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Abstract 

Improving fairness across policy domains often comes at a cost. However, as machine 

learning (ML) advances lead to more accurate predictive models in fields like lending, 

education, healthcare, and criminal justice, policymakers may find themselves better 

positioned to implement effective fairness measures. Using credit bureau data and ML, we 

show that setting different lending thresholds for low and moderate income (LMI) 

neighborhoods relative to non-LMI neighborhoods can equalize the rate at which equally 

creditworthy borrowers receive credit. ML models alone better identify creditworthy 

individuals in all groups but remain more accurate for the majority group. A policy that 

equalizes access via separate thresholds imposes a cost on lenders, but this cost is 

outweighed by the substantial gains from ML. This approach aligns with the motivation 

behind existing laws such as the Community Reinvestment Act, which encourages lenders 

to meet the credit needs of underserved communities. Targeted Special Purpose Credit 

Programs could provide the opportunity to prototype and test these ideas in the field. 
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1. Introduction 

Disparities in access to credit have been a persistent issue in the United States. For 

example, a 1996 study of the Boston mortgage market found that 28 percent of Black 

mortgage applicants were rejected, compared with just 10 percent of White applicants 

(Munnell et al. 1996). A recent study shows a narrowed but still large gap: 18 percent of 

Black applicants were denied a mortgage, compared with 8 percent of White applicants 

(Bhutta et al. 2021).1 Policymakers have recognized the need to address disparities such as 

these, with the Community Reinvestment Act (CRA) of 1977 being a notable example. 

The CRA sought to encourage banks to meet the credit needs of low- and moderate-income 

neighborhoods, reflecting a recognition that fairness, in the form of adequate credit access 

in underserved communities, is an important objective of credit markets along with 

economic efficiency and lender profits. 

The goal of our study is to demonstrate the potential of machine learning (ML) and, 

broadly, artificial intelligence (AI) models to better align the objectives of fairness and 

efficiency. Two key developments have made this possible: the improved predictive power 

of these models, driven by advances in data availability and computational capacity, and 

the emergence of fairness techniques in ML to address disparities in model predictions.2 

While increased predictive accuracy alone may not necessarily lead to fairer outcomes, it 

creates a more favorable environment for implementing ML fairness techniques, which 

would otherwise involve a larger trade-off in predictive performance. Importantly, our 

work shows that certain fair ML approaches, such as adjusting decision thresholds for 

protected groups, are consistent with existing laws such as the Special Purpose Credit 

Programs (SPCP) provision of the Equal Credit Opportunity Act (ECOA). We show that 

the gains in predictive power from advanced models can more than offset the costs 

 
1 These raw denial gaps should not be directly interpreted as evidence of race-based discrimination in the 

legal sense. The gap is also smaller, and in the case of Bhutta et al. (2021), falls to 2 percentage points 

when accounting for observable borrower characteristics. We highlight these raw denial gaps to reflect 

broader economic disparities that extend beyond a specific borrower-lender interaction. 

2 This is in line with ongoing questions about the implications of big data in policy research, such as those 

raised by Lane (2016) and Jarmin and O’Hara (2016). 
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associated with fairness-oriented policies, making ML/AI beneficial from both efficiency 

and fairness perspectives. This approach to ML/AI regulation could be fruitful across 

various policy domains that rely on assessing individuals’ likelihood of future success, 

such as lending, education, employment, healthcare, and justice.3 

In recent studies, the integration of ML techniques in consumer credit markets has been 

scrutinized for its potential to exacerbate disparities among borrowers, particularly 

affecting minority groups. Research such as Fuster et al. (2021) has shown a potential for 

modestly worse pricing outcomes for minorities with the adoption of ML underwriting, 

while Blattner and Nelson (2021) have highlighted the persistence of disparities in credit 

score noisiness between demographic groups. Building upon this context, we present a 

novel analysis, demonstrating that lenders could use group-specific credit score thresholds 

in conjunction with ML to address some aspects of these disparities without sacrificing 

profitability. Our approach to introducing fairness preferences follows the ideas of 

Kleinberg et al. (2018), who argue that it is optimal to use the most predictive model 

coupled with separate decision thresholds to satisfy the fairness preference, rather than to 

focus on blinding the algorithm to group membership, which is the current practice in 

lending. 

Intuitively, lenders could use ML to create a new credit scoring model and then set 

lower credit score approval thresholds for disadvantaged groups. For instance, they could 

use a credit score approval threshold of 680 for a non-disadvantaged group and a lower 

approval threshold of 660 for a disadvantaged group. This would lead to more approvals 

for individuals in the disadvantaged group. Because scores are less accurate for 

disadvantaged groups (see, e.g., Blattner and Nelson 2021), this approach can reduce gaps 

in access to credit to creditworthy individuals. 

A key empirical contribution of our study lies in examining the feasibility of 

implementing differentiated credit score thresholds in lending. Specifically, our analysis 

 
3 For some examples of predictive systems and fair ML interventions in these and other policy domains, 

see Lamba et al. 2021, Chouldechova et al. 2018, Mullainathan and Obermeyer 2021, and Arnold et al. 

2022. 



 

4 

focuses on whether lowering the approval threshold for disadvantaged groups would 

significantly increase default rates, given the existing disparity in credit score accuracy for 

these groups.4 Our empirical contribution investigates this trade-off, demonstrating that 

integrating ML can effectively balance the goals of increasing access to credit for the 

disadvantaged group with maintaining lender profitability. 

We focus on inequalities between lower- and higher-income areas based on the concept 

of historically underserved communities found in the Community Reinvestment Act 

(CRA; 12 U.S.C. §2901). The CRA was passed in 1977 to encourage financial institutions 

to help meet the credit needs of LMI neighborhoods.5 Because our objective is to examine 

how increased fairness can be achieved using group-specific thresholds, it seems 

appropriate to construct our thresholds in a manner consistent with this concept of LMI 

neighborhoods as defined by the CRA. This also serves to conceptually link fairness in the 

context of group-specific prediction thresholds to fairness considerations in existing law 

and lending practice. 

We begin by confirming that the predictive power gap across population groups 

documented in papers such as Fuster et al. (2021) and Blattner and Nelson (2021) also 

exists in the CRA context. For individuals who live in LMI census tracts, credit scores 

based on models we estimate have lower predictive power than for non-LMI tract 

consumers. For lending decisions based solely on credit scores, this means that in LMI 

areas, consumers who should receive credit are relatively less likely to get it, and 

customers who won’t pay back loans are more likely to receive a loan. 

We proceed with a novel analysis that considers the introduction of group-specific 

lending thresholds within the context of technological progress in default risk assessment. 

 
4 If the credit scores of false negatives (i.e., individuals who would have repaid but were denied) in 

disadvantaged groups fall far below the common cutoff used in a single-threshold scenario, the necessary 

adjustment to alleviate disparities might be too large. If the concentration of true negatives (i.e., rejected 

applicants who would default if approved) is high relative to the density of false negatives for the 

disadvantaged group at a threshold just below the common cutoff, lowering it for this group could incur 

substantial costs for lenders. 

5 A census tract is defined as LMI if the tract’s median income is less than 80 percent of the metropolitan 

statistical area/metropolitan division’s (MSA/MD’s) median income. 
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Our empirical approach focuses on a binary prediction of loan repayment that corresponds 

to the lending practice of approving loans for consumers with credit scores above a certain 

threshold. We compare the predictive performance under different rules for setting the 

credit score approval threshold. 

The benchmark for the comparison is setting a single threshold for all applicants. This 

corresponds to the current regulatory framework, which prohibits lenders from considering 

information related to sensitive attributes such as race, ethnicity, and gender for most 

lending decisions. Lenders are also prohibited from using variables that are close proxies 

for prohibited attributes. Variables that identify an individual’s geographic area or exact 

location are typically considered proxy variables and thus prohibited from use in lending 

decisions. While the intent of this policy is to reduce discrimination, a growing body of 

literature suggests that this approach is not optimal for reducing disparities in outcomes 

(Kleinberg et al. 2018; Lamba et al. 2021). We show that a single-threshold approach 

creates disparities in true positive rates (TPR) between groups (where repaying the loan is 

the positive outcome). In our main example, discussed in Section 4.5, a creditworthy LMI 

tract consumer is about 9 percentage points less likely to be classified as creditworthy than 

a creditworthy non-LMI tract consumer. 

The alternative approach we consider would permit the use of specific geographic 

variables (e.g., residence in an LMI versus a non-LMI neighborhood) to equalize true 

positive rates among different groups. As a result, LMI tract groups with noisier credit 

scores would be assigned lower thresholds. Kleinberg et al. (2018) ground such approaches 

theoretically by arguing that modifying decision thresholds is an optimal way to 

incorporate a fairness preference. Crucially, this approach does not require lenders to build 

separate predictive models for LMI and non-LMI areas and can be used with any credit 

score, even when nothing is known about the model that generated it. 

The reduction of TPR disparities comes at a cost of some eventual defaulters being 

misclassified as non-defaulters. This is a cost from the lender profit perspective and, 
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potentially, to consumer welfare.6 We show that the costs from the lender profit perspective 

can be mitigated if fairness constraints are paired with model improvements. 

This paper makes four main contributions to the literature. First, we show that 

considering fairness constraints alongside model improvement can lead to different 

conclusions about the effects of ML on the equality of credit access. Fuster et al. (2021) 

and Blattner and Nelson (2021) show that the more advanced models predict default better 

overall, but they have only a marginal effect on the relative access to credit between 

groups. In contrast, we show that the more advanced models combined with fairness 

constraints can significantly reduce the gap in credit access for creditworthy consumers 

while still improving overall default prediction. Second, we focus on model improvement 

in the context of generic credit scoring rather than specifically mortgage default prediction. 

Thus, our results are relevant for a wide range of markets, including credit cards and auto 

loans, which have higher participation among historically underserved groups than 

mortgages. Third, we focus more on some of the practical aspects of ML introduction in 

credit scoring. On the modeling side, this includes rolling window model estimation and 

threshold generation that is aimed at eliminating the look-ahead bias. On the policy side, 

this includes a discussion of regulatory hurdles of ML and fairness constraint adoption and 

a potential path forward via the SPCP provision. Fourth, our results highlight the potential 

benefits of imposing fairness constraints by explicitly considering certain geographies that 

are likely to be correlated with protected attributes during the design of loan approval 

policies.7 

 
6 Estimating the net welfare impact of a higher probability of getting a loan with the consequences of 

default is beyond the scope of the paper. For some relevant considerations, see, e.g., Fedaseyeu and Hunt 

(2018), Fulford and Nagypal (2023), Kermani and Wong (2021), and Sodini et al. (2023) 

7 Gillis (2022) provides a legal discussion of input- and output-based fair lending scrutiny of credit scoring 

models. Caro and Nelson (2023) advocate for the explicit inclusion of fairness constraints in the selection 

and implementation of screening models and data inputs within these systems from a legal perspective. 
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1.1. Related literature 

Our work continues the long line of economic research about discrimination in lending, 

but it is most related to the recent work that focuses on racial, ethnic, and income group 

disparities that can arise from the use of consumer default prediction models. We also build 

on the Fairness in Machine Learning literature that studies the gaps in predictive power 

across groups and introduces techniques to mitigate these gaps. 

A large body of literature examines the disparate impact (or lack thereof) in 

independent variables incorporated into predictive models through their correlation with 

group membership rather their predictive power for future default (see, for example, Avery 

et al., 2012). Relative to this literature, we shift our focus to reducing the disparities in 

predictive power between the groups, regardless of the origin of these disparities, and 

highlight the potential benefits of using protected attributes for lending decisions in a way 

that makes outcomes more equitable. 

The predictive power of credit scores for different population groups has been a point 

of interest in economics and beyond for some time. The literature started with considering 

the effects of a specific credit scoring approach and moved to considering an additional 

dimension of credit scoring model sophistication (Avery et al. 2012, Fuster et al. 2021, 

Blattner and Nelson 2021, Bartlett et al. 2022). We contribute to this literature by adding 

a new dimension, fairness constraints, and show that joint movement on the model 

sophistication and fairness constraint dimensions can achieve both higher profits and more 

equal outcomes. 

In concurrent work, Blattner et al. (2023) explore the intersection of fairness and model 

sophistication in predictive algorithms used in lending and beyond. Their study 

emphasizes the importance of nuanced regulation, particularly through targeted 

algorithmic audits that address specific disparities such as racial biases. They find that 

more complex models, when appropriately regulated, can lead to both efficient and fair 

outcomes, a conclusion that mirrors our findings. This parallel research underscores the 

emerging consensus on the potential of advanced models, coupled with fairness-focused 

regulation, to improve decision-making processes. 
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This paper is also relevant to the literature that considers the racial differences in 

default conditional on credit score. The Federal Reserve compiled an exhaustive report to 

Congress in 2007,8  which contained a discussion of higher default rates among some 

groups of minority individuals relative to the majority for a given credit score bin. Other 

work includes Bayer et al. (2016), which showed that Black and Hispanic homeowners 

had much higher rates of delinquency and default during the housing bust. Our work 

highlights that relative default rates for a given credit score are dependent on the credit 

scoring model and how it is applied, which suggests that the negative consequences 

highlighted in these papers can be mitigated with technological change and appropriate 

policy. 

