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Abstract

There has been a call for caution regarding the standard procedure for
Bayesian inference in set-identified structural vector autoregressions on the
grounds that the common practice of using a uniform prior over the set
of orthogonal matrices induces a non-uniform prior for individual impulse
responses or other quantities of interest. This paper challenges this call by
formally showing that when the focus is on joint inference, the uniform prior
over the set of orthogonal matrices is not only sufficient but also necessary for
inference based on a uniform joint prior distribution over the identified set for
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based on a uniform joint prior distribution for the vector of impulse responses.
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1 Introduction

Structural vector autoregressions (SVARs) identified with sign restrictions are a popular

approach to estimating dynamic causal effects in macroeconomics. Many researchers use

variants of the method proposed by Uhlig (2005) to conduct Bayesian inference.1 This

conventional method can be used to independently draw from any posterior distribution

over the parameterization of interest subject to the identification restrictions. Typically, the

parameterization of interest consists of the impulse responses, and the posterior is conjugate.

Within this framework, common practice independently draws from a conjugate uniform-

normal-inverse-Wishart posterior distribution over the orthogonal reduced-form parameters

and transforms the draws into the objects of interest. A central ingredient of such an

approach is the uniform prior over the set of orthogonal matrices with respect to the Haar

measure (see Halmos (1950)). The normal-inverse-Wishart part of this prior is viewed as

uncontroversial—the Minnesota prior and the “weak” prior defined in Uhlig (2005) are the

most popular choices. Some researchers have criticized this conventional approach (see, e.g.,

Baumeister and Hamilton (2015); Watson (2020)) and suggest caution when using it in

applied work.

This paper accomplishes several objectives. First, Baumeister and Hamilton (2015) and

Watson (2020) express concern about the fact that the uniform prior over the set of orthogonal

matrices induces non-uniform prior distributions over the identified sets of individual impulse

responses because the prior and posterior coincide over identified sets.2 While this fact could

be an issue when the number of observations is large enough that reduced-form parameter

uncertainty can be disregarded, Inoue and Kilian (2022b) argue that this concern may not

be salient when working with tightly identified models based on many sign restrictions

and possibly narrative restrictions, as is often the case in applied work. We further ease

1See Faust (1998), Uhlig (1998), Canova and De Nicoló (2002), and Rubio-Ramı́rez, Waggoner, and Zha
(2010) for related work and extensions of the approach.

2By individual impulse response, we mean the response of a single variable to a single shock at a single
horizon.
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this concern by showing that the uniform prior over the set of orthogonal matrices induces

uniform joint prior and posterior distributions over the identified set for the vector of impulse

responses. This result is an “if and only if” statement that holds for any prior distribution

for the reduced-form parameters. While uniform joint prior and posterior distributions over

the identified set for the vector of impulse responses are not required features, they imply

that only the identifying restrictions will set apart observationally equivalent vectors of

impulse responses. The vector of impulse responses contains the responses across horizons

and shocks and it is the object of interest of several studies arguing that joint distributions

are better suited to capture the shape and co-movement of the responses (e.g., Sims and

Zha (1999); Fry and Pagan (2011); Inoue and Kilian (2013, 2016, 2019, 2022a,b); Lütkepohl,

Staszewska-Bystrova, and Winker (2015a,b, 2018); Kilian and Lütkepohl (2017); Bruder and

Wolf (2018); Montiel Olea and Plagborg-Møller (2019), among others).

Second, we show how to construct a uniform joint prior distribution for the vector of

impulse responses for models identified with sign restrictions and how to conduct joint

posterior inference based on this prior using the conventional approach. In particular, we

show that a uniform joint prior distribution for the vector of impulse responses induces a

prior for the orthogonal reduced-form parameters such that (1) it is independent between the

reduced-form parameters and the orthogonal matrices, (2) the prior for the reduced-form

parameters has a particular (model dependent) form, and (3) the prior over the set of

orthogonal matrices is uniform. This theoretical result is also an “if and only if” statement.

Interestingly, the induced prior distribution for the reduced-form parameters differs from

the standard Minnesota prior, and it is similar in spirit to (although also different than) the

“weak” prior described in Uhlig (2005). We show that the induced prior for the orthogonal

reduced-form parameters defines a uniform-normal-inverse-Wishart posterior distribution over

the orthogonal reduced-form parameters. This allows us to use the conventional approach to

draw from the joint posterior distribution for the vector of impulse responses implied by a

uniform joint prior distribution for the vector of impulse responses. Because of the uniform
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prior distribution over the set of orthogonal matrices, the conventional approach also induces

uniform joint prior and posterior distributions over the identified set for the vector of impulse

responses.

To illustrate our theoretical findings, we examine Watson’s (2020) empirical example

using a uniform joint prior distribution for the vector of impulse responses. Based on the

methods in Inoue and Kilian (2022a), we find that the joint credible sets for the vector

of impulse responses obtained under this prior are similar but wider than those obtained

under the uniform-normal-inverse-Wishart prior distribution for orthogonal reduced-form

parameters associated with the standard Minnesota prior. In line with the findings in Inoue

and Kilian (2022b), our results suggest that imposing tighter identifying restrictions helps

when evaluating joint posteriors. This message gets stronger when considering a uniform

joint prior distribution for the vector of impulse responses.

Finally, we generalize our analysis to a broader class of objects of interest.3 We show

how to implement a uniform joint prior distribution for the vector of objects of interest

using the conventional approach. For example, imagine a two-variable (price and quantity)

stylized model of demand and supply with a uniform joint prior distribution for the objects of

interest consisting of some elasticities and the standard deviations of structural shocks. Each

particular vector of objects of interest induces a different prior distribution for the orthogonal

reduced-form parameters. This induced prior is also model-dependent but need not be

uniform over the set of orthogonal matrices conditional on the reduced-form parameters.

In the latter case, it is necessary to add an importance sampling step to the conventional

method to draw from the induced joint posterior distribution for the vector of objects of

interest.

The structure of the paper is as follows. Section 2 describes the conventional method

and Section 3 proves that it implies a uniform joint prior distribution over the identified

set for the vector of impulse responses. Section 4 shows how to define a uniform joint prior

3See Section 3.3 for a formal definition of the class of objects of interest.
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distribution for the vector of impulse responses and how to adapt the conventional method to

implement it. Section 5 illustrates our approach using the model in Watson (2020). Section 6

concludes.

2 The Conventional Approach

Consider a reduced-form VAR of the form

y′
t = x′

tB+ u′
t, for 1 ≤ t ≤ T, (1)

where yt is an n× 1 vector of endogenous variables, ut is an n× 1 vector of reduced-form

shocks, x′
t =

[
y′
t−1 · · · y′

t−p 1
]
, B =

[
B′

1 · · · B′
p d′]′ is an m× n matrix with m = np+ 1,

Bℓ is an n× n matrix of parameters for 1 ≤ ℓ ≤ p, d is a 1× n vector of parameters, p is the

lag length, and T is the sample size. The vector ut, conditional on past information and the

initial conditions y0, . . . ,y1−p, is Gaussian with mean zero and covariance matrix Σ. We call

(B,Σ) the reduced-form parameters.

Let ut = L0 εt for 1 ≤ t ≤ T , where εt ∼ N(0, In) are structural shocks, L0 is an n× n

invertible matrix that represents impulse responses at horizon zero, and In is the n × n

identity matrix. Given L0 and B, it is possible to obtain the impulse responses beyond

horizon zero recursively, as

Lℓ =

min{ℓ,p}∑
k=1

B′
kLℓ−k, for ℓ > 0. (2)

We combine the impulse responses from horizons one through p and the constant term

c = d
(
L−1

0

)′
into a single matrix, L+ =

[
L′

1 · · · L′
p c′

]′
, where the maximum horizon of

the impulse response in L+ is exactly the same as the lag length in Equation (1). We call

(L0,L+) the IR parameters. Importantly, when referring to these parameters in vector form

we will use the term vector of impulse responses.

