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Abstract

We study how advancements in automation technology affect the division of aggregate
income between capital and labor in the context of long-run growth. Our analysis focuses
on the fundamental trade-off between the labor-displacing effect of automation and its
positive productivity effect in an elementary task-based framework featuring a schedule
of automation prices across tasks linked to the state of technology. We obtain general
conditions for the automation technology and technical change driving automation to be
labor-share displacing. We identify a unique task technology that reconciles the Kaldor
facts with the presence of automation along the balanced growth path. We show that this
technology aggregates to the Cobb–Douglas production function—thus providing novel
task-based microfoundations for this workhorse functional form. We employ our theory
to study the connection between the recent declines in the labor share and the unique
nature of the current, IT-powered wave of automation.
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Automation has long been a cause of great concern to policy-makers, economists and work-

ers due to its countervailing effects on labor income. On the one hand, automation displaces

labor from tasks or activities, reducing labor income, but on the other hand, it is associated with

productivity gains that reduce prices in the economy and increase real wages. This mechanism

is at the heart of automation’s effect on labor’s share in aggregate income, which has recently

been in the spotlight due to its steady decline in the data.1 In fact, one hypothesis holds that it

is modern incarnation of IT-powered automation that has eaten into the labor share, raising the

follow-up question of what might differentiate this wave of automation from past waves that

did not seem to have the same effect on the labor share.2

Economic theory offers only limited insights into how this trade-off works, leaving a num-

ber of key questions without general answers. For example, is the negative effect of displace-

ment always accompanied by a positive productivity effect? What are the determinants of

these effects in terms of technological fundamentals? Under what conditions, if any, is the net

effect on the labor share positive? Can balanced growth with automation and constant factor

shares be sustained to account for past growth experiences (i.e., the Kaldor facts)? Finally, is

the current, IT-powered wave of automation different in ways that would suggest a suppressed

productivity effect?

As for existing answers, neoclassical growth theory hints at a potential route of reconciling

automation observations with past growth observations (the Kaldor facts) under the guise of

capital-augmenting technical progress and the Cobb-Douglas production function, but by itself

it is too aggregate to be helpful. The existing microfoundations for that aggregate production

function, such as those given by Jones (2005) and Houthakker (1955), while more specific

about the role of capital and technology in the economy, do no readily provide an operational

notion of automation to fill this gap. A notable exception is the now seminal task-based theory

1Karabarbounis and Neiman (2013) measure this decline in multiple countries and conclude that the labor
share has been falling globally since the 1980s. They attribute the decline to changing technology. Dao et al.
(2017) provide updated evidence. While the decline in the aggregate labor share remains a controversial issue
due to measurement challenges (Gutierrez and Piton, 2020; Koh et al., 2020), its decline in heavily automated
and automating sectors is indisputable given their magnitude (e.g., US manufacturing).

2The constancy of the labor share is one of Kaldor’s facts of growth (Kaldor, 1961). The monographs by
Brynjolfsson and McAfee (2014), Ford (2009) and Frey (2020) highlight the growing concerns associated with
modern automation and provide an anecdotal characterization of the core technologies that it involves. For exam-
ple, evidence linking modern automation to labor displacement can be found in Acemoglu and Restrepo (2020),
Autor and Salomons (2018), Hubmer (2020), Humlum (2019), and Graetz and Michaels (2018), to name a few.
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of automation proposed by Acemoglu and Restrepo (2018) (AR18 hereafter), but their insights

are also limited to a specific and stylized rebalancing mechanism tying productivity-enhancing

innovations and structural changes to the displacement of existing and automated tasks by

newly created and initially labor-intensive tasks.

The goal of the current paper is to fill this gap by providing a parsimonious task-based the-

ory of automation that bridges these different strands of the literature and offers generalized

answers to the questions listed above. To do so, while building on AR18’s work, we funda-

mentally depart from their view of the task space as a dynamic object linked to innovation or

structural changes associated with growth. Instead, the task space is static in our model and

thus most appropriately interpreted as the universe of all feasible operations with matter that

are potentially relevant for production. Firms use some of these tasks to produce the current

set of goods, and in the background, tasks churn between being used, out of use, or reused.

The key enabling assumption is that the economy is sufficiently large and the time horizon

sufficiently long so that, by the application of the law of large numbers, the properties of

tasks in use become effectively divorced from any specific processes of structural change and

innovation occurring throughout the economy.3 This approach yields a general representation

of technical change as an exogenous schedule of evolving productivity of capital across tasks,

which, on the one hand, naturally anchors the discussion on the case of fully diffused progress

that augments capital productivity across all tasks uniformly and, on the other hand, allows

us to study a broader range of its possible “biased” incarnations. In particular, features such

as the rents to R&D associated with automation innovation decrease in their importance to

the division of income between labor and capital, since productivity of capital within tasks

becomes a cumulative product of incremental innovations over their long lifetime.4

As in AR18, our specification of task technology assumes that there exists a sufficiently

fine breakdown of production into a set of basic operations—called tasks—which in our case

3Our interpretation of the task space implies that even when the R&D process driving automation is directed
toward some subset of tasks in the short run, the continual process of random structural changes occurring in the
economy tends to reshuffle tasks and diffuse the impact of R&D on capital productivity across tasks, resulting in
the effect of R&D on capital productivity being diffused across tasks in the long run.

4In models of R&D based on the quality ladders framework (Grossman and Helpman, 1991), rents accruing to
R&D automation are determined by the marginal leap in productivity delivered by a new “automation recipe.” As
a result, in the long run, rents associated with the cumulative innovation that determines the overall productivity
of capital up to that point within a task are small, and technical progress can be approximately seen as rent-free.
AR18 track rents because new tasks emerge as the economy grows.
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make capital and labor perfectly substitutable at a task-specific ratio. The existence of such

a separation defines what automation and automation capital are, and not all capital needs to

exhibit such a property.5 After sorting tasks by that ratio—which yields complexity ranking of

tasks—the usage of automation capital across tasks by a cost minimizing firm is determined

via a cutoff rule. Automation is associated with any form of technical change that increases

the productivity of capital across tasks and, by cost minimization, decreases the fraction of

tasks assigned to labor. Our full model adds task-specific capital to explicitly link production

of capital goods to completion of tasks. This endogenizes the price schedule of automating

tasks.

The first substantive insight from our theory is that the assumed form of technical change

driving automation is crucial for understanding how it affects the labor share in the economy.

In particular, if technical progress is “diffused” in that it augments the productivity of capital

broadly across tasks, automation need not be labor-share displacing. We derive conditions

on technology for this to be the case, and the key to this result is the average productivity of

labor over the range of already automated tasks. However, if technical progress is sufficiently

biased toward marginal, first-to-be automated tasks, automation is necessarily associated with

a decline in the labor share because the productivity effect is nil (a consequence of the envelope

theorem). Interestingly, automation is always labor share displacing if it involves any structural

changes that shift the mass of tasks towards the automated region. As we explain, such a form

of technical change is equivalent to scattered jumps in the productivity of capital across the

complexity spectrum that lowers the cost of automating a mass of previously nonmarginal

tasks below the automation cutoff. This mechanism also applies in reverse, which is relevant

in the context of the specific mechanism considered by AR18 by highlighting its generality in

this respect.

To examine the long-run growth implications of our theory, we embed it into the neo-

classical growth model. We impose balanced growth restrictions that feature automation and

constant factor shares and seek to identify the underlying task technology. We show that these

5For example, consider a combination of a worker and a manual hammer in completing the task of nailing an
object to a wall. A hammer is augmenting the capabilities of labor and it should not be thought as “automation
capital” through the lens of our theory. However, in the same context, a pneumatic hammer can be thought of as
“automation capital” because it autonomously completes a step in the production processes previously completed
by a worker and a hammer.
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conditions lead to a unique task technology that aggregates to the Cobb–Douglas production

function—a result closely related to the known corollary to Uzawa’s theorem.6 In our full

model featuring the production of task-specific capital, this technology boils down to the re-

quirement that the power law governs the mass of tasks needed to produce machines that

are specific to tasks of a given complexity rank. This result is reminiscent of Jones (2005)

and Houthakker (1955) and it is appealing because the power law arises spontaneously in

nature for well understood reasons, and thus, technology in our model has the potential of

being nongeneric—as we discuss in Section 3.3.7 The existence of balanced growth shows

that there is no contradiction between automation and the Kaldor facts as long as the technical

progress affecting the productivity of capital is diffused across tasks, but it also raises a follow-

up question why the labor share may be declining due to current IT-powered automation—as

hypothesized in the literature.

In this regard, our theory’s answer is that IT may be the culprit because it represents a form

of “complexity-biased” technical change. Specifically, we use our theory to propose a concrete

model of how the emergence of IT-based automation adopted by profit-maximizing firms can

endogenously lead to such an effect. The key feature of this model is that a capital-producing

firm can use IT to “compress” the task load required to produce a machine (capital) at the

expense of completing a fixed measure of some other tasks—with the degree of compression

being optimally chosen by that firm. The idea is that this fixed set of tasks is associated

with adding a computer chip and/or lines of computer code to obtain “smart” machines that

optimize the use of hardware. To the extent that the technologies that drive the current wave

of automation exhibit the characteristics of the proposed technology, they can be labor share-

displacing, and the diffusion argument does not apply because of the specific nature of this

technology. (Section 4 discusses motivating anecdotal evidence.)

To summarize our findings, it is helpful to invoke Leontief’s analogy between humans

and horses that AR18 reference in their work. Following up on that analogy, they ask: What

differentiates humans from horses so that they will not share the fate of becoming redundant

6The microfoundation of the Cobb–Douglas production function is a new result. AR18 obtain a Cobb–
Douglas production function under the assumption of unit elasticity between tasks (i.e., Cobb—Douglas aggre-
gation of tasks) and a fixed automation margin.

7While this is not our focus, Section 3.3 discusses how this technology can endogenously arise as a result of
an elementary process of innovation. See also the discussion of related literature at the end of this section.
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in the course of modern automation? AR18’s answer is that humans, unlike horses, create

new and initially labor-intensive tasks that crowd out previously automated tasks—possibly

associated with the replacement of obsolete goods or production techniques in the economy.

In contrast, our theory does not take a stand on this issue, and gives a related but less specific

answer: the fact that humans are fungible across a vast array of randomly churning tasks as

the economy undergoes structural change can be enough of a defense line for labor to maintain

its share. Put differently, it is not necessarily human creativity but also random task churning

that can hold the line for labor by uniformly diffusing the effects of the productivity-enhancing

innovation in automation technology, and this applies as long as average productivity of labor

across the already automated tasks is not too low.

As discussed, our work is complementary (and most closely related) to the investigation

opened up by AR18’s work, and inspired by the existing microfoundations of the workhorse

Cobb–Douglas production function given by Jones (2005) and Houthakker (1955).8 Regard-

ing the aforementioned microfoundations for the Cobb–Douglas production function, a no-

table distinguishing feature of our task-based microfoundation is that it does not require that

aggregation occurs on an economy-wide level to obtain the Cobb–Douglas production func-

tion (approximately)—since the cost minimization in the use of capital and labor per task can

be dispersed across heterogeneous firms. This addresses some of the criticisms of these mi-

crofoundations seen in the literature.9 The shared feature is the Pareto distribution. We do

not have a clear intuition for this connection other than that the Pareto distribution appears to

deliver the right kind of curvature across structurally different models. As an example, the

work on the search-based innovation along the lines of Kortum (1997) and its extension due to

Ghiglino (2012) is particularly relevant in the context of providing further microfoundations

for the Pareto distribution in our model.10

8Alongside other papers in this area, our work crucially builds on the task-based foundations of growth theory
due to Zeira (1998). The recent work by Hubmer and Restrepo (2021) is also relevant and complementary in terms
of its focus on the firm-level linkages between automation and declines in the firm-level labor share.

9The issue is that aggregation requires that firm optimization occurs on the economy-wide level, as discussed
in Acemoglu (2009) (Section 15.8, p. 526). In particular, Acemoglu writes: “(...) existing evidence indicates that
there are considerable differences in the production function across industries, and they cannot be well approxi-
mated by Cobb-Douglas production function. This suggests it would be interesting to combine the aggregation
(...) with equilibrium interactions, which might delineate at what level the aggregation should take place and why
(...).” We show how to overcome it in Online Appendix C and discuss it in Section 3.2.

10Under the interpretation of the notion of “idea” in this literature as a method to use capital to complete a
task at some fixed level of productivity.
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1 Baseline model of production

This section lays out our baseline theory of production in partial equilibrium and estab-

lishes its properties. We focus on decentralized setup to streamline the exposition.

1.1 Environment

The basic unit of production is a firm: an abstract optimizing unit representative of the

economy as a whole. The firm takes prices as given and produces a homogeneous good sold in

a competitive market for price P > 0. There are two factors of production: capital and labor.

The user cost of capital is r > 0 and the wage rate is w > 0.

Technology

To produce one unit of output, the firm must complete a fixed measure of tasks indexed on

the real line by q ∈ Q = R+ := [0,+∞). A task is a basic operation that can be completed by

employing either a unit of labor or k (q) units of (automation) capital. The unit labor require-

ment is a normalization, and the underlying assumption is that the capital requirement and

the labor requirement are i.i.d. across tasks—as we explicitly show in Online Appendix A.11

There is no substitution between tasks; that is, completing a subset of tasks many times does

not change the requirement to complete other tasks.12 Tasks are sorted by capital requirement,

implying that k (q) is an increasing function and hence almost everywhere differentiable (a.e.,

hereafter). Throughout, we refer to q as task complexity rank. (It will become clear why we

refer to it as a “rank.”)

The measure of tasks that need to be completed to produce a unit of output is determined by

a measure function µ : B (Q)→ R+∪{+∞}, where B (Q) denotes the Borel σ-algebra over

Q. We assume the measure µ is generated by a nonnegative Lebesgue measurable function g

11The setup considered here is equivalent to a setup featuring a variable labor requirement l (q) under the
assumption that k (q) and l (q) are independent across tasks. What permits this normalization is the fact that all
tasks must be completed to produce a unit of output.

12The assumption that all tasks must be completed contrasts with related task models that allow for some
degree of substitutability between tasks. For a fixed commodity that involves, say, tasks A and B, it is not clear
what it physically means that completing task A twice is a substitute for completing task B. On the other hand,
features such as a broader technology menu from which firms might be choosing, or differentiated goods, should
be modeled explicitly in a microfounded model when such distinctions are critical for analysis. Our goal is to
formulate the technology in a way that does not mix in preferences, hence this assumption.
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referred to as density (not necessarily probability density); that is, for any Borel subset S ⊆ Q

of the complexity space, we have13

µ (S) =

�

S

g (q) dv, (1)

where v is the Lebesgue measure of the real line. To simplify the analysis, we additionally

assume that g has full support—which is largely without a loss in the given context—and that k

is a strictly positive-valued function on at least part of the domain.14 To ensure that production

is feasible, we also assume that there exists a measurable partition of the complexity space so

that total input usage is finite.

Assumption 1. There exists a partition {Qk,Ql} of Q with Qk ∩ Ql = ∅ and Qk ∪ Ql = Q

such that
�
Ql

1dµ <∞ and
�
Qk
k (q) dµ <∞, k is positive-valued function on at least part of

the domain, and g has full support.

In summary, technology comprises a tuple T := {k, g}, or interchangably, T = {k, µ}.

If T obeys the above assumptions, we say that it is an admissible task technology and denote

the set of such technologies by T . If, in addition, g can be normalized to a probability density

function (pdf), we say that technology T has a probabilistic representation.