Before machine learning, the introduction of traditional credit scoring was itself a 

technological change that had a profound impact on the markets, studied, for example, by 

Edelberg (2006) and Einav et al. (2013). More recently, advancements in credit scoring 

have shown the potential to help a larger portion of alternative financial service users 

qualify for more conventional forms of credit (Servon, 2017). Our work continues this 

trend of studying the effects of screening technology on consumer finance outcomes. 

Basing lending decisions on credit score cutoffs is a common feature in financial 

markets, frequently studied by researchers (e.g., Keys et al. 2010; Laufer and Paciorek 

2022; Bronson et al., 2019). The focus of our work is setting these thresholds optimally to 

optimize for a double objective of profit and fairness. 

There is a large literature in the field of ML focusing on measuring and mitigating 

disparities in predictive power between demographic groups. Chouldechova and Roth 

(2018) provide a view of the frontier of the academic literature in 2018. A variety of 

methods exists to make model predictions fairer, by preprocessing the data, modifying the 

predictive algorithms, or adjusting existing predictions (see Lamba et al. 2021 for 

comparison on a variety of tasks). We choose to focus on adjusting existing predictions 

using an approach similar to Hardt et al. (2016), because it is tractable, easy to implement 

 
8 See https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/creditscore.pdf. Last accessed: 

10/08/2024. 

https://www.federalreserve.gov/boarddocs/rptcongress/creditscore/creditscore.pdf
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and explain, isn’t clearly dominated by other approaches (Lamba et al., 2021), and has 

theoretical grounding (Kleinberg et al., 2018). In this paper, we focus on introducing 

fairness constraints into the consumer lending context in a simple way to highlight the 

trade-off between profit and fairness and show how model improvement can soften it. We 

leave examining the important nuances of fairness constraints and their effect on 

consumers, such as subgroup fairness (Kearns et al., 2018) and dynamic fairness (Liu et 

al., 2019), to future work. 

1.2. Policy and regulatory considerations 

Both components of our analysis, the use of ML models and the use of sensitive 

attributes in lending decisions, are areas of policy discussion. 

In the paper, we primarily discuss model improvement as the lender’s decision and the 

imposition of fairness constraints as the policy maker’s choice. However, in reality, the 

adoption of ML in the lending industry is determined jointly by lenders and regulators. 

According to a 2021 report by FinRegLab (FinRegLab, 2021), technologically enabled 

lenders use ML for data analysis and feature engineering across sectors and asset classes. 

However, ML underwriting models are still in their early stages.9  These models offer 

potential benefits but also raise a variety of concerns, including model performance in 

unexpected conditions, fairness, inclusion, privacy, security, and transparency. 10 

Regulators thus have an ability to facilitate ML adoption in the industry by providing clear 

guidance and reducing regulatory uncertainty. In this sense, both model improvement and 

the introduction of fairness constraints can be viewed as regulatory decisions. 

Two federal laws explicitly prohibit discrimination in fair lending: the Equal Credit 

Opportunity Act (ECOA; 15 U.S.C. §1691) and the Fair Housing Act (FHA; 42 U.S.C. 

§§3601-3619).11 Fair lending laws generally prohibit lenders from favoring a particular 

 
9 FinRegLab (2021) 

10 FinRegLab (2021) 

11 The Equal Credit Opportunity Act (ECOA), implemented by Regulation B (12 C.F.R. §202), prohibits 

discrimination in any aspect of a credit transaction and applies to any extension of credit. The 

discrimination prohibition covers nine prohibited factors: race, color, religion, national origin, sex, marital 

status, age, because an applicant receives income from a public assistance program, or because an 
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class of borrowers in any aspect of a lending decision, even if that class has been 

historically discriminated against. Thus, it is unclear whether the general use of group-

specific thresholds would be permissible under existing federal law as currently 

implemented. 

That said, ECOA permits lenders to design and implement tailored SPCPs with rules 

favoring a historically disadvantaged class of borrowers. Some of the largest US banks 

have recently implemented such programs, including Wells Fargo, Bank of America, JP 

Morgan, and TD Bank. Government Sponsored Enterprises (GSEs) are also developing 

SPCPs and are working to facilitate the purchase of home loans originated through lender 

SPCPs.12. We discuss SPCPs and other policy considerations in greater detail in Appendix 

A. 

While the current version of the CRA does not explicitly address whether loans 

originated under a SPCP may be considered during a lender’s CRA assessment13, changes 

to the CRA promulgated in 2023 (effective April 1, 2024, with compliance dates beginning 

January 1, 2026) appear to clarify the relationship. In the final rule, SPCPs are listed as a 

type of credit product that could be considered responsive to the Retail Services and 

Products component of a lender’s CRA assessment. Furthermore, some of the recent legal 

research argues for the explicit use of sensitive attributes and outcome-based fair lending 

analysis (e.g., Gillis 2022; Caro and Nelson 2023). Finally, it is important to note that a 

policy that combines the encouragement of model improvement with fairness constraints 

can be implemented in more than one way. For example, Blattner et al. (2023) arrive at 

 
applicant has in good faith exercised any right under the Consumer Protection Act. The Fair Housing Act 

(FHA) is implemented by the U.S. Department of Housing and Urban Development regulations (24 C.F.R. 

§100) and prohibits discrimination in all aspects of residential real estate–related transactions. In the case 

of the FHA, there are seven prohibited bases: race, color, national origin, religion, sex (including gender 

identity and sexual orientation), familial status, and disability. 

12 See, e.g., https://freddiemac.gcs-web.com/news-releases/news-release-details/freddie-macs-2023-

equitable-housing-finance-plan-builds-year-one. Last accessed: 10/08/2024. 

13 See https://www.consumercomplianceoutlook.org/2022/fourth-issue/overview-of-special-purpose-

credit-programs/. Last accessed: 10/08/2024. 

https://freddiemac.gcs-web.com/news-releases/news-release-details/freddie-macs-2023-equitable-housing-finance-plan-builds-year-one
https://freddiemac.gcs-web.com/news-releases/news-release-details/freddie-macs-2023-equitable-housing-finance-plan-builds-year-one
https://freddiemac.gcs-web.com/news-releases/news-release-details/freddie-macs-2023-equitable-housing-finance-plan-builds-year-one
https://www.consumercomplianceoutlook.org/2022/fourth-issue/overview-of-special-purpose-credit-programs/
https://www.consumercomplianceoutlook.org/2022/fourth-issue/overview-of-special-purpose-credit-programs/
https://www.consumercomplianceoutlook.org/2022/fourth-issue/overview-of-special-purpose-credit-programs/
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similar conclusions with a very different “fairness audit” procedure. We leave the 

economic and legal comparison of different approaches to future research. 

The increasing adoption of ML in financial services, along with large lender programs 

aimed at historically underserved borrowers, grounds the main elements of our analysis in 

the existing lending landscape. By highlighting the potential for improved fairness and 

efficiency through ML models, our research suggests a promising direction for policy 

development that balances innovation with consumer protection. 

2. Data 

The primary dataset used in our analysis is the Federal Reserve Bank of New York 

Consumer Credit Panel/Equifax data (CCP). The CCP is an anonymized, consumer-level 

dataset comprising quarterly credit bureau records for a 5 percent random sample of 

individuals with a credit file. 14  We augment the CCP with the census tract-level 

demographic data from the U.S. Census Bureau processed by the Federal Financial 

Institutions Examination Council (FFIEC) to determine the CRA status of consumers 

based on the income of their census tract of residence.15 

Unless otherwise noted, all plots and tables are based on authors’ calculations using 

CCP data with consumers in LMI census tracts identified using the dataset produced by 

the FFIEC, based on the U.S. Census Bureau data. 

2.1. Credit information from the Consumer Credit Panel 

The CCP includes quarterly snapshots of credit bureau information on credit accounts, 

credit inquiries, and public records (e.g., collections, bankruptcy, foreclosure, and tax 

 
14 For additional information about the CCP, see Lee and van der Klaauw, 2010; for a more general 

discussion of credit report data, see Avery et al., 2003. 

15 See https://www.ffiec.gov/censusapp.htm. Last accessed: 10/08/2024. The FFIEC census data files are 

compiled using the decennial census and American Community Survey (ACS) data, and they are updated 

annually. A tract is defined as LMI if the tract’s median income is less than 80 percent of the metropolitan 

statistical area/metropolitan division’s (MSA/MD’s) median income. For tracts outside a MSA/MD, 

statewide income is used. It’s important to note that the LMI cutoffs, based on MSA-relative income, 

inject heterogeneity into the two groups based on the MSA. In other words, a LMI tract in San Jose may 

not be the same as a LMI tract in Detroit. 

https://www.ffiec.gov/censusapp.htm


 

12 

liens) at the consumer level. Credit bureau data is the primary input to credit decisioning 

in the industry. 

Our credit data includes several hundred variables covering outstanding and maximum 

available balances, payment amounts, number of trades, amounts past due, and number of 

days past due for a range of debt products used by the consumers, including credit cards, 

mortgages, auto loans, and other kinds of loans. The CCP includes each individual’s year 

of birth as well as geographic designations, including their current census tract. It contains 

no additional demographic information, such as ethnicity, race, or gender, and does not 

contain any information about the individual’s income or asset holdings. We use data for 

the years 2000 to 2021. For tractability, we use a random sample of 1/100 consumers in 

the panel in the main analysis but confirm that our results are robust to using a 1/10 random 

sample. 

Our data-cleaning procedure includes removing duplicate consumer–quarter pairs, 

observations without valid census tract information, deceased consumers, and consumers 

who are only intermittently available in the dataset (fragment files). To eliminate fragment 

files, we only keep consumer–quarters that have eight consecutive quarters of delinquency 

status following the current quarter. This procedure is similar to Hunt and Wardrip (2013), 

Mikhed and Vogan (2018), and Blascak et al. (2018). We also remove consumer–quarters 

that have less than 2 quarters with at least one open account within the period between the 

current quarter and two years starting the next quarter (the period for which we compute 

our forward-looking default variable). 

2.2. Exclusion of consumers already in default 

Our data-cleaning procedure also excludes consumers who are currently in default. 

Thus, we focus on the transition from the state of non-default to the state of default. This 

is different from the approach taken, for example, by Albanesi and Vamossy (2019), who 

retain current defaulters and estimate the whole Markov transition matrix. 

When building a default model, it is standard practice for credit risk modeling 

professionals to exclude consumers who are already in default from the model building 
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exercise. Model builders may use those accounts to predict other things, such as the 

probability of curing to a current status, or the probability of moving from one state of 

default, say 90–120 days delinquent, to a more severe state, such as charge-off. Since the 

focus of this paper is on estimating the default probabilities for consumers who are 

currently not delinquent, for our main analysis, we choose to exclude observations that are 

currently more than 90 days past due on one or more of their accounts.16 

3. Predictive models 

The goal of our predictive modeling is to generate two credit scores — one based on 

traditional statistical models and one using newer ML models. In this section, we outline 

the key steps in the process and refer the interested readers to Appendix B for details. 

We predict consumer repayment status using two models: logistic regression with ridge 

regularization (referred to simply as the logistic model) and eXtreme Gradient Boosting 

(XGBoost).17 Ridge logistic regression represents the class of linear models that have been 

commonly used for credit scoring in the last few decades, whereas XGBoost represents 

non-linear models that are being increasingly used for credit scoring today. We refer to the 

output of our predictive models as a credit score. 

We define our prediction target, non-default, as a binary variable that is equal to one if 

the consumer is not in the state of default within two years starting from the next quarter. 

We define the state of default as being 90 or more days past due on at least one account.18 

 
16 In Appendix E, we perform a robustness check, training a separate model for predicting future default 

(or recovery) for consumers currently in default and analyzing on the combined set of predictions for both 

consumers who are current and consumers who are currently in default. Our conclusions are unaffected. 

17 See Hastie et al. (2017) for an introduction to regularized linear models and gradient boosting. 

18 We choose non-default as the event state rather than default for stylistic reasons. In some sections of the 

paper, we focus on the elements of the confusion matrix such as true positives and false positives. 

Choosing non-default as the event aligns the meaning of positive as beneficial with the meaning of 

positive as in positive test facilitating the communication of results. 
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Table 1 breaks down the percentage of consumer–quarters in the data by the current 

payment status and future default rate. As discussed in Section 2.2, we only include 

presently current consumers in our main analysis. Rates for other groups are for reference. 

We identify a total of 447 variables suitable for credit scoring in the CCP. This large 

number of variables presents overfitting challenges, which we address with variable 

selection, regularization, and hyperparameter tuning. See Appendix C for the details about 

the variables included in our models. 

Credit scoring models are typically updated over time as the data-generating process 

evolves. Both the way some of the variables are reported and the relationship between 

RHS variables and default can change over time. To account for this, we estimate our 

model in a rolling window fashion. Crucially, all decisions about the model fairness policy 

are made using training period data, while all the results are based on model predictions 

on data from periods in the future relative to the training periods. This is to say that all 

evaluation metrics are based on performance on data separate from data used to train the 

models. 

3.1. Model evaluation metrics 

We use the receiver operating characteristic area under curve (ROC AUC) as the main 

overall measure of model performance. ROC AUC is a metric that goes back to the World 

War II-era analysis of radar receivers (Van Meter and Middleton, 1954). It evaluates the 

performance of a binary classifier by aggregating true positive and false positive rates at 

every possible threshold. It takes values from 0.5 (corresponding to random chance) to 1 

(corresponding to a perfectly accurate model). Intuitively, ROC AUC represents the 

probability of a random non-defaulter having a higher credit score than a random defaulter 

(Fawcett, 2006). 