4



The discussion above implicitly defines a mapping from the IR parameters to the reduced-

form parameters. In particular, we have that Σ = L0 L
′
0,

Bℓ =
(
LℓL

−1
0

)′ − ℓ−1∑
k=1

(
Lℓ−kL

−1
0

)′
Bk, for 1 ≤ ℓ ≤ p, and d = cL′

0 . (3)

In the class of linear Gaussian models under analysis, it is well known that (L0,L+) and

(L̃0, L̃+) are observationally equivalent if and only if L0 = L̃0Q and L+ = L̃+Q for some

Q ∈ O(n), which is the set of all n× n orthogonal matrices; see Rubio-Ramı́rez, Waggoner,

and Zha (2010). Hence, the IR parameters are not identified.

This suggests that given any decomposition of the covariance matrix Σ satisfying

h (Σ)′ h(Σ) = Σ, we can define a mapping from (B,Σ,Q) to (L0,L+). We will take h

to be the upper triangular Cholesky decomposition normalized so that the diagonal is positive.

Thus

ϕ(B,Σ,Q) =
(
h(Σ)′ Q︸ ︷︷ ︸

L0

,
[
L1(B,Σ,Q)′ · · · Lp(B,Σ,Q)′ Q′(h(Σ)−1)′d′]′︸ ︷︷ ︸

L+

)
, (4)

where Lℓ(B,Σ,Q) for 1 ≤ ℓ ≤ p is implicitly defined in Equation (2). The function ϕ is

invertible, and both ϕ and its inverse are differentiable. Hence, there exists a diffeomorphism

between the IR parameters and the orthogonal reduced-form parameters that we will exploit

in the rest of the paper.

2.1 The Priors, the Posteriors, and the Algorithm

The conventional method uses a normal-inverse-Wishart (NIW) distribution prior for (B,Σ).

Denote the prior by NIW (ν̄, Φ̄, Ψ̄, Ω̄). As shown in Uhlig (1994, 2005), this prior is conjugate

and the posterior distribution over the reduced-form parameters is NIW (ν̃, Φ̃, Ψ̃, Ω̃), where

ν̃ = T + ν̄, Ω̃ = (X′X+Ω̄−1)−1, Ψ̃ = Ω̃(X′Y + Ω̄−1Ψ̄), and Φ̃ = Y′Y + Φ̄ + Ψ̄′Ω̄−1Ψ̄ −

Ψ̃′Ω̃−1Ψ̃, for Y = [y1 · · · yT ]
′ and X = [x1 · · · xT ]

′. If we use a uniform prior
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distribution over the set of orthogonal matrices, then the resulting prior distribution for

(B,Σ,Q) is uniform-normal-inverse-Wishart (UNIW) and we denote it by UNIW (ν̄, Φ̄, Ψ̄, Ω̄).

This prior is also conjugate, and the posterior distribution is UNIW (ν̃, Φ̃, Ψ̃, Ω̃). Because the

UNIW family of distributions is conjugate over (B,Σ,Q), it implies a family of distributions

over (L0,L+) that it is conjugate. This is because if the prior and posterior densities have

the same functional form over (B,Σ,Q), then, because the volume element associated with

ϕ will be the same for the prior and posterior densities, the induced prior and posterior

densities for (L0,L+) will also have the same functional form.4

There are several routines for making independent draws from any NIW distribution over

(B,Σ). Independent draws from the uniform distribution over O(n) are based on Theorem

3.2 of Stewart (1980), summarized by Proposition 1.

Proposition 1. Let X be an n× n random matrix with each element having an independent

standard normal distribution. Let X = QR be the QR decomposition of X with the diagonal

of R normalized to be positive. The matrix Q is orthogonal and is drawn from the uniform

distribution over O(n).

This discussion justifies Algorithm 1 to draw from the conjugate posterior distribution

over (L0,L+) conditional on the sign restrictions. This algorithm can be found in Uhlig

(2005) for a single shock and is extended to a set of shocks in Rubio-Ramı́rez, Waggoner, and

Zha (2010).

Algorithm 1. The following algorithm independently draws from the conjugate posterior

distribution over (L0,L+) conditional on the sign restrictions.

1. Draw (B,Σ) independently from NIW (ν̃, Φ̃, Ψ̃, Ω̃).

2. Draw Q independently from the uniform distribution over O(n).

3. Keep (L0,L+) = ϕ(B,Σ,Q) if the sign restrictions are satisfied.

4. Return to Step 1 until the required number of draws has been obtained.

4For a formal definition of volume element, see Chapter 5 in Spivak (1965).

6



Notably, throughout the rest of the paper, all densities will be with respect to the volume

measure, even though sometimes we will not explicitly state it. When working with impulse

responses or B, the volume measure will be equal to the Lebesgue measure. However, when

we are working with symmetric and positive definite matrices or orthogonal matrices, the

volume measure will not be Lebesgue. In particular, the volume measure over orthogonal

matrices is a Haar measure.

3 Conditional Joint Prior for Impulse Responses

A central ingredient underlying the conventional approach summarized in Section 2 is the

uniform prior distribution over the set of orthogonal matrices with respect to the Haar

measure. This prior distribution has been criticized by Baumeister and Hamilton (2015)

and Watson (2020) because (1) it implies that some marginal prior distributions over the

identified sets are non-uniform, and (2) posterior inference is routinely dominated by such

non-uniform prior. Several studies such as Wolf (2020) and Giacomini and Kitagawa (2021)

have echoed this critique, and as a consequence, there is a growing call for caution for any of

the results obtained by the conventional method.

The marginal prior distributions over the identified sets are obtained by replacing Step 1

with a fixed value of the reduced-form parameters and then marginalizing out all but an

individual impulse response. We will refer to the prior distributions obtained this way as

the conditional prior distributions for individual impulse responses to emphasize that they

do condition on the reduced-form parameters. Inoue and Kilian (2022b) draw attention

to the fact that the conditional prior distributions for individual impulse responses may

give an incomplete picture of the priors embodied in the conventional approach. Fixing

the value of the reduced-form parameters eliminates any uncertainty about (B,Σ), whereas

the conventional approach postulates an NIW distribution prior. In their examples, when

uncertainty about the reduced-form parameters is taken into account, the conventional
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method does not imply that posterior inference is routinely dominated by the prior.

Many questions in SVAR analysis entail examining the shape of impulse responses of

multiple variables to several shocks at various horizons. Joint inference on impulse responses,

which considers dependencies across these dimensions, offers a more suitable approach for

addressing these cases than marginal inference. Consequently, we adopt the perspective of a

researcher interested in joint inference and assess the implications of using a uniform prior over

the set of orthogonal matrices. In this section, we condition on the reduced-form parameters.

Often, we will refer to this prior as conditional joint prior distribution for the vector of

impulse responses because it is obtained by conditioning on the reduced-form parameters.

We will consider unconditional priors in the next section. Because the posterior reproduces

the prior over the identified set, a uniform joint prior distribution over the identified set for

the vector of impulse responses ensures the researcher that only the identifying restrictions

will set apart observationally equivalent vectors of impulse responses. In this section, we show

that the uniform prior distribution over the set of orthogonal matrices with respect to the

Haar measure is both a necessary and sufficient condition for having a uniform conditional

joint prior distribution for the vector of impulse responses. We will first show an illustrative

example and then move to the general results.

