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Abstract

We develop a statistical learning model to estimate the value of vacant land for any parcel,

regardless of improvements. Rooted in economic theory, the model optimizes how to combine

common improved property sales with rare, but more informative, vacant land sales. It esti-

mates how land values change with geography and other features, and determines how much

information either vacant or improved sales provide to nearby areas through spatial correlation.

For most census tracts, incorporating improved sales often doubles the certainty of land value

estimates.
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1 Introduction

Valuing land accurately and objectively is possibly the most formidable technical barrier to taxing

land value (Mills, 1998). Sales of vacant land are rare, especially in built-up areas, where values

are the highest. Furthermore, vacant properties may be difficult to compare, since land values

can change considerably over short distances or periods of time (Ashley et al., 1999; Gloudemans

et al., 2002; Bell and Bowman, 2006). On the other hand, improved, i.e., non-vacant, properties

sell much more frequently, but are even more difficult to compare. Such properties pair land with

improvements that range from a bungalow to a super-tall skyscraper.

Recent advances in data science and statistical methods may mitigate many challenges to valuing

land when properly applied. Our goal here is to optimally combine large numbers of improved

property sales with small numbers of vacant property sales to provide a credible prediction of what

price any lot would be worth if it were vacant. In the process, we learn more what share of an

improved property’s value is due solely to its land.

The statistical learning approach we develop here is unique in how it values vacant and improved

lots jointly, making use of their overlapping locations. This method can be applied in many settings

as the data required are available to most assessors. Assessors commonly make subjective judgments

as to what vacant lots are comparable to an improved lot. In contrast, the statistical learning

approach determines what lots are comparable more objectively, based on how well the value

of vacant and improved lots predict each other’s values throughout the data. Furthermore, this

learning approach accounts for idiosyncrasies that make any one transaction price less than fully

representative of the underlying value of a property. It attempts to filter out the noise in a sale

from the underlying signal about the property’s true value.

In principle, our empirical model allows for a general and flexible form of land values over

space. This non-parametric technique resembles others based on moving averages, kernel density,

or Kriging.1 What makes our model different from others is that it simultaneously models a vacant

land-value function with an improved property-value function, estimating the two correlated non-

parametric functions jointly. Thus, it efficiently uses data from improved sales to help fill in the

often large spatial gaps between vacant sales. This joint estimation greatly improves the efficiency

of land value estimates. In our example below, the extra information contained in the improved

sales data reduces estimation uncertainty by over 50 percent.

1For an early example of semi-parametric techniques used to value land, see Thorsnes and McMillen (1998)
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The empirical model uses a multilevel Bayesian framework that constructs a posterior distribu-

tion of unknown parameters, estimated through the Markov chain Monte Carlo method (MCMC).

These parameters have a hierarchical structure. A large number of lower-order parameters describe

the land value surface. These are generated from a conditional distribution, which depends on

a smaller number of higher-order hyper-parameters. These hyper-parameters teach us about the

abstract qualities of land values, and how they interact with improved property values.

This framework is practically useful for several reasons. First, the MCMC posterior simulator

we develop — a variant of a Gibbs samplers — works quite well for a large model with over 900

parameters.2 Second, it offers a convenient yet coherent way to construct a full predictive distribu-

tion that accounts for parameter uncertainty. This allows one to characterize uncertainty around

the land values predicted by the model. It also provides safeguards around issues of “overfitting”

from using too little data to identify too many parameters. Relatedly, it allows for “shrinkage”

methods that reduce the influence of outliers on estimates of individual parcels (e.g., Albouy et al.

(2018)).3

2 An Econometric Model of Land Values

2.1 The underlying value of land

The model centers around a vacant land value index r, which may be used to value any plot i.

Fundamentally, this value depends on location, lot characteristics, and legal and other institutional

factors, which might affect development opportunities. It should also depend on time, although

our current application does not do so. The value of the location includes its proximity to places of

work as well as the neighborhood amenities it provides access to. Lot characteristics may include

its size, as well as dimensions. Legal and institutional factors include regulations such as zoning.4

To ease exposition, consider the following linear model, similar to Epple et al. (2010):

ri = δr0 + δr1di + δr2Ai + ηrj ≡ (Zi)
′δr + ηrj (1)

2

3The only other application of Bayesian methods to land values is that of Ecker and Isakson (2005). This uses
Bayesian methods to estimate at what lot size the price-size function changes from convex to concave. Big data
techniques are innovated by Davis et al. (2017)

4The relevance of such factors is considered in work by Kok et al. (2014) and Gyourko and Krimmel (2021).
These characteristics may interact: when land is costlessly sub-dividable, the particular shape or size of a lot may
matter less than when there are barriers to subdividing them.



This Version: September 12, 2022 4

The term ηj represent “area effects,” indicating a discrete area where the lot is located. In Epple

et al. (2010), such areas refer to different municipalities; they may also represent geographically finer

neighborhoods, such as census tracts. These effects may capture both institutional features, such as

the efficiency of public services provided by the municipal government, as well as location features.

In the multilevel Bayesian framework, these area effects are not fixed effects, but are lower-order

parameters drawn from an underlying stochastic process determined by the hyper-parameters. In

addition, di is a metric for distance to a central location, which is meant to capture continuous

location effects within the discrete area. The term Ai contains the log acreage of the lot, along

with other lot characteristics. Together, all of these fundamental determinants of land values are

compiled into the vector Zi.
5

2.2 Information from transactions data

A key to understanding our statistical learning approach is that it assumes that every transaction

measures the true underlying value imperfectly. Each sale contains a signal of the true value,

obscured by noise. Let yvi be the observed transaction price of vacant lot i in logarithmic form. We

assume this price is determined by

yvi = ri + (Xv
i )′βv + evi (2a)

The added covariates in (2a) are

� Xv
i , potentially observable features of a vacant sale transaction that might affect the price,

such as seasonality or whether it was brokered or auctioned;

� evi , an error term which refers to all unobserved features of the transaction, including bar-

gaining abilities of the buyer or seller, or measurement error in the record.

In the end, what matters is that the index should be better at predicting an out-of-sample trans-

action — e.g. an adjacent location or even a later one in the same location — than the actual

5These observable variables may not map cleanly to the fundamental determinants of land values. Lot shapes
could be determined by differing legal restrictions within a municipality; lots further from the city center may
have services that make them more or less desirable. Note that while roughly two-thirds of census tracts in our
sample lie completely within municipal boundaries, in general, they are not coterminous. Some tracts span multiple
municipalities, although only 10 percent of tracts were less than 85 percent in a single municipality.
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transaction price we do observe. The transaction price of any comparable property is subject to

various idiosyncrasies which may obscure the correct land value.

Since we want ri to reflect underlying land values, the transaction characteristics in Xv
i should

be normalized to be zero to reflect the to be predicted. For instance, a tax assessor may desire

an arms-length, non-auction sale made in April. Adjustments should also be made so that evi may

be assumed to have a mean of zero, e.g. assuming the bargaining abilities are average, as are

recording errors. In principle, some variables in Xv
i and in Zvi might be exchanged, depending on

what variables one wants to include in the valuation of land. One may want to include or exclude

the presence of infrastructure or the (potentially improvable) quality of the terrain.6

While sales prices of vacant land likely inform us the most about true land values, they are

indeed much rarer than sales of improved properties. In the data, areas as large as a census tract

typically have no vacant transactions in a given year. Thus, the major innovation we provide is

to pair equation (2a) with a second equation for the transacted price of an improved lot, also in

logarithmic form, ymi :

ymi = φiri + (Xm
i )′βm + ui + emi (2b)

The determinants of improved land sales prices in equation (2b) are more varied and complex than

in (2a), but share many parallels:

� ri, the value of the vacant land itself, but in proportion to some rate φi. In theory, the

linear in logarithms formulation implies a Cobb-Douglas production function, where the φi

parameter represents the cost share of land in production, assuming non-land inputs do not

vary in price spatially. The subscript i indicates how this share could depend on features of

the property. It should be less than one, for all but truly vacant land.7

� Xm
i includes observable improvements on the land, such as the type of structure or built

square feet. Like Xv
i , it should also include features of the transaction. The point of this

term is merely to control for these observable features.8

6In practice, vacant land often has some minor private improvements such as grading or landscaping, although
these may not be particularly valuable to a new owner. Access to public improvements – water, sewage, roads,
electricity, etc. – does not pose any particular problems in valuing vacant land as such, particularly with regards to
land taxation.

7Evidence for a Cobb-Douglas relationship is seen in Thorsnes (1997), Epple et al. (2010), and Combes et al.
(2021). The relationship may be generalized to depend non-linearly on ri, viz., according to a function Φi(ri), such
as a a polynomial. For instance, a quadratic function φi1ri + φi2(ri)

2, would represent a Constant Elasticity of
Substitution (CES) form.

8In principle, the variables in Xv
i related to transactions, should be a subset of Xm

i
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� ui captures the determinants of improved property values outside of vacant land costs and

improvements. This is modeled using the same variables as in (1).

ui = (Zi)
′δu + ηuj (3)

For instance, we would expect tight land-use regulations to raise the price of improved sales

relative to vacant ones (Albouy and Ehrlich, 2018). For the purpose of valuing land, this is

largely a nuisance term, as it captures confounders from trying to estimate the land value

parameters δr and ηuj from improved property data.