In the sections of the paper that discuss fairness constraints, we focus on the true 

positive rate (TPR) and false positive rate (FPR) at specific decision thresholds. We also 
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compare the percentages of population that fall into true positive (TP), false positive (FP), 

true negative (TN), and false negative (FN) groups.19 

In our context, TP refers to non-defaulting consumers identified by the model as such, 

FP refers to defaulters identified by the model as non-defaulters, TN refers to correctly 

identified defaulters, and FN refers to non-defaulters mistakenly identified as defaulters. 

3.1.1. Profit: a cost-sensitive classification metric 

We also look at a measure of simulated profits, which we define as 𝑃𝑟 = 𝑇𝑃 − 𝜆𝐹𝑃. 

At a higher level, this is a cost-sensitive learning metric. The need for such metrics arises 

when different classification errors are associated with different costs to the decision-

maker (Elkan, 2001). We call it “profit” despite not being able to measure profits directly 

because it reflects an important feature of the profit function — lenders lose more money 

on an account that defaults than they gain from the account that pays the loan back. At zero 

profit, λ may be viewed as the number of good accounts required to break even on a single 

charged-off account. The value of λ can vary widely, depending on the type of loan and 

the lender’s pricing strategy and risk management. We calibrate λ using administrative data 

for consumer credit card accounts held at large bank holding companies from the Federal 

Reserve Board’s Capital Assessments and Stress Testing (Y-14M) report for January 2014 

to December 2022. Refer to Appendix D for more information on the Y-14M report. 

Specifically, we calculate the λ values for seven major credit card lenders in the United 

States. This involves estimating the ratio of the average cost incurred from defaulting loans 

to the average profit earned over five years from non-defaulting credit card loans. As an 

illustration, consider a scenario where the average loss from a defaulted loan is $300, and 

the average profit from a fully repaid loan is $50. In this case, the λ value would be 

calculated as 300/50 = 6. Our approach to calculating account-level profit largely adheres 

to the methodology outlined in Section A of the Online Appendix of Agarwal et al. (2014). 

We encompass all general-purpose consumer credit card accounts in our analysis, tracking 

 
19 See Rodolfa et al. (2016) for a high-level introduction to these concepts from a Fairness in Machine 

Learning perspective. 



 

16 

the account activity for the initial 60 months of each account’s lifespan. We have computed 

the lender-specific λ values annually for different cohorts spanning 2014 to 2017. The 

details of the calculation are presented in Appendix D. 

The resulting annual average λ values are presented in Table 2. The average λ across 

banks is 5.14 (5.39 if weighted by total credit card assets). We use the rounded average 

value of 5 in our main specification and confirm the qualitative robustness of our results 

to λ values two standard deviations above and below the mean (approximately between 1 

and 11). 

3.1.2. Disparity in TPR: A fairness metric 

In addition to evaluating the predictive power of the models, we also discuss their 

fairness properties. We choose the disparities in TPR between the LMI and non-LMI areas 

as our main measure of fairness because it focuses on people who have a need for 

regulatory intervention — creditworthy individuals in LMI areas. Many fairness 

definitions are available (see, for example, Hurlin et al. 2022), and they are often 

incompatible with each other.20  In practice, our approach of equalizing TPR leads to 

increased lending in LMI areas, which is consistent with the goal of policies like the CRA. 

The choice of TPR for the lending case is also consistent with the “fairness tree” guidelines 

in Rodolfa et al. (2016) as our intervention is assistive (it increases loan access) and targets 

many people in need (creditworthy consumers), and we are primarily concerned with 

creditworthy consumers (as opposed to everyone without regard to creditworthiness). 

Hardt et al. (2016) also note that such a measure “improves incentives by shifting the cost 

of poor classification from disadvantaged groups to the decision maker, who can respond 

by improving the classification accuracy,” which is consistent with the goals of the paper. 

From the perspective of the lending practice, TPR is less commonly used for analyzing 

disparities than Adverse Impact Ratio (AIR) or Standardized Mean Difference (SMD) 

(FinRegLab, 2021), and is sometimes described as an alternative metric. We prefer to focus 

 
20 For example, Kleinberg et al. (2016) provide a famous impossibility theorem in the fairness space, 

though the degree of its empirical relevance is being debated (Bell et al., 2023). 
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on TPR because, unlike AIR and SMD, it takes into account eventual outcomes (defaults) 

and thus recognizes the differences in default probabilities between groups for the 

determination of the desired equal outcome. It is important to note that our proposed policy 

combining model improvement with fairness constraints does not necessarily require the 

use of TPR as a metric and that variants of the policy we propose could be implemented 

using standard metrics such as AIR. 

 

4. Results 

4.1. More sophisticated models improve overall default prediction, but predictive power 

remains unequal 

We begin by reestablishing some results from the literature using our models and data. 

We first verify that more complex models such as XGBoost perform better in out-of-

sample prediction than simpler models such as logistic regression. Afterward, we confirm 

that in our setting, model performance varies between non-LMI and LMI areas even 

though the model is unaware of a consumer’s location. 

Figure 1, Panel A, shows that better models improve our ability to predict default and 

consequently produce better credit scores. (Later, we show that it corresponds to a 2 

percent profit difference under a set of assumptions; see Section 4.6.) We document the 

predictive power, as measured by ROC AUC, for individual years (2004–2019). The 

performance of both models fluctuates over the years, dipping around the 2008 financial 

crisis, but overall and in all periods, XGBoost performs better than a logistic model. This 

confirms the first important fact from the recent literature — more advanced models 

produce better credit scores (e.g., Albanesi and Vamossy, 2019; Fuster et al., 2021; and 

Blattner and Nelson, 2021). 

The second important result from the literature is that credit scores do not perform 

equally well at predicting default for different groups. Figure 1, Panels B and C, show the 

out-of-sample predictive power separately for non-LMI and LMI tract consumers. We see 

that both models perform better for non-LMI consumers. 
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A crucial point is that the disparities in predictive power occur despite the fact that 

consumer geography or socio-demographic characteristics aren’t directly considered by 

the models. While a credit score is neutral in the sense that it is not based on protected 

attributes, there is a large gap in how useful the scores are for predicting repayment 

between the groups. Thus, we confirm that the results of Blattner and Nelson (2021) hold 

in the context of general credit scoring and non-LMI/LMI tract consumer groups. 

4.2. Inequality can be reduced by setting separate lending thresholds: Preliminaries 

Having documented the gap in predictive power, we turn our attention to mitigating it. 

We choose a specific metric to equalize between groups (TPR), implement a procedure 

based on ML literature to reduce the disparities in that metric by choosing group-specific 

decision thresholds, and explore the trade-offs that arise from the point of view of the 

consumer, lender, and regulator. 

Until now, we have examined the predictive power of continuous risk scores. However, 

when determining whether a loan application will be approved, what matters the most is 

whether a consumer is below or above a set threshold, which is a binary label. From now 

on, we will focus on the predictive power of the binary label, good or bad credit, which 

we define explicitly next. We focus on the credit origination decision for a generic loan, 

so we assign the label at the consumer–quarter level. 

We consider a hypothetical lender that predicts whether the consumer will default on a 

loan or not using one of the credit scores (XGBoost or logistic). We normalize the credit 

scores into percentiles {0,1,2,...,100} that are decreasing in probability of default. At a 

credit score of zero, the lender has the most certainty that the consumer will default, while 

at a score of 100, the lender has the most certainty that the consumer will pay back the 

loan. Paying back the loan (not defaulting) is the positive outcome. The lender picks a 

credit score threshold and lends if the consumer has a credit score above the threshold. The 

true default label becomes known in the future when the consumer either repays or 

defaults. We assume that the repayment behavior on the observed lines of credit reflects 

the repayment behavior on the hypothetical lines of credit. Under this assumption, even if 
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our hypothetical lender does not lend to the consumer, we can still infer the consumer’s 

true label.21 We also assume that the counterfactual loans are all equal in their terms and 

that granting an additional loan doesn’t change the probability of default (and consequently 

the label).22 

Every threshold creates a confusion matrix. Figure 2 is a hypothetical example. 

Suppose we have 100 consumers and pick a threshold of 60 (the first matrix on Figure 2). 

Given this threshold, we predict that 50 consumers will repay the loan. Of this 50, 40 do 

repay the loan (TPs) and 10 default (FPs). For the 50 consumers who we predicted would 

not repay their loan, 30 of them do not repay the loan (TNs) and 20 of them do repay the 

loan (FNs). In the second confusion matrix in Figure 2, we show how adjusting the 

threshold impacts all four cells in the confusion matrix. Lowering the threshold lowers the 

barrier to receiving loans, so more consumers receive loans when the threshold is lowered 

to 40. (Instead of 50 consumers receiving loans, 70 now receive loans.) These additional 

20 consumers increase the number of TPs but also the number of FPs. This also means that 

fewer consumers are denied loans — instead of 50 consumers being predicted to default, 

only 30 are now predicted to do so. The number of FNs has decreased, but so has the 

number of FPs. Ideally, we want to maximize the number of TPs and TNs while 

minimizing the number of FPs and FNs. However, in practice, non-defaulters and 

defaulters are not perfectly separated in the credit score space. Therefore, no threshold 

 
21 The issue of outcomes being only observed conditional on the selection decision is common and arises 

in areas like child protection (Chouldechova et al. 2018), health care (Mullainathan and Obermeyer 2021) 

and the judicial system (Arnold et al. 2022). Unobserved confounders affecting both selection and 

outcomes can induce bias and affect, among other things, the estimates of disparities. In lending, such a 

missing data problem is commonly referred to as reject inference. The solutions available to researchers 

are limited and often require some kind of quasi-experimental variation, such as the random assignment of 

judges to the cases (Arnold et al., 2022). Our approach is most similar to Blattner and Nelson (2021), who 

also use performance on observed loans as a proxy for performance on counterfactual loans. In industry 

practice, lenders periodically extend credit to individuals below their typical lending threshold to estimate 

the number of FPs at lower thresholds. Caro and Nelson (2023) discuss other ways the lenders can 

perform reject inference if required to assess counterfactual outcomes. 

22 This is a simplification that is typical for the generic credit scoring context. For discussion of issues in 

the mortgage context where it is relatively more important due to large monthly payments, see, for 

example, Fuster and Willen (2017). 
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change, whether an increase or a decrease, can increase TP without also increasing FP. 

This is the basis of the fairness–profit trade-off we discuss next. 

The set of confusion matrices at every possible threshold provides the raw materials 

from which various metrics of binary classifier performance can be constructed. 

We focus on true positive rates (TPR) and false positive rates (FPR) because of their 

importance from regulatory and business perspectives. TPR, defined as 

TPR = TP/(TP + FN), is the percentage of good-credit consumers who are assigned the 

good-credit label. Maximizing this is important for a regulator who seeks to maximize 

credit access to creditworthy consumers. It is also important for the lender because loans 

to good credit consumers are profitable. (We assume that the regulator cares about 

reducing the difference between the TPR of LMI and non-LMI tract groups; see next.) 

FPR, defined as FPR = FP/(FP + TN), is the percentage of bad-credit consumers who are 

mistakenly assigned a good-credit label. This measure is especially important from the 

lenders’ perspective since more money is lost when a consumer defaults on a loan than is 

gained when the loan is repaid. (In the main specification, we assume that the losses from 

default are larger than gains from a repaid loan by a factor of 5, so that 𝑃𝑟 = 𝑇𝑃 −

𝜆 × 𝐹𝑃.) 

4.3. Objectives of lenders and the regulator differ 

As discussed in Section 3.1.1, we assume that lenders set lending thresholds to 

maximize profit, defined as Pr = TP − λ × FP. This means that a successful loan gives the 

lender one unit of money, and a loan that defaults costs the lender λ units of money. We set 

λ to be 5 in our main specification based on our previously discussed calibration exercise. 

We assume that lenders are regulated by a government agency (“regulator”) that values 

equal credit access for consumers who have the ability to repay their loan. This is 

operationalized as the difference in TPR between the non-LMI and LMI tract groups, 

∆TPR = TPR(non-LMI) − TPR(LMI). Because the regulator also values the ongoing 

viability of the lender, it might accept a partial reduction in ∆TPR that results in a smaller 

reduction in lending profit instead of requiring ∆TPR to be zero. 
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We quantify the trade-off between fairness and lender profits by considering four 

possible levels of fairness constraints. The benchmark for comparison is setting the 

thresholds in a way that is blind to non-LMI or LMI status (profits are empirically the 

largest in this case). The strong fairness constraint corresponds to setting separate 

thresholds for the groups in such a way that ∆TPR is 0 in-sample. Medium and weak 

fairness constraints involve setting thresholds that are located 66 percent and 33 percent 

of the distance between the strong fairness constraint threshold and the blind threshold, 

respectively. In all cases, the threshold for the non-LMI group remains the same as in the 

single-threshold scenario. The details of the procedure are described in Section 4.5. 

While we assume that lenders are strictly profit driven, there are, of course, reasons 

why a lender might value equalizing TPRs between the non-LMI and LMI tract groups. 

Such reasons include being a mission-oriented organization, avoiding potential fair-

lending violations, or satisfying CRA requirements. In such instances, a lender would be 

willing to lend to more would-be defaulters in LMI groups than would be expected 

otherwise. Another way of thinking of it is that lenders that value fairness will face lower 

hurdles to achieving fairness goals with technological improvements. Thus, our results 

may be interpreted as upper bounds to the fairness–profit trade-off. 