1.2 Firm problem

Production technology exhibits constant returns to scale: to produce Y units of output the

firm repeats the tasks needed to produce one unit of output Y times (units are sufficiently

small to warrant Y ∈ R+). The profit maximizing firm chooses output level Y > 0 (scale) to

maximize its flow profits given by Π = PY − c (w, r)Y, where PY is revenue, c (w, r)Y is

total cost, and c (w, r) is both the marginal cost and the unit cost. Profit maximization under

constant returns to scale is linear and hence ill-defined unless P = c (w, r), in which case the

13The integral of a measurable function over a measure defines another measure—see, for example, Billings-
ley (1995) Theorem 16.9 (p. 212-213). By the Radon-Nikodym theorem—which provides conditions for the
existence of the inverse of this mapping (obtaining g from a given µ)—the family of measures admitted by this
formula includes all measures that are absolutely continuous with respect to the Lebesgue measure.

14The set on which g (q) = 0 can be eliminated from the domain with no impact on production (since inputs
are zero). The space can be stretched to fill the real line. Irregular cases such as “fat” Cantor sets are of no
economic relevance here.
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firm is indifferent to the choice of output Y . Throughout, we assume that the output price P is

such that profits are zero and Y clears the market.

The central element of the firm’s optimization problem is thus the cost minimization prob-

lem that defines the unit/marginal cost c (w, r). We need additional notation to define this

cost. Let P be the collection of all partitions of the complexity spaceQ to measurable subsets

Qk,Ql such that Qk ∩Ql = ∅ and Qk ∪Ql = Q. The unit cost then solves

c (w, r) := min
K,L,{Qk,Ql}∈P

rK + wL (2)

subject to

L =

�

Ql

1dµ = µ (Ql) and K =

�

Qk

k (q) dµ =

�

Qk

k (q) g (q) dv. (3)

The first constraint states that labor usage, L, is determined by the measure of the tasks

assigned to labor, which is µ (Ql) due to the unit normalization of the labor requirement per

task. The second constraint states that capital usage, K, is determined by the capital require-

ment function k (q) integrated over the measure µ on the set Qk of tasks assigned to capital,

or equivalently, by the product k (q) g (q) integrated over the Lebesgue measure v. We pre-

viously assumed that there exists a partition that makes production feasible, and so the cost

minimization problem above is well defined. For later use, we denote the optimal factor in-

tensity implied by the solution to (2) as K
Y

(
w
r

)
and L

Y

(
w
r

)
, and refer to them throughout as

capital intensity and labor intensity, respectively. (At this point, these can be either functions

or correspondences.)

The lemma below establishes that the solution to the firm’s cost minimization problem

amounts to finding a cutoff value q∗ ≥ 0 that partitions the complexity space in such a way

that all tasks below q∗ are completed using capital and all tasks above q∗ are completed using

labor. The optimality of a cutoff rule is intuitive, but obtaining this result requires that the

integrals underlying integrals are finite under a cutoff rule, which Assumption 1 ensures. (All

omitted proofs from the text are in the appendix unless otherwise noted.)

Lemma 1. Firm cost minimization in (2) involves a cutoff rule such that tasks on the interval

[0, q∗] are completed using capital and the remaining tasks are completed using labor, where

q∗ ∈ R+ ∪ {+∞} is such that: i) for any 0 < q∗ < ∞ there exists ε > 0 such that for all

9
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Figure 1: Cost minimization (a) and forms of technical change driving automation (b-c).
Notes: Panel a illustrates the cost–minimizing division of tasks into those assigned to capital and those assigned to labor. The task complexity

rank is on the horizontal axis, and the cost of completing a task is on the vertical axis. The shaded area shows the density g of tasks that must
be completed. The rk(q) schedule is the cost of completing a task using capital and the w schedule is the cost of completing a task using
labor. The cost–minimizing partition is given by cutoff q∗. Panel b illustrates the comparative statics associated with a downward shift in the
capital requirement function k and a change in task density g. As shown, this leads to the automation of tasks in the striped region. Panel c
provides an equivalent representation of the technical change associated with the change in density ∆g depicted in panel b—after resorting
tasks by k(q). Here, k(q) drops below w on a ”scattered” set of positive mass of nonmarginal tasks over the indicated range.

0 < δ < ε, rk (q∗ − δ) ≤ w and rk (q∗ + δ) ≥ w, or else q∗ = 0 and rk (q∗) ≥ w, or q∗ =∞.

Except for countably many points of discontinuity and irregular cases such as k bounded

from above, then, the cutoff q∗ satisfies the cost indifference condition: rk (q∗) = w. The

solution is unique as long as k is strictly increasing in the neighborhood of q∗. Otherwise,

there can be a range of values, and market clearing conditions are needed to pin down the

unique equilibrium value of q∗. We refer to this cutoff as the automation cutoff.

Figure 1a illustrates the firm’s cost minimization problem. Task complexity q is on the

horizontal axis and the factor cost of completing each task is on the vertical axis. The boundary

of the shaded area depicts task density g. The cost of completing tasks using capital is given

by the rk schedule and the cost of completing tasks using labor is given by the w schedule.

As shown, to minimize costs, the firm uses capital to the left of the cutoff q∗ where the cost

of completing tasks using capital (rk schedule) intersects the cost of completing tasks using

labor (w schedule), with the rest of the tasks being completed by labor. We refer to these tasks

as automated tasks. We say that automation occurs whenever there is a decrease in the share

of tasks assigned to labor.

As an example, Figure 1b depicts two possible forms of technical changes driving au-

tomation in our model: i) capital productivity-augmenting shift in k schedule by ∆k and ii)

complexity-reducing change in task density g by ∆g. As shown, (i) increases the automation

cutoff and leads to full automation of an existing mass of tasks corresponding to the striped
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area denoted by “+/−” in the figure, and (ii) removes a mass of tasks above the automation

cutoff (striped area denoted by “−”) and moves them below the automation cutoff (striped area

denoted by “+”). Figure 1c shows that case (ii) can be equivalently interpreted as a “scattered

jump” in the capital requirement below the cost of labor over some range of nonautomated

tasks—which after resorting tasks in ascending order by capital requirement boils down to the

depicted change in task density ∆g in Figure 1b.

1.3 Aggregation properties of task technology

To characterize the connection between automation, technical change driving automation,

and the labor share, it is convenient to introduce a notion of a production function. A produc-

tion function of a firm is the maximum output Y that can be produced from fixed (aggregate)

inputs K and L:

Y (T ;K,L) := sup

Ŷ ∈ R+ : ∃q∗∈Q s.t. K ≥ Ŷ

q∗�

0

k (q) dµ, L ≥ Ŷ

∞�

q∗

1dµ

 , (4)

where T = {k, µ} ∈ T . The production function effectively defines the planning problem

underlying production in our model.

Our first lemma shows that the monotonicity of capital requirement function k and the

assumption that it is nonzero on at least part of the domain Q implies that determining

Y (T ;K,L) for a given tuple K,L amounts to choosing a factor utilization cutoff q∗ so that

all inputs are fully utilized; that is, the technological constraints in (4) hold with equality. Note

this cutoff is distinct from the automation cutoff implied by firm’s cost minimization problem,

albeit in equilibrium the two cutoffs must align.15

Lemma 2. For any K > 0, L > 0 and technology T = {k, g} ∈ T , there exists a unique

factor utilization cutoff q∗ > 0 and Ŷ > 0 such that K = Ŷ
� q∗

0
k (q) dµ, L = Ŷ

�∞
q∗
dµ, and

Y (T ;K,L) = Ŷ , where Y (T ;K,L) is given by (4).

Our next result shows that the marginal products implied by the above production function

15On the firm level, note, the cost minimizing automation cutoff may not be unique but on the aggregate level
market clearing in the input markets implies that among all cost minimizing cutoffs the one that prevails is the
same as the factor usage cutoff associated with aggregate supply of inputs.
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are well defined (almost everywhere) and we derive the formula for output elasticity with

respect to each factor. In a competitive market environment output elasticities map onto factor

shares, and so this formula is of interest.

Lemma 3. Marginal products MPK := ∂Y (T ;K,L)
∂K

, MPL := ∂Y (T ;K,L)
∂L

implied by

Y (T ;K,L) in (4) are well defined (a.e.), with output elasticities given by

α :=
K

Y
MPK =

(
1 + k (q∗)

L

K

)−1

and
L

Y
MPL = 1− α (a.e.), (5)

where q∗ is the factor utilization cutoff satisfying Lemma 2.

Finally, our last technical result shows that, as far as aggregation goes, there is a degree

of freedom in terms of the complexity space—which can be transformed by any nonnegative

and invertible function with no impact on the aggregate production function. This implies

that a single aggregate production function corresponds to a whole equivalence class of task

technologies.

Lemma 4. Suppose T1 = {k1, µ1} ∈ T and T2 = {k2, µ2} ∈ T are such that there exists

a µ1, µ2-measurable (and invertible) map f : Q → Q so that k1 ≡ k2 ◦ f−1 (a.e.) and

µ1 ≡ µ2 ◦ f−1. Then, the aggregate production function associated to each technology is

identical; that is, Y (T1;K,L) ≡ Y (T2;K,L).

2 Effects of automation on labor share

We begin our analysis by first characterizing the link between technical change driving

automation in our model and the labor share. We use these results to guide our discussion

throughout the paper. As discussed in the introduction, technical progress should be thought

of as the result of the history of capital productivity-enhancing innovations occurring at the

task level and the process of diffusion of its effects as tasks randomly churn in and out of use

across the economy. We outline a model of that in Section 3.3.
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2.1 Comparative statics framework and definition

To represent capital-augmenting technical change as generally as possible, consider a in-

finitesimal perturbation of the task technology T = {k, g} ∈ T in the direction of some

technology vector ∆T = {∆k,∆g}, where ∆k (q) is a nonnegative and differentiable func-

tion and ∆g (q) is a differentiable function that shifts a mass of tasks away from labor and

towards capital; that is, ∆g is assumed to obey the restriction:

� q∗

0

∆g (q) dv = −
� ∞
q∗

∆g (q) dv > 0, (6)

where q∗ is the initial equilibrium automation cutoff. Specifically, the perturbed technology is

Tε := {kε (q) := k (q)− ε∆k (q) , gε (q) := g (q) + ε∆g (q)} . (7)

In the spirit of the variation calculus, we characterize the marginal impact of ε at ε = 0.

We refer to such a marginal perturbation as ∆T -biased capital-augmenting technical change

(or progress), and we also consider it coordinate-wise. Specifically, if ∆g ≡ 0, we refer to

this perturbation as ∆k-biased capital productivity-augmenting technical change, and when

∆k ≡ 0, we call it ∆g-biased complexity-reducing technical change (complexity-augmenting

when the sign in (6) is reversed).

While prices r, w are held constant, the price level P is assumed to adjust so that profits of

the firm are zero at all times. The adjustment of the price level is key to redistributing the gains

from automation between the factors of production and assessing the impact of automation and

technical change on the labor share in a way that is consistent with the notion of equilibrium

in our full model.

The effect of this perturbation in a “nonmarginal form” is illustrated in Figure 1b. As

already discussed, the figure depicts a downward shift in the capital requirement by ∆k and a

shift in task density by ∆g. Given our assumption that tasks are sorted by capital requirement,

the latter form of technical change can be seen as equivalent to downward jumps in k (q) below

w across a scattered set on complexity domain—as shown in Figure 1c. After resorting tasks

by k (q), note, the technical change illustrated in that figure boils down to the change in density

depicted in Figure 1b. As a result of this technical change, labor intensity L
Y

(
w
r

)
decreases and
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capital intensity K
Y

(
w
r

)
increases, and firm profits rise. Consequently, the equilibrium price P

declines to restore the zero profit condition. The adjustment of the price level, note, has no

feedback effect on the automation cutoff because that cutoff depends only on w
r

.

Decomposition of effect of automation and technical change on labor share

The labor share in our setup corresponds to

LSε :=
w

Pε

L

Y ε
(q∗ε) , (8)

where Pε is the zero profit price level, L
Y ε

(q∗ε) is the labor requirement function that minimizes

production cost and q∗ε is the cost minimizing automation cutoff. With the exception of wage

ratew—which is exogenous—all variables depend on technology, and hence ε in the subscript.

Differentiating this expression with respect to ε shows that the labor share is affected via two

distinct channels, which we label as displacement effect (DE) and the productivity effect (PE):

d logLSε
dε

|ε=0 =
d log L

Y ε
(q∗ε)

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −d logPε
dε

|ε=0︸ ︷︷ ︸
productivity effect PE

. (9)

Intuitively, displacement effect is associated with the displacement of labor by capital across

tasks—represented by the striped area denoted by “−” in Figure 1b. The effect is in part

attributed to the change in the automation cutoff and in part to the change in density g—as

shown in that figure. Assuming that k (q) is strictly increasing and differentiable at q∗, the

cutoff satisfies the identity kε (q∗ε) ≡ w
r

, implying

dq∗ε
dε
|ε=0 =

∆k (q∗)

k′ (q∗)
> 0, (10)

where k′ is shorthand for the derivative of k. The cutoff change is positive whenever ∆k (q∗) >

0. The change in density, note, does not affect the cutoff—even though one can think of it as

being driven by a decline in capital requirement, as depicted in Figure 1c.

The productivity effect is associated with a decline in the zero-profit price P ε, as it raises

the purchasing power of income in the economy and thus raises real wages. Differentiating the

zero-profit condition
(
w L
Y ε

(q∗ε) + rK
Y ε

(q∗ε)− Pε ≡ 0
)

shows that, generally, the price impact
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is attributed to both automation of tasks and the direct technical change effect:

PE = − 1

P

(
w
dL
Y

(q∗)

dq∗
+ r

dK
Y

(q∗)

dq∗

)
dq∗ε
dε
|ε=0 −

1

P

� q∗

0

∆g (q)

g (q)
k (q) dµ︸ ︷︷ ︸

automation

(11)

+
1

P

� q∗

0

r∆k (q) dµ︸ ︷︷ ︸
direct technical change effect

,

where, as noted, we use notation P ≡ P0, q∗ ≡ q∗0 , L
Y 0
≡ L

Y
, and so on and so forth. Automa-

tion’s effect in (11) is in part driven by the change in automation cutoff (first two terms) and

in part by the new automated tasks brought about by the change in task density (third term).

Direct technical change effect is brought about by increased productivity of capital across the

already automated tasks on the interval (0, q∗). Since we restricted attention to the case of

progress that increases productivity of capital, the productivity effect is nonnegative. The rel-

ative magnitude of these two effects is what determines the link between automation and the

labor share.

2.2 Analysis and results

The proposition establishes the conditions on technical change and technology so that the

net effect on the labor share is nonnegative. To understand this result, it is instructive to con-

sider the two sources of variation separately. We discuss them one by one after the proposition

to break down this result and narrow the key intuitions it conveys.

Proposition 1. ∆T = {∆k,∆g}-biased capital-augmenting technical progress: 1) changes

the measure of nonautomated tasks completed by

d logSε (q∗ε)

dε
|ε=0 = −h (q∗)

(
∆k (q∗)

k′ (q∗)
+

� q∗
0

w
r

∆g(q)
g(q)

dµ

g (q∗) k (q∗)

)
(a.e.), (12)

and 2) changes the labor share by

d logLSε
dε

|ε=0 =
d log L

Y ε
(q∗ε)

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −d logPε
dε

|ε=0︸ ︷︷ ︸
productivity effect PE

(a.e.) (13)
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Figure 2: Labor share and the effect of a uniform capital productivity-augmenting technical
progress.
Notes: The figure compares the trace of the labor share implied by the firm problem with respect to w/r in an exercise that assumes an

exogenous decrease in r, fixed w, and zero profit P . (Distribution of q is Pareto pdf.)

where

DE =
d logSε (q∗ε)

dε
|ε=0 = −h (q∗)

(
∆k (q∗)

k′ (q∗)
+

� q∗
0

w
r

∆g(q)
g(q)

dµ

g (q∗) k (q∗)

)
, (14)

PE =
1

P

q∗�

0

rk (q) dµ+
1

P

q∗�

0

∆g (q)

g (q)
(w − rk (q)) dµ, (15)

= h (q∗)LS

(� q∗0
0

∆k (q) dµ

k (q∗) g (q∗)
+

� q∗
0

∆g(q)
g(q)

(
w
r
− k (q)

)
dµ

g (q∗) k (q∗)

)

and where q∗ is the initial automation cutoff such that at that cutoff point k (q) is strictly

increasing and differentiable, S (q∗) =
�∞
q∗
dµ is the survival function, and h (q) := −dS(q)

dq
=

g(q)
S(q)

is the hazard rate.

