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Abstract

We assess the causal impact of epidemic-induced lockdowns on health and macroeconomic
outcomes and measure the trade-off between containing the spread of an epidemic and
economic activity. To do so, we estimate an epidemiological model with time-varying
parameters and use its output as information for estimating SVARs and LPs that quantify
the causal effects of nonpharmaceutical policy interventions. We apply our approach to
Belgian data for the COVID-19 epidemic during 2020. We find that additional government-
mandated mobility curtailments would have reduced deaths at a very small cost in terms
of GDP.
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1 Introduction

In this paper, we assess the causal impact of epidemic-induced lockdowns, such as “shelter-in-place”

orders and other nonpharmaceutical policy interventions (NPIs), on health and macroeconomic

outcomes. In particular, we look at the effects of a government stringency shock (where mobility

curtailments are stricter than those determined by the systematic component of the public health

policy) and we measure how a reproduction shock (such as the spread of a new, more contagious

variant of the SARS-CoV-2 virus) affects the rest of the variables depending on the level of

government limitations on mobility.

Assessing causality is challenging for two reasons. First, because the levels of activity and

mobility, as measured by indexes such as the Google COVID-19 Community Mobility Reports,

change due to both voluntary precautionary behavior and government orders. Thus, we need

some identification assumptions. Second, because we lack some of the required data. Some of

the inputs one would need for a causality exercise, such as the effective reproduction number

of a disease, are time-varying and not directly observed. Other data, such as new cases, are

observed subject to large, biased, and time-varying measurement errors due to problems like

testing constraints, unwillingness to test, etc.1

To tackle these challenges, we proceed in two steps. In the first step, we estimate, using the

Bayesian approach, an epidemiological model with time variation in the parameters controlling

an infectious disease’s dynamics. Time variation in the parameters of the model allows us i) to

capture changes in the behavior of individuals as they respond to public health conditions (either

voluntarily or forced by government mandates); and ii) to include shifts in the transmission

and clinical outcomes of the epidemic, such as virus variants, new medical treatments, or better

organization of social distancing.2

We estimate the model with a sequential Monte Carlo to account for the nonlinearities present

in the model equations while relying on a Markov chain Monte Carlo to sample from its posterior.

The former is necessary to capture the fast variations in the spread of infectious diseases and

the turning points of the different waves of an epidemic. The latter allows us to incorporate

information in the prior of the parameters from laboratory results, clinical studies, seroprevalence

surveys, and the experience of other regions or countries.

In the second step, we show how to use outputs from the epidemiological model to conduct

a causal assessment of NPIs. We illustrate how the model takes observations of recorded new

1This point has been recognized in the epidemiological literature for a long time; for example, see O’Neill and
Roberts (1999). This is why some researchers, such as Manski and Molinari (2021) and Toulis (2021), try to
estimate COVID-19 prevalence based on partial identification.

2We do not claim that these time-varying parameters are structural in the sense of being invariant to policy
interventions à la Hurwicz (1966). We consider them only as behavioral parameters, which might be complex
functions of preferences, technology, and information processes. See Fernández-Villaverde and Rubio-Ramı́rez
(2007) for details.
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cases, recorded hospitalizations, and recorded new deaths in hospitals and at home, and results

from infrequent seroprevalence studies and, using the cross-equation restrictions determined by

the model’s dynamics (e.g., the relation between the infectious population and the new cases),

produces useful outputs. In particular, we can estimate the effective reproduction number and

the true new cases. We employ these outputs to ascertain the causal effects of government

mandates using standard causal analysis techniques such as structural vector autoregressions

(SVARs), to assess the effects of a government stringency shock, and local projections (LPs), to

measure the consequences of a reproduction shock.

In comparison, a reduced-form model –such as those in Gostic et al. (2020)– that does not use

the structure of an epidemiological model cannot exploit the cross-equation restrictions and the

biological and clinical information they bring to the estimation.3 Interestingly, our methodology

goes well beyond epidemiological models: it can be applied to any causal inference problem that

relies on obtaining good estimates of unobserved variables.4

We illustrate these two steps using data from the COVID-19 epidemic in Belgium during

2020. However, our framework is much more general than the details of the model we specify or

the data we use. It is applicable to a wide range of epidemiological models, other diseases, and

alternative techniques to ascertain causality in time series beyond SVARs and LPs.

We pick Belgium for five reasons. First, it is one of the countries that suffered the most from

the COVID-19 epidemic during 2020. Second, Belgium is a small country, 30,689 km2 (roughly

20% larger than Maryland), and geographically and climatically quite homogeneous in the area

where most of the population is concentrated (that is, in the coastal plain and central plateau

outside the Ardennes). That allows us to consider Belgium as a single unit for our analysis.5

Third, Belgium has high-quality national data, including reported new cases, hospitalizations,

deaths in hospitals and at home, and several national seroprevalence studies that allow us to

efficiently implement the cross-equation restrictions implied by our model. Fourth, Belgium

experienced, within our sample, three waves of the epidemic, which would demonstrate how our

approach can handle intricate data patterns. Fifth, during 2020, the Belgian government passed

mandates curtailing mobility on several occasions, which will give us the identification of the

effects of these mandates.

We estimate the model using data from Sciensano, a public institution in Belgium, on COVID-

3The cross-equations discipline could come at a cost if the model is misspecified: the resulting filtered and
smoothed estimates might be biased. We could detect misspecification by comparing our model against flexible
reduced-form time-series models such as the one proposed by Ho, Lubik and Matthes (2021).

4In a different environment, Gilchrist and Zakraǰsek (2012) follow a similar approach by using a pricing model
to recover a measure of sentiment in the corporate credit market. They show, using reduced-form regressions and
SVARs, how such a measure can affect the economy and asset prices.

5The incidence of COVID-19 in 2020 was around 10% higher in Wallonia than in Flanders in per capita
terms (with Flanders having a worst first wave and Wallonia a more damaging third wave) and about average in
Brussels. To keep our analysis transparent, we ignore these small regional differences.
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19 per capita deaths in hospitals and at home, per capita hospitalizations due to COVID-19, the

observed per capita new cases, and the seroprevalence rates. The sample starts on March 15,

2020, the first day with available data on COVID-19 hospitalizations, and ends on November 30,

2020, right before the arrival of the first vaccines in Belgium.6 We did not consider later data,

as they would incorporate a growing share of the vaccinated population (furthermore, with a

strong age component as older people were vaccinated first). This would require complicating

the epidemiological model and adding cases by age, for which data are very limited. Finally,

it would change the causality effect of lockdown policies. Hence, while it would be possible to

handle the 2021 observations using our approach, it is beyond the scope of our paper.

We show how the data are informative about the parameters of the model, how the point

estimates are in line with other evidence, and how the model fits the data well (including tracking

the three waves of the epidemic in the data). Also, we recover the smoothed states such as

time-varying reproduction numbers, time-varying death rates, and new cases.

Using the SVAR, we estimate that a positive stringency shock — such that, upon impact, the

posterior median increase is equivalent to a one-unit increase in one of the ordinal components of

the Oxford Stringency Index of mobility curtailments— leads to roughly 1, 000 fewer deaths in

Belgium after 2 months, or around 6% fewer deaths in the sample at a negligible cost to output.

In fact, our point estimate implies a small economic cost of about e1 per capita (although it is

hard to distinguish it from zero cost). The intuition is that, by controlling the epidemic, a positive

stringency shock brings higher economic activity after a few weeks that more than compensates

for the very short-run losses. Using the LPs, we find that high government stringency —a level

of stringency above the median in our sample— could save up to about 250 deaths in the first

two weeks after the reproduction shock, or around 1.5% of the deaths in our sample, compared

with low government stringency, at the small cost of between e2 and e4 per capita.

The rest of the paper is structured as follows. Section 2 presents a time-varying model of

the COVID-19 epidemic. Section 3 describes the data and briefly summarizes how we estimate

the model. Section 4 reports our results and Section 5 shows how we exploit these results for

causality and policy trade-off analysis with SVARs and LPs. Section 6 concludes.

2 The Epidemiological Model

We specify a SIRD compartmental model allowing for time variation in i) the effective contact

rate among individuals; ii) the hospitalization rates; and iii) death probabilities. Figure 1 outlines

the compartments’ structure.

All individuals start as susceptible (S) except for a small fraction of infectious individuals

6The Belgian vaccination campaign was announced on December 3, 2020, and started on December 28, 2020.
Thus, it is likely that behavior began to change around early December 2020.
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∩βtSt−1

It−1

It Ht+1

Pt+1

Dt+2

Ct+2Ct+2

γH,t+1γ

(1− γH,t+1)γ

δH,t+2θH

δP,t+2θP

(1− δP,t+2)θP

(1− δH,t+2)θH

Figure 1: Outline of the model

(I). Susceptible individuals meet with infectious individuals and become, with some probability,

infectious themselves. This probability is controlled by βt, the time-varying effective contact rate.

Every day, a share γ of infectious individuals can recover in a hospital (H) or at home (P ). Here,

“home” means all dwellings, including private residences and retirement communities, outside

of hospitals (unfortunately, our data set does not distinguish between private residences and

retirement communities, a potentially important distinction). Of those, the share of individuals

recovering in hospitals is time varying and equal to γH,t+1. Hence, the share 1−γH,t+1 recovers at

home. Recovery ends with death (D) or a return to a healthy status (C). Every day a share θH

(θP ) of individuals in a hospital (at home) recover. Of those, δH,t+2 (δP,t+2) die, while 1− δH,t+2

(1− δP,t+2) return to healthy status. These death rates are also time varying.

We assume that, once cured, an individual cannot become infectious again. We pick this

specification because the evidence is that re-infections with SARS-CoV-2 during 2020 (our data

sample) were possible but unlikely. However, it would be easy to extend the model to allow for

re-infections, perhaps after the (stochastic) waning of immunity or the arrival of new varieties of

the virus, a common concern later in 2021 and 2022. Indeed, our causal analysis in Section 5

treats the emergence of new variants as a possible interpretation of a reproduction shock.
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2.1 The Transition and Measurement Equations

The transition equation of the model we will estimate is:

St

It

Ht

Pt

bt

gH,t

dH,t

dP,t

nt


=



St−1

It−1

Ht−1

Pt−1

bt−1

gH,t−1

dH,t−1

dP,t−1

nt−1


+



−βtSt−1It−1

βtSt−1It−1 − γIt−1

γH,tγIt−1 − θHHt−1

(1− γH,t)γIt−1 − θPPt−1

σbεb,t

σgεg,t

σhεh,t

σpεp,t

σnεn,t


, (1)

where we have a 9×1 vector of states Xt = {St, It, Ht, Pt, bt, gH,t, dH,t, dP,t, nt} and a 5×1 vector

of innovations E t = {εb,t, εg,t, εh,t, εp,t, εn,t}. Let us describe each of these variables.

Row one of Equation (1) tells us that the share of the population that is susceptible on day

t, St, is equal to the share of the susceptible population the day before, St−1, minus the new

infections as a share of the population, given by a matching function of the share of susceptibles

and infectious, It−1, yesterday: βtSt−1It−1.