4.4. One threshold doesn’t fit all 

Under the current policy, lenders are prohibited (with some exceptions) from using 

consumer demographics in most lending scenarios. This corresponds to using a group 

membership-blind model and picking a single credit score threshold for all consumers. On 

the surface, it is a neutral policy intended to reduce discrimination. However, this approach 

affects non-LMI and LMI consumers differently. 

We simultaneously visualize the TPR and FPR for all lending thresholds and all 

consumers using the XGBoost credit score based on the in-sample data of the last rolling 

window (2014Q1–2015Q4, see Appendix B) in Figure 3, Panel A. This figure is similar to 

a ROC curve in that it includes TPR and FPR, but unlike a ROC curve, the figure makes 

threshold values explicit by plotting them on the x axis. The two lines represent the two 
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rates. The y-axis gives the corresponding TPR and FPR for each threshold. We see that 

with a threshold of 0, every consumer receives a loan. This means that we correctly give a 

loan to every consumer who is indeed creditworthy. However, this means that we also give 

a loan to every consumer who is not creditworthy. On the other extreme, a threshold of 

100 means that no consumer receives a loan. Consumers who are not creditworthy are 

denied a loan, as are consumers who are creditworthy. The optimal threshold is somewhere 

in the middle, and we pick one that maximizes lender profits. The figure shows the 

threshold that maximizes simulated profit, under which 86 percent of creditworthy 

consumers get the loan; 21 percent of defaulters do, as well. 

Figure 3, Panel B, has the same x and y axes as Panel A but breaks down TPR and FPR 

by non-LMI and LMI tract consumers. We see that at the optimal threshold, non-LMI-tract 

consumers have a substantially higher TPR than LMI-tract consumers. In non-LMI tracts, 

88 percent of creditworthy customers are approved for a loan, but only 79 percent of 

creditworthy customers in LMI tracts are approved. In the terminology of Hardt et al. 

(2016), the difference in TPR between groups measures “equality of opportunity.” 

4.5. Tailoring default predictions via separate thresholds can reduce inequality, but at a 

cost 

In this section, we discuss the introduction of group-specific lending thresholds and the 

associated fairness–profit trade-offs arising in our illustrative model. 

To set the separate thresholds, we modify the approach from Hardt et al. (2016). We 

keep the threshold for the non-LMI group the same as in the single-threshold case and set 

the threshold for the LMI group in a way that the difference in TPR is as close to zero as 

possible.23 

 
23 This is a modification of the equal opportunity thresholds from Hardt et al. (2016). The original 

approach considers all pairs of thresholds that equalize TPR and picks one that maximizes some objective 

(in our case lender profits). In that case, compared with using a single threshold, the separate threshold for 

the non-LMI group is slightly higher, and the threshold for the LMI group is lower. We choose to limit our 

analysis to the case in which the outcomes of the non-LMI group remain the same as under the single-

threshold policy to avoid a decrease in TPR for any group of consumers. 
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This approach lends itself very easily to relaxation. We can adjust the thresholds 

depending on how much the regulator values fairness relative to the business need to 

maximize profits. We do so by picking thresholds for the LMI group between the single 

threshold and the threshold that would eliminate differences in TPR. Any objective weight 

can be accommodated. For simplicity, we focus on three possible levels of fairness 

constraint. First, we determine the threshold that eliminates the difference in TPR between 

non-LMI and LMI individuals. We call this threshold a strong fairness constraint. We also 

generate LMI thresholds that are 66 percent and 33 percent of the way between the single 

threshold and the ∆TPR = 0 threshold and call them medium and weak fairness constraints. 

The thresholds are generated on the rolling window basis. Figure 4 shows the TPR and 

FPR for strong (Panel A), medium (Panel B), and weak (Panel C), as well the single 

threshold (Panel D), based on the last rolling window. 

In the case of the strong fairness constraint, both groups have a TPR of approximately 

88 percent. This way, creditworthy consumers have an 88 percent chance to get the loan 

regardless of which group they are in.24 

More creditworthy LMI consumers are classified as good credit under all fairness 

constraints than under a single threshold. However, Figure 4 shows that lowering the 

threshold for the LMI group increases its FPR. This is important from the lenders’ 

perspective since the number of FP enters the lenders’ objective function with a multiplier 

of λ > 1. This is key for the fairness–profit trade-off. 

4.6. Best of both worlds: Linking fairness constraints to model improvement 

In Section 4.1, we showed that better credit scoring models improve the accuracy of 

default prediction for both non-LMI and LMI groups, but the gaps in model performance 

between the non-LMI and LMI groups remain. In Section 4.5, we showed how we can 

establish separate lending thresholds to reduce disparities in equality of opportunity. Now 

 
24 The slight difference in TPR on the plot is due to us focusing on integer thresholds and picking the LMI 

threshold with the smallest absolute difference between groups. 
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we will look at the fairness–profit trade-offs that arise from this approach and how the 

trade-offs interact with model improvement. 

The analysis in this section is based on fairness constraints applied out-of-sample to 

the test sets. As described in the preceding section, we apply four different thresholds to 

the resulting score — profit maximizing and three degrees of fairness constraint. All 

thresholds are selected using training data and applied out-of-sample to obtain out-of-

sample binary predictions. We then combine all eight test sets to generate the results that 

follow. 

Figure 5 illustrates the fairness–profit trade-offs at different levels of fairness 

constraints and for different models. The x-axis is profit, calculated as 𝑃𝑟 = 𝑇𝑃 − 𝜆 × 𝐹𝑃 

and normalized so that the baseline profit of the logistic model is equal to 100. In our main 

specification, we set λ to 5 based on the calibration exercise described in Section 3.1.1. 

The y axis is the difference in TPR between the LMI group and the non-LMI group and is 

our measure of equality of opportunity (∆TPR). The color is the model type, and the label 

is the strength of the constraint. In Figure 6, we compare results for λ ∈ {3,4,5}. Finally, 

Table 4 shows the robustness of our results to λ ∈ [1,11]}, the range motivated by our 

calibration exercise discussed in Section 3.1.1. 

We see that for every model in our illustrative setting, making the fairness constraint 

stronger reduces profits — this is the fairness–profit trade-off. For the XGBoost model, it 

costs about 1 percent of profits to eliminate the TPR gap. So, fairness doesn’t come free 

and affects lenders. The degree to which increased fairness affects profit is indicated by 

the slope of the line. 

We also observe that improvements in modeling technology shift the fairness–profit 

curve rightward, increasing profitability at every threshold. This is intuitive, since a better-

performing model approves fewer defaulters and more creditworthy consumers. Thus, 

adopting a more sophisticated model can improve profitability at every threshold level. 

The combined effects of fairness constraints and model improvement suggest a way 

forward that blends the best of both worlds. If a lender using a particular model were to 

adopt group-specific lending thresholds in the absence of a significant improvement in 
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model quality, the lender would become less profitable. However, a lender that 

simultaneously adopts both more sophisticated modeling technology and group-specific 

thresholds could experience increases in both fairness and profit. An XGBoost model with 

the strong fairness constraint generates more profit for the lender than does a logistic model 

without a fairness constraint. This observation allows us to revisit a major result from the 

recent literature. Papers such as Fuster et al. (2021) and Blattner and Nelson (2021) argue 

that better models improve credit scoring accuracy but do little to reduce inequality. 

However, Figure 5 shows that this result crucially depends on the sensitive attribute 

blindness requirement for the credit score threshold. While well intentioned, blindness 

prevents the regulator from introducing fairness constraints that tackle disparities head-on. 

If we consider an alternative policy that requires lenders to consider the sensitive 

attributes in a way that is designed to promote fairness, we get alternative characterizations 

of how model improvement affects fairness. For example, if the regulator places a high 

weight on fairness and requires the improvements in credit score technology to be paired 

with fairness constraints, then introducing a new credit scoring model can lead to a very 

large improvement in fairness combined with a more modest increase in our measure of 

profits, TP − 5 × FP. In our illustrative setting, going from the logistic model with a single 

threshold to the XGBoost model with a strong fairness constraint decreases the TPR gap 

from 9 percent to 0 percent while increasing profits from 100 to 100.4. If the weight the 

regulator places on fairness is a bit lower, but the weight on business need to maximize 

profits is larger, fairness improvements are lower but profits are larger (up to the maximum 

profit of 101.8). Table 3 confirms the robustness of this result to a range of λ assumptions. 

Only at higher λ > 9, uncommon in our calibration sample, does the profit of XGBoost 

with a strong fairness constraint fall under 100. (The value is 99.7 in the case of λ = 11.) 

The XGBoost profit under the medium fairness constraint is always higher than 100 (101.2 

when λ = 11). 

In addition to the effect on lenders, fairness constraints also affect consumers. We base 

our analysis of winners and losers among the consumers on the confusion matrix. We 

consider the TP group to be winners. (They get a loan they can pay back.) Conservatively, 
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we consider the FP group to be losers. (They are more likely to suffer default on the loan 

they might get due to a lower threshold, even though ex ante they might still prefer to get 

the loan.) The TN group is considered to be neutral (as they don’t get a loan they can’t pay 

back), and the FN group is considered to be losers (as they don’t get a loan they can pay 

back). 

We highlight that both winner and loser groups increase after the introduction of 

fairness constraints using an XGBoost credit score as an example. In Figure 7, the x-axis 

is the strength of the constraint and the y-axis is the percentage of the non-LMI or LMI 

group belonging to the TP, FP, TN, or FN category, depicted as different lines. By 

construction, the composition of the non-LMI group doesn’t change when fairness 

constraints are introduced.25 All changes are among the LMI tract individuals. In the single 

threshold scenario, 65.3 percent of the LMI population are TP: people with good credit 

correctly predicted to be good credit. Under strong fairness constraints, this number goes 

up to 72.7 percent. By definition, the increase comes from the decrease in the FN group, 

reducing the number of losers. However, the FP percent for the LMI group also rises, from 

3.9 percent to 6.2 percent. This means that more consumers are more likely to get loans 

they might have trouble paying back. By definition, this increase comes from the decrease 

in the TN group who are neutral since they don’t benefit from a credit score qualifying 

them for a loan, but they also are not hurt by the potential consequences of defaulting on 

more loans. While many more consumers benefit from a fairness constraint than are hurt 

by it, the increase in the FP group needs to be taken into consideration. 

Notably, our approach to labeling consumers as winners or losers is more conservative 

than that in Fuster et al. (2021), who treat consumers as winners from a model change if 

their credit score goes up even if they are consumers with a higher default probability. We 

take the more conservative approach for two reasons. First, it’s important for the 

policymaker to consider the costs of increased credit access as well as the benefits. Second, 

 
25 This is slightly different from the original equality of opportunity approach in Hardt et al. (2016). There, 

the separate thresholds are picked in a way such that the threshold for the LMI is lower (as it is in our 

case) and the threshold for the non-LMI group is slightly higher, resulting in a slightly higher percentage 

of TP and a slightly lower percentage of FP in the non-LMI group, as well as slightly higher lender profits. 
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and most important, we want to emphasize that the trade-off is favorable even when the 

increase of FP is treated as a cost to consumers, because many more creditworthy 

consumers get access to credit. 

5. Conclusion 

The technological advancements in underwriting can benefit lenders significantly. 

With appropriate policy guidance, these advancements can also bring substantial fair 

lending benefits. The gap in TPR between non-LMI and LMI areas can be reduced by 

adopting group-specific thresholds. However, this equality comes with a cost to lender 

profits. Using more complex models in conjunction with introducing separate thresholds 

can help to mitigate these losses. We describe a trade-off that needs to be appropriately 

managed rather than a first-best solution. However, we think that if the trade-off is 

managed appropriately, incentives can change in a way such that both fairness and profits 

can improve over time as lenders invest more into reducing the data disparities between 

the non-LMI and LMI groups underlying the predictive power gap (Blattner and Nelson, 

2021). 
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Tables 

Note: Unless otherwise stated, all tables are based on authors’ calculations using CCP 

data, with consumers in low- and moderate-income (LMI) census tracts identified using 

the dataset produced by the FFIEC, based on U.S. Census Bureau data.  
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Table 1: Observations by current delinquency status, the CRA status of their census tract, 

and repayment outcome. The calculations are based on a 1 percent sample of the CCP. 

Individuals are observed at the quarterly frequency; % Default column indicates the stock 

of defaulters in the given group. We provide the overall default statistic and split the results 

by CRA status, current delinquency status, and both. (The % observations in each of these 

splits sum to 100 percent.) Individuals in low and moderate-income (LMI) census tracts 

are identified using a dataset produced by the FFIEC, based on U.S. Census Bureau data. 

Default is defined as being more than 90 days past due on any credit account within a two-

year period starting with the next quarter. 

 

Consumer Group % of Observations % Default (Next 2 Y.) 

Overall 100.0 22.3 

Census Tract Status Non-LMI 79.9 19.4 

LMI 20.1 33.8 

Current Delinquency Status  

84.4 8.5     Current 

<90 Days Past Due 2.8 59.9 

≥90 Days Past Due 12.8 93.4 

Census Tract Status & Current 

Delinquency Status 

Non-LMI & Current 68.1 7.8 

  Non-LMI & <90 Days Past Due 
2.3 58.0 

  Non-LMI & ≥90 Days Past Due 
9.5 93.3 

LMI & Current 14.9 14.0 

LMI & <90 Days Past Due 
0.7 66.6 

LMI & ≥90 Days Past Due 
4.5 94.6 
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Table 2: Average λ values for seven large financial institutions. The λ value is the ratio of 

the average cost of default to the average five-year profit earned on non-defaulting loans. 