3.1 An Illustrative Simple Example

Let us consider a simple example. To reduce the number of parameters, we assume that

there are no lags or constant term. In this case, the only impulse response is L0, and the only

reduced-form parameter is Σ. The support of the joint prior distribution over the identified

set for the vector of impulse responses is of the form

ℓ11 ℓ12

ℓ21 ℓ22


︸ ︷︷ ︸

L0

=

ℓ̂11 0

ℓ̂21 ℓ̂22


︸ ︷︷ ︸

L̂0

 cos(θ) sin(θ)

(−1)i sin(θ) (−1)i+1 cos(θ)


︸ ︷︷ ︸

Q

, (5)
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where i is either zero or one, −π ≤ θ < π, and L̂0L̂
′
0 = Σ with both ℓ̂11 and ℓ̂22 positive. A di-

rect computation shows that for any L0 given by Equation (5), its norm is r̂ =

√
ℓ̂211 + ℓ̂222 + ℓ̂221

and it lies in one of the two two-dimensional subspaces of R4 with bases

L̂
i

cos =

ℓ̂11 0

ℓ̂21 (−1)i+1ℓ̂22

 and L̂
i

sin =

 0 ℓ̂11

(−1)iℓ̂22 ℓ̂21

 , (6)

for i = 0, 1. This follows from the fact that L0 = cos(θ)L̂
i

cos + sin(θ)L̂
i

sin. Also, the vectors

L̂
i

cos and L̂
i

sin are perpendicular and length r̂. Thus, the set of all L0 of this form will be two

circles in R4 of radius r̂.

The joint prior distribution over the identified set for the vector of impulse responses

is completely determined by the joint distribution over (θ, i), which can be written as

p(θ, i) = p(θ)p(i|θ). Since ℓ11 = ℓ̂11 cos(θ) and ℓ12 = ℓ̂11 sin(θ), the conditional prior densities

of the individual ℓ11 and ℓ12 are given by

p(ℓ11) =
p(cos−1(ℓ11/ℓ̂11)) + p(− cos−1(ℓ11/ℓ̂11))

ℓ̂11 sin(cos−1(ℓ11/ℓ̂11))
and (7)

p(ℓ12) =
p(sin−1(ℓ12/ℓ̂11)) + p(sgn(ℓ12/ℓ̂11)π − sin−1(ℓ12/ℓ̂11))

ℓ̂11 cos(sin
−1(ℓ12/ℓ̂11))

, (8)

where sgn(·) is 1 if the argument is positive and −1 otherwise. We provide the derivations of

these in Appendix B. We compute and plot the conditional prior densities of the individual ℓ11

and ℓ12 and the joint prior distribution over the identified set for the vector of impulse responses

in two cases. In Case (1), we set a uniform prior distribution over the set of orthogonal

matrices with respect to the Haar measure. In this case, the joint prior distribution over the

identified set for the vector of impulse responses is uniform, while the conditional densities of

the individual ℓ11 and ℓ12 are not. In Case (2), we choose the prior over the set of orthogonal

matrices such that the conditional density of the individual ℓ11 is uniform. In this case,

neither the conditional densities of the individual ℓ12 nor the joint prior distribution over the
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identified set for the vector of impulse responses are uniform.

Case (1): The conditional joint distribution over L0 is uniform for every Σ. In

this first case, we set the distribution over Q to be uniform with respect to the volume

measure, which is arc length. The properly scaled density over (θ, i) must be p(θ, i) =

p(θ)p(i|θ) = (1/(2π))(1/2). By Equations (7) and (8), the conditional marginal densities

are p(ℓ11) =
1
π
(ℓ̂211 − ℓ211)

− 1
2 and p(ℓ12) =

1
π
(ℓ̂211 − ℓ212)

− 1
2 . We provide derivations of these in

Appendix B.

Case (2): The conditional distribution of ℓ11 is uniform over [−ℓ̂11, ℓ̂11]. If the

conditional distribution of ℓ11 is uniform, then p(ℓ11) = 1/(2ℓ̂11) and by Equation (7), the

distribution of θ must satisfy p(θ) + p(−θ) = sin(θ)/2 for 0 ≤ θ < π. Is there a choice of

p(θ) so that the conditional distribution of ℓ12 is uniform? Appendix B shows that there

is no choice of p(θ) such that the conditional distribution of ℓ11 and ℓ12 are both uniform.

This illustrates a point already made by Baumeister and Hamilton (2015): One cannot have

uniform distributions over the identified sets of all of the individual impulse responses. We

choose p(θ) = | sin(θ)/4| and p(i|θ) = 1/2, which implies that the conditional distribution of

ℓ11 is uniform and probably does the least violence to the conditional distribution of ℓ12. In

this case p(ℓ12) = |ℓ12|/(2ℓ̂11(ℓ̂211 − ℓ212)
1
2 ), as will be shown in Appendix B.

Figure 1 shows the joint distribution. The support of the distribution of L0, conditional

on Σ, consists of two circles in R4 of radius r̂. We plot the conditional joint density over one

of the two circles. In Case (1), the conditional joint distribution is uniform. In Case (2), this

is not the case; the density goes to zero at certain points.

Figure 2 plots the conditional densities of ℓ11 and ℓ12 for the two cases. The dotted lines in

Figure 2 are the conditional densities in Case (1), and the solid lines correspond to Case (2).

For Case (2), the conditional distribution of ℓ11 is uniform by construction, but the conditional

distribution of ℓ12 is farther from uniform than it is in Case (1). Figure 2 illustrates the

dangers of analyzing marginal densities. Therefore, Case (1) shows that a uniform prior for
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Figure 1: Conditional joint density for Cases (1) and (2). The solid vector is L̂
i

cos ∈ R4, the

dotted vector is L̂
i

sin ∈ R4, and z = p(L0), with L0 = (xL̂
i

cos + yL̂
i

sin)/r̂.

Q implies a uniform joint prior distribution over the identified set for the vector of impulse

responses, although a researcher who analyzes conditional prior distributions for individual

impulse responses may conclude otherwise. Case (2) implies that one can choose priors for Q

such that the conditional density of ℓ11 is uniform. This prior for Q is not uniform and will

imply non-uniform conditional densities of ℓ12 and non-uniform joint prior distribution over

the identified set for the vector of impulse responses.
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Figure 2: The dotted lines are the conditional densities of ℓ11 and ℓ12 for Case (1). The
solid lines are the conditional densities of ℓ11 and ℓ12 for Case (2).

3.2 General Results for Impulse Responses

Are there distributions over the IR parameters such that the conditional joint prior distribution

for the vector of impulse responses is uniform? The answer is yes, and the results to follow

give the conditions required for this to be the case. Interestingly, the conventional method

implies a uniform joint prior distribution over the identified set for the vector of impulse

responses.

Before stating the proposition, we need a precise understanding of what it means to

condition on the reduced-form parameters. Given the reduced-form parameters (B,Σ), the

support of the joint distribution of the IR parameters conditional on (B,Σ) is

P(B,Σ) = {(L0,L+) = ϕ(B,Σ,Q) | for every Q ∈ O(n)} ,
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which is a smooth manifold because O(n) is a smooth manifold and the invertible function ϕ is

continuously differentiable. The manifold structure induces a natural measure over P(B,Σ),

which is called the volume measure.5 For example, the volume measure over one-dimensional

manifolds is the arc length, and the volume measure over two-dimensional manifolds is the

surface area. If π(L0,L+) is a density over the IR parameters, then the density conditional on

(B,Σ) with respect to the volume measure over P(B,Σ) will be proportional to π(L0,L+).

The volume measure is the only measure, up to a scale factor, that has this property. In

this sense, the volume measure is the natural one. Thus, conditional on (B,Σ), the density

with respect to the volume measure over P(B,Σ) will be uniform if and only if π(L0,L+) is

constant over P(B,Σ).