Effects of capital productivity-augmenting technical change

Regarding the capital productivity-augmenting component of technical change (∆g ≡ 0),

the key implication of Proposition 1 is that, for the net effect to be nonnegative, technical

progress must be “diffused” in that it must augment the productivity of capital across a broad

range of already automated tasks. By the envelope theorem, the optimality of the automation

cutoff q∗0 implies that the productivity effect is attributable to the direct effect of technical

change in (11); that is, the effect of automation is always nil. Consequently, any marginal form

of technical progress featuring ∆k (q∗) = k (q∗) and vanishing ∆k (q) ≈ 0 over the range of

16



currently automated tasks on the interval (0, q∗) exclusively entails the negative displacement

effect—implying an unambiguously negative net effect. This is easily verified by plugging

these values into (13) and noting that PE = 0 while DE < 0.

The second key implication of the proposition is that diffused technical progress by itself

is not enough for the net effect to be positive (PE + DE ≥ 0). The proposition provides a

condition on technology so that this is the case.

To understand the intuition behind that condition, let us consider the case of uniformly

capital productivity-augmenting technical progress; that is, let ∆k (q∗) = k (q∗). Replacing

∆k with k in (13), implies that the productivity effect is

PE =
1

P

q∗�

0

rk (q) dµ = h (q∗)LS

� q∗
0
k (q) g (q) dv

k (q∗) g (q∗)
. (16)

The first equality from the left tells us that the productivity effect is associated with a reduction

in the firm’s spending on capital due to increased productivity of capital across the already au-

tomated tasks on the interval (0, q∗). This is intuitive given our model features no substitution

of one task for another task.16 The second equality shows that the initial labor share and the

average productivity of capital across the automated tasks relative to the marginal automated

task is decisive about the magnitude of this effect. Therefore, a less convex k (q) g (q) schedule

is conducive to generating a larger productivity effect.

The strength of the displacement effect also turns out to depend on the convexity of the

k (q) schedule because this is what determines the change in the cutoff. The shape of density

g (q) is not relevant, and hence nonconvex k (q) is most conducive to a positive net effect. In

particular, in this case, we have

DE =
d logSε (q∗ε)

dε
|ε=0 = −h (q∗)

k (q∗)

k′ (q∗)
. (17)

The first equality shows that displacement corresponds to the reduction in the total mass of

tasks completed by labor—which is intuitive given the fact that the labor requirement per task

is normalized to unity and we are considering the relative change in the labor share (change

16Had there been any substitution between tasks, the result would depend on the corresponding elasticity.
However, for reasons discussed in footnote 12, we favor the formulation of technology without this feature.
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in logs). As already mentioned, the second equality implies that the more convex the k (q)

schedule is, the smaller the change in the cutoff, and the smaller the displacement effect. (The

hazard rate h is effectively unimportant because it scales both the productivity effect and the

displacement effect.)

To show that the productivity effect can dominate, Figure 2 considers two distinct tech-

nologies: the first technology assumes k (q) = q3 and the second technology assumes a less

convex schedule given by k (q) = eq − 1. In both cases, task density is given by the Pareto

pdf: g (q) ∝ (q + .1)−2, and in both cases we solve for the zero profit equilibrium for a range

of values for w/r for the given k (q) schedules—which, note, is equivalent to a uniformly

capital-augmenting progress considered here. As we can see, capital-augmenting progress cor-

responding to higher w
r

implies a flat path for the labor share in the first case and an increasing

path in the second case.

Effects of complexity-reducing technical change

The complexity-reducing technical change does not affect the automation cutoff, but it

nonetheless leads to positive displacement because a positive mass of “nonmarginal” tasks is

reassigned from labor to capital—as shown in Figure 1b. In particular, the displacement effect

is always negative and it pertains to the relative change in the mass of tasks assigned to labor:

DE =
d logS (q∗ε)

dε
|ε=0 = −h (q∗)

� q∗
0

w
r

∆g(q)
g(q)

dµ

g (q∗) k (q∗)
< 0. (18)

The productivity effect, in turn, is also always positive and depends on the net profit benefit

from reassigning tasks, which comes from the difference between the relative cost of labor

versus the cost of capital “w
r
− k (q)” on the spectrum of the mass of reassigned tasks; that is,

PE =
1

P

q∗�

0

∆g (q)

g (q)
(w − rk (q)) dµ = h (q∗)LS

(� q∗
0

∆g(q)
g(q)

(
w
r
− k (q)

)
dµ

g (q∗) k (q∗)

)
. (19)

The first equality shows that, as in the other case, the effect is driven by reduction in costs.

The second equality translates this formula to a form that can be compared to the displacement
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effect above, from which we obtain that the net effect is always negative:

DE + PE = − h (q∗)

g (q∗) k (q∗)

 q∗�

0

∆g (q)

g (q)

(w
r

(1− LS) + k (q)LS
)
dµ

 < 0. (20)

The generality of this result may seem surprising but it is quite intuitive. Note that the assumed

change in task density reduces production costs, which lowers the price level in the economy

and increases the purchasing power of all income. In real terms, then, the benefit that accrues

to labor is proportional to its initial share (LS). To see this from the above expression, set

k (q) ≈ 0 across the mass of reassigned tasks and note that even in that case the net effect is

still negative and given by −w
r

(1− LS). Intuitively, due to the displacement of labor from

tasks, labor share declines by w
r

per displaced tasks, but the overall decline is only w
r

(1− LS)

because the decline in the price level recoups w
r
LS. If the firm must pay for capital (i.e., when

k (q) > 0), the negative net effect is larger because payments to capital reduce profits, with

fraction k (q)LS that would otherwise accrue to labor (measured in units of capital).

Discussion of results

The key lesson from the above results is that both the technology in place and the form

of technical progress driving automation affect the labor share. In particular, observations of

automation alone are insufficient to determine its effects on the labor share, which may be

positive or negative.

As a general rule, ∆k-biased capital productivity-augmenting technical change that is more

“diffused” and improves the (relative) productivity of capital across a vast swath of tasks tends

to boost the productivity effect. The net effect then depends on how productive capital is over

the entire range of automated tasks vis-à-vis the marginal automated task, or equivalently, how

productive labor is. As discussed in the introduction, the assumptions underlying the notion

of tasks in our model favor such a diffused view of technical progress unless one can identify

a specific reason to think otherwise (e.g., as we do in Section 4). A random churning of tasks

that occurs in the economy will tend to diffuse the impact of even extremely marginal progress

over time, and for this reason there is hope for labor to hold the line as long as it remains

reasonably productive on the range of the automated tasks relative to the marginal task.
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Structural changes that are complexity-reducing and push nonmarginal and nonautomated

tasks towards the automated region are always labor-share displacing. A better empirical un-

derstanding of how structural changes and innovation affect task complexity is needed here.17

To our way of thinking, it is not clear in which direction this effect goes as the economy

grows. The next section shows that imposing balanced growth conditions in our framework is

consistent with the absence of this channel in the past data.

Last but not least, in the medium run, positive rents to automation-enabling R&D may

temporarily reduce the labor share in addition to the described above effects. Our analysis

abstracts from such rents and focuses on the long-run effects of technical change.18

3 Balanced growth and automation

Can the observations of automation on a micro level be consistent with past growth expe-

riences, namely the Kaldor facts (Kaldor, 1961)?19 What can we learn about technical change

and technology from these observations? Here we embed our model into a growth model and

show that there is no contradiction between these observations as long as technical progress

is uniformly capital productivity-augmenting, complexity-unbiased, and the underlying task

technology takes a particular form that aggregates to the Cobb–Douglas production function.

3.1 Growth and general equilibrium

The overarching growth model is standard but we briefly describe the setup to lay out no-

tation. Time is continuous, t ∈ R+ and Tt ∈ T denotes the exogenous technology path (under

perfect foresight), which we summarize by the underlying sequence of production functions

17While more sophisticated goods or services may enter production as incomes grow, it does not imply that
their production involves more complex tasks, because relation between goods and tasks is unclear. There are also
anecdotes that suggest the opposite. For example, standardization in the process of mass production is complexity-
reducing technical change. Digitization, by the nonrival nature of software, results in large productivity gains
across selected tasks and can be thought of as ∆g-biased complexity-reducing technical change (as shown in
Figure 1c).

18See footnote 4. In the medium run, and hence in the context of the recent declines in the aggregate labor
share that span just a few decades, rents to R&D associated with automation technology could be a factor. In
fact, one of the hypotheses for the declining labor share in the aggregate data is that the rents associated with
intangible capital have increased (Koh et al., 2020).

19For a review of the Kaldor facts, see Jones and Romer (2010).
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Y
(
Tt;Kt, L̄

)
defined in (4).20

The economy is populated by a stand-in firm and a stand-in household. The household

values consumption streams according to the present discounted value of the flow utility from

consumption Ct given by u (Ct) =
C1−σ
t

1−σ , σ > 1, where 0 < ρ < 1 denotes the discount factor.

The household inelastically supplies L̄ units of labor and accumulates capital that it rents to

firms. All markets are perfectly competitive and all prices are taken as given.

The allocation corresponds to any non-negative path of Ct, Kt, and Yt, as well as factor

utilization cutoff q∗t associated with the definition of Y
(
Tt;Kt, L̄

)
uniquely pinned down by

Lemma 3. The allocation obeys the economy-wide resource constraint

Ct + K̇t − δKt = Yt = Y
(
Tt;Kt, L̄

)
, (21)

where Ct ≥ 0 is consumption (in period t), Kt ≥ 0 is capital used in production, K̇t := dKt
dt

is the gross investment in capital, δKt is the depreciation of capital, and L̄ is labor used to

production.

By welfare theorems, the equilibrium allocation solves the planning problem of maximiz-

ing lifetime utility
�∞

0
e−ρtu (Ct) subject to the resource constraint in (21) and given K0 > 0.

Supporting prices can be recovered from Lemma 3 and the path of Pt > 0 is undetermined and

can be normalized to unity.

3.2 Conditions for balanced growth with automation

In a model with detailed microfoundations, the definition of a balanced growth path is

more involved because it has to specify how various functional forms evolve over time. We

use the standard approach of assuming “stable shape” conditions in the spirit of similar defini-

tions used by, for example, Lucas and Moll (2014), Perla and Tonetti (2014), and Menzio and

Martellini (2020). These assumptions are not without loss, but they are justified. The logic

is that the underlying endogenous processes that determine these objects are stationary in the

sense that they give rise to stable structural relationships within the economy.

Specifically, our definition requires that the growth rate of the capital requirement per task

is independent of the task by assuming that k (q) grows at a constant rate for all q ∈ Q. We
20By a path we mean a function of time t.
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impose a similar condition on the density function g (q). Under this definition, note, growth

can be driven only by technical progress that is uniformly factor-augmenting across tasks and

complexity-unbiased. As we have argued, this view is consistent with the long-run perspective

and the notion of task space in our model absent any correlating factor that directs capital-

augmenting progress toward a particular subset of tasks or moves the mass of tasks within the

already automated region. The formal definition is as follows:

Definition 1. A balanced growth path with automation and constant factor shares (BGP)

comprises an allocation sequence: Yt = Y0e
γY t, Ct = C0e

γCt, Kt = K0e
γKt, q∗t = q∗0e

γq∗ t

and a technology sequence Tt = {kt (q) = k0 (q) eγkt, gt (q) = g0 (q) eγgt} ∈ T , such that

γY > 0,γq∗ > 0 and α ≡ Kt
Yt
MPKt is constant, where γk, γg, Y0 > 0, C0 > 0, K0 > 0, q∗0 > 0

are scalars.

Our first result, summarized in Proposition 2, shows that BGP exists and requires that the

initial task technology is of the form:

T0 =
{
k0 (q) = k0q

θ, g0 (q) = g0q
−ζ−1

}
, (22)

where, abusing notation, k0 > 0, g0 > 0 are scalars involved in the specification of similarly

named functions k0 (q), g0(q). We refer to this task technology as the BGP task technology.

The proof largely follows from Lemma 3 and the basic property that capital K and output

Y grow at the same rate γ := γK = γY in the overarching growth model—which is also

an intermediate step in the proof of the Uzawa steady-state growth theorem as found in, for

example, Jones and Scrimgeour (2008). Specifically, by (5), for the factor shares to remain

constant, kt (q∗t ) = k0 (q∗0e
γq∗ t) eγkt must grow at the same rate γ, and so k0 (q) must exhibit

a constant elasticity with respect to q because q∗t is also required to grow at a strictly positive

rate γg∗ > 0.21 Accordingly, we must have k0 (q) = k0q
θ for some θ > 0. Since the total labor

supply is fixed at L̄ and the resource feasibility requires L̄ = Yt
�∞
q∗t
gt (q) dv, it must be true

that
�∞
q∗t
gt (q) dv declines at a constant rate γ to offset the constant growth of Yt at rate γ. As

we show in the proof, this yields g0 (q) = g0q
−ζ−1, as stated.22

21Constant growth of k (q∗) given constant growth of q∗ implies dk0(q
∗)

dq∗ /k (q) = θ, for some constant θ > 0,
which solves to k0 (q) = k0q

θ, for any constant k0 > 0.
22θ > ζ is required for the integrals to exist.
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The fact that balanced growth restriction implies a unique functional form for g should not

be surprising. The Pareto density function underlying BGP is the only function satisfying the

so-called scale-free property; that is, Pareto density is the only density satisfying that, for any

scalar a > 0, g0 (aq) = λ (a) g0 (q) for some function λ (a). This property is needed to ensure

that on different parts of the complexity domain factor intensities exhibit consistent behavior

so that growth can be balanced.23

Proposition 2. If γk < 0 and γg − αγk > 0, BGP exists and features: 1) T0 ={
k0 (q) = k0q

θ, g0 (q) = g0q
−ζ−1

}
, where ζ := γY +γg

γq∗
, θ := γY −γk

γq∗
; 2) γ := γY = γC =

γg − αγk.

The next result, summarized in Corollary 1 below, shows that the BGP technology aggre-

gates to the constant returns to scale Cobb–Douglas (CD) production function—which is not

surprising given what we already know from the Uzawa steady-state growth theorem. Specifi-

cally, recall that the Uzawa theorem implies that it must be possible to represent the technical

progress driving growth as labor augmenting; that is, it must be possible to represent the pro-

duction function in the neighborhood of the balanced growth path as Y
(
T0;Kt, atL̄

)
, for some

constant growth path at referred to as labor-augmenting technical progress.24 To obtain the CD

production function from this result, more restrictions must be placed. For example, impos-

ing the condition that the relative price of capital goods is declining at a constant rate along

the balanced growth path suffices.25 In our model, this condition is simply replaced by the

requirement that there is a steady rate of automation.

Corollary 1. The aggregate production function along the BGP is Cobb–Douglas; that is,

output Yt and marginal products MPKt and MPLt are consistent with those implied by

Yt (K,L) = At (ZtK)α L1−α (23)

where α = ζ
θ

and At > 0, Zt > 0 are scalars that grow at a constant rate.

23For the proof of this fact, see, for example, Newman (2004).
24We use the shorthand notation ẋ := dx

dt throughout. For a detailed discussion and proof of the Uzawa
theorem, see Jones and Scrimgeour (2004) and Jones and Scrimgeour (2008), or Acemoglu (2009) Theorem 2.6
(p. 60) and Theorem 2.7 (p. 63).