� emi is the error term. It accounts for measurement error, as well as transaction characteristics.

In addition, it may reflect unobserved characteristics of an improved property, such as the

color of the exterior walls.

Because the price index in equation (2a) fixes the loading of ri to 1, it is meant to reflect the intrinsic

value of vacant land. After accounting for controls, observed vacant land sales vary proportionally

with the land value index ri. Improved sales should vary less, in proportion to φi, insofar as land

values are orthogonal with ui.

2.3 Identification

On their own, the identification requirements in estimating (2a) are fairly standard. These involve

properly specifying location and lot characteristics, while dealing with a moderate number of omit-

ted variables in evi . The larger challenge (and opportunity) lies in identifying the parameters in

equations (2b) and (3), especially the factor loading parameter φi. The estimable model acknowl-

edges that in the improved land sales ui is estimated jointly with φiri. In other words, the improved

sales data estimate the term mi = φiri + ui.

The parameters are identified by the fact that ui is not included in the equation for vacant land

sales. Identifying ri without vacant land data requires imposing some restrictions on the structure

of φi and on ui. For instance, a common rule-of-thumb method used to value vacant land imposes

a particular value for φi. e.g. 0.25, and assumes ui = 0. The key here is that we may use the

relationship between mi and ri to identify both φi and parameters in ui. This means that in lieu
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of estimating (2a) and (2b), the method effectively estimates the reduced-form equations:

yvi = (Zi)
′δr + ηrj + (Xv

i )′βv + evi (4a)

ymi = (Zi)
′δm + ηmj + (Xm

i )′βm + emi (4b)

Focusing on a single type of improved property, φi = φ, we have that the reduced-form δ parameters

obey

δm = φδr + δu (5a)

This equation reminds us that a challenge to estimating the effects of observable variables on vacant

land values is complicated by both the scaling factor, φ, and an additional component, δu. Similarly,

the area effects for improved properties are given by

ηmj = φηrj + ηuj (5b)

To identify φ, we assume that the additional term for the area effects includes an idiosyncratic

component orthogonal to the land component

ηrj ⊥ ηuj , (5c)

much like a random effect. In practice, we make no such assumption for δu and δr, although it is

possible in principle.

One way to understand how ηrj and ηuj work in (5b) is to decompose the area effects that

determine yvi and ymi into two orthogonal factors. The first orthogonal factor, ηrj , affects both vacant

and improved prices, and the second orthogonal factor ηuj is unique to improved lots. This exclusion

restriction is plausible as long as observed simultaneous increases in both yvi and ymi are entirely

attributable to an increase in the vacant land value, ηrj . This identification assumption excludes

any factor that affects the value of vacant land without affecting the value of improved properties.

Variation in the value of vacant land has to pass through to the value of improved properties, as

governed by the parameter φ. Thus, we assume there can be no systematic relationship between

how cities affect vacant values with how they affect improved values’ deviation from vacant values.9

9In principle, we could improve our estimate of φ using (5a) by assuming that δr operate like random effects,
if the orthogonality condition is warranted. It is entirely possible for these effects to be correlated. More desirable
municipalities, with higher land values in ηrj could have stricter building codes or zoning requirements, pushing up
ηuj .
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A violation of this restriction might occur if a factor that affects the productivity of construction

is correlated with the value of land. For instance, if areas with higher land values have restrictive

zoning that lower productivity, then the estimate of φ will be biased up. Higher land prices will

appear to push up housing prices more than they actually do if we fail to account for the higher

input costs created by restrictive zoning.

Note that if the aim is only to generate a good out-of-sample prediction about a transaction

price of vacant land (not the underlying value), yvi , then this identification assumption (5c) does

not play a role (at least under the linear-Gaussian assumption). Independence of ηrj and ηuj does

not affect the predictive performance, as φ will reflect the statistical dependence. The assumption

is needed to interpret ri and ui distinctly in economic terms.

2.4 Bayesian estimation methods and variance structures

Bayesian methods posit that each parameter in the model is known up to some quantifiable level of

uncertainty, modeled by a probability distribution. We begin with an extremely uninformative prior

knowledge on these parameters, and update these beliefs using the available data. This creates a

posterior distribution of parameters that is much more precise than the prior. As alluded to earlier,

these parameters have a hierarchical structure.

To simplify the mathematical exposition, we focus on the lower-order parameters that describe

the area effects, ηj . The hierarchical method draws the area effects, η, from a conditional distri-

bution, determined by a set of hyper-parameters, which themselves have their own distribution.

As an extreme example, suppose that an entire municipality, say j = 1, has no vacant land sales.

Bayesian methods let us construct a reasonable distribution of the area effect based on vacant

land sales seen in other areas. In addition, local improved sales provide a separate local signal

on land values via φiri term in equation (3). The parameter φi has a distribution estimated from

observations in municipalities outside of j = 1 that have both vacant and improved sales.

Bayesian methods also “shrink” estimates to mitigate the influence of outliers. Say that for

municipality 2, there was only a single land sale. That land sale may not represent an entire

discrete area for idiosyncratic reasons. A standard frequentist approach — namely, a fixed-effects

model — would be pinned to estimating the land value for that area from that one sale. In the

Bayesian method, the prior belief, constructed from other areas, would be updated to more closely

reflect that one observation, but not completely. The degree of updating depends on how high the
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variance of the area effects, ηrj , is relative to the variance of sampling errors in land transactions,

evi . The greater that sampling error – which seems to be large for vacant lots — the more suspicious

we are that a small number of vacant sales will be representative of all local lots. This makes local

improved sales more useful, although these two are effectively “shrunken.” Naturally, the more

sales of vacant land in an area there are, the less important are sales of improved properties, as

well as non-local vacant land.10

Importantly, our method lets draws of ηj be correlated across space. Indeed, high value areas

are likely adjacent. There are potentially many parameters that would describe the correlation

structure. We assume that the correlation rises or falls with distance according to an exponentially

declining distance metric

cov(ηrj , η
r
j′) = σ2η,r exp(−djj′/kη,r) (6a)

cov(ηuj , η
u
j′) = σ2η,u exp(−djj′/kη,u) (6b)

where djj′ is the Euclidean distance (in miles) between areas j and j′. Stacking ηrj for all j’s, from

1 to J , produces

ηv = [ηr1, η
r
2, ..., η

r
J ]′ ∼ N(0J×1, Σ

(
σ2η,r, kη,r)

)
,

where 0J×1 is a J × 1 vector of zeros and the J × J covariance matrix, Σ, is parameterized by two

scalars, σ2η,r and kη,r. σ
2
η,r governs the variance of each element in ηr. The parameter kη,r governs

the correlation between two η’s. Holding distance between two areas fixed, a larger value of kη,r

implies stronger correlations. As kη,r → ∞, corr(ηri , η
r
j ) → 1. On the other hand, as kη,r → 0,

corr(ηri , η
r
j )→ 0. Similarly, for the idiosyncratic improved effect:

ηu = [ηu1 , η
u
2 , ..., η

u
J ]′ ∼ N(0J×1, Σ

(
σ2η,u, kη,u)

)
,

The variance term in σ2η,u limits how much improved property sales can get at vacant land values.

Even with an infinite number of local sales, and a known φ, the ηuj term cannot be known without

vacant land values.

The model is completed by specifying the prior distribution on other unknown parameters. The

appendix provides a far more detailed account of how we solve it. As is standard, the main regres-

10A large number of vacant land sales may be used help to estimate how φi may vary across different kinds of
properties.
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sion parameters (δ, β, η, φ), have normal conjugate prior distributions and thus normal conditional

posterior distributions. The variance parameters σ2 take on a marginal posterior distribution that

are inverse gamma, thereby taking only positive values. The hyper-parameters for these conjugate

priors, which reflect our initial uncertainty, are set to minimize any impact on the prior distribu-

tion. We use a Metropolis-Hastings-within-Gibbs sampler algorithm, iterating over the blocks of

parameters in 11 steps. The sampler begins from a set of estimates based on a more conventional,

unshrunken estimate, using ordinary least squares (OLS). The MCMC method allows us to estimate

numerically over an unbounded distribution, and is particularly useful for the spatial correlation

parameters, k, for which the conditional probabilities are not closed form.

3 Incorporating data into the model

We illustrate how this empirical framework may be used for a large county for a given year, using

the parsimonious specification shown above. The estimation sample uses transactions in 2018 from

the Maricopa County Assessors’ Office General Parcel Data and shapefiles from the US Census

Bureau. We use transactions within 35 miles of Phoenix or Mesa, which we take as the central

business districts (CBDs).11 There are 1,153 vacant land sales after eliminating records with very

small (less than 1/120 acre) or large lots (larger than 1 acre) and unreasonable values (e.g., the

property type is not “vacant land” on the Affidavit of Sale). To focus on a single property type, we

use improved sales for residential properties only, of which there are 99,174 after cleaning. While

the current model is limited, it may be expanded straightforwardly, with sufficient data work and

computing resources. We leave the challenges and opportunities of incorporating data over several

years and property types for future work.