The volume and Haar measures over O(n) are related. A Haar measure is any measure

over O(n) that is invariant under right multiplication by an orthogonal matrix and is unique

up to a scale factor. The volume measure over O(n) has this property and thus is a Haar

measure. With these ingredients, we can now show the following proposition.

Proposition 2. For every density over the IR parameters with respect to the Lebesgue

measure, the density with respect to the volume measure over P(B,Σ), conditional on (B,Σ),

is uniform for every (B,Σ) if and only if the induced distributions over the orthogonal

reduced-form parameters (B,Σ) and Q are independent and the distribution of Q is uniform

with respect to the Haar measure.

Proof. See Appendix A.

Thus, for every density over the IR parameters with respect to the Lebesgue measure, the

density with respect to the volume measure over P(B,Σ) is constant over observationally

equivalent vectors of impulse responses if and only if the induced distributions over the

orthogonal reduced-form parameters (B,Σ) and Q are independent and the distribution

of Q is uniform with respect to the Haar measure. Proposition 2 essentially follows from

5See Munkres (1991), Chapter 5, for details of how the volume measure is defined over manifolds.
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the fact that the volume element for the mapping ϕ does not depend on Q.6 A similar

result will hold for any parameterization such that the volume element of the mapping to

the orthogonal reduced-form parameters does not depend on Q, for example, the standard

structural parameterization. All volume elements in this paper will be computed using

Theorem 21.3 in Munkres (1991). One could claim the same in terms of observationally

equivalence. The proof in terms of observationally equivalence is also simple. Two impulse

responses are observationally equivalent if and only if there exists a value of the reduced-

form parameters (B,Σ) such that both of the impulse responses lie in the support of the

distribution conditional on (B,Σ).

Because they are “if and only if” statements, Proposition 2 brings to the fore the virtue

of joint distributions over the IR parameters that induce a distribution over the orthogonal

reduced-form parameters such that the distribution over the set of orthogonal matrices is

uniform.7 Consequently, to have a uniform joint prior distribution over the identified set for

the vector of impulse responses one must use a prior distribution over the set of orthogonal

matrices that is uniform. Any other choice of prior over the set of orthogonal matrices will

imply a non-uniform joint prior distribution over the identified set for the vector of impulse

responses. This is true for any prior distribution over the reduced-form parameters; hence,

researchers can choose any prior distribution over the reduced-form parameters that respects

their beliefs about the data.

The results in this section are relevant for the robust methodology developed by Giacomini

and Kitagawa (2021). First, only a uniform prior over the set of orthogonal matrices induces

a uniform prior over observationally equivalent vectors of impulse responses, and hence, only

in this case can researchers claim that the identification problem is only resolved utilizing sign

restrictions, preserving the virtues that made inference based on sign restrictions a practical

tool in empirical macroeconomics. Second, while the analysis in Giacomini and Kitagawa

6An analytical expression for this volume element will be obtained in Proposition 4.
7If a distribution over the orthogonal reduced-form parameters is such that the distribution over the set

of orthogonal matrices is uniform for all reduced-form parameters, then the reduced-form parameters and the
orthogonal matrices must be independent.
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(2021) could potentially be extended to the case of joint inference, such an extension is

challenging and, hence, our propositions offer useful insights to researchers concerned with

the role of the prior when conducting joint posterior inference.

We have shown that the conventional method does imply a uniform joint prior distribution

over the identified set for the vector of impulse responses. Later, we will eliminate the

conditionality on the reduced-form parameters and show that it is possible to have a uniform

joint prior distribution for the vector of impulse responses and that it can be implemented by

the conventional method.

3.3 Extension to Objects of Interest

In empirical work, the object of interest does not always need to be the vector of impulse

responses. We now extend the results above to general objects of interest. Denote the vector

of objects of interest by Υ and the transformation from (B,Σ,Q) to Υ by ϕo. In our class

of objects of interest, we assume that ϕo is a diffeomorphism and Υ is an open subset of

Rn2+nm, and we use the Lebesgue measure over Υ. To illustrate the type of objects of interest

that our approach can accommodate, let us reproduce the example described in Section 1.

We define our vector of objects of interest as Υ = (υ1, υ2, υ3, υ4) ∈ R4, where υ1 = ℓ22/ℓ12,

υ2 = ℓ21/ℓ11, υ3 = (ℓ12ℓ21 − ℓ11ℓ22) /ℓ12, and υ4 = (ℓ11ℓ22 − ℓ12ℓ21) /ℓ11, with ℓij denoting the

entry (i, j) of the matrix of contemporaneous impulse responses L0. Consequently, υ1 and υ2

are some elasticities, and υ3 and υ4 are some other parameters of interest, such as standard

deviations of structural shocks. Clearly, in this example there is a diffeomorphism between

L0 and Υ, therefore, there is a diffeomorphism between (B,Σ,Q) and Υ.

Let us consider a joint prior distribution over the identified set for the vector of objects

of interest. Often, we will refer to this prior as the conditional joint prior distribution for

the vector of objects of interest.8 To characterize the prior for the orthogonal reduced-form

8The joint prior distribution over the identified set for the vector of objects of interest (or equivalently
the conditional joint prior distribution for the vector of objects of interest) is obtained by conditioning on the
reduced-form parameters.
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parameters induced by a uniform joint prior distribution over the identified set for the vector

of objects of interest, we first notice that the support of the joint distribution of the vector of

objects of interest conditional on (B,Σ) is the smooth manifold.

Po(B,Σ) = {Υ = ϕo(B,Σ,Q) | for every Q ∈ O(n)} ,

where, as in the case of P(B,Σ), the smooth manifold O(n) induces the volume measure

over Po(B,Σ). If π(Υ) is a density over the objects of interest, then the density conditional

on (B,Σ) with respect to the volume measure over Po(B,Σ) will be proportional to π(Υ).

Thus, conditional on (B,Σ), the density with respect to the volume measure over Po(B,Σ)

will be uniform if and only if π(Υ) is constant over Po(B,Σ).

Proposition 3. For every density over the objects of interest with respect to the Lebesgue

measure, the density with respect to the volume measure over Po(B,Σ), conditional on (B,Σ),

is uniform for every (B,Σ) if and only if the induced distribution over the orthogonal reduced-

form parameters is such that π(Q |B,Σ) is proportional to vϕo(B,Σ,Q), where vϕo is the

volume element induced by ϕo.

Proof. See Appendix A.

Proposition 3 is an extension of Proposition 2 for general objects of interest. Proposition 2

implies that the induced prior over the set of orthogonal matrices is uniform for impulse

responses because the volume element does not depend on Q. In the case of general objects

of interest, Proposition 3 states that the volume element vϕo(B,Σ,Q) may depend on Q and

that in those cases a uniform joint prior distribution over the identified set for the vector of

objects of interest will not induce a uniform prior over the set of orthogonal matrices.
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4 Uniform Joint Prior for Impulse Responses

In this section, we show how to use the conventional method to conduct posterior inference

based on a uniform joint prior distribution for the vector of impulse responses conditional on

the sign restrictions. To do so, we analytically derive the prior distribution over the orthogonal

reduced-form parameters induced by a uniform prior distribution for the IR parameters. This

step is essential because the orthogonal reduced-form parameters are convenient for obtaining

independent and identically distributed draws. Then, we derive a closed-form expression

for the posterior over the orthogonal reduced-form parameters induced by a uniform prior

distribution for the IR parameters. This posterior has an NIW and will allow us to use the

conventional method to draw from it. We illustrate it using the empirical example in Watson

(2020).