25We lack a good reference for this result and the outline of the proof can be found in Online Appendix H.
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As Lemma 4 shows, the BGP task technology is a unique task technology that aggregates to

the CD production function up to a monotone transformation of the complexity spaceQ, which

is a degree of freedom here by that lemma. The reason why a unique BGP task technology

obtains is because we have imposed the condition that q∗ grows at a constant rate.26 Without

this requirement, growth would not be balanced on the micro-level in a strict sense but it

would remain balanced on the aggregate level. The definition of BGP could thus be extended

to incorporate all cases that yield a Cobb–Douglas production function—and that lemma tells

us what they are.

It is not difficult to see, for example, that the following monotone transformation f (q) =

ζ−
1
ζ q

1
ζ applied to the BGP technology in (22) yields a technology that directly maps onto the

parameters of the CD production function in (23):27

TCD =

{
k (q) = Z−1q

1
α

1− α
α

, g (q) = A−1q−2

}
. (24)

We will refer to this technology as the canonical CD task technology. To give a better feel

of the analytics underlying the above results, Example 1 explicitly derives the CD production

function implied by the above technology and shows the equivalency between the above CD

technology and the original BGP technology.

Example 1. Consider the canonical CD technology in (24). We first explicitly show it aggre-

gates to CD production function. To that end, we use Lemma 2, calculate

L

Y
=

∞�

q∗

g (q) dq = A−1q∗−1,
K

Y
=

q∗�

0

k (q) g (q) dq = (AZ)−1 q∗
1
α
−1, (25)

and eliminate q∗ to obtain Y = A (ZK)α L1−α. Second, we note that from the proof of Corol-

lary 1 that the BGP technology T0 in Proposition 2 aggregates to Y = 1
g0

(
ζ
θ
ζ
−1 θ−ζ

k0
K
) ζ
θ
L1− ζ

θ .

Accordingly, both technologies give rise to the same production function for the match-

ing parameters: α = ζ
θ
, A = g−1

0 and Z = ζ
θ
ζ
−1 (θ − ζ) k−1

0 . To see that CD technol-

26The restriction of this result to T can be generalized but we do not pursue such a generalization to simplify
the exposition.

27Any task technology T = {k, g} that aggregates to a CD production function can be represented in TCD

form after applying the transformation: f (x) = S−1
(
Ax−1

)
, where S(q∗) =

�∞
q∗
gdv.

24



ogy can be obtained from BGP technology using the map f (q) = ζ−
1
ζ q

1
ζ , note that the

survival function associated with BGP technology is Ŝ (q) = g0ζ
−1q−ζ . Accordingly, we

have S (q) = Ŝ
(
ζ−

1
ζ q

1
ζ

)
= g0q

−1 = A−1q−1, g (q) := − d
dq
S (q) = A−1q−2, and also

k (q) = k0

(
ζ−

1
ζ q

1
ζ

)θ
= k0ζ

− θ
ζ q

θ
ζ = Z−1 1−α

α
q

1
α .

We conclude this section by stating a technical result implied by directly imposing the

requirement that the task technology must aggregate to a Cobb-Douglas production function.

This provides an alternative route of obtaining the above results without going through a def-

inition of balanced growth. As we can see, k must be proportional to the hazard rate implied

by g, and the range of k must cover the entire real line. This result also implies that measure µ

is an infinite measure (i.e., µ (Q) =∞). We comment on this property in the next section.

Proposition 3. The aggregate production function is Cobb-Douglas with exponent 0 < α < 1

if task technology T = {k, g} ∈ T satisfies

α
k′ (q)

k (q)
= h (q) :=

g (q)

S (q)
(a.e.), (26)

with k (q) →q→0 0, k (q) →q→∞ ∞, k (q)S (q) →q→0 0. Accordingly, for all ε > 0, there

exists a scalar Cε > 0 such that for all q ≥ ε k (q) = CεS (ε)
1
α S (q)−

1
α . Furthermore, the

implied measure is infinite, i.e., µ (Q) =∞, or equivalently, S (q)→q→0 ∞.

3.3 Properties of CD task technology and further extensions

CD task technology in (24) exhibits two key properties: 1) it has the potential for non-

generic microfoundations and 2) it can (approximately) account for firm/sectoral level hetero-

geneity of labor shares. We discuss these properties below and in the process sketch how to

extend our model in various directions.

Nongeneric microfoundations

Capital requirement per task exhibits power law tails with index α + 1—which is easy to

see by evaluating the probability that capital requirement k = k (q) = q
1
α associated with a

randomly selected task is above some fixed value k conditionally on being above some base
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value k0 < k:

Pr (k ≥ k|k ≥ k0) = Pr (q ≥ kα|q ≥ kα0 ) =

(
k

k0

)−α
. (27)

This property is appealing because power law arises spontaneously in nature, implying that the

CD task technology gives hope of being nongeneric (Newman, 2004).

As shown in the literature, many elementary stochastic processes yield Pareto distribution

(Gabaix, 2009; Newman, 2004). While it is beyond the scope of the current paper to provide

fully fledged microfoundations for CD task technology, we highlight here our framework’s

potential in this direction by sketching a concrete mechanism that delivers such a result and, at

the same time, operationalizes the notion of random task churning. We focus on the conditional

distribution of capital requirement k in (27). (By Lemma 4, one can always transform the task

space so that g is Pareto. The next section discusses why obtaining conditional (tail) Pareto

pdf is sufficient.)

The setup is as follows. Suppose there is a countable number of feasible types of goods

that arrive in the economy at a fixed Poisson rate µ > 0 each, implying that their arrival time

is an exponentially distributed random variable τ with parameter µ. Furthermore, suppose that

the arrival of each good i = {1, 2, 3...} brings a small mass of new tasks. (For now suppose

these tasks are new, do not overlap across goods, and goods/tasks never come out of use. We

return to this at the end.)

After a new task comes online, let the productivity of capital within this task be k−1
0 > 0,

so that capital requirement is k0. Suppose capital productivity grows at a fixed rate γ > 0

after entry; that is, after t periods a given task is online, capital requirement for this task is

k0 exp (−γt) . (We discuss at the end what happens when γ is an i.i.d. random variable.)

Deflating capital requirements by the average growth factor associated with capital pro-

ductivity in the economy, exp (γt), implies that the deflated capital requirements grow before

they come online and they are constant thereafter. As a result, capital requirements across the

active tasks are realizations of a random variable k0 exp (γτ).

One of the fundamental properties that gives rise to Pareto distribution in many contexts is

that exponential growth stopped after an exponentially distributed stopping time gives rise to a

Pareto distribution (Newman, 2004).28 In fact, a simple calculation shows that the probability

28For α = 1/3, the unit of time must be large to avoid rapid introduction of goods into the economy.
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k0 exp (γτ) exceeds some fixed value k is

Pr (k0e
γτ ≥ k) = Pr

(
τ ≥ γ−1 log

k

k0

)
= e

−µ
γ

log k
k0 =

(
k

k0

)−µ
γ

. (28)

Can γ be an i.i.d. random variable specific to a task, or can we have goods and tasks coming

online and offline at some Poisson rate? The answer is affirmative. First, capital requirements

for growth-deflated tasks that go offline and come back online at some fixed Poisson rate

will exhibit a stationary random growth process implying cycles of growth and contraction

that disperse deflated capital requirements. Second, i.i.d. γ will similarly induce a stationary

random growth process on the task level (after deflating by average growth). Random growth

process is known to give rise to Pareto distribution (Gabaix, 2009). Finally, accommodating

overlapping tasks featuring higher productivity growth is also possible as long as the i.i.d.

assumption of random growth can be maintained.29

Firm/sector heterogeneity of labor shares

As shown at the end of Proposition 3, the measure underlying CD task technology must be

infinite (µ (Q) = ∞). What makes the measure infinite here is the exploding mass of tasks

centered around q = 0. Since k (q) →q→0 0, production in the economy is still feasible, but

capital is essential in production.30 (Labor is also essential because k (q)→q→∞ ∞.)

The fact that the measure of tasks is infinite is problematic because it implies that density

g cannot be normalized to a pdf. A probabilistic representation of technology is useful to ac-

count for the firm- and sectoral-level heterogeneity in labor shares observed in the data while

preserving the aggregation properties exhibited by the technology under our representative

firm framework. In particular, had the measure been finite, we could equivalently recast our

model economy as comprising a finite mass of heterogeneous firms that draw a finite number

of tasks each from some common pdf underlying technology T , and yet the aggregate produc-

tion function would be the same as in our representative firm model because all these firms

would be drawing random tasks from the same pdf.31 An extension along these lines is not

29For additional examples and the discussion of random growth, see Online Appendix G.
30Note that, for any ε > 0, we have

� q0+ε
q0

q−2 →q0→0 +∞.
31As an example of a fully-fledged growth model with firm heterogeneity, consider the setup along the lines

of Atkeson and Kehoe (2007). Let {Tt}∞t=0 be the sequence of technology implying balanced growth in our
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possible when the measure is infinite because it would require an infinite mass of firms, which

is unreasonable. This shortcoming is related to the criticism of the existing microfoundations

of the CD function, and it appears that it applies to our microfoundation as well.32

As we show in Online Appendix C, there is a straightforward way of addressing this issue.

The idea is to relax the requirement that growth is exactly balanced—given the fact that the

data is measured with an error and the Kaldor facts are statistical facts based on a finite sample

of data. If so, an approximate balanced growth path would suffice to account for the Kaldor

facts in a statistical sense, and this requirement is delivered in spades by the following domain-

truncated version of the CD task technology:{
k (q) = Z−1 (q + q0)

1
α

1− α
α

, g (q) = A−1 (q + q0)−2

}
, (29)

where q0 > 0 is the approximating parameter given q0 = 0 yields (24). The underlying density

of k is the Pareto pdf with index α+ 1. An equivalent version of this technology is to truncate

the domain to [q0,∞) and use TCD defined in (24).

Online Appendix C shows that this technology exhibits approximately the same balanced

growth path for sufficiently low q0 as the canonical CD technology and it further converges to

the CD model’s balanced growth path over time. Factor shares are approximately constant and

they similarly converge to constant shares over time. Additionally, the above truncated version

exhibits an appealing property implying that capital will not be used in production until a

threshold productivity level is reached (in terms of Z or A). This property can provide task-

based microfoundations for the model of industrial revolution by Hansen and Prescott (2002),

or even models of poverty traps driven by learning-by-doing externality associated with using

capital in production (Romer, 1986).

representative firm economy. Suppose that a subset of households called entrepreneurs has the technology to
draw N ∈ {1, 2, 3...} tasks at some fixed cost from the current Tt = {..., gt} technology according to pdf gt
and can establish firms. Each firm uses capital and labor to produce output by completing its own tasks in a
cost minimizing way, and output is yvi for a given firm i, where 0 < v < 1 is the span of control and yi is the
number of times all tasks are completed by firm i. Suppose that the firm distribution evolves, with old firms being
retired as new firms draw technology from the improving technology frontier Tt. In such a setup, the aggregation
properties exhibited by Tt would largely carry over to the heterogeneous firm setup after accounting for the effect
of a limited span of control and positive profits in equilibrium.

32See footnote 9.
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4 Effects of IT-powered automation on labor share

We next use our theory to show how the emergence of advanced IT adopted by profit-

maximizing firms results in a complexity-biased technical change that lowers the labor share.

The key feature of this model is that firms can use IT to “compress” the task load required to

produce a machine (capital) specific to a given task at the expense of completing a fixed mea-

sure of some other tasks, resulting in an endogenous transformation of production technology

across the economy.

The inspiration for this model came from the monograph by Brynjolfsson and McAfee

(2014). Our reading of their work lead us to the interpretation that completing tasks gener-

ally requires physical power and cognitive input(s) to direct that power. Viewed from this

perspective, while capital naturally provides mechanical power, automation requires a costly

conversion of an oftentimes unstructured and cognition-intensive environment to a structured

and cognition-free environment to fully remove labor from the equation. This is what brings

complexity to automation and this is what makes it costly. The key idea captured by our model

of IT is that such tasks can be automated using IT at a lower and more proportionate cost

because IT equips capital with a form of “artificial cognition.”

4.1 Extended model of production

The extended setup explicitly links capital to the task space and adds IT technology.

Task-specific capital

Define a machine of type q as a lasting embodiment of tasks, which, if completed once,

can be used repeatedly to complete task q through the use of this machine until a Poisson event

with arrival rate δ ends its useful lifetime. The technology to produce a machine of type q

involves complexity space Q and a q-specific density g̃q (q̂) of tasks that, as in the baseline

model, must be completed by either capital or labor. As a result, technology in the extended

model is described by only the density function; that is, in capital goods producing sector(s),

it is T̃q = {g̃q}, and in goods producing sector it is T = {g}. In particular, the schedule k (q)

becomes endogenous and it pertains to the (real) purchase price of a machine of type q.
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The production of a task q-specific machine is assumed to happen in an instant of time and

a sector of firms that produce machines is assumed to make zero profits. Accordingly, k (q)

satisfies the fixed point:

Pk (q) := min
{Qk,Ql}∈P

r
�

q̂∈Qk

k (q̂) g̃q (q̂) dv + w

�

q̂∈Ql

g̃q (q̂) dv

 . (30)

As in the baseline model, the machine-producing firm seeks a measurable partition P of

tasks that minimizes costs. By definition, tasks assigned to capital are in set Qk. The user

cost of a machine is rk (q) to maintain consistency with the baseline model, and in Online

Appendix E we show that it is given by rt = Pt (1 + ρ− (1− δ) γr,t) , where γr,t is the growth

rate of Ptkt (q) at t. Tasks assigned to labor are in set Ql and are treated analogously. (In

terms of notation, note the distinction between the task that a machine is designed to complete,

denoted by q, and the tasks that must be completed to produce this machine, denoted by q̂.)

Next, we specialize this setup to focus attention on the balanced growth path technology,

which we achieve by imposing the following assumption:

Assumption 2. g̃q (q̂) = λ (q) g (q̂) , where g (q̂) = A−1q̂−2 and λ (q) = Z−1q
1
α .

The above assumption implies that the density of tasks needed to produce a machine of type

q involves some base density g (q̂) = A−1q̂−2—which we already know yields CD production

function (see Example 1)—and a task load function λ (q) that simply scales it. Intuitively, by

that assumption, tasks that are more complex simply involve more tasks rather than differently

distributed complexity of tasks.

The proposition below shows that this setup yields the capital requirement function asso-

ciated with the CD task technology in (24). Accordingly, the production function is CD in the

capital-producing sector(s) and hence also in the consumption sector as long as g (q) = A−1q−2

(as in Example 1).

Proposition 4. The production function in the capital q-producing sector is Cobb–Douglas of

the form:

Yq (K,L) = Zq−
1
αA

(
Z

(
c (w, r)

P

)−1
α

1− α
K

)α

L1−α, (31)
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and the endogenous capital requirement function is

k (q) = Z−1q
1
α︸ ︷︷ ︸

=λ(q)

c (w, r)

P
, (32)

where c (w, r) is the unit cost of production in the capital producing sector associated with

the base technology T = {g}. If, in addition, g (q) = A−1q−2, the production function in the

goods sector is also Cobb–Douglas and takes the form:

Y (K,L) = A

(
Z

(
c (w, r)

P

)−1
α

1− α
K

)α

L1−α. (33)

IT-revolution in automation

We are now ready to lay out our task-based model of IT. The key idea here is that IT

becomes available to the economy from a certain point in time onwards and was not avail-

able before (it is a breakthrough discovery akin to electricity or steam power). As mentioned,

IT is a technology that allows capital-producing firms to “compress” the task load required

to produce a machine (capital) at the expense of completing a fixed measure of some other

tasks—with firms optimally choosing the scale of compression. This results in a transforma-

tion of production technology in the entire economy. The costs associated with operating IT

technology are assumed to be borne each time a machine is produced. The formal definition

of IT breakthrough is as follows:

Definition 2. A breakthrough IT automation technology comprises i) a task technology T IT ={
gIT
}

and ii) an associated strictly decreasing compression function κ : R+ → R+, such that

T IT used n ≥ 0 times “compresses” the task load in the production of machines of type q ∈ Q

by factor κ (n), implying transformed task density is g̃q,n (q̂) = κ (n)λ (q) g (q̂) . (Units are

sufficiently small to justify the use of n ∈ R+.)