Figure 1 shows the ratio of vacant transactions we observe relative to the number of improved

transactions. In peripheral areas, we occasionally see more vacant transactions than improved

ones, although in more central areas we see that a majority of tracts have no vacant transactions

whatsoever.

The land value index (1) is modeled as a function of a few key variables that are available in both

the vacant and improved sales. As mentioned above, these enter in both reduced-form equations,

and model the intrinsic value of a vacant lot.

11We assume that there are two CBDs in Maricopa County, one centered in Phoenix and another centered in
Mesa.
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Figure 1: Ratio of vacant to improved sales transactions by census tract in Maricopa County, 2018

� di is the logarithm of 1 plus the minimum Euclidean distance in miles to the city hall either

in Phoenix or Mesa.

� Ai is the log recorded lot size in square feet, along with 6 additional indicators for whether

a lot is located on a street corner, in a cul-de-sac, in a gated community, on a lake, on a

mountain, or on a paved road.12

� ηrj , the area effects, are determined either by

1. 25 possible municipalities, accounting also for unincorporated areas, missing values, and

using the city of Phoenix as the excluded category.13

2. 887 possible census tracts. This is the number of tracts in Maricopa County excluding

tracts without any transactions whatsoever (although these could be included). 60

percent of these tracts have no vacant sales, but do have improved sales.
12One concern is that the value of vacant land may be different in older areas with few sales, relative to newer,

peripheral areas, where sales are more frequent. While the data generally show this pattern, we generally found that
vacant land was possibly of slightly higher quality in tracts where properties were on average older: they were more
frequently on a paved road or in a gated community.

13There are missing values in citycode. We treat them as a separate city, name it as “ZZ”. In sum, we have 26
possible values for city code.
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The controls for the residential properties used in the vacant land sales equation, (2a), Xv
i ,

include 3 variables:

� Three indicator variables for quarters when the transaction was recorded: Q2, Q3. The

excluded category is Q1. Our data show no transactions in Q4.

� An indicator takes one if the transaction involves multiple parcels.

The controls for the residential properties used in the improved property sales equation (2b),

Xm
i , include 12 variables:

� The log square footage of the built dwelling, i.e. the residential space.

� The recorded age of the building, and its square.

� Three indicator variables for whether the structure has two stories; three stories; four or more

stories. The excluded category is a single story.

� Six indicators for a recorded measure of structure quality, ordered 2 through 7. The lowest

category, 1, is excluded.

� The same controls included in Xv
i , (2a).

4 Estimation results

Our model estimates are presented in a series of tables. Table 1 included the key hyper-parameters.

To save space, we discuss the values of the reduced-form coefficients in Table 3, and the control

variables in 4 in the appendix. Our tables contain estimates using either municipalities or census

tracts for the discrete area classification. The tables show the posterior mean, posterior standard

deviation, and 90% credible interval for the highest posterior density. This is the narrowest interval

involving values of highest probability density.

4.1 Core estimates

The first row of Table 1 shows the key loading parameter, φ, has an estimated distribution centered

at 0.38 in the municipal model, and 0.43 in the census tract model. These numbers are close to but
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Table 1: Parameter Estimates from Full Bayesian Estimation, Part 1: Core estimates

Dependent variable: log(price) per sqft City-level model Tract-level model

Lower Upper Lower Upper
Parameter names Mean Std. Dev (10th p) (90th p) Mean Std. Dev (10th p) (90th p)

Cost share of land, φ 0.38 0.09 0.27 0.48 0.43 0.02 0.41 0.45
Land area variance, ση,r 0.71 0.31 0.44 1.13 1.31 0.24 0.97 1.62
Land area spatial correlation, kη,r 17.67 20.94 3.43 44.97 58.57 18.81 32.82 85.71
Improved area extra variance, ση,u 0.23 0.10 0.13 0.37 0.14 0.005 0.14 0.15
Improved area extra correlation, kη,u 30.39 26.94 4.49 67.79 0.07 0.05 0.01 0.15
Vacant transaction variance, σe,r 0.72 0.02 0.70 0.74 0.60 0.01 0.59 0.62
Improved transaction variance, σe,m 0.34 0.001 0.34 0.34 0.26 0.001 0.26 0.27

Figure 2: Posterior mean of improved ηmj versus vacant ηrj value effects for census tracts

slightly larger than estimates in the literature for the cost share of land in housing production, e.g.

Epple et al. (2010), Combes et al. (2021). Figure 2 helps illustrate how φ is estimated in the census

tract model. It plots the improved-property effects against the vacant-land effects. The slope of

the fitted line, which reflects equation (5b), gives a value of φ close to that reported in the table.

The estimated standard deviation of the local effects across municipalities, ση,r, is 0.71. Across

census tracts it is slightly larger, at 1.00. The estimates indicate that there is moderate spatial

correlation in ηrj . For example, the correlation between ηrj and ηrj′ is 0.75 (= exp(−5/17.67)) when

the distance between municipality centroids is 5 miles. This spatial correlation is larger across

census tracts, 0.92. Statistically significant spatial correlation among ηrj ’s implies much to be
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learned from adjacent locations.

Not surprisingly, the finer tract-level fit considerably more. The mean estimate of the standard

deviation of the sampling error for vacant transactions, σe,v, is 0.72 for the municipal model and

0.60 for the tract model. These measures are similar to or smaller than the standard deviations

corresponding to the areas, ση,r. This implies that a single vacant transaction is more informative

than the estimate we could provide using only surrounding data. Each vacant observation should

cause a substantial update of ηrj relative to the prior values. Indeed, the influence on the mean

estimate should be proportional to the inverse of the variance, a.k.a. the precision τ ≡ 1/σ2.

The sampling error for improved property sales is less variable than for vacant sales: σe,m < σe,v.

However, in determining how much this informs land values, the model in (2b) implies this number

should be scaled up by 1/φ, which provides values of 0.89 and 0.60 in models 1 and 2. These

numbers suggest that a single vacant sale is worth more than a single improved sale, even before

considering additional un-observables, especially for the city-level model. This is counter-balanced

by the fact that improved sales are about 80 times more common. In the end, how much improved

sales can refine land value estimates depends on many features of the data, including the number

of observations each area j, the spatial correlations, etc., Thus, we numerically quantify the gains

from the joint estimation in the next subsection.

Next, consider the area effects for the additional un-observables in the improved properties, ηuj .

which limit how much improved sales can inform the land value index. While the estimated values

for ση,u are relatively small, they, too, need to be scaled up by 1/φ, producing larger numbers of

0.61 and 0.32. Thus, even one local vacant sale may be about as informative as a very large number

of improved sales. This is worth bearing in mind as 60 percent of census tracts had no clean vacant

sales in 2018 — this was true for only 4 percent of tracts going back to 2007. Meanwhile, only

about 2 percent of tracts have no clean improved sales in 2018.14

4.2 Illustrating the benefits of joint estimation

So far we have described only abstractly the benefits of simultaneously estimating the values of

vacant land and improved properties in a Bayesian framework. This framework lets us quantify

14Note that the spatial covariance in the land index implied by kη,v gets weaker moving from the municipal to the
tract-level model, while the opposite happens for the idiosyncratic component for improved properties, as implied by
kη,u. This may be due to the smaller number of vacant land transactions, and might be improved by using periods
over time.
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Figure 3: Efficiency gain in using improved sales to estimate municipal area effects of land values,
ηrj

the benefits precisely, by comparing how much lower the posterior standard deviation of each ηrj

is made by incorporating the improved data in each area. Each standard deviation represents the

uncertainty of the vacant land value in that area. We show the reduction from the incorporated

data percentage-wise, as it varies with the number of vacant transactions in that area. The more

this number falls, the more improved the estimate.

Figure 3 plots these percentage reductions for the municipal model, where the geography is

coarse, but vacant transactions are relatively abundant. The x-axis arranges the cities according to

the number of vacant transactions available in area j.15 For cities with the fewest number of trans-

actions, two, the standard deviation falls about 20 percent. Naturally, the gain is typically smaller

for cities with more vacant transactions: about 2% for cities with over 100 vacant transactions.

Nevertheless, there is almost always a gain.

Figure 4 quantifies the efficiency gain from joint estimation in the census-tract model. With

finer geographic areas, there are fewer, and typically no transactions per area. This means that

information from improved property sales is potentially much more valuable. The figure confirms

this expectation: the posterior standard deviation for most of the tracts falls by over 30 percent.

15Table 5 in Appendix contains related information about this figure.
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Figure 4: Efficiency gain in using improved sales to estimate census-tract area effects on land values,
ηrj

5 Valuing vacant land

There are several ways to use this model to predict the value of properties. The first way is to

predict the value of a certain transaction. This way may be used to cross-validate the model using

observations from outside of our estimating sample. In principle, it could be used by a developer

or other investor to determine whether or not a certain offer price for a property is likely over-

or under-valued. Our focus here is on vacant lots, although the methodology is easily applied to

improved lots. The second way is to predict the value of the underlying land itself, which might be

particularly useful for taxing the underlying value of land. This would involve normalizing Xv
∗ so

that a value of zero reflects the type of transaction one would want to base it on, as well as using

shrinkage techniques to try to smooth away noise due to unobserved vagaries in any particular

transaction, seen in evi .