The most relevant feature of row one, and a central aspect of our model, is that the

effective contact rate, βt, in the matching function is time varying. In many epidemiological

models, the effective contact rate is a constant parameter. However, individuals respond to

the epidemiological situation for two reasons. First, individuals take voluntary precautionary

measures (lower mobility, wearing personal protection equipment, changed business protocols).

For this point to hold, we do not need to assume full agent rationality; we only require some

degree of endogenous reaction. Second, individuals change how often they effectively interact

with each other in any given period because governments impose NPIs in response to the health

situation, such as curtailments on businesses and travel or mandatory mask-wearing. By letting

the effective contact rate be time varying, the model can capture these two mechanisms.

We assume that bt = log(βt) follows a random walk, where the innovation is a truncated

standard normal distribution to avoid having fewer new cases in the model than in the data and

preventing St from becoming negative. Later, we will argue that there will be a percentage of

true cases of COVID-19 that are not reported (for instance, because the cases are asymptomatic

or due to insufficient testing), but that the situation where there are more reported cases than

true cases is not relevant empirically. The number of “false positives” is most likely trivially small

and swamped, by at least an order of magnitude, by the under-reporting of “false negatives.”

Row two of Equation (1) describes how the share of infectious, It, evolves. The new share
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is equal to the share yesterday, It−1, plus the new infections, βtSt−1It−1, minus the share of

infectious that move to the next compartment, γIt−1.

Row three of Equation (1) determines the evolution of Ht, the share of the population

hospitalized on day t. The share evolves through inflows from the compartment of infectious at

a rate γH,tγ and outflows at a rate θH . We allow γH,t to move to reflect the changing availability

of hospital beds and shifting decisions by patients (e.g., should I go to a hospital?) and clinical

protocols (e.g., should this patient be hospitalized or sent back home?).

As we did with the effective contact rate, we specify a flexible law of motion for γH,t. In row

six of Equation (1), we define a random walk for gH,t, gH,t = gH,t−1 + σgεg,t, where εg,t ∼ N (0, 1)

and γH,t =
e
gH,t

e
gH,t+1

. Hence, the mapping from γH,t to gH,t is gH,t = log
(

γH,t

1−γH,t

)
. This mapping

will be useful for interpreting gH,0 later on.

Row four of Equation (1) governs the evolution of the share of individuals recovering at home,

Pt. In parallel to Ht, the share evolves through inflows from the compartment of infectious

at a rate (1 − γH,t)γ and outflows at a rate θP . Rows three and four implicitly assume that

individuals recovering in a hospital or at home do not switch between these two compartments.

This assumption is due to data limitations (as we do not observe how many patients previously

in a hospital die while recovering at home). Fortunately, this assumption does not cause too

many problems. If a patient is at home but later hospitalized, we can consider her as still

being in the infectious compartment. Conversely, individuals formerly hospitalized and currently

recovering at home are unlikely to be infectious and, hence, they could be considered as being

in the recovered compartment. Also, the measurement error will help us tackle, empirically,

deviations from this assumption in the data. Rows seven to nine of Equation (1) describe the

evolution of three random walks that will be used in the measurement equation below, with

innovations εi,t ∼ N (0, 1) for i ∈ {h, p, n}.
We observe deaths in a hospital (Dobs

H,t), deaths at home (Dobs
P,t ), and hospitalized patients

(Hobs
t ) at a daily frequency; new cases (Gobs

t ) at a weekly frequency; and the point estimates of

St from the seroprevalence surveys for some periods. We assume that the log of each of these

five variables is measured with error. The measurement error arises for many reasons, from

administrative mistakes and delays in file keeping to the under-reporting of cases due to testing

bottlenecks. Thus, the measurement equation is:

log
(

1
Population

+∆Dobs
H,t

)
log
(

1
Population

+∆Dobs
P,t

)
log
(
Hobs

t

)
log
(
Gobs

t+5

)
log
(
Sobs
t

)


=



log
(

1
Population

+ δH,tθHHt−1

)
log
(

1
Population

+ δP,tθPPt−1

)
log (Ht)

log ((St−1 − St)γn,t)

log(St)


+


σDH

uDH ,t

σDP
uDP ,t

σHuH,t

σGuG,t

σSuS,t

 , (2)
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where yt denotes the time t observations and yT = {y1,y2, . . . ,yT} denotes the sample of

observables available over T periods. Row one of Equation (2) links the (log) first difference of

the observed share of deaths in hospitals, ∆Dobs
H,t, with the share of individuals in hospitals Ht−1

and the time-varying death rate δH,t =
e
dH,t

1+e
dH,t

, where dH,t comes from row seven of Equation (1).

For the first two observed series in Equation (2) we add the term 1/Population because there

are a few days with zero deaths.

Row two of Equation (2) links the (log) first difference of the observed share of deaths at

home, ∆Dobs
P,t , with the share of individuals recovering at home Pt−1 and the time-varying death

rate δP,t =
e
dP,t

1+e
dP,t

, where dP,t is a random walk that comes from row eight of Equation (1). Time

variation of the death rates in a hospital and at home captures improvements in clinical protocols

that increase the survival of patients, variation in hospital congestion (which may facilitate or

complicate the treatment of patients), and changes in the mix of recovering individuals across

different demographic groups (in a model with several compartments for individuals indexed by

age, this last effect would disappear; unforunately we lack data by age).

Row three of Equation (2) tells us that the observed share of the population in hospitals

is measured with error. An interpretation of this measurement error (beyond administrative

mistakes in recording) is that some patients in hospitals are still infectious because isolation

measures have not been fully implemented. Thus, while measured as being in a hospital, the

individuals are still in the infectious compartment for the purposes of the model.

Row four of Equation (2) gives us the observed share of cases, equal to the difference of

the share of susceptible individuals times a factor γn,t = ent

ent+1
e−µ < 1 that determines the

percentage of cases that are reported. In the case of deaths, we do not introduce systematic

under-reporting. As shown by Molenberghs et al. (2020) and Sierra et al. (2020), and in

contrast with other countries, Belgian data show virtually no discrepancy between COVID-19

reported mortality (confirmed and possible cases) and excess mortality. Analysis by Sciensano

https://epistat.wiv-isp.be/momo/ confirms this point. The rate of under-reporting depends

on nt, which follows the random walk defined in row nine of Equation (1). The parameter µ

ensures that under-reporting never goes to zero, for example, due to false negatives. We let cases

be under-reported by the γn,t factor because this was a key factor at the start of the COVID-19

epidemic and we want to recover an estimate of the rate of reporting. At the same time, we

assume that cases cannot be over-reported. As we will explain in Section 3, we use row four only

on Fridays by matching it to the new cases reported the following Wednesday.

Row five of Equation (2) links the point estimates of the susceptible share of the population

from Herzog et al. (2020) to the corresponding share from our model. As we will describe

below in more detail, this study is a prospective serial cross-sectional nationwide seroprevalence

evaluation conducted in Belgium using blood samples collected during five different periods.

We use this equation only for the dates for which the study is available. This row forces our
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smoothed states to incorporate the high-quality information from seroprevalence surveys, but

allowing for differences due to sampling uncertainty and possible measurement errors.

Rows four and five of Equation (2) illustrate how state-space representations parsimoniously

incorporate observables at different frequencies.

2.2 The Time-Varying Reproduction Numbers

A key state in our model is the effective contact rate βt, the time-varying parameter that deter-

mines the speed of contagion in the matching function of susceptible and infectious individuals.

When βt is high, the infection spreads quickly. When βt is low, the infection spreads slowly

and might eventually abate. The basic reproduction number, R0,t, is a closely related concept:

the expected number of cases generated by one case in a population where all individuals are

susceptible (the expectation is computed assuming that the transmission rate remains constant).

In our model, R0,t =
βt

γ
. Thus, the basic reproduction number inherits the time variability

encoded in βt. We also have the effective reproduction number, Re,t, which considers the changes

in the share of the susceptible population over time Re,t = R0,tSt =
βtSt

γ
. By doing so, Re,t offers

a better measure of the instantaneous speed of the spreading of the infection. In Section 4, we

will report the estimated evolution of R0,t and Re,t.

We summarize all the variables and parameters of the model in Table 1. For ease of exposition,

we partition Table 1 into five parts. The first part outlines the model’s compartments, the second

part summarizes the model’s time-varying parameters, the third part presents observed variables,

the fourth part shows the constant parameters of the model, and the fifth part lists the initial

states. We assume that the initial states’ distribution is degenerate and treat them as additional

parameters with their corresponding priors. In addition, we let Θ denote a vector containing all

the time-invariant parameters of the state and measurement equations and the initial states X0.

3 Data and Estimation Procedure

We build daily frequency data, including data on deaths in hospitals, total deaths, hospitalizations,

and new cases from Sciensano, a public institution recognized as a research institution by the

Belgian Science Policy Office. All the data except for deaths in hospitals, which will be explained

below, were downloaded from Sciensano on December 17, 2020. Our data span the period

from March 15, 2020, to November 30, 2020. The starting date corresponds to the first day

for which we have data on COVID-19 hospitalizations, and the ending date is right before

the announcement of the Belgian vaccination campaign. Deaths at home are computed as the

difference between total deaths and deaths in hospitals. The latter information was obtained

upon request from Sciensano and it is dated December 15, 2020. In a few days, the number of

9



Table 1: Model Road Map

Model Compartments
St Share of the population that is susceptible at time t.
It Share of the population that is infectious at time t.
Ht Share of the population that is hospitalized at time t.
Pt Share of the population that is recovering at home (outside the hospital) at time t.
DH,t Share of the population that has died in a hospital as of time t.
DP,t Share of the population that has died at home as of time t.
Ct Share of the population that has recovered as of time t.
Model Time-Varying Parameters
βt Effective contact rate at time t.
bt Natural logarithm of the effective contact rate, i.e., bt = log(βt).
γH,t Share of the population no longer infectious at time t because they are recovering in a hospital.
gH,t Inverse of the standard logistic function mapping gH,t to γH,t, i.e., gH,t = log(γH,t/(1− γH,t)).
δH,t Share of those leaving the hospital at time t due to death.
dH,t Inverse of the standard logistic function mapping dH,t to δH,t, i.e., dH,t = log(δH,t/(1− δH,t)).
δP,t Share of those no longer recovering at home at time t due to death.
dP,t Inverse of the standard logistic function mapping dP,t to δP,t, i.e., dP,t = log(δP,t/(1− δP,t)).
γn,t Share of new cases at time t detected in the data.
nt Inverse of the standard logistic function mapping nt to γn,t, i.e., nt = log(γn,t/(1− γn,t)).
Observed Variables
Dobs

H,t Observed share of the population that has died in a hospital as of time t.
Dobs

P,t Observed share of the population that has died at home as of time t.
Hobs

t Observed share of the population that is hospitalized at time t.
Gobs

t Observed new cases at time t as a share of the population.
Sobs
t Observed share of the population that is susceptible at time t.