Assumption 3. κ (n) = κ0β
−1n−β, where 0 < β < α−1 − 1 and κ0 > 0 are scalars.

Assumption 3 specializes the functional forms to ensure that in the long run the arrival of

IT technology is consistent with balanced growth. This specific functional form implies that a

capital-producing firm can use IT to reduce the task load λq by β×100 percent at the expense of
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completing a fixed measure of tasks associated with a single application of T IT—which from

the firm’s point of view is a fixed cost—and later will be denoted by b. The crucial assumption

is the scalability of IT technology; that is, the fact that the firm can repeat the process n times

to reduce the task load by β × 100 percent n times.

In what follows, we examine the effects of the arrival of this technology in the specialized

CD setup underlying Proposition 4. In particular, we assume the initial capital cost schedule is

given by k0 (q) = q
1
α .

4.2 Analysis and results

Based on Proposition 4, the breakthrough IT technology implies that the post-

transformation capital price schedule is

k (q) = min

{
q

1
α ,min

n≥0
κ (n) q

1
α + bn

}
. (34)

This follows from the fact that, initially, we had k0 (q) = q
1
α , and the reduction of the task load

scales down proportionally κ (n)—as noted under equation (32) in Proposition 4. As noted,

the cost of completing tasks associated with IT is denoted by b > 0, which we do not need

to specify explicitly because, from an atomless firm’s point of view, this is just a constant. Of

course, in equilibrium, b is linked to factor prices, resulting in a fixed point on the economy-

wide level as the technology is applied.33

The inner minimization problem in (34) implies that the optimum occurs at n∗ =(
κ0
b
q

1
α

) 1
1+β

. As we show in the appendix, the benefit from applying the breakthrough technol-

ogy is strictly increasing in q, and hence the above problem implies a cutoff value qmin > 0

such that the technology is applied only into the production of machines of type q above that

cutoff. Using these results, the post-transformation schedule becomes

k (q) =

q
1
α q ≤ qmin

Cq
1
α

1
1+β q ≥ qmin

, (35)

33Our analysis below will show that solving for this fixed point would only reinforce our results because IT
technology would be applied to a larger subset of the complexity space Q.
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where C is some scalar ensuring continuity; that is, C is such that q
1
α
min = Cq

1
α

1
1+β

min .

It is clear from Example 1 that had k (q) ∝ q
1
α

1
1+β been applied globally to production of

goods, we would have readily obtained a CD aggregate production function featuring a labor

share given by LS1 = LS0 − βα instead of the initial LS0 = 1 − α. But the outer min

operator implies that the breakthrough technology will never be adopted globally, resulting in

a partial transformation of its upper portion (above qmin). However, the impact of this feature—

identical to that of the truncation of the domain introduced by q0 > 0 in (29) and analyzed in

Online Appendix C—turns out to vanish with the growth with automation. As a result, the

decline in the labor share in this economy—while smaller initially—in the limit converges to

LS1 = LS0 − βα, where LS0 = 1 − α is the initial labor share, and the economy converges

to a new balanced growth path with a lower labor share. We summarize the results in the

proposition below.

Proposition 5. Suppose that the labor share is LS0 = 1 − α. The post-breakthrough labor

share converges to LS1 = LS0 − αβ as the economy further automates so that qmin/q∗ → 0.

Discussion of results

Our model of IT is stylized and does not capture all the nuances that anecdotal evidence on

the nature of automation may throw at us. However, as we see it, it is a step forward toward

establishing concrete properties that IT technology must exhibit to be labor-share displacing

in a concrete environment featuring a descriptively realistic notion of automation. As shown,

a breakthrough IT automation technology lowers the labor share in our model because it ex-

hibits three qualitative properties: 1) universal applicability, 2) task measure compression, and

3) scalability. The first property means that the breakthrough technology can be applied to most

types of capital-producing tasks, implying a global impact across tasks. The second property

means that IT effectively “compresses” the density of tasks in the production of capital goods

at a fixed input of completing some other tasks. The third feature allows for its scalable ap-

plication. All these properties are critical for technology to be labor-share displacing, but the

exact functional forms are not.

Through the lens of our theory, then, the question of whether the modern IT-powered wave

of automation is labor share displacing comes down to the question of whether the kind of
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enabling IT technologies that power the current wave of automation exhibit these properties.

While answering this question conclusively is difficult, to the extent that most complex tasks

involve sophisticated cognitive input(s), the above features are plausible when IT is used to

provide “artificial cognition,” which, for example, Brynjolfsson and McAfee (2014) consider

to be one of the defining features of the current automation wave. In particular, Brynjolfs-

son and McAfee (2014) see automation as involving a combination of mechanical power and

cognition to direct that power towards productive uses. They also see the previous phases of

industrial revolution, which they refer to as the “first machine age,” as largely using crude

mechanical workarounds for the latter requirement. If we accept their view, then, the “first

machine age” must have left us with a range of tasks that are prohibitively costly to automate

without cognition, which immediately implies that the impact of the invention of “artificial

cognition” must be complexity biased as in our model. As we see it, under that view, the ques-

tion is more about the scope and the maturity of the existing technologies, as well as the exact

nature of its impact.

As a caveat to our analysis, it is important to stress that the arrival of IT also brings off-

setting structural changes that we do not model here. For example, IT has brought computer

games that created labor-intensive jobs for a large number of highly trained programmers,

which according to our earlier analysis would be a form of complexity-augmenting technical

change. While the presence of such phenomena in the data is undeniable, their quantitative

relevance in sustaining the labor share is less certain.

Lastly, the additional and novel aspect of the current wave of automation is digitization of

human activity brought about by information and communication technology (ICT). Digitiza-

tion enables an increased role of software in automating tasks (e.g., Uber services enabled by

smartphones). Software can be particularly impactful because it is (largely) nonrival and for

this reason the drop in the cost of performing a task by capital can be substantial, since on

the digital domain nothing else is required and the price of hardware appears to be converging

to a negligible level. The effect of digitization and software-based automation can thus have

the effect of complexity-reducing technical change in the language of Section 2—which we

have shown is always labor displacing. While digitization is an important aspect of technical

change, our intention was to develop a more general framework that captures the impact of IT

across a broader range of tasks, including those that require physical power to be completed.
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5 Conclusions

We provided a general characterization of how technical progress driving automation and

automation itself affect the division of income between capital and labor in the context of long-

run growth. We found that forces that “diffuse” the effects of technical progress are conducive

to constancy of the labor share as long as labor’s productivity is not too low on the range of

automated tasks. We argued that the diffused nature of technical progress is a natural conse-

quence of random productivity-enhancing innovations and task churning. We have shown that

a diffused and complexity-unbiased progress is consistent with automation observations and

past growth experiences (the Kaldor facts), in the process obtaining a new microfoundation

for the Cobb–Douglas production function. While we have argued that technical change of

a more diffused nature can be favorable to labor, we also found that the modern wave of IT-

powered automation involves a universal technology that, through the lens of our theory, can

be complexity-biased and hence labor-share displacing.
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Appendix: Omitted proofs

Proofs of Lemma 1 and Lemma 2 The proofs are technical and not essential for what

follows next. They can be found in Online Appendix B.

Proof of Lemma 3 The proof of the first, technical part of the lemma establishing differen-

tiability is not essential for what follows next and it is in Online Appendix B. We focus here on

the derivation of the marginal products. Part II: Consider fixed K > 0 and fixed L > 0. By

Lemma 2, we know that positive inputs are associated with positive output Y > 0 and some

positive cutoff q∗ > 0. (Differentiability of these objects almost everywhere on the domain

is established in Part I of the proof.) Consider an infinitesimal increment dK > 0 that adds

to the capital stock. (We make it positive to ease the exposition but the reasoning applies to

negative dK.) Given the corresponding change in the optimal cutoff dq∗ > 0 to accommodate

increment dK > 0 under Lemma 2, we can calculate dY > 0 from the labor input equation in

that lemma (i.e., L = Y
�∞
q∗

1dµ), which gives

dL = (Y + dY )

∞�

q∗+dq∗

1dµ− Y
∞�

q∗

1dµ = 0. (36)

By continuity property of Lebesgue integrals,34 the equation can be solved. Accordingly, from

the above equation, we calculate

Y = dY

�∞
q∗+dq∗

1dµ� q∗+dq∗
q∗

1dµ
. (37)

By Lemma 2, we know

dK = (Y + dY )

q∗+dq∗�

0

kdµ

︸ ︷︷ ︸
K+dK

−Y
q∗�

0

kdµ

︸ ︷︷ ︸
K

. (38)

34Lacking a textbook reference, we prove this property in the Online Appendix F.
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Plugging in for Y from (37) above and dividing both sides by dY yields

dK

dY
=

q∗+dq∗�

0

kdµ+

�∞
q∗+dq∗

1dµ� q∗+dq∗
q∗

1dµ

q∗+dq∗�

q∗

kdµ. (39)

(Recall that k (q∗) > 0, implying dY > 0; this is ensured by the fact that we started with

K > 0 and k (q) is an increasing function.) By the analog of the intermediate value theorem

for Lebesgue integrals,35 we can pick a real number k (q∗) ≤ k̂ ≤ k (q∗ + dq) such that� q∗+dq∗
q∗

kdµ = k̂
� q∗+dq∗
q∗

1dµ. Accordingly, the above equation simplifies to

dK

dY
=

q∗+dq∗�

0

kdµ+ k̂

∞�

q∗+dq∗

1dµ. (40)

Again, by Lemma 2, and by definition of dK, dY , we know
� q∗+dq∗

0
k (q) dµ = K+dK

Y+dY
and�∞

q∗+dq∗
1dµ = L+dL

Y+dY
, where from above we have dL = 0. Plugging in to the above equation,

we obtain dK
dY

= K+dK
Y+dY

+ k̂ L
Y+dY

. Given dK, dY are infinitesimal, we can ignore them in

the first two terms on the left-hand side and use K
Y

in place of K+dK
Y+dY

. Multiplying both sides

by Y
L

, and using the fact that k (q∗) ≤ k̂ ≤ k (q∗ + dq) (a.e.)—which gives k̂ → k (q∗)

as dq∗ → 0—we obtain dK
dY

Y
K

= 1 + k (q∗) L
K

(a.e.)—the inverse of output elasticity with

respect to capital. The elasticity of output with respect to labor follows from Euler’s law (i.e.,
∂Y
∂K
K/Y + ∂Y

∂L
L/Y = 1, by constant returns to scale). Q.E.D.

Proof of Lemma 4 By Lemma 2, we need to show that, if K,L, Ŷ satisfy K =

Ŷ
� q∗

0
k2 (q) dµ2 and L = Ŷ

� q∗
0
k2 (q) dµ2, for some q∗ ∈ Q, we can find q∗∗ ∈ Q such

that K = Ŷ
� q∗∗

0
k1 (q) dµ1 and L = Ŷ

� q∗∗
0

k2 (q) dµ1. This follows trivially by the change-

of-variables theorem,36 which, for example, in the case of capital implies:

�

[0,q∗]

k2dµ2 =

�

[0,q∗]

k1 ◦ f−1dµ2 =

�

[0,f−1(q∗)]

k1d
(
µ2 ◦ f−1

)
=

�

[0,f−1(q∗)]

k1dµ1.

35See Wheeden and Zygmund (1977), Corollary 5.31, p. 75.
36See Bogachev (2007) Theorem 3.6.1 (p. 190).
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(For Riemann integrals this result follows from the “u-substitution” method. The proof is more

involved for Lebesgue integrals.)

Proof of Proposition 1 Given L
Y

(q∗ε , ε) :=
�∞
q∗ε

(g0 (q) + ε∆g (q)) dq, Lebesgue differentia-

tion theorem yields

DE :=

d(w L
Y ε

(q∗ε ))
dε

w L
Y ε

(q∗ε)
|ε=0 = h (q∗0)

�∞
q∗

∆g(q)
g(q)

dµ

g (q∗)
− h (q∗)

∆k (q∗)

k′ (q∗)
, (41)

where to obtain the last equality we used (10) and the definition of hazard rate: h (q∗) :=

g(q∗)�∞
q∗ g(q)dv

. Using 1) k (q∗) = w
r
, 2)

�∞
q∗

∆g(q)
g(q)

dµ ≡
�∞
q∗

∆g (q) dv = −
� q∗

0
∆g (q) dv , and

simplifying, we obtain the equations for DE as stated in the proposition. The price Pε satisfies

Pε −
(
w L
Y ε

(q∗ε) + rK
Y ε

(q∗ε)
)
≡ 0, which after differentiation gives

PE := −dPε
dε
|ε=0

1

P
= −

(
d
(
w L
Y ε

(q∗ε)
)

dε
|ε=0 +

d
(
rK
Y ε

(q∗ε)
)

dε
|ε=0

)
1

P
. (42)

Given K
Y ε

(q∗ε) :=
�∞
q∗ε

(k (q)− ε∆k (q))
(

1 + ε∆g(q)
g(q)

)
dµ, we thus obtain

PE =− (w

∞�

q∗

∆g (q)

g (q)
dµ− wg (q∗)

dq∗ε
dε
|ε=0 − r

q∗�

0

∆k (q) dµ (43)

+ r

q∗0�

0

∆g (q)

g (q)
k (q) dµ+ rk (q∗) g (q∗)

dq∗ε
dε
|ε=0)

1

P
.

Since q∗ ≡ q∗0 satisfies rk (q∗) ≡ w, the terms involving “dq
∗
ε

dε
|ε=0” drop out. After basic

manipulations, we obtain the first expression for PE in the proposition. Equivalently, note, we

can write PE as

PE = −
w L
Y ε

(q∗ε)

P0

|ε=0︸ ︷︷ ︸
LS

 d(w L
Y ε

(q∗ε ))
dε

w L
Y ε

(q∗ε)
|ε=0 +

d(rKY ε
(q∗ε ))

dε

w L
Y ε

(q∗ε)
|ε=0

 (44)

to obtain
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PE = LS

− � q∗
0

∆k (q) dµ+
(
w
r

�∞
q∗

∆g(q)
g(q)

dµ+
� q∗

0
∆g(q)
g(q)

k (q) dµ
)

�∞
q∗
g (q) dv

r

w

 . (45)

Similarly, using 1) and 2) above, and simplifying, we obtain the second equation for PE. It is

now straightforward to derive d logS(q∗ε )
dε

|ε=0 by using dq∗ε
dε
|ε=0 in (10). We omit the details. (Note

that the obtained expressions apply almost everywhere on Q.) Q.E.D.