4.1 Prior for the Orthogonal Reduced-Form Parameters

Suppose π(L0,L+) is any density over the IR parameters. In that case, the induced density over

the orthogonal reduced-form parameters will be π(B,Σ,Q) = π(ϕ(B,Σ,Q))vϕ(B,Σ,Q),

where vϕ is the volume element induced by ϕ. The volume element can be calculated

analytically using Proposition 4 below.

Proposition 4. The volume element is vϕ(B,Σ,Q) = 2−
n(n+1)

2 | det(Σ)|m−3
2 .

Proof. See Appendix A.

The reader should notice that the volume element does not depend on h or Q. Using

Proposition 4, if π(L0,L+) is any density over the IR parameters, then the induced density

over the orthogonal reduced-form parameters will be

π(ϕ(B,Σ,Q))vϕ((B,Σ,Q)) = π(ϕ(B,Σ,Q))2−
n(n+1)

2 | det(Σ)|
m−3

2 . (9)

This last expression justifies the following proposition
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Proposition 5. The joint prior distribution for the vector of impulse responses is uniform

if and only if the induced prior distributions over the orthogonal reduced-form parameters

(B,Σ) and Q are independent, the distribution of Q is uniform with respect to the Haar

measure, and the distribution over the reduced-form parameters has density proportional to

| det(Σ)|m−3
2 .

Proof. The first two claims follow from Proposition 2 and the last from Equation (9).

Proposition 5 shows that if one defines a uniform prior distribution for the IR parameters,

then one is defining a prior for the orthogonal reduced-form parameters with three features:

(1) it is independent between (B,Σ) and Q, (2) the prior for the reduced-form parameters

has a density that is proportional to | det(Σ)|m−3
2 , and (3) the prior for Q is uniform with

respect to the Haar measure. Because of this last feature, Proposition 2 shows that a uniform

prior distribution for the IR parameters implies a uniform joint prior distribution over the

identified set for the vector of impulse responses. Importantly, if the joint prior distribution

for the vector of impulse responses is uniform, then the prior over the set defined by any

one-to-one and onto linear transformation of the IR parameters will be uniform, and the

marginal prior over any subset of the vector of impulse responses will also be uniform. At this

stage, it is important to highlight that the induced prior for the reduced-form parameters is

similar in spirit to (although also different than) the “weak” prior described in Uhlig (2005).

4.2 Posterior over the Orthogonal Reduced-Form Parameters

The following proposition from DeJong (1992) shows that a prior for the reduced-form

parameters proportional to | det(Σ)|m−3
2 implies an NIW posterior.

Proposition 6. Let a > 2n+ 2+m− T . If the reduced-form prior density is proportional to

| det(Σ)|−a
2 , then the NIW posterior density over the reduced-form parameters is defined by

NIW(ν̂(a),Ŝ,B̂,(X′ X)−1)(B,Σ), where ν̂(a) = T + a−m− n− 1, Ŝ = (Y −XB̂)′(Y −XB̂),

and B̂ = (XX′)−1X′Y.
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With Proposition 6 in hand, we have the following corollary characterizing the posterior

over the orthogonal reduced-form parameters induced by a uniform prior distribution for the

IR parameters.

Corollary 1. If the prior density over the orthogonal reduced-form parameters is propor-

tional to | det(Σ)|m−3
2 , the posterior density over the orthogonal reduced-form parameters is

UNIW(ν̂(−(m−3)),Ŝ,B̂,(X′ X)−1)(B,Σ).

Corollary 1 implies that if one wants to conduct inference based on a uniform prior

distribution for the IR parameters, then one must have a particular (model-dependent)

posterior over the reduced-form parameters. Specifically, the marginal posterior of Σ is

inverse-Wishart with parameters ν̂(−(m− 3)) and Ŝ, and the posterior of B, conditional on

Σ, is normal with mean B̂ and variance Σ⊗ (X′ X)
−1
.

4.3 The Conventional Method

The preceding discussion justifies the use of the conventional method for independently

drawing from the posterior distribution for the IR parameters conditional on the sign

restrictions implied by the uniform prior distribution for the IR parameters. Specifically, one

can combine Algorithm 1 with the posterior over the orthogonal reduced-form parameters, as

detailed in Corollary 1. To independently draw from the conjugate posterior distribution over

(L0,L+), conditional on the sign restrictions dictated by the uniform prior distribution for the

IR parameters, one may refer to Algorithm 1, where Step 1 involves independently drawing

from NIW
(
ν̂(−(m− 3)), Ŝ, B̂, (X′X)

−1
)
. We regard our approach as a complement to the

work of Plagborg-Møller (2019). While his approach does not facilitate independent draws, it

offers the advantage of not necessitating invertibility.

Should one always impose the uniform prior distribution for the IR parameters? The

answer clearly is no. It implies a lack of persistence, and one might strongly believe a priori

that macroeconomic time series are reasonably persistent as described in the Minnesota prior
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or its variants. In this case, Proposition 2 tells us that the uniform distribution over the

orthogonal matrices implies a uniform conditional joint prior distribution for the vector of

impulse responses. The uniform joint prior distribution for the vector of impulse responses

could be appealing to researchers concerned with the robustness of their conclusions. It

amounts to the “weak” NIW prior for the reduced-form parameters, and it will get easily

overthrown by any persistence in the data.

4.4 Extension to Objects of Interest

We show how to use the conventional method to conduct posterior inference based on a

uniform joint prior distribution for a general vector of objects of interest conditional on the

sign restrictions. If π(Υ) is any density over the vector of objects of interest, the induced

density over the orthogonal reduced-form parameters is π(ϕo(B,Σ,Q))vϕo(B,Σ,Q). This

justifies the following proposition

Proposition 7. A joint prior distribution for the vector of objects of interest is uniform

if and only if the equivalent prior density over the orthogonal reduced-form parameters is

proportional to vϕo(B,Σ,Q).

Proof. Since π(ϕo(B,Σ,Q)) ∝ 1, we have π(B,Σ,Q) ∝ vϕo(B,Σ,Q).

Proposition 7 is a generalization of Proposition 5 for general vectors of objects of interest,

where it is important to highlight that it may not be possible to compute the volume element

analytically. In general, it is the case that the volume element vϕo(B,Σ,Q) depends on Q

and, hence, the induced prior over the set of orthogonal matrices may not be uniform. An

immediate implication of Proposition 7 is that a uniform joint prior distribution for the

vector of objects of interest implies uniform joint prior and posterior distributions over the

identified set for the vector of objects of interest.

We now show how to use the conventional methods to independently draw from the

posterior distribution for the objects of interest parameters conditional on the sign restrictions
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for inference based on a uniform prior distribution for the objects of interest parameters.

The algorithm below is a simple adaptation of Algorithm 1 that incorporates an importance

sampling step. In order to justify the weights in the importance sampling step, note that the

likelihood is proportional to NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ), where ν̂ = T −m− n− 1, Ω̂ = (X′X)−1,

Ψ̂ = Ω̂X′Y, and Φ̂ = Y′Y− Ψ̂′Ω̂−1Ψ̂. If the prior of the objects of interest is uniform, then

the posterior density will also be proportional to NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ).

Algorithm 2. The following algorithm independently draws from the posterior distribution

for the objects of interest parameters conditional on the sign restrictions implied by a uniform

prior distribution for the objects of interest parameters.

1. Draw (B,Σ) independently from the NIW (ν,Φ,Ψ,Ω) distribution.

2. Draw Q independently from the uniform distribution over O(n).

3. If Υ = ϕo(B,Σ,Q) satisfies the sign restrictions, then set its importance weight to

NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ)vϕo(B,Σ,Q)

NIW(ν,Φ,Ψ,Ω)(B,Σ)
.

Otherwise, set its importance weight to zero.