The weighted mean is the average λ weighted by total credit card assets. The calculations 

are based on the account- and portfolio-level Y-14M administrative data for January 2014 

to December 2022. 

 

 2014 2015 2016 2017 All 

Unweighted mean 5.00 4.76 4.96 5.85 5.14 

Weighted Mean 5.53 5.15 5.05 5.81 5.39 

Std Dev 3.16 2.02 1.84 2.43 2.32 

Num Obs 7 7 7 7 28 
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Table 3: Fairness–profit trade-offs at different levels of fairness constraints and λ (profit 

trade-off of good to bad loans). Profit is calculated as Pr = TP − λ × FN, where TP is the 

number of true positives, FP is the number false positives, and λ corresponds to the 

monetary loss associated with a loan that is not repaid relative to the gain from a loan that 

is repaid. We normalize profit by the profit of the logistic model with no fairness 

constraints. The positive outcome is non-default within the next two years. Fairness, or 

∆TPR, is the difference in TPR between the LMI and non-LMI groups. TPR is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
, where TP is the true positives and FN is the false negatives. Individuals in low- and 

moderate-income (LMI) census tracts are identified using a dataset produced by the 

FFIEC, based on U.S. Census Bureau data. The labels Strong, Medium, Weak, and Blind 

represent different strengths of the fairness constraint. (See Section 4.5 for definitions.) 
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Figures 

Note: Unless otherwise stated, all figures are based on authors’ calculations using CCP 

data with consumers in low- and moderate-income (LMI) census tracts identified using the 

dataset produced by the FFIEC, based on the U.S. Census Bureau data.  
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Figure 1: Performance of repayment status predictions on the combined evaluation set, 
2004Q1–2019Q2. ROC AUC is a measure of binary classifier performance running 
between 0.5 and 1 (the more, the better) that accounts for the true positive rate (how many 
non-defaulters are correctly identified as such) and the false positive rate (how many 
defaulters are incorrectly identified as non-defaulters) at every possible decision threshold. 
The two lines correspond to the logistic and XGBoost models. Individuals in low- and 
moderate-income (LMI) census tracts are identified using a dataset produced by the 
FFIEC, based on U.S. Census Bureau data. Default is defined as being more than 90 days 
past due on any credit account within a two-year period starting with the next quarter. For 
example, observations in 2019 use data up to 2021 to compute the default variable. All 
metrics are calculated fully out of sample from each model’s training period. 
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Figure 2: A hypothetical confusion matrix of 100 individuals. Thresholds can take values 

between 0 and 100. At the 0 threshold, everyone is predicted to be positive (not in default 

within two years); at the 100 threshold, everyone is predicted to be negative (in default 

within two years). The cells correspond to (left to right, top to bottom): true positives (TP), 

false positives (FP), false negatives (FN), and true negatives (TN). Changing the threshold 

values changes values in all four cells. 
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Figure 3: Comparison of true positive rates (TPR) and false positive rates (FPR), single-
threshold approach. Threshold values 0 to 100 correspond to percentiles of model outputs. 
The vertical line represents the single profit-maximizing threshold. TPR is defined as 

𝑇𝑃

𝑇𝑃+𝐹𝑁
, where TP is the true positives and FN is the false negatives. FPR is defined as 

𝐹𝑃

𝐹𝑃+𝑇𝑁
, where FP is the false positives and TN is the true negatives. Individuals in low- and 

moderate-income (LMI) census tracts are identified using a dataset produced by the 
FFIEC, based on U.S. Census Bureau data. Default is defined as being more than 90 days 
past due on any credit account within a two-year period starting with the next quarter. This 
plot is based on the XGBoost model and the training set of the last rolling window, 
2014Q1–2015Q4. 
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Figure 4: Comparison of true positive rates (TPR) and false positive rates (FPR), group-
specific threshold approach. Threshold values 0 to 100 correspond to percentiles of model 
outputs. The vertical dotted lines represent the group-specific profit-maximizing 
thresholds. (Panels A, B and C, respectively, depict strong, medium and weak fairness 
constraints; see Section 4.5 for definitions.) The vertical line on Panel D represents the 

group-unaware single profit-maximizing threshold. TPR is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
, where TP is 

the true positives and FN is the false negatives. FPR is defined as 
𝐹𝑃

𝐹𝑃+𝑇𝑁
, where FP is the 

false positives and TN is the true negatives. Individuals in low- and moderate-income 
(LMI) census tracts are identified using a dataset produced by the FFIEC, based on U.S. 
Census Bureau data. Default is defined as being more than 90 days past due on any credit 
account within a two-year period starting with the next quarter. This plot is based on the 
XGBoost model and the training set of the last rolling window, 2014Q1–2015Q4. 
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Figure 5: Fairness–profit trade-offs at different levels of fairness constraints and for the 
logistic and XGBoost models. Profit is calculated as 𝑃𝑟 = 𝑇𝑃 − 5 × 𝐹𝑁,where TP is the 
number of true positives and FP is the number of false positives. Profit has been normalized 
to a 0 to 1000 scale. The positive outcome is non-default within the next two years. ∆TPR 
is the difference in TPR between the LMI and non-LMI groups, which is the measure of 

fairness we adopt in this paper. TPR is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
, where TP is the true positives and 

FN is the false negatives. Individuals in low and moderate-income (LMI) census tracts are 
identified using a dataset produced by the FFIEC, based on U.S. Census Bureau data. 
Labeled points on lines represent different strengths of the fairness constraint: Strong, 
Medium, Weak, and Blind. (See Section 4.5 for definitions.) 
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Figure 6: Fairness–profit trade-offs at different levels of fairness constraints and λ (profit 

trade-off of good to bad loans). Profit is calculated as 𝑃𝑟 = 𝑇𝑃 − 𝜆 × 𝐹𝑁, where TP is the 
number of true positives, FP is the number false positives, and λ corresponds to the 
monetary loss associated with a loan that is not repaid relative to the gain from a loan that 
is repaid. We normalize profit by the profit of the logistic model with no fairness 
constraints. The positive outcome is non-default within the next two years. ∆TPR is the 
difference in TPR between the LMI and non-LMI groups, which is the measure of fairness 

we adopt in this paper. TPR is defined as 
𝑇𝑃

𝑇𝑃+𝐹𝑁
, where TP is the true positives and FN is 

the false negatives. Individuals in low and moderate-income (LMI) census tracts are 
identified using a dataset produced by the FFIEC, based on U.S. Census Bureau data. 
Labeled points on lines represent different strengths of the fairness constraint: Strong, 
Medium, Weak, and Blind. (See Section 4.5 for definitions.) 
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Figure 7: Winners and losers under different fairness constraints, XGBoost model. Points 
on the x-axis represent different strengths of the fairness constraint, with Blind 
corresponding to a single threshold without fairness constraints, and Strong representing 
the most stringent constraint aimed at eliminating ∆TPR. The lines correspond to the 
fractions of population in the group (non-LMI or LMI) belonging to the true positive, true 
negative, false negative, or false positive category. The positive outcome is non-default 
within the next two years. Individuals in low- and moderate-income (LMI) census tracts 
are identified using a dataset produced by the FFIEC, based on U.S. Census Bureau data. 
Labeled points on lines represent different strengths of the fairness constraint: Strong, 
Medium, Weak, and Blind. (See Section 4.5 for definitions.) 
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Appendix A. Policy considerations 

Our illustrative examples suggest that applying group-specific lending thresholds in 

default prediction can reduce disparities in TPR between non-LMI and LMI 

neighborhoods. Disparities are reduced mechanically as new group-specific thresholds are 

introduced and are not dependent on whether the lender bases its lending decisions on a 

logistic regression model or a more sophisticated machine learning model. However, in 

either case, increased fairness comes at the cost of higher default rates in LMI 

neighborhoods. 

We also provide evidence that lenders that simultaneously adopt both ML models and 

group-specific lending thresholds may experience increases in fairness as well as profit. 

This can occur when the ML model identifies sufficiently many creditworthy loan 

applicants in both the LMI and non-LMI neighborhoods (relative to the baseline model) 

such that it more than offsets the defaults incurred from lowering the lending threshold for 

LMI neighborhoods. 

Under certain circumstances, borrowers benefit from the adoption of group-specific 

lending thresholds and more sophisticated credit risk assessment technology.26  Group-

specific lending thresholds ensure that the approval rates across neighborhood types 

achieve a level of parity that would not be achievable using a single lending threshold. 

Moreover, group-specific lending thresholds can achieve greater fairness without 

diminishing the approval rates enjoyed by residents of non-LMI neighborhoods under a 

single-threshold lending model. 

The possibility of dual adoption, whereby lenders simultaneously adopt both ML credit 

risk models and group-specific lending thresholds, has the opportunity to establish a new 

trajectory for fair lending without the loss of profit that would arise from the imposition of 

 
26 Throughout the paper, we focus on the outcome of a lending decision in which an applicant is either 

approved or rejected for a loan and may subsequently terminate the loan in good standing or default. We 

assume that higher approval rates in non-defaulting populations make the individuals better off. Of course, 

one could argue that an LMI individual who is approved for a loan at significantly more onerous terms has 

not been made better off. Appendix F and Fuster et al. (2021) suggest that pricing implications are likely 

small. However, a full accounting of individuals’ welfare is beyond the scope of this paper. 
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group-specific thresholds in isolation. However, there are some important challenges and 

limitations that would affect the likelihood, scale, and nature of adoption. In particular, it 

is unclear whether group-specific thresholds corresponding to LMI neighborhoods are 

broadly implementable under current fair lending law. Although the lender’s objective in 

assigning group-specific thresholds is to increase fairness, lenders may put themselves at 

risk for further regulatory scrutiny or disparate impact litigation by including variables in 

the lending decision that are correlated with race or other protected characteristics. In 

addition, widespread adoption of ML models in credit underwriting has been impeded by 

the newness and sophistication of the technology, which has created operational, legal, and 

regulatory uncertainty (FinRegLab, 2021). 

In the following sections, we discuss some of the legal and regulatory hurdles that a 

hypothetical lender might encounter when initially adopting ML credit risk models and 

group-specific lending thresholds for LMI and non-LMI neighborhoods. There are several 

reasons why we believe this discussion should be considered a hypothetical — rather than 

a practical — exercise. First, it is important to note that our credit scoring exercise 

combines data from multiple lenders. Our results are the product of market-level 

aggregations of consumer and lender behavior and do not necessarily reflect the experience 

that any one particular lender might have when implementing credit scoring or group-

specific lending thresholds. While we have no reason to believe that the fairness-accuracy 

trade-off exhibited by our models would not be present at the lender level, our analysis 

does not provide sufficient evidence to rule out this possibility. Thus, we caution the reader 

that the following discussion rests upon the assumption that our market-level outcomes 

and trade-offs are representative of what lenders might observe in their own data. Second, 

although fairness and model accuracy in lending are two closely related topics, each falls 

under distinct regulatory umbrellas that may, at times, conflict with each other. An 

exhaustive analysis of related regulatory issues is beyond the scope of this paper. In the 

discussion that follows, our purpose is to highlight some of the key challenges to 

implementation and to shed light on a particular aspect of existing fair lending law that 

may prove useful for lenders and policymakers seeking to explore the topic further. 
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Appendix A.1. Group-specific lending thresholds 

By introducing group-specific lending thresholds corresponding to LMI and non-LMI 

neighborhoods, our intent is to demonstrate that greater fairness can be achieved when the 

lender explicitly considers sensitive borrower characteristics. Residents of neighborhoods 

who have historically experienced barriers to credit can achieve TPRs equal to borrowers 

living in high-income neighborhoods who are less likely to have experienced lending 

discrimination and reduced access to credit. Moreover, we show that group-specific 

lending thresholds can achieve greater fairness without diminishing the approval rates 

enjoyed by residents of non-LMI neighborhoods under a single-threshold lending model. 

From a fair lending perspective, it is not clear whether a lender could implement 

neighborhood-based lending thresholds in the credit underwriting process of a typical loan 

program. Fair lending laws generally prohibit lenders from favoring a particular class of 

borrowers in any aspect of a lending decision, even if that class has been historically 

discriminated against. The ECOA and its implementing Regulation B make it illegal for 

covered lenders to discriminate against certain classes of loan applicants and prohibit 

lenders from using certain personal characteristics, including race and national origin, in 

any aspect of a credit transaction (Skanderson and Ritter, 2014). While residence in an 

LMI neighborhood is not explicitly protected under the ECOA, it can be correlated with 

characteristics that are explicitly prohibited, such as race or ethnicity. However, as noted 

previously, the ECOA and Regulation B do permit lenders to design and implement SPCPs 

in order to extend credit to a class of persons who would otherwise be denied credit or 

would receive it on less favorable terms (12 C.F.R. §1002.8(a)(3)(ii)). 

We discuss SPCPs in more detail below. We also discuss recent changes to the 

Community Reinvestment Act (CRA) that, once effective, should provide lenders with 

additional incentives to design and implement SPCPs. 

Appendix A.1.1. Special Purpose Credit Programs 

While fair lending laws may prohibit lenders from using group-specific lending 

thresholds corresponding to neighborhood types, the ECOA does permit lenders to 
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establish Special Purpose Credit Programs (12 C.F.R. §1002.8), in which prohibited 

factors such as race or ethnicity receive favorable consideration. These programs are 

intended to extend credit to those who would be unlikely to receive it under the lender’s 

customary lending standards or would receive credit on less favorable terms (12 C.F.R. 