5.1 Estimating the value of individual lots

The Bayesian model produces a probability distribution for vacant-land transaction in Maricopa

County. In turn, predictive distribution may be used to compute any number of statistics about

probable land values. For a vacant lot with characteristics [d∗, a∗, X
v
∗ ]
′ in city j, its value can be
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represented as

yv∗ = (Zv∗ )δ
v + ηrj + (Xv

∗ )
′βv + ev∗, ev∗ ∼ N(0, σ2e,v) (7)

There are two sources of uncertainty: the first is from ev∗, which captures uncertainty about transac-

tions unexplained by the estimated parameters model; the second is from uncertainty in estimates

of the parameters. Thus, the predictive distribution of the vacant land price yv∗ can be expressed

formally as a product of these two corresponding conditional probabilities:

p
(
yv∗
∣∣[Z∗, Xv

∗ ]
′,D
)

=

∫
p
(
yv∗
∣∣[Z∗, Xv

∗ ]
′, δr, ηrj , β

v, σ2e,v
)
× p

(
δr, ηrj , β

v, σ2e,v|D
)
dδrdηrjdβ

vdσ2e,v

D is the data used to estimate the posterior distribution of unknown parameters. The first mul-

tiplicand is based on equation 7; the second is based on the posterior distribution of unknown

parameters. Although there is no closed-form for this predictive distribution, it is possible to sim-

ulate land values from the distribution. These simulated draws can be used to approximate values

of interest, such as point and interval predictions.

As an example, suppose we want to value a vacant lot in Phoenix that is three miles from the

center and has a lot size of 7,910 square feet. The actual transaction price of this lot was $4.04 per

square foot. Figure 5 presents the estimated predictive distribution of the value of this lot based

on the municipal model. The actual value is near the mode of this distribution. This predictive

distribution is skewed to the right, with a mean and median of $10.70 and $8.02, respectively. This

predictive distribution characterizes the uncertainty around these point estimates. For instance,

one can construct an α%-credible interval, which contains the true value with α percent posterior

probability. The 80% credible interval based on this model is [$1.30, $15.50], which is rather wide,

implying that there is quite a large uncertainty about this land value estimate. As we will discuss

later, some portion of uncertainty can be attributed to the simplistic nature of our model, and

can be reduced by including a richer set of co-variates or modeling a more sophisticated spatial

structure.

A similar computation may be done for any lot in Maricopa County, as long as we know its

location and size. The right panel in Figure 5 presents vacant land price distributions for 20

parcels at different locations in Phoenix based on our estimated model. As each lot comes with

different characteristics, their predictive distributions have a distinct location and shape.
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Figure 5: Predictive distribution for vacant land transaction prices (city-level model)

(a) Predictive distribution and actual outcome (b) Price distributions at 20 different locations

5.2 Land value index

The estimated parameters for the land index may be used to construct vacant land values, using

the original index detailed in (1). One may also aggregate these values by municipality or other

groupings. Recall that the land index may depend on variables other than location, seen in Ai. For

our purposes here, we set Ai and Xi to area j’s average value from vacant land transactions.

The posterior distribution of the vacant land-value index r in municipality j with a particular

characteristics Zj and Xj is given by integrating over the posterior distribution of parameters. We

denote this distribution as

p(rj |Zj , Xj ,D) =

∫
p(rj |δr, ηrj , Zj , Xj ,D)p(δr, ηrj |Zj , Xj ,D)dδrdηrj (8)

To procure dollar values, we set the index to be the posterior mean of the exponent of rj ,

Vacant land value for j = E[exp(rj)|Zj , Xj ,D] =

∫
exp(rj)p(rj |Zj , Xj ,D)dyij . (9)

The lower and upper bound of the 90% credible set quantifies the uncertainty around our estimated

land value. Table 2 presents our estimated land value index together based on the municipal model,

with sample means and medians from the vacant land transaction data.

Here the index produces values by municipality that differ considerably from those one would

obtain by using standard (frequentist) sample averages. Most of the municipalities see their mean
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Table 2: Vacant Land Values per Square Foot in Maricopa County by Municipality: Sample and
Index Values

Sample (Transactions) Index (Estimated) Values No. of transactions

City Muncipality Median Lower Upper
Code Name Mean (50th p) Mean (5th p) (95th p) Vacant Improved

AV Avondale 10.3 6.5 4.4 0.4 8.7 33 1778
BU Buckeye 4.7 3.4 3.2 0.4 6.3 28 3160
CC Cave Creek 7.0 4.7 5.3 0.5 10.4 9 64
CF Carefree 5.2 4.6 4.6 0.4 9.0 7 104
CH Chandler 14.4 14.0 9.3 0.9 18.4 18 6266
EL El Mirage 2.4 2.3 3.6 0.3 7.1 5 710
FH Fountain Hills 7.7 7.2 6.1 0.6 12.0 42 785
GI Gilbert 9.0 8.4 6.5 0.7 12.8 26 6745
GL Glendale 9.7 11.4 4.5 0.5 8.9 57 4221
GO Goodyear 5.5 3.6 3.3 0.3 6.5 42 3008
GU Guadalupe 4.2 4.1 5.9 0.5 11.9 3 18
LP Litchfield Park 12.3 12.3 6.1 0.6 12.3 2 275
MC unincorporated 3.9 2.9 2.5 0.3 5.0 142 7257
ME Mesa 8.8 7.7 5.5 0.6 10.8 79 11151
PE Peoria 10.1 10.2 5.6 0.5 11.0 90 4876
PV Paradise Valley 34.4 18.9 21.1 1.7 42.5 6 142
QC Queen Creek 6.6 6.9 5.1 0.5 10.1 25 1445
SC Scottsdale 19.0 11.3 9.1 0.9 17.9 118 7193
SU Sun City 9.1 9.1 5.3 0.5 10.4 88 4764
TE Tempe 23.4 18.1 10.5 0.9 20.7 11 2563
TO Tolleson 6.7 6.7 4.5 0.4 9.0 2 60
YO Youngtown 4.7 4.7 4.2 0.4 8.4 2 171
ZZ Unknown 17.4 6.5 5.6 0.5 11.1 9 256
PH Phoenix 11.1 6.6 5.8 0.6 11.4 309 32162

Maricopa County 10.1 7.2 6.2 1153 99174

values reduced. This is particularly true of those with the most valuable land — such as Paradise

Valley, Scottsdale, and Tempe. A few lower-value municipalities, e.g. Carefree, El Mirage, see

increases. The shrinkage towards the overall county mean is to be expected from smoothing out

idiosyncrasies from individual transactions. However, the index mean for the county is lower on

the whole. There are at least two reasons. First, we compute value of vacant lands without premia

for being located on a street corner, cul-de-sac, etc.16 Second, this suggests that on average vacant

land sales may be positively selected relative to sales of improved property. One could then imagine

that county assessors may receive push-back from property owners if they were to assess the value

of land on improved lots using only sales of vacant land. At the same time, we must recognize the

shortcomings with transactions data, that one can only imperfectly control for properties that are

16We set values of elements in Zj and Xj to zero except the intercept, lot size, and distance, for land-value
computation. As we explained, one can compute various different types of the index by modifying the values of
elements in Zj and Xj .
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Figure 6: Posterior mean of vacant land value over space

(a) Contour plot (b) 3D plot

more likely to be transacted.

Figure 6 presents a 3-dimensional contour map of land values using the geographically finer

census-tract model. The benefit of having random location effects on a finer grid is clear: the

estimated surface has much more realistic spatial variation than the one implied by the coarser

municipality model. In addition, we can see that the estimated location effects exhibit a non-linear

but overall decreasing land value gradient as one moves away from central areas.

6 Extensions

The model in the previous section is kept simple to convey the gains from combining information

from improved with vacant land sales. In this section, we propose a few possible extensions.

6.1 Heterogeneous land-value gradients

The basic model does little to model continuous changes in land values, such as within a municipality

or a tract. One way to enrich the spatial structure within our model is to allow for heterogeneity

in slope parameters in (1) using the following equation

ri = (δr0 + ηr1,j) + (δr1 + ηr2,j)di + δr2Ai (10)
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Following a similar logic from before, this then leads to an expanded set of reduced-form equations

describing the transaction prices:

yvi = δr0 + δr1di + δr2Ai + ηr0,j + ηr1,jdi + (Xv
i )′βv + evi (11a)

ymi = δm0 + δm1 di + δm2 Ai + ηm0,j + ηm1,jdi + (Xm
i )′βm + emi (11b)

The additional parameters, ηr1,j and ηm1,j , capture possibly different slopes using distance from the

CBD within each municipality. This specification allows that gradients vary across municipalities.

For example, one could expect that the gradient is steeper in a more central municipality, while

the gradient gets flattened as we move further away from the center. This extension might not be

necessary if we make the grid for the location effects finer. One extreme is to model ηr0,j and ηm0,j as

a complete non-parametric function of location. In this case, the effect of heterogenous gradients

is absorbed by this non-parametric function.