Model Constant Parameters
γ Share of the population that is no longer infectious at time t.
θH Share of the population that leaves the hospital at time t.
θP Share of the population that is no longer recovering at home at time t.
σb Standard deviation of the innovation to bt.
σg Standard deviation of the innovation to gH,t.
σh Standard deviation of the innovation to dH,t.
σp Standard deviation of the innovation to dP,t.
σn Standard deviation of the innovation to nt.
σDH

Standard deviation of the innovation to the measurement equation of ∆DH,t.
σDP

Standard deviation of the innovation to the measurement equation of ∆DP,t.
σH Standard deviation of the innovation to the measurement equation of Ht.
σG Standard deviation of the innovation to the measurement equation of St−1 − St.
σS Standard deviation of the innovation to the measurement equation of St.
µ Upper bound of the share of detected cases.
Initial Values
S0, I0, H0, P0, b0, gH,0, dH,0, dP,0, n0
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total deaths in hospitals was above the total number of deaths. In such cases, we input zero

deaths at home.

The raw data on new cases exhibit weekend and holiday effects. Hence, we use the data from

new cases reported every Wednesday save for Wednesday, November 11, 2020, a public holiday

in Belgium (Remembrance Day). For this date, we use the reported cases on Tuesday, November

10, 2020. We consider that those cases were infected the previous Friday. Since Sciensano assigns

new cases according to the date on which the sample was taken, we impute new cases in the

model to 5-day-ahead reported new cases.7 Thus, we match an average incubation period of 5

days. As the CDC reports, symptoms may appear 2-14 days after exposure to the virus and

some studies consider day 5 as the typical day of the onset of symptoms (Kucirka et al., 2020).

We picked this specification after extensive testing of alternatives. In those preliminary tests,

we found that alternative approaches that seasonally adjust for nonbusiness days distorted the

number of reported cases and the nonlinear nature of the time series.8 Hence, we use the data

for new cases at a weekly frequency; this is the most transparent solution that we found.

Concerning the share of the susceptible population, we use the point estimates from Herzog

et al. (2020). This study is a prospective serial cross-sectional nationwide seroprevalence

evaluation conducted in Belgium using blood samples collected during five periods: March

30-April 5, April 20-April 26, May 18-May 25, June 8-June 13, and June 29-July 3. These five

collection periods include a total of 33 days or about 15% of our sample. To express variables in

per capita terms, we use the population from 2019 obtained from the World Bank’s website.

We combine the particle filter to evaluate the likelihood with a Metropolis-Hastings algorithm

to draw from the posterior (the joint algorithm is often called the PFMH). We tune the MH

proposal so that the resulting acceptance rate of the algorithm is close to 20% based on the

adaptation strategy of Roberts and Rosenthal (2001). We take 100, 000 draws with a burn-in

of 10, 000. Using the draws from the algorithm, we approximate the posterior moments of

interest such as the mean, and the 5% and 95% percentiles of Θ. We approximate the posterior

distribution of states using the particle smoother as in Doucet and Johansen (2009).

4 Estimation

4.1 Priors

Table 2 reports the prior distributions for the parameters and initial states of the model. We

select well-known parametric families commonly applied to similar problems and that capture,

7According to the data documentation from Sciensano, the diagnostics include molecular techniques (i.e.,
polymerase chain reaction or PCR) and rapid antigen tests.

8Similarly, the nonlinearity of the model made the use of cumulators to aggregate cases over the week
challenging to implement and generated results that were not transparent.
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when available, previous existing knowledge about COVID-19.

Table 2: Prior and Posterior Moments

Parameter/ Prior Posterior
Initial State Dist. Mean Std Mode Mean 5% 95%

γ B 0.20 0.05 0.072 0.076 0.055 0.106
θH B 0.10 0.02 0.211 0.195 0.161 0.232
θP B 0.15 0.05 0.131 0.139 0.083 0.207
σb IG 0.20 0.20 0.159 0.182 0.123 0.253
σg IG 0.20 0.20 0.166 0.175 0.138 0.220
σh IG 0.20 0.20 0.085 0.090 0.063 0.121
σp IG 0.20 0.20 0.129 0.147 0.116 0.182
σn IG 0.20 0.20 0.264 0.343 0.170 0.730

S0 B 0.98 0.01 0.973 0.977 0.960 0.991
I0 B 0.001 0.001 0.0008 0.0014 0.0006 0.0026
b0 N log(0.60) 0.50 log(0.349) log(0.371) log(0.237) log(0.595)
gH,0 N logit(0.01) 2.00 logit(0.236) logit(0.148) logit(0.065) logit(0.316)
dH,0 N logit(0.15) 2.00 logit(0.144) logit(0.136) logit(0.098) logit(0.187)
dP,0 N logit(0.15) 2.00 logit(0.043) logit(0.025) logit(0.009) logit(0.069)
n0 N -1.00 1.00 -1.028 -1.483 -2.585 -0.571
µ G 0.175 0.05 0.119 0.123 0.079 0.172

Mean p̂(Θ|yT ) (Std) 281.24 (1.34) 280.82 (1.11)

Note: This table is based on 90,000 posterior draws obtained after a burn-in period of 10,000 draws. The number of particles used
in the estimation is 50,000. The acceptance rate is about 16%. The mean and standard deviation of the log posterior density are
based on 500 evaluations at the posterior mean and mode, respectively. p̂(Θ|yT ) denotes the estimated posterior distribution of
the time-invariant parameters and initial conditions given the observables.

We pick beta priors for γ, θH , and θp. The prior for γ is centered at 0.2 (i.e., the median

time a person remains infectious is about five days), consistent with the evidence in Bar-On et al.

(2020). The standard deviation of γ is 0.05, with an interdecile range (IDR) of 4 to 7 days.9 The

prior mean and standard deviation for θH are 0.10 and 0.02, respectively, implying a median

length of average stays in hospitals of about 10 days and an IDR of 6 to 13 days, broadly in line

with the evidence in Catteau et al. (2020), who found a median hospital stay in Belgium of 9

days with a 6– to 15-day interquartile range. We set the prior mean for θP to 0.15, implying a

median average home recovery of between 6 and 7 days and an IDR of about 4 to 11 days. Our

prior assumes that, on average, individuals recovering outside of hospitals present less severe

symptoms and hence are more likely to recover faster.

We pick inverse gamma priors for σb, σg, σh, σP , and σn. Inverse gamma priors are popular

choices for the step size changes in related applications. We set the prior mean to 0.2 for σb, σg,

σh, σp, and σn to allow for quick changes in behavior, policies, and medical treatments. For the

9The standard deviation of γ embodies uncertainty about the average duration of spells of infectiousness in
the population, not about their dispersion in the cross-section of individuals.
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effective contact rate, our prior for σb implies that this rate varies, on average, by about 20%

from one day to the next, in line with the fast changes recorded after stay-at-home orders. For

the law of motion governing the share of those infected who are recovering in a hospital, our

prior implies (up to first order) that this share changes on average by about 20× (1− γH,t−1)%

from t− 1 to t.10 Thus, when the share of the hospitalized population is small, we expect larger

changes than when this share is large. Similarly, the prior mean of σh is 0.2, implying (up to

first order) that the death rate in a hospital changes on average by about 20 × (1 − δH,t−1)%

from t− 1 to t. This specification allows death rates in hospitals to fluctuate more when the

death rate is low. The persistence of the death rate implied by the prior increases with its level,

as it is likely to be subject to shocks that are proportionally smaller when the death rate level is

high. We impose an identical prior for σp. With regard to σn, our prior implies that (up to first

order) the share of detected cases changes on average by about 20× (1− γn,t−1)% from t− 1 to t.

Thus, when the detection rate is low, the day-to-day changes are larger than when the detection

rate is high. The standard deviation of the prior for σb, σg, σh, σp, and σn is 0.2. Hence, our

prior allows for either slow or fast changes in the time-varying parameters.

We set the prior mean for S0 to 0.98. This is about one percentage point (p.p.) above

the share of the population susceptible to the virus as of March 30, 2020, according to the

point estimates in Herzog et al. (2020). The standard deviation is set to 0.01, about two times

the standard deviation associated with the 95% confidence interval for the seroprevalence of

COVID-19 in Belgium as of March 30, 2020, also from Herzog et al. (2020). The prior mean for

I0 is 0.001, which implies that 0.1% of the Belgian population was infectious on March 15, 2020.

Thus, assuming a contagion rate of 0.6 (a value we will describe momentarily), the number of

new cases on March 16, 2020 is 6,752, broadly consistent with the number implied by inflating

the reported cases under our prior for the share of detected cases as discussed below. The

standard deviation of I0 is 0.001, also in line with our assumptions on the detection rate. Since

the priors for S0 and I0 are independent, we discard draws of S0 and I0 that violate feasible

initial conditions for the model.

The prior mean for b0 is log(0.6), so that prior belief about R0,t is around 3 on March 15,

2020, a value consistent with D’Arienzo and Coniglio (2020). The standard deviation for b0 is

0.5, so that values of b0 one standard deviation below and above the mean yield values of R0

in the interval [1.8, 5.9]. The prior mean for gH,0 is set so that when mapped to γH,0 it implies

that 1% of those recovering from COVID-19 were doing so in a hospital on March 15, 2020.11

The standard deviation for gH,0 is 2, which is large enough to cover an interval of hospitalized

individuals between [15; 800], which is wide given the reported 266 hospitalizations. The prior

10This follows from linearizing γh,t =
egH,t

egH,t+1
around γh,t−1 and dividing the resulting expression by γh,t−1.

11We sum the “true COVID-19” cases embedded in our prior as implied by a detection rate of 5.5% (a plausible
value according to our prior) from March 11 until March 15. The result is 27,054. Since 266 individuals were
hospitalized on March 15, we have that 266/27, 054 ≈ 0.01.
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mean for dH,0 is log(0.15/(1-0.15)). This number is obtained by the measurement equation

assuming that deaths in hospitals are measured without error on March 15, 2020. The standard

deviation for dH,0 is 2 to concentrate the prior for the probability of those leaving the hospital

because of death in the interval [0.02, 0.56]. The prior mean and standard deviation for dP,0 are

the same as the ones for dH,0.

The prior mean for n0 is −1.00 and the standard deviation is 1.00. This choice, together

with the prior over µ (described below), implies a fairly flat prior over the share of detected cases

on March 15, 2020, as shown in Appendix A.1. We have degenerate priors for H0 and P0. In

particular, we set H0 = 2.31× 10−5 (that is, 266 hospitalized expressed as a share of the Belgian

population the day before the start of our sample) and P0 = 0. The first is given to us by the

data and the second by convenience, since its effects on the estimation are trivially small.

The prior mean of µ is 0.175, the mid-point of the 2 to 33% interval of false negatives in PCR

tests reported by Arevalo-Rodriguez et al. (2020). The standard deviation for µ is 0.05, with an

IDR range of 11 to 24% for the false negative rate. In that way, we allow for large differences in

the accuracy of PCR tests as measured in a lab and when applied in practice.