4. Return to Step 1 until the required number of draws has been obtained.

The choice of (ν,Φ,Ψ,Ω) matters. An obvious choice would be (ν,Φ,Ψ,Ω) =
(
ν̂, Φ̂, Ψ̂, Ω̂

)
,

which would simplify the importance weight. More generally, one could choose (ν,Φ,Ψ,Ω)

to maximize the effective sample size of the importance sampler. It is also important to

highlight that one could use Algorithm 2 to work with any joint posterior distribution for the

vector of objects of interest provided that Step 3 is modified accordingly.

5 An Application

We use the empirical application in Watson (2020) to illustrate how to conduct inference

based on a uniform joint prior distribution for the vector of impulse responses. We will
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contrast the results with those obtained using the Minnesota prior for the reduced-form

parameters.

5.1 Data, Model, Identification Restrictions, and Prior

Watson’s (2020) SVAR analysis relies on quarterly data for the U.S. economy over the period

1984Q1:2007Q4. The variables included in the model are y′
t = (∆(yt − nt), nt,∆pt, i

L
t ), where

yt denotes the logarithm of real output per hour for all workers in the nonfarm business

sector (Bureau of Labor Statistics, U.S. (2019b)), nt the logarithm of hours worked per capita

(Bureau of Labor Statistics, U.S. (2019a,c)), pt the logarithm of the price level (Bureau of

Economic Analysis, U.S. (2019)), and iLt the 10-year Treasury bond rate (Board of Governors

of the Federal Reserve System (2019)). The SVAR is a constant parameter variant of

Debortoli, Gaĺı, and Gambetti (2020) featuring 4 lags and an intercept. It is assumed that

fluctuations in y′
t are driven by technology, demand, supply, and monetary policy shocks,

which are identified with sign and zero restrictions.

The identifying restrictions are as follows. The technology shock is the only structural

shock that can affect labor productivity in the long run. Four quarters after a demand

shock, the responses of output, the price level, and the 10-year Treasury bond rate are

negative. Four quarters after a monetary policy shock, the responses of output and the

price level are negative, while the impulse response of the 10-year Treasury bond rate is

positive. Four quarters after a supply shock, the response of output is negative, while the

response of inflation is positive. We also impose stability of the VAR. The zero restrictions

on the long-run impulse responses have a particular structure that can be exploited to use

Algorithm 1.9

The Minnesota prior is as follows. We set ν̄ = n+ 2, which is the minimum value ν̄ can

9Given the reduced-form parameters, uniformly drawing a four-dimensional orthogonal matrix conditional
on the zero restrictions is equivalent to uniformly drawing a three-dimensional orthogonal matrix using
Proposition 1 and then mapping it to a four-dimensional orthogonal using a Householder matrix that depends
only on the reduced-form parameters. The space of ut’s that do not have permanent effects on labor
productivity is three-dimensional. See Appendix C.
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take that guarantees the existence of a prior mean for Σ. The matrix Φ̄ is diagonal, with

Φ̄ = diag (ϕ1, ϕ2, ϕ3, ϕ4). The values for Ψ̄ and Ω̄ are chosen to have a flat density over the

constant term (Var (d | Σ) = 107Σ) and the following first and second moments over the

slope parameters

E ((Bℓ)ij | Σ) =


1 if i = j = 2 and ℓ = 1

0 otherwise

Cov ((Bℓ)ij, (Br)hm | Σ) =


λ2 1

ℓ2
Σjm(ν̄−n−1)

ϕi
if i = h and ℓ = r

for all i, j, h,m, ℓ, r = 1, . . . 4

0 otherwise.

We will treat λ and Φ̄ as hyperparameters. We follow Giannone, Lenza, and Primiceri (2015)

in choosing the values for these parameters that maximize the marginal likelihood. This

yields λ = 0.3953, and Φ̄ = diag(2.0419, 0.5241, 0.0586, 0.2103).

For completeness, we will begin the analysis comparing the posterior distributions of

individual impulse responses implied by the uniform prior distribution for the IR parameters

with the posterior distributions of individual impulse responses implied by the prior distribu-

tion for the IR parameters induced by the described Minnesota prior. Figure 3 shows the

equal-tailed 68 percent point-wise posterior probability bands of individual impulse responses

implied by each of the priors. The figure shows how the uniform joint prior distribution for

the vector of impulse responses implies more posterior uncertainty.10

Next, we compare marginal and joint inference when using the uniform prior distribution

for the IR parameters. Figure 4 compares the Bayes estimator of the joint posterior distribution

for the vector of impulse responses (dashed lines) and its 68 percent credible set (solid light

gray lines) under the additively separable absolute loss function following Inoue and Kilian

10The results of this comparison are based on 10,000 draws from the posterior distribution conditional on
the identifying restrictions.
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Figure 3: The solid lines with circle (◦) markers depict the equal-tailed 68 percent marginal
posterior probability bands of individual impulse responses implied by the uniform joint
prior distribution for the vector of impulse responses. The solid lines with cross (×) markers
depict the equal-tailed 68 percent marginal posterior probability bands of individual impulse
responses implied by the Minnesota prior.
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(2022a) with the commonly used equal-tailed 68 percent point-wise posterior probability

bands (solid lines with circle (◦) markers).11,12 In contrast to point-wise probability bands, the

joint credible set for the Bayes estimator restricts all of its members to satisfy the dependence

structure of the impulse responses. As a consequence, as shown in the figure, the joint credible

sets are wider than the conventional point-wise probability bands. While most of the 68

point-wise probability bands for individual impulse responses do not contain zero, the 68

percent joint credible set contains zero at all except the restricted horizons. Hence, when

conducting joint inference, it becomes clear that this particular model does not seem to be

tightly identified by the restrictions. These conclusions are robust to using the sup-t Bayesian

joint credible sets proposed by Montiel Olea and Plagborg-Møller (2019).

We conclude this section by comparing the joint posterior distribution for the vector of

impulse responses implied by the uniform prior and the Minnesota prior. Figure 5 shows

the Bayes estimator of the joint posterior distribution for the vector of impulse responses

and its 68 percent credible set under the additively separable absolute loss function when

using a uniform joint prior distribution for the vector of impulse responses (dashed lines for

the estimator and solid light gray lines for the credible set) and when using the joint prior

distribution for the vector of impulse responses induced by the Minnesota prior (dashed-dotted

lines for the estimator and solid dark gray lines for the credible set). Focusing on the Bayes

estimators, the Minnesota prior and the uniform prior for impulse responses imply broadly

similar estimates with some exceptions such as the impact response of output to a supply

shock. The 68 percent credible sets are much narrower when using the Minnesota prior. Still,

a visual inspection reveals that in both cases, there is substantial joint uncertainty about

the macroeconomic consequences of the shocks under study. A similar picture emerges when

using the sup-t Bayesian joint credible sets. As mentioned above, this is clearly in line with

the conclusions in Inoue and Kilian (2022a).

11As remarked by Inoue and Kilian (2022a), other loss functions, such as a quadratic loss, could be used.
12In the case of joint inference, the Bayes estimator and the credible set are based on 10,000 draws.

Increasing the number of draws results in a more accurate depiction of the joint posterior distribution.
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Figure 4: Bayes estimator of the joint posterior distribution for the vector of impulse
responses (dashed lines) and its 68 percent credible set (solid light gray lines) under the
additively separable absolute loss function. The solid lines with circle (◦) markers depict the
equal-tailed 68 percent unconditional prior distributions for individual impulse responses.
Both posteriors are implied by the uniform joint prior distribution for the vector of impulse
responses.
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Figure 5: Bayes estimator of joint posterior impulse responses (dashed black lines) and its
68 percent credible set under the additively separable absolute loss function under uniform
joint prior distribution for the vector of impulse responses (solid light gray lines) and under
the Minnesota prior (dashed-dotted lines and solid dark gray lines for the 68 percent credible
set).
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6 Conclusion

Our paper demonstrates that there is nothing fundamentally wrong with the conventional

method for Bayesian inference in SVARs identified with sign restrictions. We show that the

uniform prior over the set of orthogonal matrices is not only sufficient but also necessary to

have uniform joint prior and posterior distributions over the identified set for the vector of

impulse responses. The key is to consider joint distributions instead of marginal distributions.

