.5 -20.6 -9.6 -4.4 -60.8
infl -48.8 -12.8 -6.5 -64.8 -27.2 -15.8 -10.3 -68.0
i -46.3 -10.9 -4.7 -59.6 -23.7 -14.5 -10.3 -63.8

(e) NK3 forecast with external forecasts treated as noisy data RMSE – κ = 1 calibration
Horizon (* indicates added observation)

Variable 1* 2 3 4* 5 6 7 8*

y 173.6 255.1 282.1 177.1 256.6 283.2 296.9 180.6
infl 54.5 81.0 91.5 59.7 83.3 93.7 100.4 60.9
i 69.1 98.1 110.8 80.8 106.6 116.0 121.4 83.6

(f) Improvement of (d) over (a) – κ = 1 calibration [in %]
Horizon (* indicates added observation)

Variable 1* 2 3 4* 5 6 7 8*

y -27.6 -7.5 -3.5 -41.1 -15.6 -7.5 -3.4 -41.4
infl -25.9 -7.5 -3.8 -40.4 -19.2 -11.3 -7.0 -44.4
i -22.1 -5.1 -1.7 -31.3 -12.5 -7.4 -5.3 -36.4

(g) Improvement over (a) – κ = 1 calibration [in %], treated as more precise (κ = 1/40)
Horizon (* indicates added observation)

Variable 1* 2 3 4* 5 6 7 8*

y 3.9 3.5 0.1 -31.2 -12.3 -6.2 -2.1 -31.2
infl 15.5 24.7 18.3 -27.8 -4.4 1.1 3.7 -34.6
i 19.4 28.3 30.1 -16.2 5.7 10.7 10.7 -26.8

Table F.7: RMSE and RMSE reduction for plain NK3 and NK3 with noisy versions of the true
data added as forecasts.
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