Proof of Proposition 2 The first part of the proof is in text. The proof that γ := γK = γY can

be found in Jones and Scrimgeour (2008). We finish the proof by establishing the following

omitted steps: 1) g0 (q) = g0q
−ζ−1; 2) ζ = γY +γg

γq∗
, θ = γ−γk

γq∗
, which guarantees θ < ζ , and also

requires γ − γk > 0. (The statement of the proposition also includes 3) γ = γg − αγk, which

we omit from here because it follows from the next corollary.) To prove step 1), we note that

d
(�∞

q∗(t)
g0 (q) eγgtdq

)
/dt(�∞

q∗(t)
g0 (q) eγgtdq

) = −γ, (46)

since L̄ is constant and, by Lemma 2, L̄ = Yt
�∞
q∗(t)

g0 (q) eγgtdq. Differentiating this expres-

sion, dividing both sides by q∗, and using the fact that q̇∗/q∗ = γq∗ , we obtain

g0 (q∗)�∞
q∗
g0 (q) dq

=
γ + γg
γq∗

1

q∗
. (47)

This equation must apply to all q∗ (starting from initial q∗0), since q∗ is assumed to be

growing at a strictly positive rate. Accordingly, it is an identity on that range. Define

f (q∗) :=
�∞
q∗
g0 (q) dq and note that f is a.e. differentiable with f ′ (q∗) = −g0 (q) by

Lebesgue’s differentiation theorem.37 Furthermore, note we can rewrite equation (47) as
f ′(q∗)
f(q∗)

≡ −γ+γg
γq∗

1
q∗
, which is an ODE and solves to f (q∗) = Cq

∗− γY +γg
γq∗ up to constant C,

which implies g0 (q) = −f ′ (q∗) = C
(
γ+γg
γq∗

)
q
∗− γ+γg

γq∗
−1

. Accordingly, g0 (q) = g0q
∗−ζ−1,

where ζ := γ+γg
γq∗

, and g0 = C γ+γg
γq∗

is a constant. As for step 2), we have already shown

that ζ := γ+γg
γq∗

. The proof that θ := γ−γk
γq∗

follows from the analogous reasoning applied

to Kt = Yt
�∞
q∗(t)

k0 (q) eγktg0 (q) eγgtdq, where we know from text that k0 (q) is of the form

37Wheeden and Zygmund (1977) Theorem 7.2 (p. 100) and Theorem 7.11 (p. 107).
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k0 (q) = k0q
θ, where θ > 0, or else T /∈ T . Accordingly,

�∞
q∗(t)

k0 (q) eγktg0 (q) eγgtdq must be

a constant, and θ can be obtained by solving

d
(�∞

q∗(t)
k0 (q) eγktg0 (q) eγgtdq

)
/dt�∞

q∗(t)
k0 (q) eγktg0 (q) eγgtdq

= 0. (48)

The approach to solve this equation is analogous. The solution is k0 (q) g0 (q) =

C
(
γg+γk
γq∗

)
q
∗ γg+γk

γq∗
−1
. Using the formula for g0 (q), and the fact that k0 (q) = k0q

θ, we ob-

tain θ = γ−γk
γg∗

. Q.E.D.

Proof of Corollary 1 Using Lemma 2, we have: L
Y

= g0

�∞
q∗
q−ζ−1dq = g0

1
ζ
q∗−ζ and K

Y
=

k0g0

� q∗
0
qθq−ζ−1dq = k0g0

θ−ζ q
∗θ−ζ . Eliminating q∗, yields Y = 1

g0
ζ1− ζ

θ

(
θ−ζ
k0

) ζ
θ
K

ζ
θL1− ζ

θ , which

is well defined since θ > ζ > 0, g0 > 0, k0 > 0.

Proof of Proposition 3 Part I. Necessity: If the relationship between Y,K and L is CD with

an exponent α (Y = AKαL1−α, where 0 < α < 1, A > 0), the relationship between factor

intensities is
(
K
Y

)α (L
Y

)1−α ≡ 1
A
, for some constant A > 0. Plugging in for factor intensities

from Lemma 2, gives
(� q∗

0
k (q) g (q) dv

)α
S (q∗)1−α ≡ 1

A
, for any q∗ > 0, where we must

also have S (q∗) <∞. By Lebesgue’s differentiation theorem,38 the derivative with respect to

q∗ is

α

(� q∗

0

k (q) g (q) dv

)α−1

k (q∗) g (q∗)S (q∗)1−α (49)

− (1− α)

(� q∗

0

k (q) g (q) dv

)α
S (q∗)−α g (q∗) ≡ 0,

a.e., which simplifies to

� q∗

0

k (q) g (q) dv ≡ α

1− α
k (q∗)S (q∗) <∞. (a.e.) (50)

38See Wheeden and Zygmund (1977) Theorem 7.2 (p. 100), Theorem 7.11 (p. 107), and the
comment under the proof of Theorem 7.16 (p. 109). The derivative of the left-hand side is

limr→0 |
�
[q0,q∗+r]

k(q)g(q)dv−
�
[q0,q∗]

k(q)g(q)dv

r | = limr→0 |
�
[q∗,q∗+r]

k(q)g(q)dv

r | = k (q) g (q) (a.e.), where the first
equality follows from Theorem 5.24 and the last equality follows from Theorem 7.2, as referenced.
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The original equation needs to hold up to an arbitrary constant A > 0, and so we do not lose

sufficiency here by differentiating the original expression. We differentiate the above equation

again with respect to q∗. The involved functions on the right-hand side, note, are monotone,

implying they are differentiable (a.e.).39 Differentiation gives

k (q) g (q) =
α

1− α
k′ (q)S (q)− α

1− α
k (q) g (q) , (51)

where we drop the asterisk over q because this distinction is no longer needed. Simplifying,

we obtain αk
′(q)
k(q)

= h(q) := g(q)
S(q)

. Part II. Sufficiency: In addition to conditions identified

above, we are seeking a particular solution with a constant C in such that (51) holds. We

use q∗ → 0 to identify it. It is clear from (50) that k(q∗) →q∗→0 0 is the case, since inte-

grability of k on Q implies
� q∗

0
k(q∗)g(q∗) →q∗→0 0. Accordingly, both the right-hand side

in (51) (limq∗→0
α

1−αk (q∗)S (q∗) = 0) and the left-hand side (limq∗→0

� q∗
0
k (q) g (q) = 0)

must vanish in the limit.40 Concluding, we need k (q) →q→0 0 and limq∗→0 k (q∗)S (q∗).

Part III. Properties: The unique solution to ODE in the lemma exists and is of the form

k (q) = c (ε) exp (α−1Hε (q)) , where Hε (q) :=
� q
ε
h (u) du, and where c (ε) is a constant

implied by the solution of ODE that will need to take a particular value for a given ε > 0 (it

is thus a function of the chosen ε > 0).41 The relationship between the cumulative hazard

function and the distribution G is given by

Hε (q) =

� q

ε

g (u)

S (u)
du =

� q

ε

1

S (u)

(
− d

du
(S (u))

)
︸ ︷︷ ︸

≡g(u)

du = ln

(
S (ε)

S (q)

)
. (52)

Accordingly, for any given ε > 0, we have k (q) = c (ε)S (ε)
1
α S (q)−

1
α , for all q ≥ ε. Since

we cannot have k ≡ 0 by Assumption 1, the previous equation implies k (q) →q→∞ ∞,

since S (q) →q→∞ 0.42 Part IV. By contradiction, assume µ (Q) < +∞, and note that, if so,

39Theorem 7.21 in Wheeden and Zygmund (1977).
40The last property follows from the mean value theorem and the existence of the integral.
41Since it is possible that S (q) →q→0 ∞, we introduce a constant ε > 0 that bounds the initial condition

away from q0.
42S (q) is a strictly decreasing function and bounded, which implies that this sequence must converge. The

proof then follows the fact that the tail sum of any convergent series converges to zero, that is, if
∑∞
i=1 ai con-

verges, then tn =
∑∞
i=n ai →n→∞ 0, which is a corollary from Cauchy’s criterion of convergence for series.

Specifically, define ai =
� q∗+i
q∗+i−1 1dµ, note that

∑∞
i=1 ai =

�∞
q∗

1µ < ∞ by Theorem 5.24 from Wheeden and
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S (q) ≤ µ (Q) < +∞, for all q ∈ Q. By the proof of this lemma (Part III above with ε = 0),

we know that CD aggregation in this case requires: k (q) = CS (q)−
1
α , for some constant

C > 0. But this is a contradiction because Part II of this lemma requires k (q) →q→0 0,

which is impossible to satisfy unless k ≡ 0, which contradicts Assumption 1. Concluding,

µ (Q) =∞, and by the continuity of measure, S (q)→q→0 ∞.43 Q.E.D.

Proof of Proposition 4 Note that the fixed point in (30) implies

Pk (q) := Z−1q
1
α

(� q∗

0

rk (q) g (q) dq + wS (q∗)

)
, (53)

where S (q∗) =
�∞
q∗
g (q) dq is the survival function associated with the base density g. Recall

from the firm cost minimization that the cutoff q∗ is q∗ ≡ q∗
(
w
r

)
= k−1

(
w
r

)
, which yields

S (q∗) ≡ S
(
q∗
(w
r

))
= S

(
k−1

(w
r

))
. (54)

For the time being, assume that the fixed point k (q) is such that its inverse is well defined.

We will return to this. By (50) in proof of Proposition 3, the requirement that the production

function in the capital q producing sector is Cobb-Douglas implies44

q∗�

0

rk (q) g (q) dq ≡ α

1− α
rk (q∗)S (q∗) . (55)

Substituting (54) and (55) into (53), we obtain Pk (q) = Z−1q
1
α
c(w,r)
P

, where c (w, r) :=

S
(
k−1

(
w
r

))
w

1−α . We have now shown that the capital requirement function k (q) is as stated

up to the term S
(
k−1

(
w
r

))
w

1−α , which is a constant from the firm’s point of view. To see it is

unit cost as stated, note that Lq := S
(
q∗
(
w
r

))
is the total labor input into the unit production

of capital of type q by such a firm, and note that we can rewrite the previous equation as

c (w, r) (1− α) = Lqw. Guess and verify that the production function in the capital producing

sectors is Cobb-Douglas with common share parameter α; then, by definition of α, the last

Zygmund (1977) and the properties of S, and apply the result for series.
43See Wheeden and Zygmund (1977) Theorem 10.1 (p. 163).
44To adopt this lemma to the production of capital, we associate output Y with the number of units of capital

that are produced in the capital sector q and K,L with the total factor usage in the sector that produces capital of
type q.
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expression implies that c (w, r) is the total unit cost of that firm because Lqw is total labor

cost. Following Example 1, it is straightforward to derive the production function. The guess

is verified. Q.E.D.

Proof of Proposition 5 The first part of the proof is in text. The breakthrough technology

is applied to capital producing task for all q such that b
β

(
κ0
b
q

1
α

) 1
1+β
((

κ0
b

) 1
1+β + 1

)
≤ q

1
α .

By monotonicity of this expression, it is clear there is qmin > 0 such that the technol-

ogy is applied for all q ≥ qmin (β > 0). Using (35) derived in text, we have: K
Y
∝(� qmin

0
q

1
α
−2dq + C

� q∗
qmin

q
1
α

(1+β)−2dq
)
. Define the isoquant error as the difference between

isoquants relative to the counterfactual k (q) = Cq
1
α

(1+β) but applied globally (to all q); that is,

let K′

Y ′
= C

� q∗
0
q

1
α

(1+β)−2dq, for the same constant C. After cumbersome manipulations, we

obtain45

ε :=
|K
Y
− K′

Y ′
|

K′

Y ′

= |
(
qmin

q∗

)1− 1
α

(
C
(
qmin

q∗

) β
α

(1− α)− (q∗)−
β
α (1− α + β) (1 + β)

)
(α− 1)

|.

Accordingly, ε → 0 as qmin

q∗
→ 0, and if q∗ is non-decreasing (economy automates). Conse-

quently, the post-transformation isoquant converges uniformly to a CD isoquant and so does

the labor share. The frontier isoquant at K,L supplied is what is relevant for the aggregate

labor share. Q.E.D.

45Derivation of this formula is in the Mathematica notebook “Proposition breakthrough.nb.”
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Appendix A: Normalization of labor requirement

Here we sketch the argument of how our assumption that the labor requirement is fixed

across tasks can be thought of as a normalization in a more general setup with labor and

capital requirements that differ by task but are mutually independent.

Suppose there is a separate capital and labor requirement function k (q) and l (q) . Define

k̂ (q) := k (q) /l (q) . Let q be ordered so that k̂ (q) is increasing as assumed in text. Suppose

these functions are measurable and the labor requirement is independent of (relative) capi-

tal requirement; that is, knowing k̂ gives no information about l, implying for any q we have

E
{
l (q) |k̂ (q) , q ∈ I

}
= E {l (q)}, where I = [a, b] ⊂ Q is any bounded interval (we use ex-

pectation operator under a probability measure p induced on that interval; a σ−finite measure

generates a conditional probability distribution on a bounded interval).

This implies that there exists a constant C > 0 such that for any bounded interval I =

[a, b] ⊂ Q we have �
I
l (q) dµ =

�
I
Cdµ, (1)

by assumption, since l is i.i.d. with respect to q (if this is not the case it would be possible

to infer l from k̂—that is, from q since k̂ (q) is increasing—and we assume here that k̂ (q) is

strictly increasing on at least part of the domain).

Let us now normalize units of capital requirement and labor requirement by some positive

constant C > 0; that is, abusing notation a bit, (re)define k (q) := k (q) /C and l (q) :=

l (q) /C. Note that this only a change of units in which inputs are measured to ensure, by (1),

that
�
I l (q) dµ =

�
I 1dµ, as in the paper. On any bounded interval I = [a, b] we have

�
I
k (q) dµ =

�
I
k̂ (q) l (q) dµ =

�
I
k̂ (q) dµ

�
I
l (q) dµ =

�
I
k̂ (q) dµ,

where the first equality follows by definition of k̂, the second equality follows from indepen-

dence, and the last inequality follows from (1) by normalization. We have now obtained the

result by showing that inputs are the same on the redefined and normalized space as on the

original space.1 We omit the details of extending this result to B (Q), which is standard but

1It must also be the case that the information we dropped is irrelevant for the firm, which we assume is the
case. As a counterexample, suppose the firm—for whatever reason—chooses to do tasks with capital iff l ≥ 5. In
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cumbersome.

Appendix B: Omitted proofs of Lemmas 1, 2 and parts of 3

Proof of Lemma 1 Part I: We first show that technological constraints given by equation 4

in the paper are satisfied for finite inputs when a cutoff rule is used; in particular, we need to

show that (i) the constant function f (q) = 1 is µ-integrable, or equivalently g (q) is Lebesgue

integrable on interval [q∗,∞), and that (ii) k (q) is µ-integrable, or equivalently k (q) g (q) is

Lebesgue integrable on interval [0, q∗], where q∗ satisfies the requirement of the lemma. We

prove it in two steps.

Step 1: Assume q∗ < ∞ and k (q∗) > 0. To establish property (i) above, de-

fine S = [q∗,∞). By contradiction, suppose g (q) is not Lebesgue integrable on S (i.e.,�
S dµ =

�
S g (q) dv = +∞, since measurability is assumed and g is a non-negative function).

By Assumption 1 in the paper, we know there is a measurable partition of S comprising two

disjoint subsets Sl = Ql∩S,Sk = Ql∩S such that
�
Sl
dµ <∞ and

�
Sk
k (q) dµ <∞, where

{Ql,Qk} is the partition implied by Assumption 1. Since k (q) is an increasing function, we

know

∞ >

�

Sk

k (q) dµ ≥
�

Sk

k (q∗) dµ = k (q∗)

�

Sk

dµ,

which gives a contradiction by the following chain of evaluations:

∞ >

�

Sl

1dµ+

�

Sk

k (q) dµ ≥
�

Sl

1dµ+ k (q∗)

�

Sk

dµ = (1 + k (q∗))

�

S

1dµ = +∞. (2)

To establish property (ii), we note that 0 ≤ k (q) ≤ w
r
< ∞ for all q ≤ q∗, implying

r
w
k (q) < 1. This follows by the definition of cutoff q∗ in the statement of lemma. Ac-

that case the ratio k/l would not be sufficient. This is not the case in our model because the firm only maximizes
profits.
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cordingly,
� q∗

0
k (q) dµ <∞ by the following chain of evaluations:

∞ >

�

Ql

1dµ+

�

Qk

k (q) dµ ≥
�

Ql

r

w
k (q) dµ+

�

Qk

k (q) dµ

=
( r
w

+ 1
)�
Q

k (q) dµ ≥
( r
w

+ 1
)� q∗

0

k (q) dµ.

(For Step 2 below, note that the proof of property (i) actually does not depend on q∗ in the

statement of the lemma, and the proof of property (ii) does not depend on k (q∗) > 0.)

Step 2: This step covers degenerate cases: a) k (q∗) = 0 (0 ≤ q∗ < ∞) or b) q∗ = +∞

(note: a and b is impossible by Assumption 1, since by that assumption k (q) must be strictly

positive for a sufficiently large q).