§1002.8(a)(3)(ii)).27 

As an example of such a program, Fannie Mae recently published its Equitable Housing 

Finance Plan. Its goal is to reduce racial disparities in access to mortgage financing. Part 

of the plan involves the creation and deployment of SPCPs with the objective of “enabling 

access to credit and encouraging sustainable homeownership for Black consumers.” 

Fannie Mae’s SPCPs are focused on “people residing in formerly redlined and other 

underserved areas with majority Black populations.”28 

While SPCPs have historically been underutilized,29 several recent actions by federal 

regulatory agencies have encouraged their use. A 2020 Advisory Opinion by the Consumer 

Financial Protection Bureau (CFPB) noted that a lender can initiate a SPCP without CFPB 

approval, provided the lender’s program meets the compliance standards and general rules 

set forth in Regulation B (Official Interpretations, 12 C.F.R. pt. §1002(supp. I), sec. 

§1002.8, 8(a)-1).30 The lender must first demonstrate a need for the program, either by 

analyzing its own lending data or reviewing research or data from an outside source. In 

addition, the lender must have a written plan that identifies the program’s intended 

beneficiaries and establishes the procedures and standards the lender will use for extending 

 
27 It is unclear whether, by providing credit to persons living in historically underserved neighborhoods at 

more favorable terms than persons living outside these neighborhoods, SPCPs pose a fair lending risk, 

since those living outside historically underserved neighborhoods would not qualify for the program. As 

noted previously, we show in our paper that group-specific lending thresholds can achieve greater fairness 

without diminishing the approval rates of the residents of non-LMI neighborhoods under a single-

threshold lending model. Thus, in our framework, neither group is worse off under group-specific 

thresholds and lenders mitigate the risk of discriminating against any borrower. 

28 See https://www.fanniemae.com/media/43636/display. Last accessed: 10/08/2024. 

29See  

https://www.hud.gov/sites/dfiles/FHEO/documents/FHEO_Statement_on_Fair_Housing_and_Special_Pur

pose_Programs_FINAL.pdf. Last accessed: 10/08/2024. 

30 See https://files.consumerfinance.gov/f/documents/cfpb_advisory-opinion_special-purpose-credit-

program_2020-12.pdf. Last accessed: 10/08/2024. 

https://www.fanniemae.com/media/43636/display
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credit under the program.31 The plan must also state the expected duration of the program 

and the criteria by which its continuing need will be evaluated. 

In December 2021, the Department of Housing and Urban Development issued 

guidance clarifying that SPCPs that conform to the ECOA and Regulation B would 

generally not violate the FHA.32 This opinion was followed by interagency guidance from 

the Federal Reserve Board, the Federal Deposit Insurance Corporation, the National Credit 

Union Administration, the Office of the Comptroller of the Currency, the CFPB, the 

Department of Housing and Urban Development, the Department of Justice, and the 

Federal Housing Finance Agency. The February 2022 guidance encourages lenders to 

explore opportunities to develop SPCPs.33 The interagency guidance notes that lenders are 

permitted to consider the use of SPCPs across all types of credit covered by the ECOA and 

Regulation B. 

Some of the largest lenders in the US have introduced SPCPs, including Wells Fargo, 

Bank of America, JP Morgan, and TD Bank.34 In late 2022, JP Morgan announced that, 

after a successful pilot phase, it would be expanding nationally a SPCP designed to 

increase lending to small businesses located in majority-minority neighborhoods.35 

In addition to the guidance and opinions listed above, forthcoming changes to the CRA 

— promulgated in 2023 and effective April 1, 2024, with staggered compliance dates of 

January 1, 2026, and January 1, 2027 — may also spur the creation of SPCPs in the coming 

 
31 See 12 C.F.R. §1002.8(a)(3)(i). 

32 See 

https://www.hud.gov/sites/dfiles/GC/documents/Special_Purpose_Credit_Program_OGC_guidance_12-6-

2021.pdf. Last accessed: 10/08/2024. 

33 See Interagency Statement on Special Purpose Credit Programs Under the Equal Credit Opportunity Act 

and Regulation B. https://www.fdic.gov/news/financial-institution-letters/2022/fil22008a.pdf. Last 

accessed: 10/08/2024. 

34 See https://www.americanbanker.com/news/banks-expanding-special-purpose-credit-programs and 

https://www.jchs.harvard.edu/blog/designing-new-programs-narrow-racial-homeownership-gaps. Last 

accessed: 10/08/2024. 

35 See https://www.americanbanker.com/news/jpmorgan-chase-takes-special-purpose-credit-program-

national. Last accessed: 10/08/2024. 
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years.36 The final rule, issued by the Federal Reserve Board, the Federal Deposit Insurance 

Corporation, and the Office of the Comptroller of the Currency, is the first update to CRA 

regulations since 1995. Once effective, the final rule indicates that 10 percent of a large 

bank’s CRA grade will be determined by a Retail Services and Products Test, and that the 

use of alternative credit scores, SPCPs, and other credit products that assist low- or 

moderate- income individuals with purchasing a home could be considered responsive 

credit products under that test.37 

Appendix A.2. Machine learning adoption 

The second major challenge to dual adoption of ML and group-specific lending 

thresholds is the risk, expense, and uncertainty surrounding the use of ML models in credit 

underwriting. While sophisticated ML models are pervasive in fintech lending, banks and 

other traditional lenders have proceeded more cautiously when considering the use of ML 

models for credit risk assessment. The use of ML models has made significant inroads into 

certain credit products, such as credit cards and unsecured consumer loans, and are also 

used in automotive and small business lending (FinRegLab, 2021). Overall, banks appear 

to be in the early stages of adopting ML in credit underwriting. This is partly due to the 

number of ways in which ML models complicate internal model development and 

governance processes, as well as lenders’ ability to satisfy their legal and regulatory 

requirements. ML models require technical expertise that may not exist at a traditional 

lender, as well as the ability to absorb implementation costs to purchase and build 

computing infrastructure (FinRegLab, 2021). 

A 2021 report by FinRegLab indicated that broader acceptance and use of ML models 

is also hindered by a variety of risk and trustworthiness concerns, including model risk 

management, fair lending, model transparency and explainability, and the ability to 

 
36 See https://www.federalreserve.gov/aboutthefed/boardmeetings/frn-cra-20231024.pdf. Last accessed: 

10/08/2024. 

37 According to the final rule, a bank with more than $2 billion in assets would be classified as a large 

bank and be evaluated under four performance tests, including the Retail Services and Products Test. 

https://www.federalreserve.gov/aboutthefed/boardmeetings/frn-cra-20231024.pdf
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generate adverse action notices, as required by law (FinRegLab, 2021). 38 While a 

discussion of these challenges is outside the scope of this paper, it is important to recognize 

that some lenders — both nonbank fintechs and traditional lenders — are currently using 

ML models in a variety of lending decisions that potentially affect millions of individuals, 

but that uncertainty remains, in no small part because of the complexity of ML models and 

the uncertainty as to how these models fit into existing legal and regulatory frameworks. 

Appendix A.3. Dual adoption strategy 

The possibility of dual adoption of group-specific lending thresholds and ML models 

seems unlikely to occur overnight, given the challenges of fair lending law and ML 

adoption. However, there may be an opportunity for lenders and regulators to leverage the 

provision of the SPCP to learn more about the effects of ML-based credit decisions on 

lending fairness in a well-defined space in which fairness is a primary objective. Such an 

arrangement would almost certainly require additional regulatory guidance from the CFPB 

and perhaps an interagency group of regulators to ensure that lenders would be undertaking 

no additional risk by participating in a compliant dual adoption program. Under such an 

arrangement, lenders might also be encouraged to refine their group-specific lending 

thresholds, examining classifications based not only on LMI neighborhoods but also on 

LMI income cut-offs, census tract-based racial and ethnic concentrations, and minority 

and women-owned businesses. 

The adoption of group-specific lending thresholds needn’t be limited to lenders that 

have yet to adopt ML underwriting models. Within the group of lenders that have already 

made the transition from regression-based models to ML credit underwriting models — 

particularly lenders with a mission of reaching underserved populations — lenders could 

be encouraged to design and adopt their own SPCP. To understand and fully characterize 

the gains from dual adoption, these lenders would need to establish a benchmark. For 

example, lenders could score credit applicants with both a machine learning model and a 

 
38 The ECOA requires lenders to disclose up to four reasons why an individual was denied credit or 

received less favorable credit terms on an existing loan or credit arrangement. 
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legacy regression model. Likewise, fintech lenders that have been using ML models since 

their inception might benchmark against a previous version of their model, a regression-

based model, or a model without alternative data. 
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Appendix B. Predictive model details 

This section describes our modeling pipeline in more detail relative to Section 3. First, 

we select the relevant class of models. Second, we set up the inputs: selecting the LHS 

variable, setting up rolling windows, and performing RHS variable selection (using lasso 

regression) and preprocessing via binning. Finally, we train our models, tune their 

hyperparameters, and evaluate their performance. We perform lasso variable selection and 

tune and train the logistic model using the R library glmnet (Friedman et al., 2010). We 

tune and train the XGBoost model using the R library tidymodels (Kuhn and Wickham, 

2020) with xgboost backend (Chen and Guestrin, 2016). The details of the pipeline are 

provided below. 

Appendix B.1. Model selection 

We predict the consumer repayment status using two models: logistic regression with 

ridge regularization (referred to simply as logistic model) and eXtreme Gradient Boosting 

(XGBoost).39 Ridge logistic regression represents the class of linear models that have been 

commonly used for credit scoring in the last few decades, whereas XGBoost represents 

non-linear models that are being increasingly used for credit scoring today. We refer to the 

output of our predictive models as a credit score. Logistic regression with ridge 

regularization includes a penalty on the sum of squared coefficients, shrinking them closer 

to zero (but not to zero) in order to avoid overfitting, as in Hoerl (1962). Ridge produces 

familiar coefficients with readily interpretable coefficients — while allowing for large 

numbers of input variables and non-linear relationships with appropriate preprocessing 

(subsection Appendix B.4). Because we perform variable selection (subsection Appendix 

B.4) before fitting our model, ensuring that nearly all RHS inputs are relevant to predicting 

the LHS, Ridge regression is likely to outperform other linear regularization methods 

(James et al., 2023).40 

 
39 See Hastie et al. (2017) for an introduction to regularized linear models and gradient boosting. 

40 In untabulated results, we also evaluated the performance of lasso and elastic-net regularization and 

found that ridge regularization is empirically superior. 
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XGBoost is a tree-based algorithm, related to Random Forest and decision trees (Chen 

and Guestrin, 2016). Decision trees split the dataset based on RHS variables and predict a 

specific LHS variable value for each split. For example, consumers with two or three credit 

card accounts but without a mortgage are assigned one probability of default, while 

consumers with a single credit card and a mortgage are assigned another probability, and 

so on. Random forests average many decision trees (Breiman, 2001). XGBoost instead 

estimates trees sequentially, with each new tree focusing on examples that the previous 

one fit poorly. XGBoost naturally incorporates a wide range of non-linear relationships. 

Interpretability is not as readily obtainable as in regularized linear models, but various 

measures of variable importance can be calculated. XGBoost is prone to overfitting 

training data — a pitfall we address in Appendix B.3 and Appendix B.5. 

Appendix B.2. LHS variable: Definition of non-default and default 

We define our prediction target, non-default, as a binary variable that is equal to 1 if 

the consumer is not in the state of default within two years starting next quarter. We define 

the state of default as being 90 or more days past due on at least one of the accounts.41 

Table 1 breaks down the percentage of consumer-quarters in the data by their current 

payment status and future default rate. As discussed previously, we only include presently 

current consumers in our main analysis. Rates for other groups are for reference. 

Appendix B.3. Rolling window setup 

Credit-scoring models are typically updated over time as the data-generating process 

evolves. Both the way some of the variables are reported and the relationship between 

RHS variables and default can change over time. To account for this, we estimate our 

model in a rolling window fashion. Each model is trained on eight quarters of data and 

used to obtain out-of-sample predictions on another eight quarters of data. The window is 

 
41 We choose non-default as the event state rather than default for stylistic reasons. In some sections of the 

paper, we focus on the elements of the confusion matrix such as true positives and false positives. 

Choosing non-default as the event aligns the meaning of positive as beneficial as in positive test, 

facilitating the communication of results. 
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rolled for eight quarters at a time. The first model is trained on data from 2000Q1 to 

2001Q4 and evaluated on the period from 2004Q1 to 2005Q4. The gap between the 

training and evaluation samples is needed to obtain the payment status for all training 

sample consumers. The gap period becomes the training period for the next window. Table 

B4 shows the training, gap, and evaluation quarters for all eight windows. All results 

reported below are based on fully out-of-sample results — that is, only in the evaluation 

windows. 

Appendix B.4. Variable selection and processing 

To reduce the computational cost of training the models and to combat overfitting, we 

perform a variable selection procedure that is separate from model training. 

We begin by manually inspecting all variable definitions in the CCP and select 457 

variables that conceptually can be used in a credit scoring model. These variables cover 

things such as balances, utilization, performance, inquiries, age of accounts, and number 

of trades. There are variables aggregating these metrics across all account types and for 

specific trade types (mortgages, auto loans, credit cards, personal loans, etc.). There are 

both contemporaneous measures and those that look back across the prior three to 24 

months. See Appendix C for more detail on the set of variables used in our models after 

the variable selection step described below. 