We impose degenerate priors for σDH
, σDP

, σH , and σG by applying a Hodrick-Prescott filter

to the corresponding observed variables. We fine-tune the filter so that the cyclical component is

nearly serially uncorrelated (i.e., we pick the filter’s smoothing parameter λ so that the cyclical

component has little serial correlation). In that way, the measurement error does not explain

more than 5% of the variation in each individual series. Then, we set these parameters equal to

the standard deviation of the serially uncorrelated cyclical component. This procedure results in

σDH
= 0.29, σDP

= 0.32, σH = 0.017, and σG = 0.16.

Finally, we also impose a degenerate prior for σS by fixing it to 0.02, roughly about 5 times the

average standard deviation across collection periods implied by Herzog et al. (2020). Serological

studies are a useful guide, but likely subject to large measurement error, as is evident in the

variation in the share of individuals infected by the virus throughout the collection periods.

4.2 Posteriors

We now discuss the posterior mode, mean, and the 90% posterior probability interval of the

parameters and initial states, also reported in Table 2. For ease of exposition, we focus on

the posterior mean, save for a few parameters where the 90% posterior probability interval is

of particular interest. Appendix A.2 shows the prior and posterior distribution for all of the

estimated parameters, which show that the data are informative about the estimated parameters.

The posterior mean and 90% posterior probability interval for γ are 0.076 and [0.055; 0.106],

respectively. This suggests that the implied posterior mean estimate of the average length a

person remains infectious is between 13 and 14 days and the 90% posterior probability interval
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is between 9 and 19 days (we compute the statistics regarding days by inverting every draw of

γ, not by inverting the mean of γ; the same will apply to all other statistics regarding time).

The posterior mean and 90% posterior probability interval for θH are 0.195 and [0.161; 0.232],

respectively. Hence, the posterior mean of the average length of stay in hospitals is between 5

and 6 days and the 90% posterior probability interval is between 4 and 7 days. The posterior

mean and 90% posterior probability interval for θP are 0.139 and [0.083; 0.207]. The implied

posterior mean of the average length of stay at home is between 7 and 8 days, and the 90%

posterior probability interval is between 4 and 13 days. The likelihood overturns the prior for θH :

our point estimates suggest a longer recovery at home, perhaps due to higher-quality treatments

given in hospitals.

The posterior distribution for σb is centered on the prior mean, 0.20, but it is more concentrated

than our prior, ruling out small and abrupt changes in daily behavior. A similar conclusion

emerges for σg. In contrast, the posterior mean for σh, 0.090, is much lower than its prior mean.

In the case of the mortality rates at home, σp, the posterior mean is 0.147, which is a step-size

value somewhat higher than in the case of mortality rates in hospitals. The posterior mean for

changes in the share of detected cases is 0.343, which is larger than our prior mean. This is

consistent with expedited increases in testing capacity.

The posterior mean and 90% posterior probability bands for the initial share of the population

susceptible to the virus are 0.977 and [0.960; 0.991], respectively. Thus, our posterior estimates

indicate that, with high probability, about 2% of the Belgian population had come in contact

with the virus by mid-March 2020. The posterior mean and posterior probability bands for the

initial share of the population that was infectious are 0.0014 and [0.0006; 0.0026], respectively.

Hence, about 0.1% of the Belgian population was infectious with high probability by around

March 15. The posterior mean of the initial log of the transmission rate is log(0.371), implying

an R0,t of around 5.3.

We estimate that 14.8% of those infected with COVID-19 were recovering in hospitals at the

start of the sample, an initial death probability of 2.7% conditional on being hospitalized, and an

initial death probability of 0.39% conditional on recovering at home. These findings suggest that,

by mid-March 2020, only very sick patients were being admitted to hospitals. As documented in

Appendix A.2, the posterior distribution n0 is very similar to the prior distribution, with roughly

the same mean. However, our choice of prior for n0 was an educated guess: since this parameter

was hard to identify, we optimized n0 by starting our Monte Carlo simulation at different initial

values. The optimizer consistently delivered values concentrated around the mean of our prior.

The posterior mean of the share of false negatives implied by our model is 12.3%. The

posterior distribution of parameters µ and n0 imply a 90% posterior probability interval for the

initial share of detected cases of between 6 and 32%. Thus, as of March 15, 7 out of 10 cases

were going undetected in Belgium.
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4.3 Data Fit

Figure 2 shows the fit of the model to the data at the posterior mean (these are in-sample

forecasts based on filtered states). Panel (a) plots, in a continuous black line, the (log) first

difference of the share of (daily) deaths in hospitals in Belgium from mid-March until late

November (i.e., the share of new deaths). We see two large peaks, one in early April and one

in early November, corresponding to the first and third waves of COVID-19 in Belgium, plus

a smaller wave in mid-August. In red, we plot the median of the one-step-ahead forecast of

the model, evaluated at the posterior mean, together with a 90% probability band. Panel (b)

plots, following the same formatting as the left panel, the (log) first difference of the share of the

deaths outside of hospitals, the one-step-ahead forecast, and the 90% probability band.

(a) Deaths in hospitals (b) Deaths at home

(c) Population in hospitals (d) New reported cases

Figure 2: Deaths, hospitalized, and new cases: One-step-ahead forecast and data, Belgium

The model captures the three waves of deaths. The observations fall within the 90% probability

band on most days. The only misses are during the summer of 2020, when deaths were fewer

than ten a day. During this time, small random differences between one period to the next

are extremely difficult to forecast. The model also accounts for the observation that deaths
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in hospitals had reached, by early November, the same level as in early April, but deaths at

home had not. This might reflect Belgian hospitals’ better ability to cope with severe COVID-19

patients due to additional available beds.12

This hypothesis is supported by Panels (c) and (d), where we plot the (log) share of

hospitalizations following the same formatting as above. Panel (c) shows that the model can

account for hospitalization. Finally, Panel (d) draws the (log) share of newly reported cases.

The data indicate many more cases in the last peak than in the first. This panel plots reported

cases and our forecast of those recorded cases. We will come back to this point below.

4.4 The Estimated Time-Varying Reproduction Numbers

From our posterior distribution, we recover the smoothed value of the unobserved states (or

related variables) and their probability distribution. These are, often, the relevant objects for

policymaking, as they describe the epidemiological situation of a given area (country/region/...)

under study and can be used, as inputs, in a loss function to pick an optimal policy.

(a) R0,t = βt/γ (b) Re,t = R0,tSt

Figure 3: Reproduction numbers, Belgium

A key variable in an epidemic is R0,t. The left panel of Figure 3 plots the smoothed R0,t and

the 90% smoothed band. We see that R0,t started in mid-March slightly above 4, around the

values that several clinical studies have suggested. For example, see Table 1 in Katul et al. (2020)

for a list of estimates (the authors conclude that their best estimate of an unmitigated R0,t for

the early variants of COVID-19 is 4.5, close to our result). However, R0,t fell rapidly and, by

mid-April, it was well below 1. In May and June, R0,t stabilized around 0.5 and increased back

to almost 3 during the summer of 2020, fluctuating until late October between 3 and 1. After

November, R0,t was again at a much lower level, with the whole 90% smoothed band below 1.

12We could also plot the one-step-ahead forecast integrating over the whole posterior. This alternative exercise
makes little difference in practice, but complicates the interpretation of the figures.
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The right panel of Figure 3 reports our smoothed median and 90% probability estimates

of Re,t, the effective reproduction number. While Re,t starts at the same level as R0,t, as the

susceptible population shrinks, Re,t falls. The difference, however, between R0,t and Re,t is small.

Panel (a) of Figure 4, our smoothed estimate of the share of susceptibles, tells us why. Even as

late as November, our model estimates that only around 12% of the population had ever been

infected. By early December 2020, Belgium was far away from herd immunity.

4.5 New Cases

Panel (a) of Figure 4 plots, in red squares, the point estimates of the seroprevalence studies

reported by Herzog et al. (2020) and, in black crosses, the 95% confidence interval of the studies.

Our model accounts for those seroprevalence studies: in all cases, our 90% probability band

and the 95% confidence interval of the studies overlap, which is crucial to recover a measure of

the true number of cases. Panel (b) of Figure 4 plots, in blue, the smoothed median and 90%

probability bands of the true new cases, and, in black, the reported new cases in Belgium. These

estimates will be the input in our causal assessment of NPIs. The first peak is much smaller, by

either measure, than the third one (with a minor second peak in the middle). The fall in death

probabilities explains why deaths did not reach the first wave levels.

(a) Share of susceptible population, Belgium (b) New cases, Belgium

Figure 4: New cases, Belgium

In addition, the reported cases and the estimated cases were different during the first wave.

Figure 5 makes this point clearly by showing, in the left panel, our median smoothed estimate

of the share of reported cases and, in the right panel, the permanent component of this share.

By late March, less than 20% of all cases were being reported, while by the summer of 2020,

after testing became more prevalent, around 90% of cases were being reported. The permanent

component of this share suggests that this increase in reported cases is very persistent.
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(a) Share of reported cases, Belgium (b) Permanent component, γn,t, Belgium

Figure 5: Share of reported cases, Belgium

For completeness, Appendix A.3 presents the smoothed estimates of the time-varying death

probabilities, the share of the population that is infectious, the share of the population that is

recovering, and the inflow of hospitalizations as a share of those that are no longer infectious.

5 Causality and Policy Trade-offs

This section measures, using two different approaches, the causal effects of mobility curtailment

policies on the spread of the virus, the death toll, and economic activity using the smoothed

estimates of variables from the epidemiological model such as the effective reproduction number,

new cases, deaths in hospitals, and deaths at home. These exercises gauge the trade-off between

slowing down the spread of the virus and decreasing economic activity that policymakers face

when enacting shelter-in-place and/or compulsory business closure orders.

Why do we need a causality assessment? Starting in March 2020, individuals’ mobility

in most countries plummeted due to COVID-19, slowing down the virus’s spread at the cost of

lower economic activity. Some of the reductions in mobility were voluntary, as individuals took

precautions to avoid getting infected (or were affected by other individuals taking such measures;

for instance, a household canceling its home cleaning services to avoid having third parties come

inside its dwelling reduces the mobility of the workers of the cleaning service). Some of the

reductions in mobility were triggered by government mandates, such as orders to shelter-in-place

or compulsory business closures.

Since both mechanisms coincided in time, we need to disentangle them to ascertain the

causality effect of the government mandates on the virus’s spread, the death toll, and economic

activity. Knowing by how much governments can affect current and future epidemiological

19



conditions and gauging their cost in terms of economic activity are key factors when designing

the length and severity of mobility curtailments.

Why are the outputs from the estimated epidemiological model useful? One challenge

when disentangling the effects of voluntary and government-mandated changes in behavior is

that some of the relevant variables required to do so, such as Re,t, are not directly observable.

Furthermore, other variables, such as the number of reported cases, are subject to large, persistent,

biased, and time-varying measurement errors.

The structure imposed by an epidemiological model allows us to tackle these data limitations.