6.2 Heterogeneous land shares

Another way to enrich the spatial structure within our model is to allow for heterogeneity in the

land-share parameter φi. This may be done by letting φi vary by observable characteristics. Because

it is modeled stochastically, one can apply a hierarchical structure that would be difficult to model

in frequentist settings. For example, one may allow how improved-value area effects varied with

their vacant land counterparts in (5b) to vary by municipality j

ηmj = φjη
r
j + ηuj , ηrj ⊥ ηuj . (12)

Recall ηrj and ηmj are multivariate normal random vectors. Whether φ is space-varying or not is an

empirical matter, and it may be possible to validate this hypothesis using the data. For example,

we can estimate the φj with the similar prior distribution for ηj ,

φ = [φ1, φ2, ..., φK ]′ ∼ N(µφ, Σ
(
σ2φ, kφ)

)
, (13)

where µφ is a K × 1 vector and the K × K covariance matrix is parameterized by two scalars:

cov(φi, φj) = σ2φ exp(−dij/φv). The parameter σ2φ governs the variance of each element in φ, and
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kφ governs the correlation between two φk’s.
17

6.3 A nearly non-parametric spatial land value function

A serious limitation in determining land values of particular lots is that they can vary over rather

small geographies. Even neighboring lots may have different values because they offer different

views or have substantially different neighbors, variables which may be quite difficult to observe.

As detailed above, using finer geographies increases the value of using improved sales in the joint

Bayesian estimation method. One can make the geography increasingly fine, in the limit letting

areas j be the same as lots i. In this case, the model becomes:

yvi = (Xv
i )′βv + Z ′iδ

r + ηri + evi

ymi = (Xm
i )′βm + Z ′iδ

m + ηmi + emi ,

where ηri and ηmi have an i-subscript. If we adopt the same class of covariance function for ηri

and ηmi , then this model becomes a variant of the Gaussian process prior model, also known as

“Kriging” in geo-statistics. This model aims to estimate for some arbitrary location li

yvi = (Xv
i )′βv + Z ′iδ

r + f(li) + evi

ymi = (Xm
i )′βm + Z ′iδ

m + g(li) + emi ,

where f(li) and g(li) are spatially varying non-parametric function for the intrinsic vacant land

value and the improved land value, respectively. One important distinction from the conventional

Gaussian process prior model is that it allows f(li) and g(li) to be codependent, so that both vacant

and improved sales are informative about the estimation of f(li).

17One distinction we considered was seeing if φ differed in older, more established neighborhoods, relative to newer,
more peripheral neighborhoods. We classified a tract as young, if the if average transacted property was less than 25
years old. To improve accuracy, we used four years of data. The mean value of the distribution of φ for young areas is
0.37 (std dev 0.02), whereas for older areas, the mean value is 0.42 (std dev of 0.02). This appears to be inconsistent
with the view that land quality of vacant lots sold in older areas is of lower quality than in younger areas.
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6.4 Modeling evolution over time

We can extend our model to allow for time evolution of the land value when we have transactions

collected over time. One way to do this is to let the area effects vary with time:

yvi,t = (Xv
i,t)
′βv + Z ′i,tδ

r + ηrj,t + evi,t

ymi,t = (Xm
i,t)
′βm + Z ′i,tδ

m + φηrj,t + ηuj,t + emi,t,

where we denote t as a time index. The key is how to model ηrj,t and ηuj,t. Ideally, one would like

to allow correlation across both space and time so that we can borrow information from nearby

transactions both in terms of calendar time and physical distance. A simple modeling strategy

would be to decompose ηrj,t into two components,

ηrj,t = µrj + ψrt

where µrj is the non-time-varying spatial component and ψrt is the time-varying component. The

spatial component can be modeled in a similar fashion as before:

µr ∼ [µr1, µ
r
2, ..., µ

r
J ]′ ∼ N

(
0J×1,Σ(σ2µ,r, kµ,r)

)
where 0J×1 is a J × 1 vector of zeros and the J ×J covariance matrix, Σ, is parameterized to allow

for spatial correlation. We can model the time-varying component using a standard time-series

model. A minimalist way is to model a random-walk process,

ψrt = ψrt−1 + vt, vt ∼ N(0, σ2ψ,r), ψr0 ∼ N(0, σ20,ψ,r).

The space-varying and the time-varying components have a similarity in that their correlation

structure depends on the distance (either measured by a physical distance or a calendar time).

This distance dependent correlation leads to an automatic shrinkage/smoothing by assuming that

nearby vacant land values are similar to each other. As we illustrated in our application, this type

of shrinkage is helpful when there are not many transactions available for a certain area or time.

When µrj = 0, the above model reduces to a class of models developed and studied by Schwann

(1998), Francke and De Vos (2000), Francke (2010) for constructing real estate price indices. The

common idea in this type of models is that there is a serially correlated latent variable that smooths
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its estimate over time. Lastly, one can enrich the model by location/cluster-specific trends, ψrt,k

where k is a group indicator. In this way, time trends are clustered within a subset of locations as

in Ren et al. (2017) and Francke and van de Minne (2017).

7 Conclusion

While we believe the model we present is novel and helpful, it leaves room for more elaborate

specifications. Given this room, and the limits in our data, we consider the above results to be

still preliminary and suggestive. Nevertheless, they mark a progression towards a more realistic,

data-rich, if computationally-intensive model. While the methodology is not the most transparent

among all those available methods to value land, the output may have considerable appeal. It

provides a way to infer the land values by optimally combining both improved and vacant land

sales. It also has natural safeguards to avoid wild out-of sample predictions, and appears to handle

issues of selection reasonably well.

At the practical level, these methods provide particular promise in providing land value estimates

that assessors and citizens will find acceptable due to their overall accuracy. By accounting for a

greater range of uncertainty than conventional models, citizens might also find them less imposing

if assessors can find a way to communicate such uncertainty properly.

A number of goals lie ahead. First, it would be an interesting exercise to estimate and compare

models proposed in Section 6. In addition, we can evaluate the model by testing the out-of-sample

predictions, holding some observations out of the estimation sample. This may be used to evaluate

point, interval, and even density prediction of transaction prices for both vacant and improved

properties.

Interestingly, the land-value index could be conditioned to depend on variables deemed worthy

of land-value taxation. This includes access to public services: location in certain school districts,

possibly organized by average test scores; proximity to major highways, hospitals, or other public

services. These may be the most politically acceptable for land value taxation as they reflect benefits

provided by local governments. At the same time, we could include crime rates or air quality, to

provide discounts for residents living in less favorable conditions. One might also purposefully

exclude the estimated effects of zoning or land-use regulations, which may artificially lower land

values, to encourage local communities or developers to use land in more profitable ways.
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Appendix

A Additional tables

In this section, we report and discuss additional tables regarding the estimation of city-level and
tract-level model presented in the main text.

A.1 Parameter estimates: Other lot characteristics

Table 3: Land determinants. Although the Phoenix-Mesa metropolitan area that includes
Maricopa County is not very centralised, it is interesting to note the price gradient away from
the CBD which we place in Phoenix and Mesa. The coefficient on continuous distance for both
vacant and improved land is essentially zero in the municipal model. While the value of the
municipal effects falls with distance from the center, the same is not true for distances within the
municipalities, on average.

The same logic applies to the estimates from the census tract model. Although the distance
coefficients have a positive sign, they should not be interpreted as the standard land price gradient
as ηrj and ηuj non-parametrically model the relationship between the value and the distance to
CBD. Instead, they capture the linear location effects not accounted by the discrete area effects,
ηj . Overall, we find that both the vacant and improved land values have a non-linear but decreasing
relationship with the distance to CBD. To confirm this, we present the scatter plot showing the
relationship between total spatial component (δv1dj + ηvj ) and distance to CBD in Figure 7. The
overall land value gradient is decreasing in distance to CBD as the discrete area effects account for
a much larger share of spatial variation.

The other lot characteristic is its area. Here we see the usual “plattage” pattern, which shows
value per square foot falling with lot size. The value falls much faster for improved lots than for
vacant lots. This is the opposite of what we would expect from a cost-driven story: the value of
improved lots should drop at a slower rate with size. The negative coefficient is close to −1, which
would imply that the value of a parcel does not depend on its size. Our estimation results suggest
that the estimate for improved transactions likely suffers from severe omitted variable issues –
larger lots may have much lower quality improvements – or mis-specification issues, possibly from
the log-log form. These issues deserve further consideration.

Other land price determinants have reasonable estimates indicating that there is a premium for
the vacant land located on a street corner, in a cul-de-sac, in a gated community, and on a paved
road.18 For improved properties, there is premium for being located on street corner, in a gated
community, on a lake, on a mountain, and on a paved road.

Table 4: Land controls. There is small, but significant seasonality in the transaction data. For
example, the price of the land sold in Q2 is slightly larger than that sold in other times. There is
a premium for a transaction that is associated with multiple parcels. An improved land is cheaper
if it is older or it is low quality.