We then bin the variables because many have a large fraction of missing values and/or 

are mixed-type variables (for example, the variable % of bankcard accounts always paid 

as agreed can include either a continuous percentage value or a special value 

corresponding to no relevant accounts). We use supervised discretization via recursive 

partitioning (Hothorn and Zeileis, 2015). 

Next, we perform variable selection using lasso regularized regression. Lasso applies 

a penalty on the sum of absolute values of the coefficients (Tibshirani, 1994). Such a 

penalty assigns zero to a large number of coefficients, making lasso useful for variable 

selection (James et al., 2023). We choose the smallest regularization value that results in 

100 variables having at least one bin with a non-zero coefficient. 
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Appendix B.5. Hyperparameter tuning and training 

For the logistic model, the only hyperparameter is regularization strength. We choose 

it by performing a five-fold cross-validation over the training sample (Hastie et al., 2017). 

The final model is then estimated on the full training set. 

For XGBoost, we tune nine different hyperparameters that affect the complexity of the 

model. 42  Tuning these parameters is crucial for regularization and performance. We 

perform a grid search across a sample of potential combinations of parameters, with 

bounds based on Blattner and Nelson (2021). To help prevent the XGB model from 

overfitting, we employ early stopping for both hyperparameter tuning and model 

training.43 

Because of its nonlinear nature, XGBoost is much more sensitive to the way the 

validation set is chosen than the logistic model. We use the first quarter of the training set 

corresponding to a given rolling window to estimate models with all sets of candidate 

hyperparameters and pick the optimal set using the performance on the last quarter of the 

training set. This way, the chosen set of hyperparameters are more robust to changes in the 

underlying data-generating process over time. The final model is estimated on the full 

training set. 

  

 
42 Specifically, we tune the number of trees, tree depth, number of predictors for individual trees, 

minimum number of observations in a node, minimum loss reduction required to make a split, sample size 

for individual trees, and learning rate. 

43 Early stopping causes the model to cease training when the log-loss on a holdout set doesn’t improve for 

a specific number (in our case, 10) of iterations (additions of a new tree) in a row. 
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Table B.4: Rolling window setup. These subsets of quarters are used to train and evaluate the logistic 

and XGBoost credit-scoring models and to compute lending thresholds. Training quarters are used 

for variable selection, hyperparameter tuning, and model training. Gap quarters are needed to 

compute default for the training quarters. The trained model is used to produce out-of-sample 

predictions of consumer default on evaluation quarters. Default is defined as being more than 90 days 

past due on any credit account within a two-year period starting with the next quarter. A training set 

is also used to compute lending thresholds that are applied to the evaluation quarters out-of-sample. 

 

 

Window Training quarters Gap Evaluation quarters 

1 2000Q1–2001Q4 2002Q1–2003Q4 2004Q1–2005Q4 

2 2002Q1–2003Q4 2004Q1–2005Q4 2006Q1–2007Q4 

3 2004Q1–2005Q4 2006Q1–2007Q4 2008Q1–2009Q4 

4 2006Q1–2007Q4 2008Q1–2009Q4 2010Q1–2011Q4 

5 2008Q1–2009Q4 2010Q1–2011Q4 2012Q1–2013Q4 

6 2010Q1–2011Q4 2012Q1–2013Q4 2014Q1–2015Q4 

7 2012Q1–2013Q4 2014Q1–2015Q4 2016Q1–2017Q4 

8 2014Q1–2015Q4 2016Q1–2017Q4 2018Q1–2019Q2 
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Appendix C. Variables 

As described in Section 3, for each training window, we start with 457 variables from 

the Federal Reserve Bank of New York Consumer Credit Panel/Equifax data (CCP) and 

then perform variable selection using lasso regression. This process results in the 100 

variables used in each window’s models. In this section we provide summaries of these 

variables — in terms of both specific fields and categories of variables. 

For this exercise, we have classified input variables in two ways: by variable type — 

what credit behavior or attribute does the variable measure — and by loan type. Variable 

categories are as follows. 

• Delinquency — contemporaneous or lagged payment history relative to required 

payments 

• Number or share of accounts — count or share of accounts for a given account type 

• Balance — outstanding balance 

• Account age — number of months since account opening 

• Utilization — percent of total available credit in use 

• Credit inquiries — number of times lenders have pulled the customer’s credit file, a 

measure of credit demand 

• Collections — number or amount of loans in collection 

 

• Payments — amount customer paid back on a given loan type 

• Bankruptcy — has customer recently been in (any type of) bankruptcy 

• Derogatory events — enumerates derogatory events, such as foreclosure or charge-

off 

• Credit limit — credit limit for given loan type 
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Loan types are as defined by the FRBNY CCP staff report by Lee and van der Klaauw, 

2010. 

• All — all accounts 

• Revolving — all revolving accounts 

• Installment — all installment accounts 

• Bankcard — credit card accounts for banks, bankcard companies, national credit 

card companies, credit unions, and savings and loan holding associations 

• Retail — credit card accounts for clothing, groceries, department stores, home 

furnishings, gas, etc. 

• Department Store — subset of retail 

• Mortgage — close-ended loans secured on property 

• Student loans — loans to finance educational expenses 

 

• Auto — loans taken out to purchase a car, including auto bank loans (provided by 

banking institutions) and auto finance loans (provided by automobile dealers and 

automobile financing companies) 

• Consumer Finance — sales financing and personal loans 

• Home Equity Revolving — home equity loans with a revolving line of credit with a 

credit limit 

Given that we perform variable selection independently for each training window, our 

credit-scoring models consider slightly different variables depending on the window. That 

said, there are 28 variables shared across all training windows. We describe these variables 

in table C.7. Measures capturing contemporaneous and recent delinquency, utilization, and 

credit demand (via inquiries) account for more than half of these variables. Variables that 
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span across all account types also cover more than half the list, with aggregates across 

revolving accounts making up another 20 percent. 

We also look across all eight training windows and create an aggregate share by 

variable and loan type — with weights determined by the total frequency across windows. 

In table C.5, we aggregate by variable type. We find that 40 percent of all variables track 

contemporaneous and recent delinquency, followed by another 14 percent that track the 

total number of accounts. Table C.6 shows that 42 percent of all the variables considered 

aggregate across all of an individual’s loans. In total, revolving credit, as measured by 

revolving, bankcard, department store, and retail trades, cover an additional 38 percent. 
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Table C.5: Share of Variables by Type of Variable 

Variable Type Share of Variables 

Delinquency 40% 

Number/% of Accounts 14% 

Balance 9% 

Account Age 8% 

Utilization 7% 

Credit Inquiries 6% 

Collections 5% 

Payments 5% 

Bankruptcy 3% 

Derogatory Events 3% 

Credit Limit 1% 

 

 

Table C.6: Share of Variables by Account Type 

Account Type Share of Variables 

All 42% 

Revolving 19% 

Bankcard 13% 

Installment 7% 

Mortgage 4% 

Department Store 3% 

Student Loan 3% 

Retail 3% 

Auto 2% 

Consumer Finance 2% 

Home Equity Revolving 1% 
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Table C.7: Variables Selected via Lasso in All 8 Training Windows 

Description Variable Type Account Type 

Num of inquiries w/in 3m Credit Inquiries All 

Num of inquiries w/in 12m Credit Inquiries All 

Num of inquiries w/in 24m Credit Inquiries All 

Age oldest acct Account Age All 

Age oldest bankcard acct Account Age Bankcard 

Age oldest revolving acct Account Age Revolving 

Bal open finance/student loan w/updt w/in 3m Balance Student Loan 

Credit limit, revolving acct w/updt w/in 3m Credit Limit Revolving 

Total past due amount Delinquency All 

Num 30 DPD occur w/in 12m, revolving acct Delinquency Revolving 

Num 30 DPD occur w/in 24m, installment acct Delinquency Installment 

Num 120-180+ DPD occur w/in 24m Delinquency All 

Num open retail acct w/updt w/in 3m ≥ 50% util 
Utilization Retail 

Num open revolving acct w/updt w/in 3m ≥ 50% util 
Utilization Revolving 

Num open bankcard acct w/updt w/in 3m ≥ 75% util 
Utilization Bankcard 

% acct opened w/in 6m to all acct Num/% of Acct All 

% acct opened w/in 12m to all acct Num/% of Acct All 

% revolving acct opened w/in 12m to all rev acct Num/% of Acct Revolving 

Utilization, open bankcard acct w/updt w/in 3m Utilization Bankcard 

Utilization, open revolving acct w/updt w/in 3m Utilization Revolving 

% bal to total loan, installment acct w/updt w/in 3m Balance Installment 

% acct always satisfactory Delinquency All 

Bankruptcy w/in 24m Bankruptcy All 

3rd party collection amount, w/in 12m Collections All 

3rd party collection amount, w/in 24m Collections All 

3rd party collection amount, total Collections All 

% acct always satisfactory, w/in 6m Delinquency All 

% inquiries 3m to inquires 12m Credit Inquiries All 
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Appendix D. Details of λ calibration 

As discussed in Section 3.1.1, we calibrate the λ value, which represents the ratio of 

the average cost of default to the average five-year profit earned on non-defaulting loans, 

using account- and portfolio-level administrative data from the Federal Reserve Board’s 

Capital Assessments and Stress Testing report (Y-14M).44 Our calculations closely follow 

the methodology of Agarwal et al. (2014). 

We use both account- and portfolio-level credit card data because some revenue and 

cost measures are not observed at the account level. These include all expenses as well as 

interchange income. In addition, because the Y-14M data does not include marketing and 

acquisitions expenses, we augment it with portfolio-level data from the Office of the 

Comptroller of the Currency (OCC) running from 2008 to 2013. To scale portfolio-level 

expenses down to the account level, we follow Agarwal et al. (2014) and assume that 

revenues and expenses we don’t observe at the account level broadly scale with either 

balances or purchase volume. We first compute monthly lender-level ratios and then apply 

them to individual accounts by multiplying by the average daily balance (ADB) or the total 

purchase volume. 

The five-year profit calculation (approximating the lifetime profit) is a present value 

discounted version of the account-level profit calculation. The formula for profit is defined 

as: 

Profit(Loss) = Total Income − Total Expenses − Net Charge-Off Amount 

 

Total Income is calculated as follows: 

 
44 For more information about the Y-14M, refer to 

https://www.federalreserve.gov/apps/reportingforms/Report/Index/FR_Y-14M. Last accessed: 10/08/2024. 
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Total Income = Finance Charges + Total Fees + Net Interchange Income, 

where: 

• Finance Charges are observed directly in the account-level data. 

• Total Fees include late, over limit, insufficient funds, cash advance, balance transfer, 

annual or monthly membership, and debt suspension fees, and are also from the 

account-level data. 

• Net Interchange Income is computed based on a Net Interchange Income ratio. This 

ratio is the sum of interchange income, interchange expense, rewards expense, and 

fraud expense, all divided by month-end managed receivables. However, since this 

factor should scale with purchases rather than balances, which can include fees and 

finance charges, we multiply it by the ratio of balances to purchases before scaling 

it by account-level monthly purchases. The balances-to-purchases ratio is computed 

using the monthly account-level Y-14M data and is the ratio of total ADB to total 

purchases at the lender level. 

Total Expenses are computed as follows: 

Total Expense =Interest Expense + Collections Expense+ 

Marketing and Acquisition Expense + Other Expenses, 

where each component is calculated as follows: 

• Interest Expense is computed using an Interest Expense ratio, the ratio of interest 

expense to month-end managed receivables. The monthly account-level interest 

expense is the product of ADB and the Interest Expense ratio. 

• Collections Expense is computed using a Collections Expense ratio, the ratio of 

Collections Expense to month-end managed receivables. The monthly account-level 

Collections Expense is the product of ADB and the Collections Expense ratio. 



 

65 

• Marketing and Acquisition Expense is computed using a factor of 0.000723, the 

long-run mean of the bank-level ratios of the expense to total ADB, computed using 

the OCC data. This factor is applied to the monthly ADB at the account level. For 

example, an account with a $1,500 ADB would be associated with $1.08 in monthly 

marketing and account acquisition expenses. 

• Other Expenses is computed using the ratio of Other Expenses to month-end 

managed receivables, applied similarly to the previous expense categories. 

According to Y-14M documentation, the Other Expenses category includes 

servicing, billing, processing interchange and payments, issuing cards, 

authorizations, and outside services. The Other Expenses ratio is the ratio of Other 

Expenses to month-end managed receivables. Monthly account-level Other Expense 

is the product of ADB and the Other Expenses ratio. 

Net Charge-Off amount is computed as follows: 

Net Charge-Off Amount = Gross Charge-Off Amount − Recovery Amount. 

Actual gross charge-off amounts are included in account-level profit calculations. The 

charge-off amount is reduced by any recoveries the lender receives during the 12 months 

following the charge-off. Net Charge-Off Amount equals 0 for all non-defaulting accounts. 

Future cash flows are discounted back to the year of account origination using a 

discount factor of 10 percent (Kovner and Van Tassel, 2021). 

Finally, λ is computed as follows: 

𝜆 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠 (𝑐ℎ𝑎𝑟𝑔𝑒−𝑜𝑓𝑓 𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑓𝑖𝑡 (𝑛𝑜𝑛 𝑐ℎ𝑎𝑟𝑔𝑒−𝑜𝑓𝑓 𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠)
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Appendix E. Robustness to including borrowers currently in default 

As discussed in Section 2.2, our main sample excludes consumers currently in default. 