We can discipline the data by enforcing the cross-equation restrictions among the model’s states

implied by the transitions among compartments dictated by the disease’s biological and clinical

properties. The likelihood of the model tells us, for example, that in the case of COVID-19,

relatively high seroprevalence rates and low reported new cases in Belgium during the first half of

2020 can only be reconciled with large under-reporting of cases. Likewise, the parallel evolution of

hospitalizations, deaths in hospitals vs. deaths at home, and the reported new cases during 2020

informs us of the evolution of under-reporting and changes in mortality probabilities. Thanks to

our use of an epidemiological model, we transform noisy and biased observations of new cases,

new deaths in hospitals and at home, and seroprevalence surveys into useful unobserved outputs,

such as smoothed estimates of Re,t or the (true) number of new cases.

In contrast, one could estimate Re,t using statistical methods (e.g., comparing newly reported

cases along a moving window), but such an exercise could not correct the changing share of

unreported cases. Another option would be to perform the causality and policy analyses without

Re,t, but such a policy analysis would suffer from an omitted variable bias, which we know from

other environments (like studying the effects of monetary policy) can be a serious flaw.

Two procedures for causality assessment We address the effects of government-mandated

mobility curtailments with two popular methods for assessing causality in time series: structural

vector autoregressions (SVARs) and local projections (LPs).

First, we build on the tradition of SVARs and identify a government stringency shock by

restricting the systematic component of the government stringency policies rule that maps health

and economic conditions into mobility curtailments. A stringency shock should be thought of

an unexpected change in the mobility curtailment policy. The identification assumptions are

motivated by the fact that health policymakers have emphasized that they follow a data-driven

approach when imposing mobility curtailments. In situations where we can impose credible

restrictions on the systematic component of policy, SVARs offer reliable answers (Wolf, 2020).

Second, we work with LPs to identify a reproduction shock and analyze how it affects the rest

of the variables (including deaths in hospitals and at home and economic conditions) depending
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on the level of government mobility curtailments. A reproduction shock can be thought of as a

shock that changes the contagious properties of the virus. This can be due to biological factors

(e.g., a new variant of the virus) or social mechanisms (e.g., better facial masks, improvements in

ventilation in public spaces). More concretely, we want to measure whether government mobility

curtailments affect the transmission of the reproduction shock. LPs are a flexible approach that

allows us to address state dependencies without making strong parametric assumptions.

Many other methods for assessing causality could use the output from our estimated epidemi-

ological model, such as a vector error correction model, regression discontinuity designs that

exploit local variations in government mandates (e.g., Goolsbee and Syverson, 2020), synthetic

controls (e.g., Cho, 2020), or event studies (e.g., Gupta et al., 2020). We could also generalize

our SVAR analysis to a Markov-switching SVAR à la Sims and Zha (2006). We skip all those

additional experiments to keep our study focused.

5.1 A Government Stringency Shock

We write our SVAR as:

y′
tA0 = x′

tA+ + ε′t for 1 ≤ t ≤ T,

where yt is an n × 1 vector of endogenous variables, x′
t =

[
y′
t−1 · · · y′

t−p z′
t 1

]
, zt is a

z × 1 vector of exogenous variables, εt is an n× 1 vector of structural shocks, A0 is an n× n

invertible matrix of parameters, A+ is an (np+ z + 1)× n matrix of parameters, p is the lag

length, and T is the sample size. The vector εt, conditional on past information and the initial

conditions y0, ...,y1−p, is Gaussian with mean zero and covariance matrix In (the n× n identity

matrix). The matrices A0 and A+ are the structural parameters.

One of the equations in the SVAR characterizes the policymaker’s behavior when imposing

mobility curtailments aimed at slowing the transmission of the virus. Consequently, we call such

an equation the government stringency policy rule.13

We summarize the decisions of the policymakers using a government stringency policies

indicator that we will describe below. We will call this indicator the policy instrument. We

assume the indicator reacts to other variables in the system such as new cases and Re,t. Without

loss of generality, we assume that the first equation of the SVAR characterizes the policy rule.

This implies that

y′
ta0,1 = x′

ta+,1 + ε1t for 1 ≤ t ≤ T

is the policy equation, where ε1t denotes the first entry of εt, a+,1 denotes the first column

of A+ for 0 ≤ ℓ ≤ p, and as,ij for s ∈ {0,+} denotes the (i, j) entry of As and describes the

13We could have several policy equations, each capturing one different containment policy as a function of
public health variables, as in Chernozhukov, Kasahara and Schrimpf (2021). We keep our analysis to one policy
equation to avoid overparameterizing the SVAR.

21



systematic component of the policy rule. Thus, restricting the systematic component of the

policy rule is equivalent to restricting as,ij for s ∈ {0,+} and identifies a policy shock that we

call the stringency shock.

Our baseline SVAR sample runs from March 16 through November 30 and contains seven

endogenous variables. Three of these seven endogenous variables come from outside sources.

First, we use the Oxford Stringency (OS) index for Belgium as our mobility curtailment policies

indicator (Hale et al., 2020). The authors of the OS index compile information on when and

which measures governments take. The particular index we use is a simple average of nine

individual component indicators. Each component is a measure of intensity of closings of schools

and universities, closings of workplaces, canceling of public events, limits on gatherings, the

closing of public transportation, orders to shelter-in-place, curtailments on internal movement

between cities/regions, prohibitions on international travel for non-citizens, and the presence of

public information campaigns. Due to data limitations, we do not consider non-mobility-related

NPIs such as face masks or improved ventilation.

Second, we use a mobility index for Belgium from the Google COVID-19 Community Mobility

Reports, available at https://www.google.com/covid19/mobility/. This measure of mobility

is a simple average of the measures of nonresidential mobility categories in the Google Mobility

Reports (excluding parks): i) Retail and recreation; ii) Grocery and pharmacy; iii) Transit

stations; and iv) Workplaces. The mobility measure is expressed in p.p. and it corresponds

to daily changes in mobility relative to a baseline value for that day of the week, which is the

median value observed during the 5-week period Jan 3–Feb 6, 2020.

Third, we use a daily economic news sentiment (ENS) indicator for Belgium constructed

by Algaba et al. (2021) using natural language processing as a daily index of economic activity.

This indicator is based on the media archive of the national Belgian News Agency. When

aggregated at a monthly frequency, the index is positively correlated with the National Bank of

Belgium’s monthly consumer confidence survey and other measures of economic activity such

as construction, manufacturing, business-related services, and industrial confidence in the euro

area, among others. The daily ENS indicator was obtained in two formats: a latent daily series

and a 14-day moving average of the series. We use the latter because the former is too noisy.

The other four endogenous variables come from the estimated epidemiological model. In

particular, we use the model-implied point-wise median filtered estimate of the expected value of

i) Re,t; ii) new cases; iii) daily deaths per capita in hospitals; iv) and daily deaths per capita at

home. For each of these four series, we use a 7-day backward looking moving average because

it’s the most popular window for these variables.14

The OS index, new cases, and Re,t are expressed in log percent. Daily deaths enter in levels

14Appendix A.5 shows that the main conclusions from our SVAR analysis are robust to taking into account
the uncertainty associated with our filtered estimates.
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so that we can compute the impulse response function (IRF) of cumulative deaths to a stringency

shock. The SVAR includes 14 lags, a constant term, and, as an exogenous variable, the average

daily temperature to control for the effect that weather conditions might have on the variables

of interest. The observable corresponds to the temperature measured at the Brussels Airport

Station and it was downloaded from https://www.wunderground.com/. Our measurement is

fairly representative of the weather conditions for Belgium as a whole given that this nation’s

territory is only about 30,689 km2 and most of the population is concentrated in the flat coastal

plain and central plateau.

Notice that the endogenous variables are estimated with a nonlinear epidemiological model,

while the SVAR is a linear structure. This does not create major problems. First, we have

14 lags and, thus, the “best linear approximation” implied by the VAR to the evolution of

the endogenous variables is very flexible. Second, we selected, in our specification, endogenous

variables such as the (log) Re,t that, without being fully linear, are much closer to linearity than

other variables in the epidemiological model (in fact, this was a major factor in our specification

design).

The SVAR is estimated with a Bayesian approach following Arias, Rubio-Ramı́rez and

Waggoner (2018). We impose a normal-generalized-normal (NGN) prior distribution over the

structural parameters (A0,A+).
15 The NGN prior is a conjugate prior characterized by four

parameters (ν,Φ,Ψ,Ω). The parameters ν and Φ govern the marginal prior distribution of

vec(A0): if ν = n –as will be the case in our application– vec(A0) is normally distributed with

mean zero and variance Φ−1. The remaining parameters Ψ and Ω govern the prior distribution

of vec(A+), conditional on A0. Such a distribution is normal with mean Ψvec(A0) and variance

Ω. We set ν = n, Φ = 0n,n, Ψ = 0mn,n2 , and Ω−1 = 0mn,mn.

The policy equation is identified with sign restrictions on the systematic component of the

policy actions in line with Arias, Caldara and Rubio-Ramı́rez (2019) and the SVAR tradition of

Leeper, Sims and Zha (1996). The identification restrictions are:

Restriction 1. The stringency index is the mobility curtailment policies indicator, and it reacts

contemporaneously and positively to Re,t, mobility, new cases, deaths, and the index of economic

activity.

Restriction 1 embodies the idea that policymakers react to current public health conditions

and economic activity. For example, on March 17, 2020, the Belgian government announced the

first nationwide lockdown arguing that: “The situation has evolved and forced us to take severe

measures to stem the spread of the virus.”16 On April 15, the government relaxed some measures

since: “We are aware that the measures taken will have serious long-term consequences, both

15Appendix A.6 replicates our analysis using the prior robust approach in Giacomini and Kitagawa (2018).
16See the March 17, 2020, Reuters article “Belgium to impose coronavirus lockdown from Wednesday.”
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psychologically and economically. We plead that the measures last as long as necessary.”17 On

October 16, the Belgian government ordered bars and restaurants to close, arguing that: “The

number of confirmed cases is rising, every day, and not just by a few percentage points.” Other

sentences such as: “This virus is affecting our country in a very hard way,” “Thirty-five people

died yesterday from the effects of COVID-19,” and “In the days to come, the news will be bad”

make clear that policymakers were reacting to public health conditions in real time.18

Figure 6: IRFs to a stringency shock. The solid curves represent the point-wise posterior
medians, and the shaded areas represent the 68% equal-tailed point-wise probability bands. The
figure is based on 10,000 independent draws.

Figure 6 plots (in brown lines) the IRFs to a positive (increase) stringency shock and (in

yellow bands) the 68% point-wise posterior probability bands. The stringency shock is normalized

such that, upon impact, the posterior median increase in the stringency index equals 7.4%.

This is equivalent to a one-unit increase in one of the ordinal measures that composed the OS

17See the April 15, 2020, EURACTIV.com article “Belgium extends COVID-19 lockdown until 3 May, but
relaxes some measures.”