18The posterior distribution for the parameter associated with “located on a lake” in the vacant land equation
turns out to be essentially the same as its prior distribution. This is because there is no vacant land transaction that
is located on a lake, and therefore the prior distribution for the associated parameter did not get updated.
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Table 3: Parameter Estimates from Full Bayesian Estimation, Part 2: Land Determinants

Dependent variable: log(price) per sqft City-level model Tract-level model

Lower Upper Lower Upper
Variable names Mean Std. Dev (10th p) (90th p) Mean Std. Dev (10th p) (90th p)

Vacant land determinants δr

Intercept 3.85 0.34 3.41 4.28 5.48 0.38 4.99 5.97
Log mileage plus one to CBD 0.03 0.05 -0.04 0.09 0.10 0.07 0.01 0.19
Log lot size in square feet -0.25 0.03 -0.30 -0.21 -0.38 0.03 -0.42 -0.34
Located on street corner 0.08 0.06 0.00 0.16 0.14 0.05 0.07 0.21
Located in a cul-de-sac 0.14 0.07 0.05 0.23 0.11 0.06 0.04 0.19
In a gated community 0.27 0.07 0.19 0.35 0.27 0.06 0.19 0.34
On a lake -0.02 5.03 -6.46 6.46 -0.05 5.00 -6.42 6.35
Located on mountain 0.01 0.13 -0.15 0.18 -0.15 0.11 -0.29 -0.01
On a paved road 0.38 0.09 0.26 0.50 0.26 0.09 0.14 0.37
Improved property determinants δm

Intercept 6.32 0.04 6.26 6.37 6.70 0.09 6.57 6.82
Log mileage plus one to CBD, log(1 + di) 0.01 0.00 0.01 0.02 0.09 0.02 0.06 0.13
Log lot size in square feet -0.91 0.00 -0.91 -0.91 -0.86 0.00 -0.86 -0.85
Located on street corner 0.06 0.00 0.06 0.07 0.03 0.00 0.03 0.03
Located in a cul-de-sac 0.01 0.01 0.00 0.01 0.00 0.00 -0.01 0.00
In a gated community 0.04 0.00 0.03 0.05 0.01 0.00 0.01 0.02
On a lake 0.17 0.01 0.16 0.19 0.16 0.01 0.14 0.17
Located on mountain 0.04 0.02 0.02 0.07 0.03 0.01 0.01 0.04
On a paved road 0.03 0.01 0.02 0.04 0.06 0.01 0.05 0.07

Table 4: Parameter Estimates from Full Bayesian Estimation, Part 3: Land controls

Dependent variable: log(price) per sqft City-level model Tract-level model

Lower Upper Lower Upper
Variable names Mean Std. Dev (10th p) (90th p) Mean Std. Dev (10th p) (90th p)

Vacant land controls βv

Q2 0.08 0.06 0.01 0.16 0.01 0.05 -0.05 0.08
Q3 -0.01 0.05 -0.07 0.06 0.01 0.04 -0.04 0.07
Multiparcel 0.61 0.06 0.52 0.69 0.77 0.06 0.70 0.84
Improved property controls βm

Log structure square feet 0.63 0.01 0.62 0.64 0.57 0.00 0.56 0.57
Age of structure/10 -0.01 0.00 -0.01 -0.01 -0.02 0.00 -0.02 -0.01
Age squared/1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 story structure -0.12 0.00 -0.12 -0.11 -0.07 0.00 -0.08 -0.07
3 story structure 0.12 0.01 0.11 0.14 0.00 0.01 -0.02 0.01
4+ story structure 0.22 0.09 0.10 0.34 0.19 0.08 0.09 0.29
Quality grade 2 0.31 0.03 0.27 0.36 0.27 0.03 0.23 0.30
Quality grade 3 0.77 0.03 0.73 0.81 0.52 0.03 0.49 0.56
Quality grade 4 0.91 0.03 0.87 0.95 0.55 0.03 0.51 0.58
Quality grade 5 1.18 0.03 1.13 1.22 0.72 0.03 0.69 0.76
Quality grade 6 1.36 0.04 1.32 1.41 0.92 0.03 0.88 0.96
Quality grade 7 1.17 0.13 1.00 1.34 0.87 0.11 0.74 1.01
Q2 0.06 0.00 0.05 0.06 0.04 0.00 0.04 0.04
Q3 0.04 0.00 0.04 0.04 0.04 0.00 0.04 0.04
Multiparcel 3.22 0.01 3.21 3.23 2.89 0.01 2.88 2.90

A.2 Efficiency gain in using improved sales to estimate municipal effects on
vacant land values

Table 5 reports posterior mean, standard deviation, and statistical efficiency estimating ηrj . Num-
bers in this table are used to construct figure 3 in the main text.
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Figure 7: Estimated spatial component over distance to CBD

(a) City-level model

(b) Tract-level model

B Un-shrunken estimates

When data availability is not a concern, we can estimate parameters in our model separately. That
is, we estimate (βv, δr, η

r
j ) from the yvi equation (4a). Then, we estimate (βm, δm, ηmj ) from the

ymi equation (4b) where ηmj = φηrj + ηuj . Having estimated parameters in both equations, we can
regress ηmj on ηrj to obtain a φ estimate. Here we perform a separate estimation of the v and m
equations by OLS.

Figure 8 presents scatter plots of (ηrj and ηmj ) for residential land values, and commercial land
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Table 5: Posterior mean, standard deviation, and statistical efficiency for ηrj

Individual Estimation Joint Estimation
City Municipality (Vacant data only) (Vacant and improved data) No. of observations
code name Mean SD Mean SD SD ratio Vacant Improved

AV Avondale -0.32 0.13 -0.26 0.13 0.96 33 1778
BU Buckeye -0.51 0.14 -0.46 0.15 0.94 28 3160
CC Cave Creek -0.02 0.20 -0.06 0.22 0.91 9 64
CF Carefree -0.03 0.21 -0.08 0.23 0.89 7 104
CH Chandler 0.57 0.15 0.56 0.17 0.92 18 6266
EL El Mirage -0.56 0.22 -0.65 0.27 0.81 5 710
FH Fountain Hills 0.09 0.14 0.07 0.14 1.00 42 785
GI Gilbert 0.28 0.12 0.28 0.14 0.85 26 6745
GL Glendale -0.28 0.10 -0.25 0.11 0.91 57 4221
GO Goodyear -0.51 0.13 -0.55 0.13 0.97 42 3008
GU Guadalupe -0.07 0.26 0.07 0.32 0.81 3 18
LP Litchfield Park -0.03 0.24 -0.09 0.33 0.72 2 275
MC unincorporated -0.70 0.09 -0.71 0.09 0.99 142 7257
ME Mesa 0.01 0.09 0.01 0.09 1.00 79 11151
PE Peoria -0.02 0.10 0.00 0.10 0.95 90 4876
PV Paradise Valley 1.32 0.26 0.81 0.25 1.04 6 142
QC Queen Creek 0.02 0.14 0.07 0.15 0.94 25 1445
SC Scottsdale 0.63 0.09 0.65 0.10 0.95 118 7193
SU Sun City -0.10 0.11 -0.07 0.11 0.95 88 4764
TE Tempe 0.58 0.17 0.62 0.20 0.87 11 2563
TO Tolleson -0.45 0.25 -0.17 0.32 0.79 2 60
YO Youngtown -0.52 0.23 -0.47 0.30 0.77 2 171
ZZ Unknown 0.09 0.19 0.21 0.22 0.86 9 256

values, for the sake of comparison. The red lines are fitted by least squares (un-weighted, although
weighting by the number of transactions in each j would produce different numbers). For residential
land values we get

ηmj = 0.01
(0.03)

+ 0.36
(0.07)

× ηrj , R2 = 0.58, n = 23

For comparison, if we were to look at commercial properties and land values,

ηmj = −0.19
(0.10)

+ 0.17
(0.12)

× ηrj , R2 = 0.12, n = 18

As these are based on a small number of municipalities, the results are imprecise. They do suggest
that land makes up a greater share of property costs for residential properties than for commercial.
Given the imprecision of the estimates, we focus in the main text on the residential sector, leaving
applications incorporating other property types for future work.

C Posterior sampler

Our empirical model can be written as follows

yvi = (Zi)
′δr + ηrj + (Xv

i )′βv + evi , evi ∼ N(0, σ2e,v), for i = 1, ..., nv

ymk = (Zk)
′δm + φηrj + ηuj + (Xm

k )′βm + emk , emk ∼ N(0, σ2e,m), for k = 1, ..., nm
(A.1)
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Figure 8: Unshrunken estimates of ηmj versus ηrj

Note that each equation gets a different index i and k, respectively. This is because it is rare that
the same lot is sold as a vacant land and improved land within a year. nv is the number of vacant
land sales and nm is the number of improved land sales.