Here we present a robustness check that tests sensitivity of our main results to this sample 

selection strategy. 

To accommodate this change, we trained separate logistic and XGB models specifically 

for individuals in this category. 45  After training the models, we map the scores into 

probabilities using isotonic regression and combine the outputs of the models trained on 

currently current and currently in default samples. The rest of the analyses proceed in the 

same way as before. 

Table E.8 presents the fairness–profit trade-offs for λ ranging between 1 and 11. The 

comparison with Table 4, which is based on the main sample selection strategy that 

excludes individuals currently in default, suggests that including them leads to 

qualitatively and quantitatively similar results.  

 
45 Training a single model for currently current and currently defaulted individuals leads to extreme out-

performance of the logistic by XGB on the currently in-default sub-sample, skewing the overall 

performance statistics. 
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Table E.8: Fairness–profit trade-offs at different levels of fairness constraints and λ (profit 
trade-off of good to bad loans), sample including individuals currently in default. Profit is 
calculated as Pr = TP − λ × FN, where TP is the number of true positives, FP is the number 
of false positives, and λ corresponds to the monetary loss associated with a loan that is not 
repaid relative to a gain from a loan that is repaid. We normalize profit by the profit of the 
logistic model with no fairness constraints. The positive outcome is non-default within the 
next two years. Fairness, or ∆TPR, is the difference in TPR between the LMI and non-LMI 
groups. TPR is defined as TP/(TP+FN), where TP are the true positives and FN are the 
false negatives. Individuals in low- and moderate-income (LMI) census tracts are 
identified using a dataset produced by the FFIEC, based on U.S. Census Bureau data. The 
labels Strong, Medium, Weak, and Blind represent different strengths of the fairness 
constraint. (See Section 4.5 for definitions.) 
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Appendix F. Potential pricing implications of model improvement and fairness constraints 

 

In this section, we discuss the potential implications of credit scoring model 

improvement and fairness constraints for loan pricing. While the pricing decision is as 

equally important as the loan-granting decision, the pricing information is generally not 

available in the CCP. To address this limitation, we introduce an additional dataset that 

allows us to estimate a mapping from the probability of default to the price of a first 

mortgage. We are then able to simulate a scenario in which all consumers applied for a 

mortgage in a nationally representative market. The HMDA-McDash-CRISM dataset46 

contains data on both mortgage pricing and borrower delinquency and default. Using these 

data, we are able to assign interest rates to individuals based on their probability of default 

implied by our credit-scoring models. 

We first argue that changes in loan pricing resulting from improvements in credit 

scoring models are likely to be small, since the changes in default probabilities due to such 

improvements are generally modest. Then we turn to examining the potential loan prices 

faced by consumers who only receive loans after the introduction of fairness constraints. 

We contend that fairness constraints are compatible with only a limited effect on loan 

pricing, as the probability of default among consumers who benefit from them does not 

warrant sharp price increases. 

Appendix F.1. Data processing 

Our goal is to estimate the mortgage interest rates that consumers might receive from 

a lender using the Logistic and XGB credit scores estimated in this paper.47 There are two 

 
46 HMDA-McDash-CRISM is a combination of several sources of anonymized data: Home Mortgage 

Disclosure Act (HMDA) data, Black Knight McDash data, and a credit bureau dataset, Equifax Credit 

Risk Insight Servicing data, that is linked to the McDash data (known as CRISM). Both CRISM and the 

merged HMDA-McDash-CRISM datasets are anonymized. The combined dataset covers more than 60 

percent of the U.S. mortgage market (in some years as much as 80 percent). 

For more information see Gerardi et al. (2021). 

47 We use the exact same models as described in section 3, which use the data (a lasso-selected subset of 

100 variables out of 457 available variables) as described in section 2. We do no new training and add no 
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key intermediate steps. First, we convert the VantageScore credit score available in the 

HMDA-McDash-CRISM dataset that only covers matched consumers with mortgages to 

the ex-post default probability. This allows us to put the credit score available in the 

HMDA-McDash-CRISM dataset on the same scale as the credit scores we computed using 

the CCP, since we also can convert them to default probabilities. Second, we map the 

default probability to the mortgage rates. 

We process the HMDA-McDash-CRISM matched dataset in the following way. First, 

we apply a series of filters to isolate loans meeting specific criteria. Loans are filtered to 

first lien only, with no more than six months of seasoning and a confident match. We 

exclude borrowers in default on any loan at the time of origination. Then we compute a 

forward-looking variable of default (on any product, not only the mortgage) within two 

years of the mortgage origination.48 Then, we map the VantageScore credit score to the 

probability of default using isotonic regression.49 This allows us to map interest rates to 

the ex-post probability of default to the Vantage score and our model scores. We apply that 

mapping to the probabilities of default associated with the logistic and XGB models 

obtained, again, using isotonic regression. That gives us our main object of interest: 

estimated mortgage rates likely to be offered to the borrowers based on their estimated 

credit score. 

We choose to combine different types of loans in our interest rate estimation rather than 

focusing on a single product, such as a 30-year fixed-rate mortgage. Thus, our estimated 

rates reflect the interest rate on the mortgage loans that consumers with a given probability 

of default are most likely to receive when access to credit is expanded.50 

 
new data. We score the relevant customers using the pre-trained models and run the pricing analysis 

forward from there. 

48 We define default the same as we do for CCP, being more than 90 days past due on any loan product. 

49 All isotonic regressions are run separately for each rolling window used in the estimation of our main 

models. 

50 In untabulated analyses, we confirm that all the results discussed here also hold if we focus on any 

fixed-rate loans or exclusively on 30-year fixed-rate mortgages. The interest rate spreads in these 

alternative analyses are smaller and the price impact is even more muted than in our main analysis. 
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Appendix F.2. Analysis 

To obtain insights about potential pricing implications based on the default 

probabilities of consumers granted credit, we assume that pricing decisions are closely 

linked to the default probability.51  Our proposed policy links model improvement and 

fairness constraints, and both parts of the policy impact the probability of default of 

consumers granted credit: Model improvement does so by directly re-estimating the 

probabilities, and fairness constraints do so by expanding the number of people who 

receive the loans in LMI areas and granting loans to people with a higher probability of 

default than before. We examine the pricing effects of both in turn. 

We begin by analyzing the impact of model improvement on loan pricing. Table F.9 

provides insights into the creditworthiness of individuals in different income groups, as 

measured by their probability of default. The table shows that a higher percentage of 

people in the non-LMI group benefit from model improvement by being assigned a lower 

probability of default than before: 68 percent of non-LMI consumers benefit compared 

with 61 percent of LMI consumers. Therefore, the non-LMI group is expected to benefit 

more in terms of loan pricing. 

The table also indicates that less than half of the individuals in the lowest quartile of 

creditworthiness are likely to benefit from model improvement. Moreover, those 

belonging to the LMI group are more likely to fall into this category. However, this is not 

necessarily a negative outcome, as the ∆%TP and ∆%FP columns show that more people 

belong to the TP group under the XGB model, while fewer people belong to the FP group. 

This means that the decreases in the probability of default are concentrated among the 

defaulters, for whom the negative effects of higher perceived default probability are 

 
51 More generally, mortgage pricing decisions are a function of the default risk, the prepayment risk, and 

the opportunity cost. While we don’t take the prepayment risk into account directly, differences in 

prepayment rates are unlikely to affect pricing below the threshold. Recent research shows that subprime 

and minority groups are less likely to refinance mortgage debt (see Lambie-Hanson and Reid 2018; 

Gerardi et al. 2021, Gerardi et al. 2023). If prepayment risk decreases with credit score, lenders are less 

likely to demand higher prepayment premiums below the non-LMI threshold than just above it. 
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partially offset because they are likely to face default penalties if granted the loan, resulting 

in even lower access to credit in the future.52 

Table F.10 illustrates how changes in the probability of default translate to estimated 

interest rate spreads. The results show that, congruent with the improved accuracy of the 

XGB model, interest rate spreads for the XGB model are better than those for the logistic 

model for both groups. The improvement is larger for the non-LMI group, but the 

differences in improvement are small: The non-LMI group improves from -0.010 percent 

to -0.041 percent, while the LMI group improves from 0.042 percent to 0.016 percent. This 

finding contrasts with the results of Fuster et al. (2021) for the mortgage market, where 

they find negative effects on pricing among minorities. However, both their results and 

ours are measured in basis points, so they are very small in magnitude. 

Next, we move on to examine the potential pricing implications of fairness constraints 

for consumers who only receive loans after the constraints are introduced. We show that 

the probability of default of the new consumers justifies only relatively modest price 

increases. To conduct this analysis, we focus on the predictions of the XGB model for the 

LMI group, and we assume that consumers who receive the loans under the single-

threshold policy receive them with the same interest rate as in the blind case. 

Figure F.8 illustrates the distribution of the estimated interest rate spreads faced by 

consumers who always receive the loan and consumers who only receive loans under the 

strong fairness constraint. The results show no sharp discontinuities in rates for the newly 

granted loans. The median new borrower pays only 5 basis points more than the maximum 

rate charged to the borrowers in the always-granted group, and 20 basis points more than 

the borrowers in the 75th percentile. The whole spread between the 100th percentile of the 

 
52 This does not hold in the expected value for every individual with a high probability of default. Very 

risky borrowers who are granted credit owing to an inaccurate prediction from a model benefit if they do 

not end up defaulting. This is especially true in the mortgage market, where the benefits of 

homeownership can be substantial. 
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always-granted group and the 100th percentile of the newly granted group is smaller than 

the spread between the 75th and 100th percentiles of the always-granted groups.53 

Overall, we find suggestive evidence that the impact on pricing of combining model 

improvement with fairness constraints for new borrowers can be small. This is because the 

probability of default for borrowers who are granted credit under different scenarios is 

relatively modest, leading to only minor differences in spreads in the observable mortgage 

market.  

 
53 In addition to our main specification, which uses all HMDA-McDash-CRISM loans to estimate interest 

rates, these result hold qualitatively in untabulated analyses that use only fixed-rate loans and only 30-year 

fixed-rate loans. The alternative specifications lead to tighter spreads and reduced price impact. 
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Figure F.8: Comparison of the quartiles of the estimated Interest Rate Spread for 
consumers in LMI areas who are granted loans without fairness constraints and consumers 
who are only granted loans when strong fairness constraints are introduced. This analysis 
is for mortgages only. The spread between the 100th percentile of the always-granted group 
and the 100th percentile of the newly granted group is smaller than the spread between the 
75th and 100th percentiles of the always-granted group. The Interest Rate Spread is 
defined as the estimated mortgage interest rate for a given level of probability of default 
minus the average estimated mortgage interest in a given quarter. The mapping between 
the probability of default and the interest rate is estimated using the HMDA-McDash-
CRISM matched dataset. The spread is based on the probability of default estimated by 
the XGB model. Individuals in low- and moderate-income (LMI) census tracts are 
identified using a dataset produced by the FFIEC, based on U.S. Census Bureau data. 
Default is defined as being more than 90 days past due on any credit account within a two-
year period starting with the next quarter. 
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Table F.9: Creditworthiness by model and income group. The table compares 
creditworthiness between the XGB and logistic models, showing the percentage of the 
group with lower estimated probability of default. Non-LMI consumers benefit more from 
the model improvement (68 percent) than LMI consumers (61 percent). The lowest 
creditworthiness quartile has less than 50 percent of members with increased 
creditworthiness. However, more belong to the true positive group and fewer to the false 
positive group under the XGB model, which offsets negative effects for defaulters. 
Individuals in low- and moderate-income (LMI) census tracts are identified using a dataset 
produced by the FFIEC, based on U.S. Census Bureau data. Default is defined as being 
more than 90 days past due on any credit account within a two-year period starting with 
the next quarter. 

 % Better % of the Group ∆%TP ∆%FP               

Q of 

C/w LMI non-LMI LMI non-LMI LMI non-LMI LMI non-LMI 

All 61 68 100 100 0.449 0.290 -0.203 -0.092 

1Q 47 49 36 22 1.823 2.652 -0.377 -0.073 

2Q 51 54 27 25 -0.735 -1.209 -0.248 -0.304 

3Q 77 79 20 26 -0.008 -0.006 -0.002 -0.001 

4Q 89 88 17 27 0.000 -0.001 -0.002 -0.001 
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Table F.10: Comparison of the Means and Standard Deviations of the Interest Rate Spread 

by area income level and model for creditworthy consumers. The creditworthiness is 

determined using our main specification of the lender decision function under the blind 

threshold policy. The Interest Rate Spread is defined as the estimated mortgage interest 

rate for a given level of probability of default minus the average estimated mortgage 

interest in a given quarter. The mapping between the probability of default and the interest 

rate is estimated using the HMDA-McDash-CRISM matched dataset. Individuals in low- 

and moderate-income (LMI) census tracts are identified using a dataset produced by the 

FFIEC, based on U.S. Census Bureau data. Default is defined as being more than 90 days 

past due on any credit account within a two-year period starting with the next quarter. 

 

 LMI non-LMI 

Mean IR Spread Logistic (%) 0.042 -0.010 

Mean IR Spread XGB (%) 0.016 -0.041 

St. Dev. IR Spread Logistic (%) 0.329    0.289 

St. Dev. IR Spread XGB (%) 0.350    0.310 
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