18See the October 16, 2020, Reuters article “Belgium to close all bars and restaurants for a month, imposes
night curfew,” and the AP article “Belgium imposes Covid curfew, closes bars and restaurants,” on the same day.
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index, on average. For instance, this change roughly corresponds to a nationwide measure that

unexpectedly increases the “shelter-in-place” component of the index from 1 (which recommends

not leaving the house) to 2 (which requires not leaving the house, with exceptions for daily

exercise, grocery shopping, and essential trips), which would increase the OS index by about 6%

relative to its median. Other examples include an unexpected nationwide increase in the limits

on gatherings from 2 (curtailments on gatherings between 101-1000 people) to 4 (curtailments

on gatherings between 11-100 people), which would increase the OS index by about 5% relative

to its median, and an unexpected nationwide increase in the public events component from

recommending cancelling to requiring cancelling, which would increase the OS index by about

10% relative to its median.

A positive stringency shock leads to a drop in Re,t for more than a month. This drop is

beyond the fall triggered by individuals’ endogenous responses due to changed risk conditions

(which are controlled for by the coefficients in the SVAR). Mobility, new cases, and deaths also

decline, albeit with different persistence. In the case of mobility, the decline is more transient

than in the case of Re,t, suggesting an exhaustion effect among individuals: after around 8

days, mobility is back to its baseline value without a stringency shock. The decline in deaths in

hospitals and at home lasts much longer, reflecting the illness’s lag effects. We measure that a

positive stringency shock leads to roughly 1, 000 fewer deaths (500 in hospitals and 500 at home)

after 2 months. This represents about 6% of the total number of deaths in our sample, 16, 840.

To interpret the effects of a positive stringency shock in terms of output, we scale the ENS

indicator following Lewis et al. (2020). We aggregate the daily ENS indicator to quarterly

frequency, denote the resulting series by ENSq, and run a regression of four-quarter real GDP

growth one quarter ahead on a constant and ENSq over the sample 2000Q1-2019Q4, i.e.,

RGDPq4q4q+1 = α + γENSq + ut, where q ∈ {2000Q1, . . . , 2019Q3} .

We estimate this regression by OLS and obtain α̂ = 1.6 and γ̂ = 1.2. With these point estimates,

we can express the news sentiment indicator in terms of real GDP: A decline of 0.25 standardized

units in sentiment implies that, if such a value were to persist for an entire quarter, we would

expect (on average) real GDP in the next quarter to be about 0.3% lower than without the

shock.

The pointwise posterior median IRF of the ENS indicator to a stringency shock is on average

about -0.01 during the first 90 days, with a 68% probability interval of [−0.27, 0.25]. If we take

the posterior median -0.01 and compute the equivalent in terms of the Belgian GDP per capita,

we find that a stringency shock brings a net per capita cost of about e1 (roughy e11 million in

the aggregate). Repeating the same exercise for the two extremes of the probability interval, we

obtain the result that the per capita cost(-)/benefit(+) of a stringency shock is between −e29
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and +e26 (or between −e330 million and e300 million in the aggregate).19

We can compare these figures with two alternative measurements. First is the large drop

in observed output in Belgium in 2020 (-6.3% according to the IMF World Economic Outlook

Database). This drop includes the consequences of voluntary changes in behavior and of

government mandates. Researchers have accumulated much evidence that the bulk of reductions

in contact rates and employment came from voluntary changes in behavior. A compelling exercise

showing this result, due to the granularity of the U.S. data it uses, appears in Arnon, Ricco

and Smetters (2020). Gupta et al. (2020), Maloney and Taskin (2020a), Andersen (2020), and

Maloney and Taskin (2020b) report similar results. The last paper is particularly relevant for

us because it gathers findings for many countries. Furthermore, we are focusing on the effects

of an unexpected change in mobility curtailment policies, not on the effects of the systematic

component of the government policy (we will return to this point momentarily). Thus, our

finding is consistent with the rest of the literature.

Second, we can compare our findings with the “value of a statistical life” (VSL). OECD

(2012), a comprehensive meta-analysis of the literature and one that is often used in policy and

regulatory decisions, proposes a range of the VSL for the European Union of e2.2 million-e6.5

million, with a base value of e4.3 million.20 Since we calculate that the positive stringency shock

saves around 1,000 lives, the output cost per life saved is e330, 000 or less with 84% probability,

well below the VSL above (even correcting by the higher age of those dying of COVID). Notice

that we cannot measure the welfare effect of the positive stringency shock (which includes welfare

losses, such as missing leisure activities outside the house or contacts with relatives and friends).

Our statement merely compares a range of the VSL with output losses.

In summary, and given the systematic component of the health policy of the Belgian

government and the voluntary changes in behavior, a marginal and unexpected tightening

of mobility curtailments would have saved many lives with close to a zero impact on income per

capita and a cost well below the VSL. By controlling the virus’s spread, a positive stringency

shock has a short-term output cost for about 15 days, but increases economic activity later. As

the stringency measures improve public health conditions, the policy’s systematic component

drives the stringency index below zero about 15 days after the initial increase. In comparison,

the reproduction number starts to increase only a month after the shock. This difference in

timing is consistent with the presence of transient precautionary behavior by the public.21

19See Table A.1 in Appendix A.4 for the regression results and see Figure A.7 in Appendix A.4, which plots
the ENS indicator in real GDP units along with one-quarter-ahead four-quarter real GDP growth. Given the
short time span (90 days) and the low real interest rates prevailing at the moment, discounting the GDP flows to
put them in present terms does not make any quantitative difference.

20We have transformed the figures from OECD (2012), in 2005 USD, into 2020 euros.
21The result that an unanticipated increase in the stringency index leads to fewer deaths at essentially no

output cost is robust to not restricting the systematic component of health policy to mobility and economic
activity. The only important change is that the IRFs of mobility and economic news sentiment cannot be
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The systematic component of the health policy rule Beyond the analysis of IRFs, SVARs

provide useful information regarding the systematic component of the government-mandates

policy implied by our identification scheme.22 More specifically, the contemporaneous coefficients

correspond to ratios of entries in the vector a0,1. Thus, abstracting from lags and the constant

term, the health policy equation can be written as:

strt = ψRret + ψMmt + ψ−∆Snct + ψDH
ndht + ψDP

ndpt + ψnsnst + σε1,t,

where str denotes the stringency index in log-percent, ret denotes Re,t expressed in log-percent, mt

denotes mobility in p.p., nct denotes the log of new cases in log-percent, ndht denotes the number

of new deaths in hospitals, ndpt denotes the number of new deaths at home, and nst denotes

the ENS indicator. Accordingly, the coefficient ψR = −a0,11/a0,31 denotes the contemporaneous

response of the stringency index to Re,t, ψM = −a0,21/a0,31 denotes the contemporaneous

response of the stringency index to mobility, ψ−∆S = −a0,41/a0,31 denotes the contemporaneous

response of the stringency index to new cases, ψDH
= −a0,51/a0,31 denotes the contemporaneous

response of the stringency index to new deaths in hospitals, ψDP
= −a0,61/a0,31 denotes the

contemporaneous response of the stringency index to new deaths at home, ψns = −a0,71/a0,31

denotes the contemporaneous response of the stringency index to economic conditions as measured

by the ENS indicator, and σ = 1/a0,31 is the standard deviation of the health policy shock.

Table 3: Contemporaneous Coefficients in the Health Policy Equation

Coefficient ψR ψM ψ−∆S ψDH
ψDP

ψns

Median 0.85 2.44 0.67 8.94 5.50 20.36

68% Prob. Int. [0.23;2.46] [0.62;7.67] [0.19;1.73] [2.75;22.14] [1.44;14.91] [5.58;56.66]

90% Prob. Int. [0.06;4.85] [0.21;16.53] [0.06;2.96] [0.97;39.71] [0.46;31.61] [1.79;114.12]

Note: The table’s entries denote the posterior median estimates of the contemporaneous coefficients in the health policy
equation under our identification. The 68% and 90% equal-tailed posterior probability intervals are reported in brackets.
The table is based on 10,000 independent draws.

Table 3 reports the posterior distribution of the contemporaneous coefficients in the health

policy equation. The posterior median of ψR equals 0.85, which implies that the stringency

index increases by about 8.3% in response to a 10% increase in the reproduction number. As a

reference point, recall that a 7.4% rise in the index is equivalent to a one-unit increase in one

of the ordinal measures that composed the OS index, on average. The posterior median of ψM

distinguished from zero during the first two weeks following the shock. We thank an anonymous referee for
suggesting this check.

22This is a common practice when identifying monetary or fiscal policy equations in SVARs: e.g., Leeper and
Zha (2003), Sims and Zha (2006), and Caldara and Kamps (2017).
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equals 2.44, indicating that the stringency index increases by 12.2% (where 12.2=2.44× 5) in

response to a 5 percentage point increase in daily mobility. The posterior median of ψ−∆S equals

0.67, that is, the stringency index increases by about 7% in response to a 10% rise in new daily

cases. The posterior median of ψDH
, 8.94, suggests that the stringency index increases by about

89% in response to 10 new daily deaths in hospitals. The posterior median of ψDP
, 5.5, means

that the stringency index increases by about 55% in response to 10 new daily deaths at home.

The posterior median of ψns, 20.36, means that the stringency index decreases by about 20% in

response to a one-standard-deviation decrease in the ENS indicator. In terms of output, this

means stringency decreases 20% (i.e., about a one-unit increase in three of the ordinal measures

that compose the OS index) in response to a drop of around 1.2% in next quarter real GDP.

Overall, the coefficients are plausible given the behavior of health authorities in 2020 across

the advanced economies. The 68% and 90% probability intervals are wide, but one could easily

extend our analysis to impose bounds on coefficients based on external evidence or judgment;

see Arias, Caldara and Rubio-Ramı́rez (2019).

5.2 A Reproduction Shock

We next identify a reproduction shock and analyze whether its effects on the virus’s spread,

deaths, and economic activity depend on the level of government stringency. To answer this

state-dependency question we use the LP approach proposed by Jordà (2005) and developed by

Ramey and Zubairy (2018), Stock and Watson (2018), and Plagborg-Møller and Wolf (2021),

among others. In particular, we use LPs with interaction terms as in Ramey and Zubairy (2018)

to study how a reproduction shock propagates depending on the level of government stringency.

Our identification scheme consists of sign and zero restrictions implemented as described in

Plagborg-Møller and Wolf (2021). Consider the following LP specification:

wi,t+h = It−1

(
µH,i,h + β′

H,i,hwt +
ν∑

ℓ=1

δH,i,h,ℓwt−ℓ + γ ′
H,i,hst

)

+ (1− It−1)

(
µL,i,h + β′

L,i,hwt +
ν∑

ℓ=1

δL,i,h,ℓwt−ℓ + γ ′
L,i,hst

)
+ ξi,h,t

(3)

for i = 1, . . . , n, and h = 0, . . . , H, where wt is the w × 1 vector of endogenous variables equal

to yt defined in Section 5.1 save for the OS index, wi,t+h denotes the value of the i-th variable in

wt+h, and st is an s× 1 vector of exogenous variables.