Reparametrization of the model. The model can then be written as

yvi = (W v
i )′bv + (Ci)

′ηr + evi , evi ∼ N(0, σ2e,v), for i = 1, ..., nv

ymk = (Wm
k )′bm + φ((Ci)

′ηr) + (Ci)
′ηu + emk , evk ∼ N(0, σ2e,m), for k = 1, ..., nm

(A.2)

where W v
i = [(Xv

i )′, (Zi)
′], Wm

i = [(Xm
i )′, (Zi)

′], bv = [βv
′
, δv
′
]′, bm = [βm

′
, δv
′
]′, and Ci is a vector

of length J with jth element being indicator variable Ci,j = 1 if i is in city j otherwise it takes 0.
Finally, ηr = [ηr1, η

r
2, ..., η

r
J ] and ηu = [ηu1 , η

u
2 , ..., η

u
J ], and

ηv = [ηr1, η
r
2, ..., η

r
J ]′ ∼ N(0J×1, Σ

(
σ2η,r, kη,r)

)
ηu = [ηu1 , η

u
2 , ..., η

u
J ]′ ∼ N(0J×1, Σ

(
σ2η,u, kη,u)

) (A.3)

where (i, j) element of Σ(σ2η, kη) = cov(ηri , η
r
j ) = σ2r exp(−dij/kr) where dij is the Euclidean distance

(in miles) between ith municipality and jth municipality.

Equation (A.2) and (A.3) represent the empirical model with an unknown parameter vector

θ = [bv
′
, bm

′
, σ2e,v, σ

2
e,m, φ, σ

2
η,r, kη,r, σ

2
η,u, kη,u]′, η = [ηv

′
, ηu

′
]′ (A.4)

We construct a posterior distribution of θ and η.

Prior distributions. Our prior distribution on unknown model parameters are set to minimize
its impact on the posterior distribution. More specifically, we place a prior distribution for bv and
bm as

bv ∼ N(0bv, 105 × Ibv), bm ∼ N(0bm, 105 × Ibm), (A.5)
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where 0n is a zero vector with length n, In is n×n identity matrix, N(M,V ) denotes a multivariate
normal distribution with mean M and variance-covariance V . The priors for the standard deviation
parameters are set to the Half-t distribution,

σe,v ∼ Half-t(2, 25), σe,m ∼ Half-t(2, 25), ση,r ∼ Half-t(2, 25), ση,u ∼ Half-t(2, 25). (A.6)

Note that the Half-t distribution is a scale mixture of simpler Inverse-Gamma distributions, and
its density is defined as Huang et al. (2013),

If x ∼ Half-t(ν,A), then its density is p(x) ∝ {1 + (x/A)2/ν)}−(ν+1)/2, x > 0

Prior distribution for φ is normal distribution with mean 0 and variance 25. Prior distribution for
kη,r and kη,u are set to normal distribution with mean 10 and variance 25. All parameters in θ are
independent a-priori. We also obtain posterior distribution of η where its conditional prior p(η|θ)
is defined in Eqn (A.3).

Posterior Inference. Then, our posterior distribution is proportional to the product of the
likelihood function and prior distribution function,

p(θ, η|D) ∝ p(D|θ, η)p(η|θ)p(θ)

where D is the data matrix. As the posterior distribution of θ and η is not in a known para-
metric family, we construct a posterior simulator that generates random draws from this posterior
distribution.

Posterior Simulator. Our posterior simulator is a version of a Metropolis-Hastings-within-Gibbs
algorithm. We iteratively generate draws from several conditional posterior distributions. Let g
be a g-th iteration. Then, we enter the following g-th iteration with the previous parameter draw,
ψ(g−1) = (θ(g−1), η(g−1)):

1. bv ∼ p(bv|ψ(g−1)
−bv ,D)

2. σ2e,v ∼ p(σ2e,v|ψ
(g−1)
−(σ2

e,v ,b
v)
, (bv)(g),D)

3. bm ∼ p(bm|ψ(g−1)
−(bm,bv ,σ2

e,v)
, (bv)(g), (σ2e,v)

(g),D)

4. σ2e,m ∼ p(σ2e,m|ψ
(g−1)
−(bv ,σ2

e,v ,b
m,σ2

e,m)
, (bv)(g), (σ2e,v)

(g), (bm)(g),D)

5. σ2η,r ∼ p(σ2η,r|ψ
(g−1)
−(bv ,σ2

e,v ,b
m,σ2

e,m,σ
2
η,r)

, (bv)(g), (σ2e,v)
(g), (bm)(g), (σ2e,m)(g),D)

6. kη,r ∼ p(kη,r|ψ(g−1)
(bv ,σ2

e,v ,b
m,σ2

e,m,σ
2
η,r,−kη,r)

, (bv)(g), (σ2e,v)
(g), (bm)(g), (σ2e,m)(g), (σ2η,r)

(g),D)

7. σ2η,u ∼ p(σ2η,u|ψ
(g−1)
−(bv ,σ2

e,v ,b
m,σ2

e,m,σ
2
η,r,kη,r,σ

2
η,u)

, (bv)(g), (σ2e,v)
(g), (bm)(g), (σ2e,m)(g), (σ2η,r)

(g), (kη,r)
(g),D)

8. kη,u ∼ p(kη,u|ψ(g−1)
−(bv ,σ2

e,v ,b
m,σ2

e,m,σ
2
η,r,kη,r,σ

2
η,u,kη,u)

, (bv)(g), (σ2e,v)
(g), (bm)(g), (σ2e,m)(g), (σ2η,r)

(g), (kη,r)
(g),

(σ2η,u)(g),D)



This Version: September 12, 2022 33

9. φ ∼ p(φ|ψ(g−1)
−(φ,bv ,σ2

e,v ,b
m,σ2

e,m,σ
2
η,r,kη,r,σ

2
η,u,kη,u)

, (bv)(g), (σ2e,v)
(g), (bm)(g), (σ2e,m)(g), (σ2η,r)

(g), (kη,r)
(g),

σ2(η,u)(g), (kη,u)(g),D)

10. ηr ∼ p(ηr|ψ(g−1)
−(bv ,σ2

e,v ,b
m,σ2

e,m,σ
2
η,r,kη,r,σ

2
η,u,kη,u,φ,η

r)
, (bv)(g), (σ2e,v)

(g), (bm)(g), (σ2e,m)(g), (σ2η,r)
(g), (kη,r)

(g),

(σ2η,u)(g), (kη,u)(g), φ(g),D)

11. ηu ∼ p(ηu|ψ(g−1)
−(bv ,σ2

e,v ,b
m,σ2

e,m,σ
2
η,r,kη,r,σ

2
η,u,kη,u,φ,η

r,ηu)
, (bv)(g), (σ2e,v)

(g), (bm)(g), (σ2e,m)(g), (σ2η,r)
(g),

(kη,r)
(g), (σ2η,u)(g), (kη,u)(g), φ(g), (ηr)(g),D)

where ψ
(g−1)
−x is a ψ(g−1) vector without elements that correspond to x. We initialize the sampler

from the individual estimation without shrinkage described in section B. Then, we iterate above
steps G times and obtain G parameters (ψ(g)), which can be viewed as draws from the posterior
distribution ψ(g) ∼ p(θ, η|D). We set G = 80, 000 for the city-level model and G = 8, 000 for the
tract-level model after discarding first 20,000 and 2,000 MCMC draws, respective. We construct
our point estimate for a function of some elements in ψ as its posterior distribution, which can be
approximated by our simulated draws,

f̂(ψ) =
1

G

G∑
g=1

f(ψ(g))→ E[f(ψ)|D]. (A.7)

D Details for the posterior sampler

We describe the posterior sampler in detail.

Step 1 and 2 for bv and σ2e,v This posterior updating can be done by recognizing that generating
bv and σ2e,v from their conditional distribution is equivalent to generating bv and σ2e,v from the
following model with normal prior for bv and the Half-t prior for σe,v,

ỹvi = (W v
i )′bv + evi , evi ∼ N(0, σ2e,v) (A.8)

where ỹvi = yvi − (Ci)
′(ηr)(g−1). We write a variable without i index as a stacked version of itself.

For example yv = [yv1 , y
v
2 , ..., y

v
n]′ and W v = [W v

1 ,W
v
2 , ...,W

v
n ]′.

We first draw bv given others,
(bv)(g) ∼ N(m1, V1) (A.9)

where

V1 =
(
W v′W v/(σ2e,v)

(g−1) + V0

)−1
(A.10)

and
m1 = V1 ×

(
W v′ ỹv/(σ2e,v)

(g−1) + V −10 m0

)
(A.11)

where we write m0 and V0 as a prior mean and variance for bv and m1 and V1 as posterior mean
and variance.

Conditional on (bv)(g) and others, we generate σ2e,v from the inverse gamma distribution

(σ2e,v)
(g) ∼ IG((ν0 + nv)/2, Ŝ1/+ ν0A

−1
1 , ) (A.12)
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where
Ŝ1 = ỹv

′
ỹv + (bv

′
)(g)W v′W v(bv)(g) − 2W v′ ỹv

′
(A.13)

and

A−11 ∼ G

(ν0 + 1)/2,

(
ν0

(σ2e,v)
(g−1) + 1/A2

0

)−1 . (A.14)

where prior for σ2e,v is
σe,v ∼ Half-t(ν0, A0) (A.15)

G refers to Gamma distribution and IG refers to inverse gamma distribution.

Step 3 and 4 for bm and σ2e,m. It is very similar to step 1 and step 2 described above.