Case a: By definition of the cutoff in the statement of the lemma and the fact that k (q) is

an increasing function, we have k (q) ≥ w
r
> 0 for all q > q∗, and k (q) = 0 for all q ≤ q∗ (the

strictly inequality follows here from the hypothesis that k (q∗) = 0). Accordingly, we have

established now property (i), since
� q∗

0
k (q) dµ =

� q∗
0

0dµ = 0. Recall that, as noted at the

end of Step 1 above, the argument used in Step 1 above (proof of property ii) does not require

k (q∗) > 0 as assumed in Step 1, and so property (ii) has already been proven there.

Case b: Note that q∗ = ∞ implies k (q) ≤ w
r

for all q ∈ Q by the cutoff rule stated in

the lemma. Accordingly, by Assumption 1 in the paper, and the fact that r
w
k (q) ≤ 1 for all

q ∈ Q, property (i) follows from the evaluation:

∞ >

�

Ql

1dµ+

�

Qk

k (q) dµ ≥ r

w

�

Ql

k (q) dµ+

�

Qk

k (q) dµ =
( r
w

+ 1
)�
Q

k (q) dµ.

To see that limq∗→∞
�∞
q∗

1µ = 0, we apply the argument used in Step 1 (proof of property i) to

show that
�∞
q∗∗

1µ exists (is finite) for sufficiently large q∗∗ such that k (q∗) > 0 (the existence

of such a sufficiently large and finite q∗∗ is ensured by the fact that k (q) is strictly positive on

at least part of the domain by Assumption 1 and, as noted, Step 1 (proof property i) did not

actually rely on the assumption that q∗ corresponds to the cutoff as defined in the statement of

lemma). Since for any Lebesgue integral we have limq∗→∞
�∞
q∗

1µ = 0, we have now shown

4



that both constraints in equation 4 in the paper are well defined when the cutoff rule is used.2

Part II: This part establishes that the proposed cutoff rule satisfies cost minimization. By

contradiction, suppose that there exists a task partition Qk = E of a positive measure under µ

that solves the minimization problem and that is different from that implied by the cutoff rule

in the lemma (on a measurable set with a positive measure). If so, reassigning production of

tasks inA = E∩{q : q > q∗} from capital to labor must reduce the cost because rk (q) > w on

that set by definition of the cutoff rule—since we are minimizing rK+wL—and analogously

on set Ac on which we switch from using labor to capital. At least one of these sets must be

of positive measure, contradicting cost minimization and establishing the result. Q.E.D.

Proof of Lemma 2 Consider the definition of the production function (equation 5 in the

paper) with equality:

Y (K,L) := sup

Y : ∃q∗∈Q s.t. K = Y

q∗�

0

k (q) dµ, L = Y

∞�

q∗

1dµ

 . (3)

We split the proof to two steps: Step 1 shows the solution (Y ,q∗) to the above equations exists.

Step 2 shows the solution from Step 1 attains the supremum under the formulation stated in

the paper (equation 5 in the paper).

Step 1: Note that the constraint in (3) implies that q∗ satisfies

L

K
=

�∞
q∗

1dµ� q∗
0
k (q) dµ

. (4)

The integral in the numerator is finite whenever the integral in the denominator is nonzero.

We have established this property in the proof of Lemma 1 (see Part I, Step 1). The key here

is that when the denominator (or K > 0) is positive, then k (q∗) > 0, which in turn implies

the existence (finiteness) of the integral in the numerator by the arguments used in the proof of

Lemma 1 (see Part I, Step 1, proof of property i). Next, note the following basic properties of

2The proof follows the fact that the tail sum of any convergent series converges to zero, that is, if
∑∞
i=1 ai

converges, then tn =
∑∞
i=n ai →n→∞ 0, which itself is a corollary from Cauchy’s criterion of convergence

for series. Specifically, define ai =
� q∗+i
q∗+i−1 1dµ, note that

∑∞
i=1 ai =

�∞
q∗

1µ < ∞ by Theorem 5.24 from
Wheeden and Zygmund (1977) and the hypothesis, and now apply the result for series.
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the expression on the right-hand side of equation (4): i) the numerator can be made arbitrarily

small as q∗ → 0, and since the numerator is increasing in q∗, the expression goes to ∞ as

q∗ → 0; ii) the numerator goes to 0 when q∗ →∞, and since the denominator is positive and

increasing in q∗, the expression goes to 0 as q∗ → ∞ (the proof of this simple fact can be

found in footnote 2); finally, iii) note that the expression is continuous with respect to q∗ and

strictly decreasing, and by all these properties it is bijective on R+.3 Accordingly, there exists a

unique 0 < q∗ < +∞ that satisfies the two constraints (for any finite L/K > 0). Furthermore,

the supremum is attained within this set. (Without a loss we can restrict attention to a compact

domain of
(
Ŷ , q∗

)
while maximizing a continuous function f

(
Ŷ
)

= Ŷ on the set defined by

(3). Accordingly, Weierstrass extreme value theorem ensures the existence of maximum.)

Step 2: We now turn to the question of whether this solution attains the supremum under

the original definition of the production function given by equation 5 in the paper. For now

assume K > 0. (We cover K = 0 at the very end.) Suppose, by the way of contradiction that

there exists Ŷ ′ > Ŷ , q∗′ > 0 such that K > Ŷ ′
� q∗′

0
k (q) g (q) dv, L ≥ Ŷ ′

�∞
q∗′
g (v) dv (the

case K = Ŷ ′
� q∗′

0
k (q) g (q) dv, L > Ŷ ′

�∞
q∗′
g (v) dv will follow by analogy and it is omitted).

If so, the supremum of the original problem must exceed the one implied by 3, which, as we

show next, leads to a contradiction. Note that the integrals exist at q∗′ by the hypothesis (the

stated inequalities guarantee these integrals are finite). By the continuity of Lebesgue integrals

(see footnote 3), we can pick ∆q∗′ > 0 such thatK > Ŷ
� q∗′+∆q∗′

0
k (q) g (q) dv, which implies

that there exists ∆Ŷ > 0 such that K =
(
Ŷ ′ + ∆Ŷ ′

) � q∗′+∆q∗′

0
k (q) g (q) dv (by continuity

of the expression on the right). We must ensure that the integral in the last expression exists

(is finite). Let k̄ := sup[q∗′,q∗′+∆q∗′]⊂Q k (q), which, note, must be a finite number. (If this was

not the case, we would have had k (q∗∗) = +∞ for any q∗∗ > q∗′ + ∆q∗′—simply because

k (q) is increasing and it is defined everywhere onQ.) The following chain of evaluations now

shows that the integral in question exists as long as
�∞
q∗′
g (v) dv exists, which is the case by

the hypothesis:

∞ > k̄

∞�

q∗′

g (q) dq > k̄

q∗′+∆q∗′�

q∗′

g (q) dq >

q∗′+∆q∗′�

q∗′

k (q) g (q) dq.

3Lacking a textbook reference, we prove it in the Online Appendix E.
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Returning to the main argument, the fact that g has full support implies L >

Ŷ ′
�∞
q∗′+∆q∗′

1g (v) dv by continuity of Lebesgue integrals.4 But, if so, there exists Ŷ ′′ =

Ŷ ′ + ∆Ŷ ′′, for some 0 < ∆Ŷ ′′ < ∆Ŷ ′, such that K ≥ Ŷ ′′
� q∗′+∆q∗′

0
k (q) g (q) dv and we

maintain L = Ŷ ′′
�∞
q∗′+∆q∗′

g (v) dv, which is a contradiction of the fact that Ŷ ′ > Ŷ . Ŷ ′ =∞

is not feasible because k is strictly positive on at least part of the domain (see Assumption 1

in the paper). The remaining case is easy to eliminate by instead considering “−∆q∗′” and we

omit the details. If K = 0, note, there is not much to prove because q∗ = 0. Q.E.D.

Proof of Lemma 3 (omitted parts from the paper) Part I shows existence and Part II

derives the formulas and the proof is in the paper. Part I: The proof builds on the proof of

Lemma 2. We have established in that lemma that the production function can be obtained

from (3) and that a unique q∗ exists that satisfies (4). By the second constraint then, we know

that Y (K,L) , q∗ satisfy

L = Y (K,L)µ ([q∗,∞)) , (5)

which gives

q∗ (Y, L) = S−1

(
L

Y

)
, (6)

where S (q) := µ ([q,∞)) is the survival function. The survival function under the assump-

tions made in the paper, by previous lemmas, is well-defined, positively-valued, continuous,

strictly decreasing (because g has full support), and hence invertible and differentiable almost

everywhere with a strictly negative derivative.5 Accordingly, S−1
(
L
Y

)
exists and is differen-

tiable a.e., since for functions of a single variable we have [f−1]′ (x) = 1
f ′(f−1(x))

, which is

well defined as long as f ′ is nonzero (which it is). This implies that the derivative of q∗ (Y, L)

in (6) is well defined (a.e.). The production function Y (K,L) can be recovered from capital

usage equation of Lemma 2, which gives the identity:

f (Y (K,L) , K) := Y (K,L)

q∗(Y (K,L),L)�

0

k (q) dµ−K ≡ 0.

4As in footnote 3.
5See Theorem 7.21 (p. 111) in Wheeden and Zygmund (1977).
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The implicit function theorem ensures that at the points of differentiability of q∗ (Y, L) the

partial derivative YK (K,L) is well defined as long as the partial derivative fY (Y,K) :=

∂f(Y,K)
∂Y

is non-vanishing (nonzero) and both fY , fK are well defined—which is readily implied

by the above functional form. The existence of the partial derivative with respect to L can be

shown analogously and we omit it. Part II: In the appendix of the paper.

Appendix C: Growth properties of domain-truncated CD technology

Here we show how to obtain approximately balanced growth from the domain-truncated

Cobb-Douglas task technology (TCD) of the form:

T TCDq0
=

(
Q = [q0,∞), k (q) = Z−1q

1
α

1− α
α

, g (q) = A−1q−2

)
, (7)

where q0 > 0. (For convenience, we modify domainQ instead of adding q0 to effectively also

shift the task domain.)

In this case the density function can be normalized by a constant to yield the standard

Pareto probability density, implying that the implied measure µ is finite, and hence T TCDq0
has

probabilistic representation. We will show that this technology gives rise to approximately

balanced growth and its predictions can be made statistically indistinguishable from the bal-

anced growth path of the CD economy by picking sufficiently small q0 given a finite sample

of data.

To derive the aggregate production function implied by TCD technology, we follow the

steps in Example 1 of the paper. If q∗ > q0, we obtain the following equation for the represen-

tative isoquant:
K

Y

(
L

Y

)
:= (AZ)−1

((
A
L

Y

)1− 1
α

− q
1
α
−1

0

)
. (8)

As expected, q0 → 0 implies the production function is CD. However, the constraint q∗ ≥ q0

may be binding, and in that case the above equation does not apply because Lemma 2 does

not apply. Accordingly, we use the original definition of the production function and obtain

Y = ALq0, K = 0 when
(
AL
Y

)1− 1
α ≤ q

1
α
−1

0 , or equivalently L
Y
≥ (Aq0)−1, which implies

q∗ = q0 is binding. Figure 1 illustrates the obtained isoquant.
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𝐿𝐿/𝑌𝑌

𝐾𝐾/𝑌𝑌 = 0
𝐴𝐴−1𝑞𝑞0−1

𝑇𝑇0𝑇𝑇𝑇𝑇𝑇𝑇 ≡ 𝑇𝑇𝐶𝐶𝐶𝐶

𝑇𝑇𝑞𝑞0
𝑇𝑇𝑇𝑇𝑇𝑇

Figure 1: Representative isoquant of the production function implied by the T TCDq0
technology.

Notes: The figure plots the representative isoquant of the production function implied by task technology TTCDq0
(in text). The arrows

indicate uniform convergence to CD isoquant as q0 → 0. On the flat portion, capital is not used in production and output is produced
exclusively using labor.

The key property of this isoquant is that it uniformly converges to the CD isoquant (q0 = 0)

both when q0 → 0 and AZ →∞. This follows from the fact that we can bound the difference

between the two isoquants by the expression:

sup
L/Y≥0

|K
Y

(
L

Y
; q0

)
− K

Y

(
L

Y
; 0

)
| < sup

L/Y≥0

1

α−1 − 1
(AZ)−1 q

1
α
−1

0 ,

where K
Y

(
L
Y

; q0

)
is the representative isoquant of the truncated CD technology (q0 > 0) and

K
Y

(
L
Y

; 0
)

is the representative isoquant of the CD technology. This bound follows from the fact

that the “gap” between the two isoquants is decreasing with respect to L
Y

above L
Y
≥ (Aq0)−1,

as shown in the figure, and thus it is bounded by the “gap” at L
Y

= (Aq0)−1, which itself

narrows with q0 → ∞. This property does not imply that the production function converges

uniformly, but it does imply that the production function converges uniformly on an arbitrarily

bounded range of inputs. As we show next, after dividing each variable by the growth rate of

technology, the model implies that the vector field on the phase space for normalized capital

and consumption uniformly converges to that of the CD model.

Growth properties of domain-truncated CD task technology

Assume that Zt and At grow at constant and strictly positive rates γZ > 0, γA > 0,

respectively. Assume that q0 is sufficiently small so that capital is used in equilibrium; that

is, the economy stays on the increasing portion of the isoquant in Figure 1. We return to this

9



at the end. To focus on how the growth path relates to the balanced growth path under CD

technology, divide all variables except for labor by the balanced growth factor (AtZ
α
t )

1
1−α of

the CD model. For example, after this normalization, Kt becomes (AtZ
α
t )

1
1−α K̄t, Ct becomes

(AtZ
α
t )

1
1−α C̄t, and so on and so forth. Since A and Z both grow at strictly positive rates

γA, γZ , (AtZ
α
t )

1
1−α grows at rate γ can be easily calculated by differentiating this expression

with respect to time. The normalized allocation solves the planning problem of the form:

max
(Ct,Kt)t

∞�

0

e−(ρ+γ)tu
(
C̄t
)

(9)

subject to

C̄t + ˙̄Kt + γK̄t − δK̄t = Ȳt, (10)

given K̄0, and C̄t ≥ 0, K̄t ≥ 0, where, by (8), output Ȳt solves6

Ȳt = Ȳt
(
K̄t, L̄; q0

)
:=

(
K̄t

X̄t

(
Ȳt, L̄; q0

))α

L̄1−α, (11)

and where

X̄t

(
Ȳt, L̄t; q0

)
:= 1− (AtZt)

−1

(
L̄

Ȳt

) 1
α
−1

q
1
α
−1

0 . (12)

We refer to the above model as the TCD model while referring to the model in text as the CD

model (which is the above but with q0 = 0).

The fixed point that defines Ȳt exists and is unique—as long as q0 is not too high, which

we assume. This follows from plugging (12) into (11) and noting the opposing monotonicity

of the left- and right-hand side of the resulting equation with respect to Ȳ . Second, the above

equation implies that the production function defined by (11) converges to the CD production

function uniformly on any bounded domain, in particular for ¯̄K ≥ K̄ ≥ K̄0 > 0 (L̄ fixed).7

The addition of an upper bound constraint ¯̄K is without a loss given that a sufficiently high

6See the Online Appendix B for an explicit derivation of the above formula.
7After plugging in from (11) to (12), it can be shown that for sufficiently low q0 and K̄ ≥ K0, we can always

find a unique X that solves the resulting equation. Plugging in that X to (11), we obtain unique value of output.
In addition, X converges to 1 with both q0 → 0 and AtZt → ∞ for any Ȳt > 0 (uniformly after imposing a
lower bound on Ȳt).
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level of capital is unsustainable by the assumptions that consumption must be nonnegative

and depreciation is a fraction of capital stock. The lower bound follows from our focus on a

positive growth equilibrium. We return to this at the end of the section.