The exogenous variables include zt (defined in Section 5.1), the point-wise median smoothed

death probability in hospitals, and the point-wise median smoothed death probability at home.

It−1 is a dummy variable that indicates whether Belgium is in a high government stringency

regime. The high government stringency regime is determined based on whether the OS index is
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above its median level over the sample (58.33).
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Figure 7: Stringency Index

Figure 7 shows the time series of stringency plus its 50th and 60th percentiles. A value of

about 50 for the OS index corresponds to a situation where schools are open, working from

home is recommended (albeit not required), there are restrictions on gatherings of more than 100

people, traveling between regions is advised to be avoided (but not prohibited), and a quarantine

is required for arrivals from some or all regions. In contrast, a value of about 80 for the OS

index corresponds to a situation where schools are required to close at some levels, working from

home is required for some sectors, there are restrictions on gatherings of more than 10 people,

restrictions on internal movement are in place, and there is a total border closure. Hence, the

median threshold corresponds to a serious but not extreme lockdown.23

The parameters µH,i,h, β
′
H,i,h, δH,i,h,ℓ, and γ ′

H,i,h correspond to the high government stringency

regime, i.e., the stringency index is above its sample median, and the parameters µL,i,h, β
′
L,i,h,

δL,i,h,ℓ, and γ ′
L,i,h correspond to the low government stringency regime. The innovation term for

h = 1, ξ1,t = (ξ1,1,t, . . . , ξw,1,t)
′, is assumed to be mean zero with covariance matrix Et(ξ1,tξ

′
1,t) =

Σ.24

All told, the LP specification is similar to the SVAR specification used above with a few

modifications tailored to the question at hand. First, we do not include the stringency index

because it is the variable we use to split the sample. Second, we use 3 lags to reduce parameter

uncertainty. Third, we add death probabilities as exogenous variables to control for any effect

related to the sample split. In particular, it could be the case that high (low) government

23As a robustness exercise, Appendix A.7 considers a threshold at the 60th percentile. The main results are
robust. We did not consider thresholds higher than the 60th percentile because, as shown by Figure 7, they
would imply a very sharp division between the first three months of the pandemic and the rest of our sample.

24We have also experimented with the case in which the covariance matrix is regime specific. The main
conclusions of this section remained unchanged.
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stringency episodes are correlated with high (low) mortality rates. In fact, the death probability

was higher at the beginning of our sample as better treatments and refined clinical protocols for

the disease were not ready yet. The restrictions to identify the reproduction shock are:

Restriction 2. The reproduction number increases for at least three days in response to a

positive reproduction shock. Mobility decreases for at least three days in response to a positive

reproduction shock. The impact response of mobility in p.p. is bounded to be smaller than the

p.p. increase in the reproduction number. In addition, the reproduction shock does not affect

deaths, new cases, and the ENS indicator contemporaneously.

Restriction 2 identifies what we call a reproduction shock, that is, an exogenous variation

in the transmission rate of COVID-19. As we explained above, such an exogenous variation

could occur when people relax their compliance with social distancing measures or when a more

contagious variant of the virus emerges. The positive sign restrictions on the reproduction

number’s impact response is a normalization; the positive sign restrictions on the subsequent

days are imposed to sharpen identification. We impose just three days to be cautious and let the

data dictate the response’s shape as much as possible while keeping identification. The negative

sign restriction on mobility is imposed based on the notion that, on average, people will stay at

home in response to an unexpected increase in reproduction numbers.

The elasticity bound is imposed to discipline the identified set of mobility. In the absence of

such a bound, the identified set would include a decline in mobility of 100 p.p. as being equally

likely as no decline in mobility following an unexpected 10% increase in Re,t. Such a result is

implausible. Hence, we use a bound to rule out dubious IRFs as in Kilian and Murphy (2012)

and Arias, Caldara and Rubio-Ramı́rez (2019). The zero restrictions on deaths and new cases

are predicated on the CDC’s reports, since it takes more than one day for symptoms to develop,

and on evidence showing that it takes more than one day to die from COVID-19. This is just a

matter of exposure taking time to result in a measured case and death. For example, Wortham

et al. (2020) report a median clinical course of the disease of 10 days with an interquartile range

of 6 to 15 days. The zero restriction on the impact response of the ENS indicator is that it takes

at least one day to have broad coverage of the mobility restrictions following the shock and for

the audience to process it.

Given the sign and zero restrictions described above, we compute the identified set by

numerically solving the quadratic program described in the supplement to Plagborg-Møller and

Wolf (2021) using Algorithm 2 of Giacomini and Kitagawa (2018). In particular, let S1 be a

7xw matrix that selects the IRFs that we restrict to be either positive or negative, and let Z1 be

a 4xn matrix that selects the IRFs that we restrict to zero. Then, for each regime r ∈ {H,L},
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we draw 1 million orthogonal matrices Qr that satisfy:[
S1Ĉ0:2,rB̂Qre1(

e′
2Ĉ0,rB̂Qre1/e

′
1Ĉ0,rB̂Qre1

)
− 1

]
≥ 0 and Z1Ĉ0,rB̂Qre1 = 0 (4)

where Ĉ0:2,r =
[
Ĉ ′

0,r, Ĉ
′
1,r, Ĉ

′
2,r

]′
, Ĉh,r =

(
β̂r,1,h, . . . , β̂r,w,h

)′
h ≥ 0, β̂r,j,h denotes the OLS

estimate of βr,j,h for j = 1, . . . , w and r ∈ {L,H}, B̂ = chol(Σ̂)′, chol is the upper triangular

Cholesky decomposition of Σ̂, Σ̂ is the OLS estimate of Σ, e′
2Ĉ0,rB̂Qre1/e

′
1Ĉ0,rB̂Qre1 denotes

the ratio between the impact IRF of mobility and Re,t, and ei denotes the i-th column of the

identity matrix. Given B̂ and Ĉh,r, we draw Qr K times and let {Qr,k : k = 1, . . . , K} be the

draws that satisfy the sign and zero restrictions in Equation (4). Then, letting qr,k,1 denote the

first column of Qr,k the identified set for variable i at horizon h is given by:[
minke

′
iĈh,rB̂qr,k,1

10

e′
1Ĉ0,rB̂qr,k,1

,maxke
′
iĈh,rB̂qr,k,1

10

e′
1Ĉ0,rB̂qr,k,1

]
.

The factor 10

e′1Ĉ0,rB̂qr,k,1
is a normalization imposed so that the reproduction shock increases Re,t

by 10% in both regimes.
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Figure 8: IRFs to a reproduction shock

Figure 8 reports the identified set following a reproduction shock. We show the IRFs from
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horizon 0 up to horizon 15.25 The shorter horizon relative to the horizon of the IRFs shown in

the SVAR is due to the length of our sample and the parameter uncertainty associated with

LPs. Notice, in particular, that the LP looks at the variation in the systematic regime, while the

SVAR focuses on the effect of a shock within the regime. Figure 8 truncates the horizon at 15

days, which encompasses the illness duration of patients who died from COVID-19 reported in

Wortham et al. (2020), who find a median duration of 10 days and an interquartile range of 6 to

15 days, which is a tad below the findings of Sousa et al. (2020), who report a median illness

duration of 19 days and an interquartile range of 12 to 23 days.

In response to a reproduction shock that increases Re,t by 10%, the mobility index in the low

and high government stringency regimes decreases by a similar amount, new cases increase by

less in the high government stringency regime, leading to fewer deaths (both in hospitals and at

home). Another factor explaining the higher level of new cases and deaths in the low government

stringency regime is that the increase in Re,t is much more persistent in such a regime. Thus,

high government stringency could save up to about 250 deaths in the first two weeks after the

reproduction shock or around 1.5% of the deaths in our sample. Let us now assess the effects on

economic activity of the shock to the reproduction number under the high and low stringency

regimes. In response to the shock, the ENS indicator decreases by about 0.2 to 0.4 standardized

units after 7 days in the high stringency regime and increases by about 0 to 0.2 standardized

units in the low stringency regime.

As in Section 5.1, it is useful to map the standardized units to real per capita GDP terms.

After a reproduction shock, a high stringency regime saves 250 lives at a cost of between e2 and

e4 per capita (or between e91,872 and e183,745 per life saved). The cost of preventing a death

is higher in the case of LPs, but notice that the reference horizon of the IRFs in the case of LPs

is 7 days, while in the case of the SVARs it is 90 days, when there is more room for a recovery of

economic activity. In any case, the economic cost of a high stringency regime is negligible.

Finally, while it is reasonable to assume that a reproduction shock should immediately feed

through to Re,t, it is less clear that the behavioral feedback to mobility should be similarly fast.

For this reason, we test the robustness of the results in Figure 8. We consider two alternatives to

Restriction 2. The first alternative assumes that mobility decreases 3 days after the shock for at

least 3 days in response to a positive reproduction shock. The second alternative assumes that

mobility decreases 7 days after the shock for at least 3 days in response to a positive reproduction

shock. In both cases, the results are unchanged.26

25One could follow Plagborg-Møller and Wolf (2020) and implement a forecast error variance decomposition
(FEVD) to assess how much in-sample variation in the various epidemiological variables can be accounted for by
the identified reproduction shocks.

26We thank an anonymous referee for suggesting this exercise.
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6 Conclusion

There are many environments in which to generalize our results. First, we could integrate

our epidemiological model within a more economic model and estimate how individuals make

decisions regarding mobility instead of imposing a random walk variation. Second, we could

introduce a rich network structure between different compartments (for example, reflecting

heterogeneity by age, gender, occupation, and location) and estimate how the parameters

governing the movements among those compartments evolve (do effective contact rates between

regions drop more persistently than effective contact rates within regions?). Examples of these

richer data structures appear in Acemoglu et al. (2020) and Aguirregabiria et al. (2020). These

could be particularly helpful in linking health outcomes with economic outcomes across different

population groups provided that one has access to such data. Third, we could consider how

the introduction of vaccines and new medical treatments affects health and macroeconomic

outcomes.
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Jordà, Òscar. 2005. “Estimation and Inference of Impulse Responses by Local Projections.”

American Economic Review, 95(1): 161–182.

Katul, Gabriel G., Assaad Mrad, Sara Bonetti, Gabriele Manoli, and Anthony J.

Parolari. 2020. “Global Convergence of COVID-19 Basic Reproduction Number and Estima-

tion from Early-time SIR Dynamics.” PLOS One, 16(4): 351–367.

Kilian, Lutz, and Daniel P Murphy. 2012. “Why Agnostic Sign Restrictions Are Not Enough:

Understanding the Dynamics of Oil Market VAR Models.” Journal of the European Economic

Association, 10(5): 1166–1188.

Kucirka, Lauren M, Stephen A Lauer, Oliver Laeyendecker, Denali Boon, and Justin

Lessler. 2020. “Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain

Reaction–Based SARS-CoV-2 Tests by Time Since Exposure.” Annals of Internal Medicine.