Step 5 σ2η,r. This is similar to the Half-t updating in step 2. First define

η̃v = chol(R(k(g−1)η,r ))−1(ηr)(g−1) (A.16)

where R(kη,r) is the correlation matrix implied by Σ(kη,r), and chol() is the Cholesky decomposition
that decomposes matrix X = chol(X)chol(X)′ where chol(X) is a lower triangular matrix. Then,
we have that

η̃vj ∼ i.i.d. N(0, σ2η,r) (A.17)

with ση,r ∼ Half-t(ν0, A0). This updating is again given by

(σ2η,r)
(g) ∼ IG((ν0 + J)/2, η̃v

′
η̃v/2 + ν0A

−1
1 ) (A.18)

where

A−11 ∼ G

(ν0 + 1)/2,

(
ν0

(σ2η,r)
(g−1) + 1/A2

0

)−1 (A.19)

Step 6 kη,r. The conditional posterior distribution of kη,r given others is simplified by the fol-
lowing,

p(kη,r|other,D) = p(kη,r|ηr, σ2η,v), (A.20)

and the right hand side term can be written as

p(kη,r|ηr, σ2η,v) ∝ p(ηr|kη,r, σ2η,r)p(kη,r) (A.21)

as long as p(kη,r|σ2η,r) = p(kη,r). Note that p(kη,r) is a prior density function, which is set to be
normal density function. The conditional likelihood (or, data-augmented likelihood) function is a
multivariate normal density function because

ηr ∼ N
(
0, Σ(kη,r, σ

2
η,r)
)
. (A.22)

We employ Metropolis-Hastings updating with the random-walk proposal,

knewη,v = k(g−1)η,v + ckη,rε, ε ∼ N(0, 1) (A.23)
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where ckη,r is chosen so that the resulting acceptance probability is approximately between 10%

and 40%. This proposal draw is accepted with probability pkη,r (i.e., k
(g)
η,r = knewη,r with probability

pkη,r otherwise, k
(g)
η,r = k

(g−1)
η,r ). The acceptance probability is defined as

pkη,r = min

{
p((ηr)(g−1)|knewη,r , (σ

2
η,r)

(g−1))p(knewη,r )

p(ηr)(g−1)|(kη,r)(g−1), (σ2η,r)(g−1))p(kη,r)(g−1))
, 1

}
.

Step 7 and 8 for σ2η,u, kη,u. These two steps are the same as step 5 and 6. For step 7, we replace
σ2η,r with σ2η,u in step 5. For step 8, we replace kη,r with kη,u in step 6.

Step 9 φ updating is based on the following equation,

ymk = (Wm
k )′(bm)(g)+φ((Ci)

′(ηr)(g−1))+(Ci)
′(ηu)(g−1)+emk , emk ∼ N(0, (σ2e,m)(g)), for k = 1, ..., nm

(A.24)
Note that bm and σ2e,m are updated and ηr and ηu are not. We rearrange terms and obtain

ymk −(Wm
k )′(bm)(g)−(Ci)

′(ηu)(g−1) = φ((Ci)
′(ηr)(g−1))+emk , emk ∼ N(0, (σ2e,m)(g)), for k = 1, ..., nm

(A.25)
And, we take a simple average for each city

1

nj

∑
k∈I(j)

(
ymk − (Wm

k )′(bm)(g) − (Ci)
′(ηu)(g−1)

)
︸ ︷︷ ︸

ỹmj

= φ
1

nj

∑
k∈I(j)

((Ci)
′(ηr))(g−1))

︸ ︷︷ ︸
φx̃mj

+ẽmj (A.26)

where I(j) = {i : yi corresponds to land located in area j} and

ẽmj =
1

nj

∑
k∈I(j)

emk ∼ N(0, (σ2e,m)(g)/nj) (A.27)

where nj = #I(j). Then,

ỹj

(σe,m)(g)/
√
nj︸ ︷︷ ︸

ym∗j

= φ

(
x̃j

(σe,m)(g)/
√
nj

)
︸ ︷︷ ︸

φxm∗j

+em∗j , em∗j ∼i.i.d N(0, 1) (A.28)

with normal prior, φ ∼ N(m0, V0). The conditional posterior updating for φ is similar to the one
in step 1. For those cities with no observation, we eliminate corresponding rows from ym∗j and xm∗j
before we do the updating.

Step 10, ηr We have

ymk = (Wm
k )′(bm)(g)+φ(g)((Ck)

′(ηr)(g−1))+(Ck)
′(ηu)+emk , emk ∼ N(0, (σ2e,m)(g)), for k = 1, ..., nm

(A.29)
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We move some terms on the right-hand-side to the left and apply the city level average,

1

nj

∑
k∈I(j)

(
ymk − (Wm

k )′(bm)(g) − ((Ck)
′(ηu)(g−1))

)
= φ(g)ηvj +

1

nj

∑
k∈I(j)

emk (A.30)

Divide both sides by
√

(σ2e,m)(g)/nj to obtain(
√
nj/
√

(σ2e,m)(g)
)
× 1

nj

∑
k∈I(j)

(
ymk − (Wm

k )′(bm)(g) − ((Ck)
′(ηu)(g−1))

)
=

(
φ(g)
√
nj/
√

(σ2e,m)(g)
)
×ηvj+emj

(A.31)
Then the above equation has the following form

ỹmj = zmj η
r
j + emj , emj ∼i.i.d. N(0, 1) (A.32)

Stacking this equation over all j = 1, 2, ..., J , we get

ỹm = Z̃mηr + em, em ∼i.i.d. N(0, I) (A.33)

where Z̃m = diag([zm1 , z
m
2 , ..., z

m
J ]′).

Similarly, we have(
√
nj/
√

(σ2e,v)
(g)

)
× 1

nj

∑
i∈I(j)

(
yvi − (W v

i )′(bv)(g)
)

=

(
√
nj/
√

(σ2e,v)
(g)

)
× ηvj + evj (A.34)

We write above equation as

ỹvj = zvj η
r
j + evj , evj ∼i.i.d. N(0, 1), (A.35)

which is
ỹv = Z̃vηr + ev, ev ∼i.i.d. N(0, I) (A.36)

Starting from the conditional prior

ηr0 ∼ N
(

0, Σ((σ2η,r)
(g), (kη,r)

(g))
)
, (A.37)

we compute the posterior distribution of ηr based on the following state space representation

ỹt = Z̃tη
r
t + ev, ev ∼i.i.d. N(0, I)

ηrt = ηrt−1
(A.38)

where t = 1, 2 and (
ỹ1 = ỹv, Z̃1 = Z̃v

)
,
(
ỹ2 = ỹm, Z̃2 = Z̃m

)
. (A.39)

We break down the transformed data set into two pieces, [ỹ, Z̃] = {[ỹv, Z̃v], [ỹm, Z̃m]}, and update
the posterior distribution of ηrt sequentially as if data are realized piece by piece. This makes
computation of the posterior distribution straightforward as the Kalman filter computes mean and
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covariance matrix of the following conditional probability densities,

p(ηr| ỹv, Z̃v) = pN (ηr|m1|1, V1|1)

p(ηr| ỹv, Z̃v, ỹm, Z̃m) = pN (ηr|m2|2, V2|2)
(A.40)

where pN (x|m,V ) denotes a density function of the multivariate normal distribution with mean m
and covariance matrix V .

Then, we obtain the desired conditional posterior distribution for this step,

ηr|D, others ∼ N(m2|2, V2|2) (A.41)

where m2|2 and V2|2 are from the Kalman filter based on the state space representation presented

in (A.38), which are updated posterior mean and variance-covariance matrix of ηr2 given [ỹ, Z̃].

Step 11, ηu We have

ymk = (Wm
k )′(bm)(g)+φ(g)((Ck)

′(ηr)(g−1))+(Ck)
′(ηu)+emk , emk ∼ N(0, (σ2e,m)(g)), for k = 1, ..., nm

(A.42)
We move the first two terms on the right-hand-side to the left and apply the city level average,

1

nj

∑
k∈I(j)

(
ymk − (Wm

k )′(bm)(g) − φ(g)((Ck)′(ηr)(g−1))
)

= ηuj +
1

nj

∑
k∈I(j)

emk (A.43)

Divide both sides by
√

(σ2e,m)(g)/nj to obtain(
√
nj/
√

(σ2e,m)(g)
)
× 1

nj

∑
k∈I(j)

(
ymk − (Wm

k )′(bm)(g) − φ(g)((Ck)′(ηr)(g−1))
)

=

(
√
nj/
√

(σ2e,m)(g)
)
×ηuj +emj

(A.44)
Then the above equation has the following form

ỹmj = zmj η
u
j + emj , emj ∼i.i.d. N(0, 1) (A.45)

Stacking this equation over all j = 1, 2, ..., J , we get

ỹm = Z̃mηu + em, em ∼i.i.d. N(0, I)

ηm ∼ N
(

0, Σ((σ2η,u)(g), (kη,u)(g))
) (A.46)

where Z̃m = diag([zm1 , z
m
2 , ..., z

m
J ]′). Posterior updating for ηm is similar but simpler version of step

10.
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