Equation (10) implies that the growth rate of capital γK̄,t is

γK̄,t
(
K̄t, C̄t; q0

)
:=

˙̄
tK

K̄t

=
Ȳt
(
K̄t, L̄; q0

)
+ (δ − γ)K̄t − C̄t
K̄t

, (13)

and hence, by the observations made, it converges uniformly to the growth rate at q0 = 0 on

the bounded domain ¯̄K ≥ K̄ ≥ K̄0, both with respect to q0 → 0 and/or t→∞ (by which we

mean AtZt →∞). As a result, the growth rate of capital converges uniformly to the CD case,

implying

sup
¯̄K≥K̄≥K̄0,C̄≥0

|γK̄,t
(
K̄, C̄; q0

)
− γK̄,t

(
K̄, C̄; 0

)
| →q0→0,t→∞ 0.

The Euler condition for the planning problem implies that the growth rate of consumption γC̄,t

is

γC̄,t
(
K̄t, C̄t; q0

)
:=

˙̄Ct
C̄t

=
1

σ

(
MPKt

(
K̄t, L̄; q0

)
− δ − ρ

)
, (14)

which, after basic manipulations detailed in the Online Appendix D below, can be linked to

MPKt

(
K̄t, L̄; 0

)
as follows

MPKt

(
K̄t, L̄; q0

)
=
(
X̄t

(
Yt, L̄; q0

)α−1
MPKt

(
K̄t, L̄; 0

)−1 − (AtZt)
−1 q

1
α
−1

0

)−1

, (15)

where

MPKt

(
K̄t, L̄; 0

)
= α

(
L̄

Ȳ
(
K̄t, L̄; 0

)) 1
α
−1

.

Accordingly, we similarly obtain uniform convergence of consumption growth rate:

sup
K̄≥K0

|γC̄,t
(
K̄, C̄; q0

)
− γC̄,t

(
K̄, C̄; 0

)
| →q0→0,AtZt→∞ 0.

C andK are the two variables that define the phase space of the dynamic system that solves

(9). As a result, as shown in Figure 2, the vector field for this system is a perturbed version of
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Figure 2: Phase diagram of the growth model with q0 > 0 versus q0 = 0 (dotted line).
Notes: The figure shows a phase diagram implied by the growth model featuring truncated Cobb-Douglas technology (q0 > 0, solid lines)

versus exact Cobb-Douglas technology featuring infinite measure (q0 = 0, dotted lines). As shown in text, for K > K0 all objects of the
phase diagram exhibit uniform convergence to those associated with exact Cobb-Douglas technology, both with respect to q0 → 0 as well
as time t → ∞ (equivalently AtZt → ∞). Consequently, the optimal time path of capital and consumption along the saddle path is also
similar as shown.

the one associated with the CD technology, with that perturbation uniformly vanishing with

respect to both q0 → 0 and AtZt → ∞. Since qualitatively the phase diagram is standard,

the solution that satisfies the usual transversality condition and nonnegativity conditions is the

saddle path towards the intersection of the loci of points that imply stationary consumption

and capital in the long-run. By the continuous dependence on the initial data theorem for

differential equation, then, the time paths of each variable approach the CD case, and in the

limit converge towards the common saddle point.

Let us now return to the omitted issue of capital being used along the growth path.

When K = 0, note, the TCD technology implies that MPK =
(

1
α
− 1
)−1

AZq
1
α
−1

0 ,

which together with the Euler equation implies that capital will be accumulated as long as

MPK =
(

1
α
− 1
)−1

AZq
1
α
−1

0 > ρ + δ + σγA, since consumption grows at rate γA when

capital is not used nor accumulated (K = 0), and in that case consumption equals output, i.e.,

C = Y = AL̄q0. We can ensure this condition holds for q0 sufficiently low given A0Z0 as

assumed, and because AZ grows at a strictly positive rate, we can be sure this condition will

hold thereafter.

The global transitional dynamics implied by the TCD model is more complicated but it is

appealing in its own right. In particular, this model can generate a stylized industrial revolution

along the lines of Hansen and Prescott (2002) at low levels of capital and productivity Z. This
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happens when q0 is not too low and AZ keeps on growing so that eventually capital starts

being used in production (which gives rise to a stylized industrial revolution). The model

can also generate a poverty trap when growth in Z comes from learning-by-doing externality

associated with using capital as in Romer (1986).

Appendix D. Supplementary derivations for Online Appendix C

Production function for TCD task technology normalized by balanced growth factor:

Plugging in Kt = (AtZ
α
t )

1
1−α K̄t, Yt= (AtZ

α
t )

1
1−α Ȳt, Ct = (AtZ

α
t )

1
1−α C̄t to the equation for

TCD isoquant in text, we obtain

(AtZ
α
t )

1
1−α K̄t

(AtZα
t )

1
1−α Ȳt

= (AtZt)
−1

(At L̄

(AtZα
t )

1
1−α Ȳt

)1− 1
α

− q
1
α
−1

0

 .

Simplifying terms and pulling out the first term in the last bracket, while raising both sides to

the power α, we get

(
AtZt

K̄t

Ȳt

)α
=

(
At

L̄

(AtZα
t )

1
1−α Ȳt

)α−1
1− q

1
α
−1

0

(
AtL̄

(AtZα
t )

1
1−α Ȳt

) 1
α
−1
α

,

which, given the fact that

At

(AtZα
t )

1
1−α

=
A

1− 1
1−α

t

Z
α

1−α
t

=
A
− α

1−α
t

Z
α

1−α
t

= (AtZt)
− α

1−α = (AtZt)
− 1

1
α−1

simplifies to (
K̄t

Ȳt

)α
=

(
L̄

Ȳt

)α−1
(

1− q
1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1
)α

,

(
K̄t

Ȳt

)α(
L̄

Ȳt

)1−α

=

(
1− q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1
)α

,

and gives
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(
K̄t

)α (
L̄
)1−α

= Ȳt

(
1− q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1
)α

.

After some basic manipulation, the last expression yields the fixed point stated in text:

Ȳt
(
K̄t, L̄t; q0

)
=

(
K̄t

X̄t

(
Yt, L̄; q0

))α (
L̄
)1−α

, (16)

where

X̄t

(
Yt, L̄; q0

)
= 1− q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1

.

Marginal product of capital MPK:

We use the last equation above and raise both sides to power 1
α

to obtain

(
K̄t

)1 (
L̄
) 1
α
−1

= Ȳ
1
α
t − q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1

Ȳ
1
α
t

hence obtain

K̄t = Ȳ
1
α
t L̄

1
α
−1 − q

1
α
−1

0 (AtZt)
−1 Ȳt,

K̄t = (AtZt)
−1 Ȳt

(
AtZtȲ

1
α
−1

t L̄
1
α
−1 − q

1
α
−1

0

)
and

AtZtK̄t = Ȳt

(
AtZt

(
L̄

Ȳt

)1− 1
α

− q
1
α
−1

0

)
.

The above expression defines the production function Ȳ
(
K̄t, L̄; q0

)
implicitly via the expres-

sion:

AtZtK̄t − Ȳt

AtZt( L̄

Ȳ
(
K̄t, L̄; q0

))1− 1
α

− q
1
α
−1

0

 ≡ 0
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where Ȳ
(
K̄t, L̄; q0

)
is given by (16). We use implicit function theorem and differentiate the

above to calculate8

MPKt

(
K̄t, L̄; q0

)
=

α−1

(
L̄

Ȳ
(
K̄t, L̄; q0

))1− 1
α

− (AtZt)
−1 q

1
α
−1

0

−1

.

For q0 = 0, note, we obtain

MPKt

(
K̄t, L̄; 0

)
= α

(
L̄

Ȳ
(
K̄t, L̄; 0

)) 1
α
−1

,

which is the expression for MPK for the CD production function given by Ȳ
(
K̄t, L̄; 0

)
. Now,

by (16), we know that

Ȳ
(
K̄t, L̄; q0

)
= X̄t

(
Yt, L̄; q0

)−α
Ȳ
(
K̄t, L̄; 0

)
.

Accordingly, we have

MPKt

(
K̄t, L̄; q0

)
=

X̄t

(
Yt, L̄; q0

)α−1
α−1

(
L̄

Ȳ
(
K̄t, L̄; 0

))1− 1
α

− (AtZt)
−1 q

1
α
−1

0

−1

and hence

MPKt

(
K̄t, L̄; q0

)
=
(
X̄t

(
Yt, L̄; q0

)α−1
MPKt

(
K̄t, L̄; 0

)−1 − (AtZt)
−1 q

1
α
−1

0

)−1

,

which is the result stated in text.

Appendix E: User cost of capital in extended model

We derive the formula for the user cost of capital for our extended model, and it corre-

sponds to the formula stated in text.

Let R (q) be the user cost of a machine of type q, and let this be associated with some

8Derivation of the above expression is cumbersome and has been automated in the Mathematica notebook
MPK TCD.nb.
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dividend earned for having this machine for one period of length dt and renting it out for the

duration of that period. The key condition is that the profit from such an activity must be zero

after accounting for the cost of acquisition, dividend, and resell value of the machine at t+dt.

The costs of buying a machine at t and holding it for one period of length dt comprises

its nominal purchase price at time t, which is Ptkt (q), and the opportunity cost of funds

ρPtkt (q) dt incurred over period of length dt (ρ is the interest rate). The resell price is

Pt+dtkt+dt (q), but since with assumed Poisson probability δ∆ the machine disintegrates, the

expected residual value is (1− δ)Pt+dtkt+dt(q) dt. The zero profit condition is thus given by

Rt (q)︸ ︷︷ ︸
user cost

dt = (1 + ρ)Ptkt (q) dt︸ ︷︷ ︸
acquisition cost

− (1− δ)Pt+dtkt+dt (q) dt︸ ︷︷ ︸
residual value after a period of use

.

Assuming balanced growth, assume Pk grows at rate γk,t > 1 from one period

to the next (from t to t + dt). This simplifies the above expression to Rt (q) =

(1 + ρ− (1− δ) γk,t)Ptkt (q) . Given how we used r in the previous section, and assuming

BGP, we obtain rt = (1 + ρ− (1− δ) γk)Pt.

Appendix F: Continuity of Lebesgue integrals

We lack a good reference for this result and outline the proof here for completeness. The

claim is that the function

g (x) :=

� x

a

f (q) dv

is a continuous function; that is,

lim
xn→x0

� xn

a

f (q) dv =

� x

a

f (q) dv,

where f : R → R is a Lebesgue integrable function, a ∈ R, and “
�

” pertains to a Lebesgue

integral (v is the Lebesgue measure). Proof: Define an indicator function 1S (q) that takes the

value of 1 on the sub-scripted set S and rewrite the left-hand side as

lim
xn→x0

� xn

a

f (q) dv = lim
xn→x0

� +∞

−∞
1[a,xn] (q) f (q) dv.
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Since |1[a,xn] (q) f (q) | ≤ |f (q) |, we have 1[a,xn] (q) f (q) → f (q) (a.e.) on [a, x0] (see from

* below for formal argument). Given |f (q) | is Lebesgue integrable by assumption, we can

use dominated convergence theorem (DCT) and enter with the limit under the integral, which

yields

lim
xn→x0

� xn

a

f (q) dv =

� +∞

−∞
lim
xn→x0

1[a,xn] (q) f (q) dv.

*)Observe that limxn→x0 1[a,xn] (q) = 1[a,x0] (q) (a.e.), since for any q ≤ x0, we have

1[a,xn] (q) = 1, and for any q > x0, there exists an N such that for all n ≥ N we have

1[a,xn] (q) = 0. The set on which 1[a,xn] (q) and 1[a,x0] (q) disagree is of the form [x0, bn], where

bn → x0, and hence its Lebesgue measure is zero in the limit, as claimed. Consequently, by

DCT, we have

� +∞

−∞
lim
xn→x0

1[a,xn] (q) f (q) dv =

� +∞

−∞
1[a,x0] (q) f (q) dv,

which finishes the proof.

Appendix G: Feasibility of microfoundations for CD task technology

Here we discuss additional example of mechanical random processes that could give rise

to Pareto distributed capital requirements. As in the paper, the discussion draws on Newman

(2004) and especially Gabaix (2009).

Random growth Random growth model is one of the simplest mechanisms to obtain power

law dynamics. To see how it could work within our framework, suppose that capital require-

ment on average declines at a rate γ < 1 per unit of time. That is, k̄t+dt = γk̄t, where k̄t is the

mean value across all tasks (time being discrete dt > 0 or continuous dt → 0). Furthermore,

assume the distribution of the decline is uneven across individual tasks because innovations

affect individual tasks differently, and as in the paper deflate each variable by growth factor γt.

As is clear from the setup, some tasks may not decline at all in a given period—in which case

the relative capital requirement deflated by average growth factor γt is rising—while other

tasks may decline by more than the average and so their deflated requirement is falling. The
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important assumption here is that this process is i.i.d. across tasks. The discussion of random

growth model in Gabaix (2009) now applies, including the discussion of the variations of this

model that can generate a power law tail index below 1 when this reasoning is directly applied

to capital requirement k (q).

Endogenous technology verse function The fact that capital requirement is an inverse of

productivity of capital can be used to obtain tail power law from the basic fact of taking an

inverse of diffused observation (Sornette, 2002). Let y = x
1
ζ−1 , ζ − 1 > 0 and suppose x

is distributed according to some pdf px (x) such that p (x) → C > 0 as x → 0. Then, the

tail distribution of y follows a power law with exponent ζ. Of course, applying this result

requires that the economy operates far into the tail of the distribution, or else it will not even

approximately behave as our CD task technology.9

Yule process It is also possible to employ Yule’s “speciation” process. As in the case of the

example discussed in the paper, the key to this approach to endogenize Pareto distribution is

the observation that a variable that grows exponentially and is stopped after an exponentially

distributed time is Pareto distributed at the stopping time.10 This extension is fairly involved

and we omit it from. However, based on the insights from information theory, it is possible to

obtain a bridge between our model and the combinatorial growth literature (Weitzman, 1998;

Jones, 2021) and show that the resulting distribution that involves “speciation” of ideas is

Pareto. Preliminary results are available upon a request.

Appendix H: Corollary to Uzawa’s theorem

We lack a good reference for this result and outline it here for completeness. The ap-

pendix shows how an additional assumption of declining price of capital goods leads to Cobb–

Douglas production function.

9The result follows from the change of variables formula.
10The key mathematical property is that an exponential of an exponentially distributed random variable is

Pareto distributed, as the following calculation shows (X ∼exponential, Y = exp (X)):

Pr (Y ≤ y) = Pr (exp (X) ≤ y) = Pr (X ≤ log (y)) = 1− x−λ.
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By Theorem 2.6 and Theorem 2.7 in Acemoglu (2009), balanced growth path with pos-

itive and constant factor shares from t ≥ 0 implies that one can find a sequence {at} such

that along that path Yt
(
Kt, L̄

)
= Y0

(
Kt, atL̄

)
(Theorem 2.6) and

∂Yt(Kt,L̄)
∂Kt

=
∂Y0(Kt,atL̄)

∂Kt
,

∂Yt(Kt,L̄)
∂L̄

=
∂Y0(Kt,atL̄)

∂L̄
(Theorem 2.7). Consider now the following definition: capital-

augmenting progress occurs on the balanced growth path iff kt := Kt/atL̄ grows at a strictly

positive rate. To see that this is a necessary and sufficient condition to imply that Y0

(
Kt, atL̄

)
is CD, note we can express production along the balanced growth path as f (kt) := Y0(kt, 1),

and that the constancy of the capital share implies ktf ′ (kt) /f (kt) = α on that path, for some

constant 0 < α < 1 and for all t ≥ 0. Since kt is growing and sweeps the entire domain

(k0,∞), we obtain an ODE that solves to f (k) = Ckα for some constant C, which yields

the result: Y0

(
K, aL̄

)
= CKα

(
aL̄
)1−α. Concluding, CD production function obtains in any

environment that restricts the balanced growth path to be such that kt must grow over time,

either by building it into the environment or requiring an equilibrium condition that implies

that (e.g. a steadily declining price of capital goods).
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