The most popular choice of prior when using the conventional method induces a uniform

joint prior distribution over the identified set for the vector of impulse responses, and

straightforward variants of the approach can be used to conduct joint inference using either a

uniform joint prior distribution for the vector of impulse responses or a joint prior distribution

for the vector of objects of interest within a general class of objects of interest.

Our paper can also be viewed as complementing Giacomini and Kitagawa (2021) for

researchers whose goal is to perform joint posterior inference without favoring some vector

of impulse responses over others a priori. This is because even though their prior robust

numerical methodology is attractive, it does not consider the case of joint inference, and such

an extension is challenging.

This paper has focused on SVARs identified with sign restrictions. Nevertheless, the

conventional method can also be used to independently draw from the posterior distribution

for the IR parameters implied by a uniform prior distribution over such parameterization in

SVARs identified with sign and zero restrictions. The same applies when the objective is

to draw from the posterior distribution for the objects of interest parameters implied by a

uniform prior distribution over such parameterization conditional on sign and zero restrictions.

As described in Arias, Rubio-Ramı́rez, and Waggoner (2018), in both cases, an importance

sampling step could be needed depending on the nature of the parameterization of interest

and the zero restrictions in use.
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A Proofs of Propositions 2, 3, and 4

Proof of Proposition 2. If π is any density of the impulse responses with respect to the

Lebesgue measure, then the induced density over orthogonal reduced-form parameters with

respect to volume measure is

p(B,Σ,Q) =
π(ϕ(B,Σ,Q))

2
n(n+1)

2 | det(Σ)|
−(m−3)

2

.

So, the density π is constant over the set P(B,Σ) iff p(B,Σ,Q) does not depend on Q.

Since p(B,Σ,Q) = p(B,Σ)p(Q |B,Σ), p(B,Σ,Q) does not depend on Q iff p(Q |B,Σ) is

constant. If p(Q |B,Σ) is constant, then the induced distributions of (B,Σ) and Q are

independent, and the distribution of Q must be uniform with respect to the Haar measure.

Proof of Proposition 3. Suppose π(Υ) is any density over the objects of interest parameteri-

zation with respect to the Lebesgue measure, then the induced density over the orthogonal

reduced-form parameters with respect to the volume measure will be π(B,Σ)π(Q |B,Σ) =

π(ϕo(B,Σ,Q))vϕo(B,Σ,Q). If π(Υ) is constant over Po(B,Σ), then π(ϕo(B,Σ,Q)) will not

depend on Q and π(Q |B,Σ) is proportional to vϕo(B,Σ,Q), though the proportionality

constant, which is equal to π(ϕo(B,Σ,Q))/π(B,Σ), could depend on B and Σ. If π(Q |B,Σ)

is proportional to vϕo(B,Σ,Q), then π(ϕo(B,Σ,Q)) cannot depend on Q and so is constant

over Po(B,Σ).

Proof of Proposition 4. Let A0 =
(
L−1

0

)′
and A+ = BA0. Multiplying Equation (1) on the

right by A0 gives y′
t A0 = x′

tA++ε′t for 1 ≤ t ≤ T , which is often called the structural

form and (A0,A+) the structural parameters. For 1 ≤ ℓ ≤ p, let Aℓ = Bℓ A0. Multiplying

Equation (3) on the right by A0 gives Aℓ = A0 L
′
ℓ A0−

∑ℓ−1
k=1

(
Lℓ−kL

−1
0

)′
Ak. Since A+ =[

A′
1 · · · A′

p c′
]′
, this recursively defines a mapping from the IR parameters to the structural

parameters, which we denote by f . It follows from Proposition 1 of Arias, Rubio-Ramı́rez, and

Waggoner (2018) that the volume element of f◦ϕ is vf◦ϕ(B,Σ,Q)) = 2−
n(n+1)

2 | det(Σ)|− 2n+m+1
2 ,

29



which implies that the volume element of ϕ is vϕ(B,Σ,Q) = 2−
n(n+1)

2 | det(Σ)|−
2n+m+1

2

vf (ϕ(B,Σ,Q))
. Because

Ak does not depend on Lj for j > k, the derivative of f is a block lower triangular (n2(p+

1) + n)× (n2(p+ 1) + n) matrix



−Kn,n(L
′
0⊗L0)

−1 0 · · · 0 0

× (L0⊗L′
0)

−1Kn,n · · · 0 0

...
...

. . .
...

...

× × · · · (L0⊗L′
0)

−1Kn,n 0

0 0 · · · 0 In


where Kn,n is the commutation matrix, which is the unique n2 × n2 matrix such that

vec(X′) = Kn,n vec(X) for every n×nmatrixX. The volume element of f is the absolute value

of the determinant of the above matrix, which is | det(L0)|−2n(p+1). Since det(L0) = det(Σ)
1
2 ,

the volume element of ϕ is vϕ(B,Σ,Q) = 2−
n(n+1)

2 | det (Σ) |m−3
2 .

B Proofs of Claims from Section 3.1

B.1 Derivation of Equation (7)

The function that maps (θ, i) ∈ [−π, π)× {0, 1} to ℓ11 = ℓ̂11 cos(θ) ∈ [−ℓ̂11, ℓ̂11] is not one-to-

one over its entire domain, but is one-to-one over each of the four subdomains of the form

S+,i = [0, π)× {i} or S−,i = [−π, 0)× {i}. Let ℓ̃11 = ℓ11/ℓ̂11. We follow the convention that

cos−1(·) ∈ [0, π]. Over S+,i, the inverse of the above mapping is (θ, i) = (cos−1(ℓ̃11), i) ∈ S+,i,

and over S−,i, the inverse of the above mapping is (θ, i) = (− cos−1(ℓ̃11), i) ∈ S−,i. Since the

derivative of cos(θ) is − sin(θ), by the usual change of variable theorem, the density over

ℓ11 ∈ [−ℓ̂11, ℓ̂11] induced by the density p(θ)p(i|θ) over [−π, π)× {0, 1} is

p(ℓ11) =
p(θ̃)p(0|θ̃)
|ℓ̂11 sin(θ̃)|

+
p(θ̃)p(1|θ̃)
|ℓ̂11 sin(θ̃)|

+
p(θ̂)p(0|θ̂)
|ℓ̂11 sin(θ̂)|

+
p(θ̂)p(1|θ̂)
|ℓ̂11 sin(θ̂)|

=
p(θ̃)

|ℓ̂11 sin(θ̃)|
+

p(θ̂)

|ℓ̂11 sin(θ̂)|
,
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where θ̃ = cos−1(ℓ̃11) and θ̂ = −θ̃. Since sin(θ̂) = − sin(θ̃), sin(θ̃) ≥ 0, and ℓ̂11 > 0,

p(ℓ11) =
p(θ̃) + p(θ̂)

ℓ̂11 sin(θ̃)
=

p(θ̃) + p(θ̂)

(ℓ̂211 − ℓ211)
1
2

, (10)

where the last equality follows from the fact that sin(θ̃) = (1− cos2(θ̃))
1
2 and will be of use

in Appendix B.4. The first equality is Equation (7).