Leeper, Eric M., and Tao Zha. 2003. “Modest Policy Interventions.” Journal of Monetary

Economics, 50(8): 1673–1700.

Leeper, Eric M, Christopher A Sims, and Tao Zha. 1996. “What Does Monetary Policy

Do?” Brookings Papers on Economic Activity, 1996(2): 1–78.

Lewis, Daniel J., Karel Mertens, James H. Stock, and Mihir Trivedi. 2020. “Measuring

Real Activity Using a Weekly Economic Index.” Federal Reserve Bank of New York Staff

Reports.

Maloney, William, and Temel Taskin. 2020a. Determinants of Social Distancing and

Economic Activity during COVID-19: A Global View. The World Bank.

Maloney, William, and Temel Taskin. 2020b. “Social Distancing and Economic Activity

during COVID-19: A Global View.” COVID Economics Issue, 13(4).

36



Manski, Charles F., and Francesca Molinari. 2021. “Estimating the COVID-19 Infection

Rate: Anatomy of an Inference Problem.” Journal of Econometrics, 220(1): 181–192.

Molenberghs, Geert, Christel Faes, Jan Aerts, Heidi Theeten, Brecht Devleess-

chauwer, Natalia Sierra, et al. 2020. “Belgian COVID-19 Mortality, Excess Deaths,

Number of Deaths per Million, and Infection Fatality Rates (8 March - 9 May 2020).” medRxiv.

OECD. 2012. Mortality Risk Valuation in Environment, Health and Transport Policies. OECD

Publishing.

O’Neill, Philip D., and Gareth O. Roberts. 1999. “Bayesian Inference for Partially Observed

Stochastic Epidemics.” Journal of the Royal Statistical Society. Series A (Statistics in Society),

162(1): 121–129.

Plagborg-Møller, Mikkel, and Christian K Wolf. 2020. “Instrumental Variable Identifica-

tion of Dynamic Variance Decompositions.” arXiv preprint arXiv:2011.01380.

Plagborg-Møller, Mikkel, and Christian K Wolf. 2021. “Local Projections and VARs

Estimate the Same Impulse Responses.” Econometrica (Forthcoming).

Ramey, Valerie A, and Sarah Zubairy. 2018. “Government Spending Multipliers in Good

Times and in Bad: Evidence from US Historical Data.” Journal of Political Economy,

126(2): 850–901.

Roberts, Gareth O., and Jeffrey S. Rosenthal. 2001. “Optimal Scaling for Various

Metropolis-Hastings Algorithms.” Statistical Science, 16(4): 351–367.

Sierra, Natalia Bustos, Nathalie Bossuyt, Toon Braeye, Mathias Leroy, Isabelle

Moyersoen, Ilse Peeters, et al. 2020. “All-Cause Mortality Supports the COVID-19

Mortality in Belgium and Comparison with Major Fatal Events of the Last Century.” Archives

of Public Health, 78(1): 1–8.

Sims, Christopher A, and Tao Zha. 2006. “Were There Regime Switches in US Monetary

Policy?” American Economic Review, 54–81.

Sousa, GJB, TS Garces, VRF Cestari, RS Florêncio, TMM Moreira, and MLD
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A Online Appendix

A.1 Implied Density over the Initial Share of Detected Cases

Figure A.1 plots the prior and posterior distributions of the initial share of detected cases, γn,0,

implied by our model. While the prior assigns substantial probability mass to values as high as

0.6, the posterior distribution is concentrated in values below 0.4, indicating that, according to

our model, the share of detected cases on March 15, 2020, was below 40% with high probability.

Figure A.1: Prior histograms (yellow) are based on 100,000 independent draws from the prior
distribution presented in Table 2. Posterior histograms (red) are based on the MCMC chain
with 90,000 posterior draws obtained after a burn-in period of 10,000 draws.

A.2 Prior versus Posterior

Figure A.2 shows the prior and posterior distributions for γ, θH , and θP . These parameters are

inversely related to the average duration a person remains infectious, the average duration of

stay in hospitals, and the average duration of stay at home while recovering from COVID-19.

Figure A.2 reveals that the data are very informative about γ and θH and less informative about

θP . Figure A.3 shows the prior and posterior distributions for σb, σh, σp, σg, and σn. These

parameters govern the step size of the time-varying parameters of our model. Clearly, the data

are informative about them. Finally, Figure A.4 shows the prior and posterior distributions

for b0, dH0 , dP0 , gH0 , S0, I0, n0, and µ. These parameters are the initial-value parameters and

the share of false negatives parameter in the case of µ. Figure A.4 documents that data are

informative about these 8 parameters as well. The prior for n0 is truncated at 1 to rule out large

values of the permanent component of detected cases. Even so, the posterior indicates that there

is not much probability mass near the truncation, suggesting that the upper bound for the prior

could be relaxed without affecting our conclusions.
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Figure A.2: Duration Parameters. Table 1 presents definitions of these parameters. Prior
histograms (yellow) are based on 100,000 independent draws from the prior distribution presented
in Table 2. Posterior histograms (red) are based on the MCMC chain with 90,000 posterior
draws obtained after a burn-in period of 10,000 draws.
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Figure A.3: Step-size Parameters. Table 1 presents definitions of these parameters. Prior
histograms (yellow) are based on 100,000 independent draws from the prior distribution presented
in Table 2. Posterior histograms (red) are based on the MCMC chain with 90,000 posterior
draws obtained after a burn-in period of 10,000 draws.
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Figure A.4: Initial-value Parameters and Share of False Negatives Parameter. Table 1 presents
definitions of those parameters. Prior histograms (yellow) are based on 100,000 independent
draws from the prior distribution presented in Table 2. Posterior histograms (red) are based on
the MCMC chain with 90,000 posterior draws obtained after a burn-in period of 10,000 draws.
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A.3 Other States

Finally, we present the smoothed estimates of the time-varying death probabilities, the share of

the population that is infectious, the share of the population that is recovering (in hospitals and

at home), and the inflow of hospitalizations as a share of those that are no longer infectious.

Another state variable in our model is the time-varying death probabilities. Those probabilities

can change for many reasons. We can enumerate a few. First, medical protocols vary. As health

workers learn more about an infection, they can handle patients better, even in the absence

of effective treatments. Second, hospitals experience different occupancy rates, with variations

in the inflows and total capacity, as the supply of beds and ICU units responds to the crisis.

Third, the demographics of patients can change, by varying either in terms of age or in terms of

comorbidity levels.27

The left panel of Figure A.5 shows the in-hospital death probability (median smoothed, plus

the 90% probability band), which went down from over 2.5% in March to less than 1% by early

July. The sizeable third peak of COVID infections in the fall of 2020 increased that probability

by only around 1.5%, suggesting a considerable degree of improvement in clinical outcomes.

(a) In-hospital death probabilities, Belgium (b) At-home death probabilities, Belgium

Figure A.5: Death probabilities, Belgium

The right panel of Figure A.5 shows the at-home death probability, which fell from around

0.5% in March to less than 0.1% by early July. Here the changing conditions at retirement

communities, which were unprepared for the virulence of COVID-19 in the late winter of 2020,

are probably at the core of the estimated variation in death probabilities.

Figure A.6 shows the time series of these smoothed variables throughout our sample. The

share of infectious increases to 1.8% by the end of October: more than twice as large as the

27Imagine, for example, that individuals with a high probability of infection (e.g., due to their social networks)
and high fatality rate (e.g., smokers) got infected in the first wave. As there are fewer of these individuals in the
population when the second wave arrives, the measured death rates will mechanically fall.
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(a) Ît, Belgium (b) Ĥt, Belgium

(c) P̂t, Belgium (d) γH,t, Belgium

Figure A.6: Other state variables, Belgium

March 15 estimate of 0.7%. This sharp increase in the share of infectious may provide a rationale

for the first nationwide lockdown imposed by the Belgian government on March 18, 2020. These

measures appear to have had an effect as the number of infectious dropped at the beginning of

April and continued to decline, reaching a trough at the end of June 2020. After that, the share

of infectious began to increase but at a moderate pace up until the first week of September, when

we observe a second exponential increase in the share of infectious, leading to a reintroduction of

lockdown measures on October 16, 2020.

The shares of the population recovering in hospitals and at home broadly track the contour

of the share of infectious. For example, the first peak of infections and hospitalizations occurs

in early April. A similar pattern emerges for the share of the population recovering outside

of hospitals. Notice that while the peak of the third wave of infections and the peak of those

recovering at home are more than twice as high as the peak of the first wave, during the second

wave, hospitalizations peak at a level only marginally higher than the peak of the first wave.

This is consistent with the decline in the share of those recovering from COVID-19 in hospitals

during the third wave relative to the first one.
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A.4 Sentiment and Real GDP Growth Units

Table A.1 shows the OLS coefficients, the 95% confidence intervals for the coefficient estimates (in

brackets), and the R2 of a regression of four-quarter real GDP growth one quarter ahead on a con-

stant and ENSq over the sample 2000Q1-2019Q4, i.e., RGDPq4q4q+1 = α+γENSq+ut, where q ∈
{2000Q1, . . . , 2019Q3}.28

Table A.1

Regressors Coefficients
Constant 1.61 [1.36;1.87]
Economic News Sentiment 1.17 [0.84;1.51]
R2 = 0.39

Figure A.7 plots the quarterly average of the daily economic news sentiment index expressed

in GDP units along with one-quarter-ahead four-quarter real GDP growth.
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Figure A.7

28The real GDP data for Belgium were retrieved from the FRED database, Federal Reserve Bank of St. Louis.
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A.5 Robustness to State Uncertainty

Figure A.8 gauges the robustness of our IRFs to state uncertainty. First, we draw a sequence of

the state variables from the posterior distribution of the smoothed state variables. Second, we

estimate an SVAR as in Section 5.1 and compute the point-wise posterior median IRFs. We

repeat these two steps 100 times. For each SVAR, the posterior median is based on about 1,000

independent draws of the structural parameters.
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Figure A.8: IRFs to a stringency shock
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A.6 Prior Robustness

Figure A.9 shows that the main conclusions from our SVAR analysis are robust to using the

prior robust approach for SVARs proposed by Giacomini and Kitagawa (2018). The solid curves

represent the point-wise posterior medians, the shaded areas represent the 68% equal-tailed

point-wise probability bands, dotted curves represent the set of prior robust posterior means,

and dashed-dotted curves depict the 68% robust credible regions. The figure is based on 1,000

independent draws of the reduced-form parameters and 100,000 orthogonal matrices draws for

each reduced-form parameter.

Figure A.9: IRFs to a stringency shock using a prior robust approach
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A.7 Robustness to Higher Threshold

Figure A.10 shows that if the cutoff for high stringency is set higher, the main results do not

change much. Notice that, in this case, the identified set for the IRF of the reproduction number

in the high stringency regime is for the most part above the one in the low stringency regime.

This is because, as the threshold for the stringency regime increases, the division between the

early and the rest of the sample increases and hence the IRFs possibly reflect more contagious

variants.
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Figure A.10: IRFs to a reproduction shock
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