B.2 Derivation of Equation (8)

The function that maps (θ, i) ∈ [−π, π) × {0, 1} to ℓ12 = ℓ̂11 sin(θ) ∈ [−ℓ̂11, ℓ̂11] is not one-

to-one over its entire domain, but is one-to-one over each of the four subdomains of the

form Sc,i = [−π/2, π/2) × {i} or Sd,i = ([−π,−π/2) ∪ [π/2, π)) × {i}. Let ℓ̃12 = ℓ12/ℓ̂11.

We follow the convention that sin−1(·) ∈ [−π/2, π/2]. Over Sc,i, the inverse of the above

mapping is (θ, i) = (sin−1(ℓ̃12), i) ∈ Sc,i, and over Sd,i, the inverse of the above mapping is

(θ, i) = (sgn(ℓ̃12)π − sin−1(ℓ̃12), i) ∈ Sd,i. Since the derivative of sin(θ) is cos(θ), by the usual

change of variable theorem, the density over ℓ12 ∈ [−ℓ̂11, ℓ̂11] induced by the density p(θ)p(i|θ)

over [−π, π)× {0, 1} is

p(ℓ12) =
p(θ̃)p(0|θ̃)
|ℓ̂11 cos(θ̃)|

+
p(θ̃)p(1|θ̃)
|ℓ̂11 cos(θ̃)|

+
p(θ̂)p(0|θ̂)
|ℓ̂11 cos(θ̂)|

+
p(θ̂)p(1|θ̂)
|ℓ̂11 cos(θ̂)|

=
p(θ̃)

|ℓ̂11 cos(θ̃)|
+

p(θ̂)

|ℓ̂11 cos(θ̂)|
,

where θ̃ = sin−1(ℓ̃12) and θ̂ = sgn(ℓ̃12)π − θ̃. Since cos(θ̃) = − cos(θ̂), cos(θ̃) ≥ 0, and ℓ̂11 ≥ 0,

we have

p(ℓ12) =
p(θ̃) + p(θ̂)

ℓ̂11 cos(θ̃)
=

p(θ̃) + p(θ̂)

(ℓ̂211 − ℓ212)
1
2

, (11)

where the last equality follows from the fact that cos(θ̃) = (1− sin2(θ̃))
1
2 and will be of use

in Appendix B.4. The first equality is Equation (8).
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B.3 Proof that the Distributions over ℓ11 and ℓ12 Cannot Both Be

Uniform

If the conditional distribution of ℓ11 is uniform, then p(ℓ11) = 1/(2ℓ̂11) and the distribution of

θ must satisfy

p(θ) + p(−θ) = sin(θ)/2, for 0 ≤ θ < π. (12)

If the conditional distribution of ℓ12 is uniform, then p(ℓ12) = 1/(2ℓ̂11) and, because

sgn(ℓ12/ℓ̂11) = sgn(sin−1(ℓ12/ℓ̂11)), the distribution of θ must satisfy

p(θ) + p(sgn(θ)π − θ) = cos(θ)/2 for − π/2 ≤ θ ≤ π/2. (13)

So, for 0 ≤ θ ≤ π/2, it must be the case that cos(θ)/2 = p(θ) + p(π − θ), thus

cos(θ)/2 = sin(θ)/2− p(−θ) + sin(π − θ)/2− p(−π + θ) = sin(θ)− cos(θ)/2.

The first equality follows by substitution using Equation (13). The second equality follows

by two substitutions using Equation (12). The last equality follows by substitution using

Equation (13) and from the fact that sin(θ) = sin(π − θ). This would imply that cos(θ) =

sin(θ), which is not true.

B.4 The Density of ℓ11 and ℓ12 in Cases (1) and (2)

In Case (1), it had to be the case that p(θ) = 1/(2π) and p(i|θ) = 1/2. Equation (10) gives

p(ℓ11) = 1/(π(ℓ̂211 − ℓ211)
1
2 ). Equation (11) gives p(ℓ12) = 1/(π(ℓ̂211 − ℓ212)

1
2 ).

In Case (2), we chose p(θ) = | sin(θ)/4| and p(i|θ) = 1/2. Equation (10) gives

p(ℓ11) =
| sin(cos−1(ℓ11/ℓ̂11))|+ | sin(− cos−1(ℓ11/ℓ̂11))|

4ℓ̂11 sin(cos−1(ℓ11/ℓ̂11))
=

1

2ℓ̂11
,
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because sin(− cos−1(ℓ11/ℓ̂11)) = − sin(cos−1(ℓ11/ℓ̂11)). Equation (11) gives

p(ℓ12) =
| sin(sin−1(ℓ12/ℓ̂11))|+ | sin(sgn(ℓ12/ℓ̂11)π − sin−1(ℓ12/ℓ̂11))|

4(ℓ̂211 − ℓ212)
1
2

=
|ℓ12|

2ℓ̂11(ℓ̂211 − ℓ212)
1
2

because sin(sgn(ℓ12/ℓ̂11)π − sin−1(ℓ12/ℓ̂11)) = sin(sin−1(ℓ12/ℓ̂11)) = ℓ12/ℓ̂11.

C Posterior Simulation of Watson (2020)

The model in Watson (2020) has three zero restrictions on the long-run impulse response of

labor productivity growth. The long-run impulse response is given by

L∞ =

(
A′

0−
p∑

i=1

A′
i

)−1

=

(
In −

p∑
i=1

B′
i

)−1

(A−1
0 )′ =

(
In −

p∑
i=1

B′
i

)−1

h(Σ)′Q,

where Bi = Ai A
−1
0 . If labor productivity is the first variable and the technology shock is

ordered last, then the first three elements in the first row of L∞ must be zero. Given a non-zero

n-vector x, the Householder matrix Hn(x) is given by Hn(x) = In − 2 xx′

x′x
. Householder

matrices are reflection matrices, and hence orthogonal. If x and y are two distinct unit

vectors, then x′Hn(x − y) = y. Let x(B,Σ)′ be the first row of (In −
∑p

i=1B
′
i)
−1

h(Σ)′,

normalized to be of unit length, and let e4 be the last column of I4. It is easy to see

that (In −
∑p

i=1B
′
i)
−1

h(Σ)′Hn(x(B,Σ) − e4) will satisfy the zero restrictions, as long as

x(B,Σ) ̸= e4. Furthermore, if L∞ = (In −
∑p

i=1B
′
i)
−1

h(Σ)′ Q satisfies the zero restrictions,

then Q must be of the form Hn(x(B,Σ)− e4)P, where

P =

 P3 03×1

01×3 ±1

 (14)

and P3 ∈ O(3). Thus, given the reduced-form parameters (B,Σ), a Q can be obtained by

(1) drawing P3 using Proposition 1, (2) drawing ±1 uniformly, (3) forming P, and (4) finally
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multiplying by the Householder matrix Hn(x(B,Σ)− e4), we obtain a uniform draw from

O(4) conditional on the zero restrictions. In addition, it can be shown that the mapping

from P3 and ±1 to the IR parameters conditional on the zero restrictions does not depend

on P3 or ±1. This implies that the ratio of volume elements associated with the target and

the proposals does not depend on Q. Thus, Algorithm 1 can be used in this case, provided

that a simple re-weighing step is implemented. Notice that Proposition 2 directly applies to

the IR parameters identified with sign restrictions. It can be shown that they also apply to

the model in Watson (2020) with other IR parameters defined as (L0,L1,L2,L3,L∞, c). The

mapping from these IR parameters to the orthogonal reduced-form parameters is one-to-one

and onto, although we do have to restrict the parameters so that L∞ is well defined. Using

these IR parameters, the zero restrictions define a lower dimensional linear subspace where

the volume measure is Lebesgue.
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